
Cause Clue Clauses:
Error Localization using Maximum Satisfiability ∗

Manu Jose
University of California, Los Angeles

mjose@cs.ucla.edu

Rupak Majumdar
MPI-SWS, Kaiserslautern &

University of California, Los Angeles
rupak@mpi-sws.org

Abstract
Much effort is spent by programmers everyday in trying to reduce
long, failing execution traces to the cause of the error. We present
an algorithm for error cause localization based on a reduction to
the maximal satisfiability problem (MAX-SAT), which asks what
is the maximum number of clauses of a Boolean formula that can
be simultaneously satisfied by an assignment. At an intuitive level,
our algorithm takes as input a program and a failing test, and com-
prises the following three steps. First, using bounded model check-
ing, and a bound obtained from the execution of the test, we encode
the semantics of a bounded unrolling of the program as a Boolean
trace formula. Second, for a failing program execution (e.g., one
that violates an assertion or a post-condition), we construct an un-
satisfiable formula by taking the formula and additionally asserting
that the input is the failing test and that the assertion condition does
hold at the end. Third, using MAX-SAT, we find a maximal set of
clauses in this formula that can be satisfied together, and output the
complement set as a potential cause of the error.

We have implemented our algorithm in a tool called BugAssist
that performs error localization for C programs. We demonstrate
the effectiveness of BugAssist on a set of benchmark examples
with injected faults, and show that in most cases, BugAssist can
quickly and precisely isolate a few lines of code whose change
eliminates the error. We also demonstrate how our algorithm can
be modified to automatically suggest fixes for common classes of
errors such as off-by-one.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Fault-localization; F.3.2 [Log-
ics and Meaning of Programs]: Semantics of Programming
Languages—Program Analysis

General Terms Verification,Reliability

Keywords Debugging, Fault localization, Maximum Satisfiability

∗ This research was sponsored in part by the NSF grant CCF-0546170 and
the DARPA grant HR0011-09-1-0037.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

1. Introduction
A large part of the development cycle is spent in debugging, where
the programmer looks at a long, failing, trace and tries to localize
the problem to a few lines of source code that elucidate the cause
of the problem. We describe an algorithm for fault localization for
software that automates this process. The input to our algorithm is
a program, a correctness specification (either a post-condition, an
assertion, or a “golden output”), and a program input and corre-
sponding execution (called the failing execution) that demonstrates
the violation of the specification. The output is a minimal set of
program statements such that there exists a way to replace these
statements such that the failing execution is no longer valid.

Internally, our algorithm uses symbolic analysis of software
based on Boolean satisfiability, and reduces the problem to maxi-
mum Boolean satisfiability. It takes as input a program and a failing
test case and performs the following three steps. First, it constructs
a symbolic trace formula for the input program. This is a Boolean
formula in conjunctive normal form such that the formula is sat-
isfiable iff the program execution is feasible (and every satisfiable
assignment to the formula corresponds to the sequence of states
in a program execution). The trace formula construction proceeds
identically to symbolic execution or bounded model checking al-
gorithms [2, 6, 15].

Second, it extends the trace formula by conjoining it with con-
straints that ensure the initial state satisfies the values of the failing
test and the final states satisfy the program post-condition that was
failed by the test. The extended trace formula essentially states that
starting from the test input and executing the program trace leads
to a state satisfying the specification. Obviously, the extended trace
formula for a failing execution must be unsatisfiable.

Third, it feeds the extended trace formula to a maximum satisfi-
ability solver. Maximum satisfiability (MAX-SAT) is the problem
of determining the maximum number of clauses of a given Boolean
formula that can be satisfied by any given assignment. Our tool
computes a maximal set of clauses of the extended trace formula
that can be simultaneously satisfied, and takes the complement of
this set as a candidate set of clauses that can be changed to make the
entire formula satisfiable. Since each clause in the extended trace
formula can be mapped back to a statement in the code, this process
identifies a candidate localization of the error in terms of program
statements. Note that there may be several minimal sets of clauses
that can be found in this way, and we enumerate each minimal set
as candidate localizations for the user. In our experiments, we have
found that the number of minimal sets enumerated in this way re-
mains small.

More precisely, our algorithm uses a solver for partial MAX-
SAT. In partial MAX-SAT, the input clauses can be marked hard or
soft, and the MAX-SAT instance finds the maximum number of soft

437

clauses that can be satisfied by an assignment which satisfies every
hard clause. In our algorithm, we mark the input constraints (that
ensure that the input is a failing test) as well as constraints arising
from the specification are hard. This is necessary: otherwise, the
MAX-SAT algorithm can trivially return that changing an input or
changing the specification can eliminate the failing execution. In
addition, in our implementation, we group clauses arising out of
the same program statement together, thus keeping the resulting
MAX-SAT instance small.

We have implemented our algorithm in a tool called BugAssist
for fault localization of C programs.1 BugAssist takes as input
a C program with an assertion, and a set of failing test cases,
and returns a set of program instructions whose replacement can
remove the failures. It builds on the CBMC bounded model checker
for construction of the trace formula and an off-the-shelf MAX-
SAT solver [20] to compute the maximal set of satisfied clauses.
We demonstrate the effectiveness of BugAssist on 5 programs from
the Siemens set of benchmarks with injected faults [8]. The TCAS
program in the test suite is run with all the faulty versions in detail
to illustrate the completeness of the tool. In each case, we show that
BugAssist can efficiently and precisely determine the exact (to the
human) lines of code that form the “bug”. The other 4 programs are
used to show the scalability of the tool when used in conjunction
with orthogonal error trace reduction methods.

We can extend our algorithm to suggest fixes for bugs automat-
ically, by noticing that the MAX-SAT instance can be used not
only to localize problems, but also to suggest alternate inputs that
will eliminate the current failure. In general, this is an instance of
Boolean program synthesis, and the cost of the search can be pro-
hibitive. However, we have experimentally validated that automatic
suggestions for fixes is efficient when we additionally restrict the
search to common classes of programmer errors, such as replace-
ment of comparison operators (e.g., < by ≤) or off-by-one arith-
metic errors. For these classes of systems, BugAssist can automat-
ically create suggestions for program changes that eliminate the
current failure.

Error localization is an important step in debugging, and im-
proved automation for error localization can speed-up manual de-
bugging and improve the usability of automatic error-detection
tools (such as model checkers and concolic testers). Based on our
implementation and experimental results, we feel BugAssist is a
simple yet precise technique for error localization.

Related Work. Fault localization for counterexample traces has
been an active area of research in recent years [1, 12, 13, 22, 23].
Most papers perform localization based on multiple program runs,
both successful and failing, and defining a heuristic metric on
program traces to identify locations which separate failing runs
from successful ones.

Griesmayer et al. [12] gives a fault localization algorithm for
C programs that constructs a modified system that allows a given
number of expressions to be changed arbitrarily and uses the
counter example trace from a model checker. This requires in-
strumenting each expression ei in the program with (diag ==
i?nondet() : ei), where diag is a non deterministic variable and
nondet() is a new variable with the size equal to that of ei. The
number of diagnosis variables is equal to the number of compo-
nents that are faulty in the program and need to be analyzed before
creating the modified system. So each expression in the program
requires a new variable in the modified system along with the di-
agnosis variables which could blow up the size of the instrumented
program under consideration. In this work we avoid these draw-

1 The tool, Eclipse plugin, and test cases can be downloaded from our web
page http://bugassist.mpi-sws.org.

backs using selector variables and efficient MAX-SAT instance for-
mulation using clause grouping technique.

Many existing algorithms for fault localization [1, 13, 23, 33]
use the difference between the faulty trace and a number of suc-
cessful traces. For example, Ball, Naik, and Rajamani [1] use mul-
tiple calls to a model checker and compare the counterexamples to
a successful trace. The faults are those transitions that does not ap-
pear in a correct trace. Our approach does not require comparing
the traces or a successful run of the program as benchmark. We re-
port the exact locations where the bug could be corrected instead of
a minimal code fragment or a fault neighbor location.

Alternate approaches to reducing the cognitive load of debug-
ging are delta debugging [33], where multiple runs of the program
are used to minimize the “relevant” portion of the input, and dy-
namic slicing [30], where data and control dependence information
is used to remove statements irrelevant to the cause of failure. Our
technique is orthogonal to delta-debugging and dynamic slicing,
and can be composed profitably. In fact, we demonstrate in our ex-
periments how a combination of dynamic slicing and delta debug-
ging, followed by our technique, can allow us to localize faults in
long executions.

While we describe our algorithm in pure symbolic execution
terms, our algorithm fits in very well with concolic execution
[3, 11, 25], where symbolic constraints are generated while the
concrete test case is run. Our motivation for using CBMC was
the easy integration with MAX-SAT solvers, but in our implemen-
tation, we performed some optimizations (such as using concrete
values for external library calls in the trace formula and constant-
folding input-independent parts of the constraints) similar to con-
colic execution.

Unsatisfiability cores and MAX-SAT have been used suc-
cessfully for design debugging of gate-level hardware circuits
[5, 24]. Unsatisfiability cores have also been used to localize over-
constrains in declarative models [26].

2. Motivating Example

Program 1 A simple example.
int Array[3];
int testme(int index)
{
.
1 if (index != 1) /* Potential Bug 2 */
2 index = 2;
3 else
4 index = index + 2; /* Potential Bug 1 */
.
.
.
5 i = index;
6 return Array[i]; //assert(i >= 0 && i < 3)
}

We start with an informal description of BugAssist. Consider
the function testme in Program 1 which returns a value at a new
location from an array of size 3. The global array Array has
3 elements. The function takes in the current index value, does
computation on this value (shown in lines 1–4) to find a new index
and returns the value in the array at the new index (line 6). The
array dereference on line 5 generates implicit assertions about the
array bounds shown in line 6.

The program has a bug. If the input index is equal to 1, then the
else-branch sets index to 3, and the subsequent array dereference

438

on line 6 is out of bounds. Testing the program with this input
will find the bug, and return a program trace that shows the array
bounds violation at the end. But testing or model checking returns
a full execution path, including details irrelevant to the specific bug,
and do not give the reason for failure, or the cause of the bug. The
localization algorithm in BugAssist helps to nail down the issue to
a few potential bug locations in the program where the correction
has to be made.

BugAssist works as follows. Starting with the test input
index = 1 and the program, it first constructs a symbolic trace
formula TF encoding the program semantics:

TF ≡ guard1 = (index1 6= 1)∧
index2 = 2 ∧ index3 = index1 + 2∧

i = guard1?index2 : index3

Every satisfying assignment to the trace formula gives a possible
execution of the program, and conversely. We assume that integers
and integer operations are encoded in a bit-precise way, and with-
out loss of generality, the trace formula is a Boolean formula in
conjunctive normal form. In case there are loops in the program,
we unroll loops up to a bound computed from the execution of the
test input on the program (roughly, we take the bound as the maxi-
mum number of times any loop gets executed along the execution,
taking nesting into account). We omit the details of the standard
encoding from imperative programs to Boolean formulas (see, e.g.,
[6]).

Clearly, at the end of the trace, the assertion

i < 3

does not hold for all inputs to the program. Consider now the
formula

Φ ≡ index1 = 1︸ ︷︷ ︸
test input

∧ TF︸︷︷︸
trace formula

∧ i < 3︸ ︷︷ ︸
assertion

which is unsatisfiable. Intuitively, the formula captures the execu-
tion of the program starting with the error-inducing test input, and
asserts that the assertion holds at the end (a contradiction, by choice
of the input).

We convert Φ to conjunctive normal form (CNF) and feed it
to a partial MAX-SAT solver [20]. A partial MAX-SAT solver
takes as input a Boolean formula in CNF where each clause is
marked “hard” or “soft,” and returns the maximum number of soft
clauses (as well as a subset of clauses of maximum cardinality)
that can be simultaneously satisfied by an assignment satisfying all
the hard clauses. In case of Φ, we make the constraints coming
from the test input (index1 = 1) and the assertion (i < 3) as
hard, and leave the clauses in the trace formula soft. Intuitively,
we ask, given that the input and the assertion are fixed, which
parts of the trace formula are consistent with the input and the
assertion? The partial MAX-SAT solver then tries to find a set of
soft clauses of maximum cardinality which can be simultaneously
satisfied while satisfying all the hard clauses. The complement of a
set of maximally satisfiable clauses (CoMSS) gives a set of soft
clauses of minimum cardinality whose removal would make Φ
satisfiable, i.e., consistent with the view that the test input does
not break the assertion. By tracing the origins of the clauses in
this set to the program, we get a set of program locations that are
potential indicators of the error. Using clause grouping, described
in Section 3, each line in the program is mapped to a bunch of its
soft clauses which are enabled and disabled simultaneously.

In our example, the hard and soft clauses are:

Hard :index1 = 1 ∧ i < 3

Soft :TF

MAX-SAT returns that a possible CoMSS maps to the line 4 in the
program. This is the unsatisfiable core whose removal or correction
can satisfy the formula Φ. We claim that is a potential error location
for the program and a fix would be to change the constant to any
integer less than 2 and greater than -2.

If the programmer decides this is not a correct localization,
we can generate additional localization candidates as follows. We
iterate by making another call to MAX-SAT, but this time make
clauses arising out of line 4 hard, i.e., asking the MAX-SAT for
possible CoMSS where line 4 is kept unchanged. This reveals
another potential bug location in the code. We repeat this process
until MAX-SAT finds the formula to be unsatisfiable and such that
no clauses can be removed to make the instance satisfiable. The
error locations reported by BugAssist are underlined in Program
1. On a closer look, these are all the places where the correction
can be made. Either changing the constant value at line 4 or the
conditional statement at line 1 can fix the program. Our method is
limited by the existing code: we cannot “localize” errors that can
only be fixed by adding additional code.

Notice that our technique is stronger than simply taking the
backward slice of the program trace, and gives fine-grained infor-
mation about potential error locations. The backward slice for this
trace contains all the lines 1, 4, and 5. Our algorithm returns lines 1
and 4 separately as potential error locations. However, slicing is an
orthogonal optimization which can be applied before applying our
technique.

So far we have focused on error localization. The methodology
can be modified to suggest program repairs as well. Intuitively, the
fault localization returns a set of program commands that are likely
to be wrong. One can then ask, what are potential replacements
to these commands that fixes the error? In general, the space of
potential replacements is large, and searching this space efficiently
is a difficult problem of program synthesis [27, 29]. Instead, we
take a pragmatic approach and look for possible fixes for common
programmer errors.

Specifically, we demonstrate our idea by fixing “off by one”
errors. In this example, the error occurs due to accessing an out
of bound array element by one. When BugAssist comes back with
line 4 as a potential bug location, we try to “fix” the bug by
changing the constant whose new value is one off its current value.
So we change the value 2 in this line to 3 or 1 and check if either
of these values satisfy the properties. This involves modifying the
trace formula appropriately and checking if the failing program
execution becomes infeasible with either change. So in this case
we create two programs with new constants at line 4 as follows.

Program1 : index = index+ 3 ×
Program2 : index = index+ 1

√

The new value 1 ensures that the error path is infeasible, and this
can be used as a suggestion for repair for the program. The same
procedure can be used to check for operator errors like use of plus
instead of minus, division instead of multiplication, performing as-
signment instead of equality test, etc., which are common program-
mer error patterns.

3. Preliminaries
3.1 Programs: Syntax and Semantics
We describe our algorithm on a simple imperative language based
on control-flow graphs. For simplicity of description, we omit fea-
tures such as function calls or pointers. These are handled by our
implementation.

A program G = (X,L, `0, T) consists of a set X of Boolean-
valued variables, a set L of control locations, an initial location
`0 ∈ L and a set T of transitions. Each transition τ ∈ T is a tuple

439

(`, ρ, `′) where ` and `′ are control locations and ρ is a constraint
over free variables from X ∪ X ′, where the variables from X ′

denote the values of the variables from X in the next state.
For a constraint ρ, we sometimes write ρ(X,X ′) to denote that

the free variables in ρ come from the set X ∪X ′.
Our notation is sufficient to express common imperative pro-

grams (without function calls): the control flow structure of the
program is captured by the graph of control locations, and oper-
ations such as assignments x := e and assumes assume(p) cap-
tured by constraints x′ = e ∧

∧
{y′ = y | y ∈ X \ {x}} and

p ∧
∧
{x′ = x | x ∈ X} respectively. A program is loop-free if

there is no syntactic loop in the graph of control locations.
A state of the program P is a mapping from variables in X

to Booleans. We denote the set of all program states by v.X . A
computation of the program is a sequence 〈m0, s0〉〈m1, s1〉 . . . ∈
(L × v.X)∗, where m0 = `0 is the initial location, and for each
i ∈ {0, . . . , k − 1}, there is a transition (mi, ρi,mi+1) ∈ T such
that (si, si+1) satisfies the constraint ρi.

An assertion p is a set of program states. A program violates an
assertion p if there is some computation 〈m0, s0〉 . . . 〈mk, sk〉 such
that sk is not in p. Typically, assertions can be given as language-
level correctness requirements (e.g., “no null pointer dereference”),
as programmer-specified asserts in the code, or as post-conditions.

3.2 Trace Formulas
Given a program and a bound k > 0, we can unwind the graph
of control locations to get a simplified program without loops
whose computations all have length at most k and such that each
computation of the simplified program is also a computation of the
original program. From such a loop-free program, we can derive a
(quantifier-free) Boolean formula, called the trace formula, such
that the set of satisfying assignments to the formula correspond
exactly to computations of the program. We briefly describe the
construction; see [6] for details.

The construction of the trace formula takes a loop-free program
P , all of whose computations have length at most k, and recur-
sively constructs a Boolean formula as follows. Let X0, . . . , Xk
be independent copies of the set of variables X . For each ` ∈ L
and i ∈ {0, . . . , k − 1}, let z`i be a Boolean variable, and define a
constraint φ(`, i) as follows:

z`i ↔
∨

(`,ρ,`′)∈T

ρ(Xi, Xi+1) ∧ z`
′
i+1 (1)

The trace formula is then defined to be the conjunction over ` ∈ L
and i ∈ {0, . . . , k − 1} of the constraints in Equation (1), together
with the conjunct z`00 :

z`00 ∧
∧

`∈L,i∈{0,...,k−1}

φ(`, i) (2)

The construction is well-defined because P is loop-free.
While we have described trace formulas for our simple pro-

grams, a C program with finite bit width data, e.g., 32-bit integers,
can be converted into an equivalent Boolean program by separately
tracking each bit of the state, and by interpreting fixed-width arith-
metic and comparison operators as corresponding Boolean opera-
tions on each individual bit. In particular, our implementation han-
dles all features of ANSI-C, including function calls and pointers.
We omit the (standard) details, see e.g., [6, 32].

3.3 Partial Maximum Satisfiability
Given a Boolean formula in conjunctive normal form, the maxi-
mum satisfiability (MAX-SAT) problem asks what is the maximum
number of clauses that can be satisfied by any assignment [16]. The
MAX-SAT decision problem is NP-complete; note that a formula
is satisfiable iff all its clauses can be satisfied by some assignment.

The partial maximum satisfiability (pMAX-SAT) problem takes
as input a Boolean formula Φ in conjunctive normal form, and
a marking of each clause of Φ as hard or soft, and asks what is
the maximum number of soft clauses which can be satisfied by
an assignment to the variables which satisfies all hard clauses.
Intuitively, each hard clause must be satisfied, and we look for the
maximum number of soft clauses which may be satisfied under this
constraint.

Recent years have seen a tremendous improvement in engineer-
ing efficient solvers for MAX-SAT and pMAX-SAT. The widely
used algorithm for MaxSAT is based on branch-and-bound search
[17], supported by effective lower bounding and dedicated infer-
ence techniques. Recently, unsatisfiability based MaxSAT solvers
by iterated identification of unsatisfiable sub-formulas was pro-
posed in [10]. This approach consist of identifying unsatisfi-
able sub-formulas and relaxing clauses in each unsatisfiable sub-
formulas by associating a relaxation variable with each such clause.
Cardinality constraints are used to constrain the number of relaxed
clauses [19, 20].

In addition to solving the decision problem, MAX-SAT solvers
also give a set of clauses of maximum cardinality that can be simul-
taneously satisfied. The complement of these maximum satisfiable
subsets (MSS) are a set of clauses whose removal makes the in-
stance satisfiable (CoMSS). Since the maximum satisfiability sub-
set is maximal, the complement of this set is minimal [18].

In this work we make use of these CoMSS which refers to
the clauses whose removal can make the system satisfiable. Since
we represent a C program as a boolean satisfiability problem with
constraints and properties, the CoMSS are oracles for potential bug
locations.

3.4 Efficient Compilation to MAX-SAT
A single transition can lead to multiple clauses in the conjunctive
normal form of the trace formula. In this section we provide a
method to simplify the MAX-SAT problem by grouping together
clauses arising out of a single transition in the program.

For each transition τ = (m, ρ,m′) ∈ T , we introduce a new
Boolean variable λτ . Let Λ = {λτ | τ ∈ T }. Let CNF(ρ) be a
conjunctive normal form representation of ρ. We augment each
clause in CNF(ρ) with λτ . For example, suppose (c11 ∨ . . .) ∧
(c21∨ . . .) is a conjunctive normal form representation of ρ, then the
augmented representation is (¬λτ ∨ c11 ∨ . . .) ∧ (¬λτ ∨ c21 ∨ . . .).

The augmentation with λτ has the following effect. When λτ
is assigned true, the original clauses in the CNF representation
of ρ must be satisfied, while when λρ is assigned false, each
augmented clause is already satisfied. This helps to enable and
disable the clauses corresponding to each transition by setting and
unsetting the λτ variable respectively. The λ-variables are called
selector variables.

We now augment trace formulas with selector variables. Let
φ′(`, i,Λ) be the formula in which each clause arising out of
τ = (·, ρ, ·) is augmented with λτ . Instead of Equation (2) for
the trace formula, we use the form:

z`00 ∧
∧

`∈L,i∈{0,...,k−1}

φ′(`, i,Λ)

︸ ︷︷ ︸
TF1

∧
∧
τ∈T

λτ︸ ︷︷ ︸
TF2

(3)

where we label the two parts of the formula TF1 and TF2 for
later reference. Intuitively, clauses from TF1 will be marked as
hard clauses to the MAX-SAT solver, and clauses from TF2 will
be marked soft. Thus, the MAX-SAT solver will explore the space
of possible program statements whose replacement will cause the
error to go away.

440

Algorithm 1 Localization Algorithm
Input: Program P and assertion p
Output: Either p holds for all executions or potential bug locations

1: (test, σ) = GenerateCounterexample(P , p)
2: if σ is “None” then
3: return “No counterexample to p found”
4: else
5: ΦH = [[test]] ∧ p ∧ TF1(σ)
6: ΦS = TF2(σ)
7: while true do
8: BugLoc = CoMSS(ΦH ,ΦS)
9: if BugLoc = ∅ then

10: return “No more suspects”
11: else
12: output “Potential bug at CoMSS BugLoc”
13: β =

∨
{λi | λi ∈ BugLoc}

14: ΦS = ΦS\β and ΦH = ΦH ∪ β

Notice that we allocate a selector variable for each transition
of the program, so the number of selector variables is bounded by
the size of the program. However, in a trace, the same program
transition may occur multiple times (e.g., on unrolling a loop), and
there is a distinct clause for each of these occurrences all tagged
with the same selector variable.

We use the abstraction technique on transitions, which corre-
spond to line numbers of code in our implementation, but it is also
possible to group the clauses from modules and recursively narrow
down the problem to a module, and then to a line.

4. Algorithm
We now describe the algorithm for BugAssist. There are two
phases of the algorithm: first, generate a failing execution (and a
test demonstrating a failing execution), and second, find a minimal
set of transitions that can render the failing execution infeasible.

4.1 Generating Failing Tests
In our implementation, we use either failing test cases from a test
suite as a starting point. If there are no available tests, we use
bounded model checking [2, 6] to systematically explore program
executions and look for potential assertion violations. Once a fail-
ing execution is found, the bounded model checking procedure can
generate a concrete initial state that leads to the assertion violation
as well as the trace formula.

4.2 The Localization Algorithm
Algorithm 1 shows the BugAssist localization algorithm. Line 1

calls the procedure to generate failing executions for the assertion.
If no failing executions are found, the procedure returns. Otherwise,
we get a concrete test case test as well as a trace σ demonstrating
the failure of the assertion.

Using the test, the failing execution, and the assertion, we
construct two formulas (lines 5,6). The formula ΦH consists of
three parts. The first part, [[test]], is a formula asserting that the
initial state coincides with the test case that caused the failure.
Formally, for a program state s, the constraint [[s]] is defined as∧
{x = s(x) | x ∈ X}. The second part is the assertion p. The

third part is the first part TF1(σ) of the trace formula from Equa-
tion (3). The formula ΦS is the second part TF2(σ) of the trace
formula from Equation (3).

Notice that ΦH ∧ΦS is unsatisfiable. (Intuitively, it says that if
the program is run with the test input test, then at the end of the
execution trace σ, the assertion p holds.)

In subsequent calls to pMAX-SAT, clauses in ΦH are treated
as hard clauses, and clauses in ΦS are treated as soft clauses.
Intuitively, treating ΦS as soft clauses enables us to explore the
effect of changing each subset of transitions to see if the failing
transition can be made infeasible.

The search for localizations is performed in the while loop of
lines 7–14. During each iteration of the while loop, we call the
pMAX-SAT solver and get a CoMSS for the current (ΦH ,ΦS)
pair. Each of these clauses returned by CoMSS gives potential bug
locations in the code, and is output to the programmer.

Whenever we report a potential bug, we add a hard blocking
clause for the corresponding CoMSS, so that in subsequent it-
erations, this CoMSS is not explored again as a potential cause
of error. In many of our experiments, the CoMSS returns a sin-
gle λρ clause as the indicator of error. In general, it returns more
than one selector variable which indicates that the program cannot
be fixed by changing any one line but must be changed at mul-
tiple locations. (This does happen in experiments.) Adding each
of these λρ variables as a new hard clause blocks the occurrence
of these clauses in a different clause combination. To avoid this
problem, we compute a blocking clause β (lines 13) and make the
blocking clause hard. For example, suppose the coMSS returned
is, BugLoc = {λ1, λ2, . . . , λk}. This means that the bug can be
fixed by making simultaneous changes to these k locations. In the
next iteration, we add a new hard clause (λ1 ∨ . . .∨ λk) which en-
sures that this particular CoMSS is not encountered again, but other
combinations of these locations are still allowed.

4.3 Dealing with Multiple Locations
BugAssist may return multiple locations where a correction is
possible. The experimental results in section 6.1 shows that the
number of potential error locations returned is quite small and,
in most cases, the exact bug location is reported using a single
failing execution. However, for reliability and further refinement
of bug locations, we use a ranking mechanism for bug locations
by running the localization algorithm repeatedly with different
failing program traces and ranking the bug locations based on
their frequency of appearance in each of these runs. For test cases,
this requires access to a set of tests that all fail the assertion.
For counterexample generation using bounded model checking,
we take the Boolean formula constructed by the bounded model
checker and generate multiple satisfying assignments by changing
the order of variables in the SAT algorithm [7] or by doing a
random restart of the solver. Running BugAssist with these new
values gives a another set of potential bug locations. Repeating this
process and ranking the bug locations can narrow down the search
to a few lines in the program.

5. Extensions
We now describe two extensions to the basic algorithm.

5.1 Extension 1: Automated Repair
BugAssist can be extended to suggest potential repairs automati-
cally. In general, program repair reduces to program synthesis. We
sacrifice generality for practicality by focusing on specific program
repairs inspired by program mutation testing and checking if there
is a possible repair from this class that can remove the current test
failures. For example, if there is a constant used in a potential error
location, we try to synthesize a new constant which can fix the code
[12], or if there is an operator used in a potential error location, we
try to generate a repair by mutating the operator to a different one.
We demonstrate this capability by generating suggestions for fixing
off-by-one errors [31] in the program. These are a common class of
logical errors in programs arising when programmers use an ex-
pression e in the program when they should be using e ± 1. For

441

example, this can happen if programmers forget that a sequence
starts at zero rather than one (e.g. array indices in many languages
like C, C++). It is also caused during boundary check conditions by
using a < instead of ≤ or vice versa.

During the code parsing phase, we mark lines which have con-
stants in them. After running BugAssist on the code, we look at po-
tential error locations, and for each constant c in this set, we intro-
duce an indicator variable ic that takes values in the set {−1, 0, 1}.
We replace the constant c with the expression c + ic in the code.
Now, we ask if there exist values to the indicator variables that en-
sures that the new trace is infeasible. This is a Σ2 query (does there
exist values of ic such that for all inputs the trace formula is infeasi-
ble), and cannot be directly solved by a SAT solver (see [28, 29] for
extensions to SAT solvers to solve this problem). In our implemen-
tation, we restrict the number of non-zero indicator variables and
iteratively call a SAT solver for each assignment of the indicator
variables.

5.2 Extension 2: Debugging Loops
Bugs within loop bodies can be particularly hard to debug as they
might be hidden in initial iterations and only visible afterwards. The
usual bounded model checking methodology to verify properties is
by unwinding loops by duplicating the loop body K times for a
limit K on the number of unwindings. The programmer would be
interested in knowing the iteration at which the assertion is violated
to get a better idea about the cause of the error. We suggest a method
to catch the potential iteration of the loop where the bug appeared
first.

We can do this by grouping clauses and assigning weights to
the soft clauses in the pMAX-SAT instance, and using a weighted
version of the pMAX-SAT algorithm. Each time a loop body is
duplicated (till the bound K), we create a new selector variable.
For example, for a transition τ = (m, ρ,m′) ∈ T in the loop
body, during the ith unwinding, we augment each clause arising
out of ρ with λiτ . We add these selector variables as soft clauses to
the pMAX-SAT instance as before, but additionally assign a weight
as follows:

Weight(λiτ) = α+K − i (4)

for each i = 1, . . . ,K, where α is some default weight for soft
clauses. This makes sure that the clauses corresponding to the
initial iterations of the loop gets a higher weightage. The weights
assigned to the soft clauses in the pMAX-SAT can be thought
of as the penalty that has to be paid to falsify the clauses. The
solver extracts the CoMSS in such a way that clauses from initial
iterations are preferred over clauses from later iterations, since the
former have higher weights. This helps to localize the first iteration
of the loop which can reproduce the failure.

6. Experimental Results
We now demonstrate the capability of the tool by showing the

results from running programs from the Siemens test suite [8].
The Siemens test suite is widely used in the literature for bug
localization studies [12, 23]. In Section 6.1, we analyze a simple
TCAS program from the Siemens suite [14] in depth and in Section
6.2 we illustrate the scalability of our method using more complex
examples.

In our implementation, we used the bounded model checker
CBMC [6] to generate failing test inputs as well as to construct
the trace formula for an unrolling of the program. For solving the
pMAX-SAT instances, we used the Maximum Satisfiability with
UNsatisfiable COREs (MSUnCORE) tool [20], which can handle
large and complex weighted partial MAX-SAT problems. Fixes for
off-by-one errors were synthesized using the MiniSAT2 [9] SAT

1 int Inhibit_Climb () {
2 return (Climb_Inhibit?Up_Sep+300:Up_Sep);

3 /*return (Climb_Inhibit?Up_Sep+100:Up_Sep);*/
4 }
5 int Non_Crossing_Climb() {
6 upward_preferred=Inhibit_Climb()>Down_Sep;
7 if (upward_preferred) {
8 result = !(Own_Below_Threat()) ||

(!(Down_Sep >= ALIM())); }
9 else{
10 result = (Cur_Vertical_Sep >= 100)

&& (Up_Sep >= ALIM()); }
11 return result;
12 }
13 int Non_Crossing_Descend() {
14 upward_preferred=Inhibit_Climb()>Down_Sep;

15 if (upward_preferred) {
16 result = Own_Below_Threat() &&

(Cur_Vertical_Sep >= 100) &&

(Down_Sep >= ALIM());}
17 else{
18 result = !(Own_Above_Threat()) ||

((Own_Above_Threat()) &&
(Up_Sep >= ALIM())); }

19 return result;

20 }
21 int alt_sep_test() {
22 enabled = true; /*conditions omitted*/
23 alt_sep = UNRESOLVED;
24 if (enabled) {
25 need_upward_RA=Non_Crossing_Climb()&&

Own_Below_Threat();
26 need_downward_RA=Non_Crossing_Descend()

&& Own_Above_Threat();

27 if (need_upward_RA && need_downward_RA)

28 alt_sep = UNRESOLVED;
29 else if (need_upward_RA)
30 alt_sep = UPWARD_RA;
31 else if (need_downward_RA)
32 alt_sep = DOWNWARD_RA;
33 }
34 return alt_sep;

35 }
36 int main() {/*inputs omitted*/
37 assert(alt_sep_test() == DOWNWARD_RA);
38 }

Figure 1. Sample TCAS code. Potential bug locations identified
by BugAssist are underlined. Original code on line 3; mutation on
line 2

engine. All our experiments are preformed on an 3.16 GHz Intel
Core 2 Duo CPU with 7.6 GB RAM.

6.1 TCAS Experiments
The TCAS task of the Siemens test suite implements an aircraft
collision avoidance system. It consists of 173 lines of code. The
authors have created 41 versions of the program by injecting one
or more faults. Their goal was to introduce faults that were as
realistic as possible, based on their experience with real programs.
We refer to the versions as “v1” to “v41”. The Siemens test suite
also contains 1600 test cases which are valid inputs for the program.

We created the golden outputs for these 1600 test cases by
running the original version of the program. Then for each of the
faulty versions, we ran those 1600 test vectors and matched with the
golden outputs to segregate the failing test cases. Since the program
does not contain a specification, we use the failing test cases as
counterexamples and the correct value as its specification.

Table 1 shows the result of running BugAssist on the TCAS test
suite. BugAssist ran 1440 times over all versions and 1367 of these
runs pin-pointed the exact bug location, i.e., in 95% of the total
runs. The “TC#” in the table is the number of failed test cases

442

Version TC# Error# Detect# Size Run Error – Version TC# Error# Detect# Size Run Error
Reduc% Time Type Reduc% Time Type

v1 132 1 132 8.6 0.016 op v21 16 1 16 8.6 0.108 op
v2 69 1 69 4.6 0.068 const v22 11 1 11 5.7 0.056 code
v3 23 1 13 9.8 0.096 op v23 42 1 41 6.3 0.100 code
v4 26 1 26 9.2 0.104 op v24 7 1 7 8.6 0.092 op
v5 10 1 10 8.6 0.120 assign v25 3 1 3 6.9 0.068 code
v6 12 1 12 8.6 0.108 op v26 11 1 11 9.2 0.108 addcode
v7 36 1 36 9.2 0.072 const v27 10 1 10 10.9 0.108 addcode
v8 1 1 1 8.6 0.112 const v28 76 1 58 5.7 0.080 Branch
v9 9 1 9 5.2 0.092 op v29 18 1 14 5.7 0.092 code

v10 14 2 14 9.2 0.136 op v30 58 1 58 5.7 0.064 code
v11 14 2 14 6.3 0.080 op v31 14 2 14 10.9 0.008 addcode
v12 70 1 48 9.2 0.164 op v32 2 2 2 10.9 0.004 addcode
v13 4 1 4 9.2 0.080 const v34 77 1 77 8.6 0.100 op
v14 50 1 50 8.1 0.028 const v35 76 1 58 5.7 0.060 code
v15 10 3 10 7.5 0.104 const v36 126 1 126 2.9 0.024 op
v16 70 1 70 9.2 0.104 init v37 93 1 93 8.6 0.040 index
v17 35 1 35 9.2 0.096 init v39 3 1 3 6.9 0.088 op
v18 29 1 29 6.9 0.124 init v40 126 2 126 6.3 0.088 assign
v19 19 1 19 9.2 0.112 init v41 20 1 20 8.6 0.120 assign
v20 18 1 18 9.2 0.120 op – – – – – –

Table 1. Results of running BugAssist on the TCAS task of the Siemens Test Suite

Error Type Explanation for the error
op Wrong operator usage

e.g.: <= instead of <
code Logical coding bug

assign Wrong assignment expression
addcode Error due to extra code fragments

const Wrong constant value supplied
e.g.: off-by-one error

init Wrong value initialization of a variable
index Use of wrong array index

branch Error in branching due to negation of
branching condition

Table 2. Type of error

for each version. We ran BugAssist with each of these failing test
cases as failing program executions and the golden output as the
assertion to be satisfied. The column “Error#” shows the number
of errors injected in to each version. Most versions have only 1
error but some have 2 and 3 errors. “Detect#” is the number of
runs of BugAssist which detected the correct (human-verified) bug
location. “SizeReduc%” is the percentage reduction in the code
size given by the tool to locate the bug, the ratio of bug locations
returned by the tool to the total number of lines in the code. The
“RunTime” shows the run time for each run of BugAssist in
seconds and they are negligible. The last column is the type of bug
which is explained in Table 2. For example, the version v2 has one
error injected and has 69 failing test cases. We collected the bug
locations reported during these 69 runs of the tool which gave 8
potential bug locations, which is 4.6% of the total line number’s
in the program. The exact location of the fault is contained in the
localizations obtained from all the 69 runs.

Except for a few versions like v12, v28 and v35, BugAssist
detected the correct bug location for all the runs. For the remaining
ones, when we rank locations based on frequency of being reported
as bugs, exact bug locations had a count more than half of the
total number of runs. The runs in which exact location was not

reported did give clues about the real bug. For example, some test
cases had wrong constant value assignment to an array element,
for which the tool reported the fault at places where that array is
accessed rather than the line at which the bad assignment occurred.
By analyzing the error locations it is quite evident that the error is
due to a wrong value in that array location. On average the number
of lines to check for potential bug is reduced to 8% of the total
code. It should be noted that most of the single runs of the faulty
version have captured the exact bug location.

Figure 1 gives an overview of a version of tcas (v2). The bug is
in line 2 (and the original code is shown commented out in line 3).
The bug is injected in function Inhibit Biased Climb at line 2 by
changing the constant value. The declaration and initialization of
variables, functions, and conditional statements that are not relevant
to this bug are omitted in the figure. The program needs to satisfy
the safety property alt sep test() should return DOWNWARD RA
and is given as assertion at line 37. There were 69 failing test cases
for this version. We ran all these test cases and the tool returned 8
potential bug locations which are shown underlined in Figure 1.

There is no error reported in function Non Crossing Climb()
because the call for that function at line 25 needs the function
Own Below Threat() to be true, but that is false based on a com-
parison on the input parameters which are made hard clauses. Now
lets take a closer look at the reported errors.

1. Line 34 is too weak for a fix because changing the return value
can make the assertion always true and that does not serve as a
suitable fix.

2. In line 26, setting the need downward RA variable to true can
pick the right value for alt sep. This decision is made by an
evaluation of the two functions in that statement. The function
Own Above Treat() returns true based on the input and it is
clear that the correction needs to be done to the function call
Non Crossing Decend().

3. The function Non Crossing Decend() has a call for the actual
faulty function at line 14. It also shows that the repair could be
done by changing the return value of this function at line 19
(which we ignore as in case 1 above), or where the wrong
evaluation happens (lines 15,16).

443

4. The actual bug at line 2 is reported as a potential bug location
in all the runs.

6.2 Larger Examples
To show the performance and applicability of our approach for
larger programs and in the presence of complex pointers and loops,
we chose a set of other test cases with function calls, recursion, dy-
namic memory allocation, loops, and complex programming con-
structs.

The TCAS test cases were small enough to allow the MAX-SAT
solver to deal with the Boolean trace formula without additional
optimizations. However, for larger programs, the trace formula
obtained by unrolling a program, and the corresponding MAX-
SAT instance, was beyond the capacity of the MAX-SAT solver.
Therefore, we combine our technique with existing trace reduction
techniques like program slicing (S) [30], concolic execution (C)
[11], and isolating failure-inducing input using delta debugging (D)
[34].

Table 3 shows the result of running BugAssist on 4 other pro-
grams from the Siemens suite, each with one injected fault. “Pro-
gram” shows the name of the program from the Siemens testsuite.
“LOC#” is the total lines of code in the program and “Proc#”, the
number of procedure calls. The kind of reduction technique is spec-
ified in ”Reduc” and “assign#” shows the size of the dynamic error
trace as the number of assignment expressions before and after per-
forming the reduction technique. The “var#” and “clause#” is the
number of boolean variables and clauses in the MAX-SAT repre-
sentation of the error trace both before and after the reduction step
(the unit “m” denotes million). The number of potential fault lo-
cations returned by the tool is given under “Fault#”. The column
“Time” shows the runtime in seconds (s) or (in one case) hours (h).

We picked a faulty version of the program and one test input that
reveals the bug. The golden output from the non-faulty program
with the same input is given as a post condition on the return
value of the faulty version. Trace reduction techniques are applied
to the program execution with this input to generate a smaller
trace formula and given as input to BugAssist. The tool reported
the exact bug location in all programs except one (Program 2:
print token). Trace reduction techniques significantly reduced
the resulting trace and the size of the MAX-SAT instance, as shown
in “Before” and “After” sizes in Table 3. The cardinality of the
potential fault location set for each of these programs turns out to
be small. In all cases, the run time of the tool was smaller than our
human effort required to isolate the fault on the original trace. This
shows the applicability of the approach.

• The error inducing input to Program totinfo was the rows and
columns of a matrix. The bug was in the constant value of a con-
ditional operator on checking the product of rows and columns
after a few other operations. A simple program slicing removed
the assignments irrelevant to the assertion being checked and
reduced the number of assignments to 21 and the run time to
less than a second.

• Program print token contained a recursive function
“next token” and the input to the program required the loops to
be unrolled 8 times in the symbolic trace formula generation.
This made the recursive function to have 64 instances in the
symbolic trace and the number of assignments went up to 65K
without concolic execution. Using concrete execution for the
recursive function and variables, the number of assignment
statements was bought down to 239. It should be noted that the
limitation in using a concrete execution would be to assume
that the bug is not present in the functions and loops which are
concretized. However, this methodology fits well in programs
using functions from a reliable library or for functions which

are already verified to be bug free. This program did not show
error at the exact location, which was a comparison on a
variable which got the value from the concrete execution. This
was because the constant propagation used by the symbolic
trace generator abstracted away the variable since its value was
a constant. Instead, the error was shown in the assignment of
the variable to the constant.

• The priority scheduler program 3 and 4, contained a large er-
ror inducing input which called a number of procedures be-
fore deviating from the golden output of the original program.
The trace size was significantly reduced after isolating the er-
ror inducing input using delta debugging, but was still quite
big (about 400 and 5400 assignment operations respectively).
In program 3, the off-by-one error on flushing the number of
processes was detected by the presence of a single process cre-
ation (leading to a trace of about 400 assignments). However,
program 4 required a much larger input and more procedures to
expose the failure, resulting in a longer trace. It took BugAssist
almost 11 hours to find the exact location (excluding the time
taken for input minimization using delta debugging). Each ex-
ecution of MAX-SAT took around 30 minutes to identify one
potential fault location.

Program 2 The strncpy program with an off-by-one error

1 #define SIZE 15
2 void MyFunCopy (char *s)
3 {
4 char buf[SIZE];
5 memset(buf, 0, SIZE);
6 strncat(buf, s, SIZE);

7 /*Last argument should be: SIZE-1 */
8 return;
9 }

/*Standard C implementation of strncat*/
10 char *strncat(char *dest, const char *src,

size t n)
11 {
12 char *ret = dest;
13 while (*dest)
14 dest++;
15 while (n--)
16 if (!(*dest++ = *src++))
17 return ret;
18 *dest = 0; /*Problem cause*/
19 return ret;
20 }

6.3 Fixing Off-By-One Errors
We demonstrate the repair capability of BugAssist by synthesizing
fixes for off-by-one errors in the use of standard C library routines.
We focus on off-by-one errors arising out of the misuse of the C
strncat string manipulation function [21]. A common misconcep-
tion with strncat is that the guaranteed null termination will not
write beyond the maximum length. In reality, strncat can write
a terminating null character one byte beyond the maximum length
specified.

The Program 2 shows an instance of the bug in the function
MyFunCopy, which takes a string s and uses the strncat routine
to copy the contents to a string buf of length SIZE. The lines 10–
20 shows a standard C implementation of strncat. Note that after

444

Program LOC# Proc# Reduc assign# var# clause# Fault# time
Before After Before After Before After

1 totinfo 565 7 S 734 21 0.797m 400 1.822m 1225 2 0.19s
2 print tokens 726 18 C 65698 239 5.507m 7439 53.483m 22634 13 25s
3 schedule 564 21 DS 5914 391 5.173m 0.053m 15.379m 0.142m 13 28s
4 schedule 564 21 DS 41942 5412 78.982m 4.517m 239.385m 13.788m 25 11h
5 totinfo 565 7 CS 865 454 0.862m 0.734m 4.156m 3.728m 3 225s
6 schedule2 374 16 S 398 275 0.021m 0.015m 0.062m 0.048m 9 20s

Table 3. Running BugAssist on larger benchmark programs from the Siemens Test Suite

copying the n characters at line 17, the implementation writes to
the (n + 1)st location of the string dest on line 18. This implies
that the function MyFunCopy should be using SIZE − 1 as the last
argument to strncat.

We ran BugAssist on this function, checking whether array ac-
cesses are within bounds. We made the assumption that library
functions cannot be modified, and the error lies in the client code.
That is, in the pMAX-SAT problem formulation, we made con-
straints arising out of library functions (strncat in this case) hard
clauses. BugAssist located line 6 as a potential bug location in the
code. This location is marked during preprocessing as a statement
with a constant; so BugAssist now tries to fix it by changing the
value to SIZE − 1 and SIZE + 1 as explained before. This cre-
ates two SAT instances with the new constant values, and we use a
SAT solver to check if the error is still feasible. In this example, the
change to SIZE− 1 eliminated the bug.

Program 3 The nearest integer square root function with a bug at
line 12
1 int squareroot()
2 {
3 int val = 50;
4 int i =1;
5 int v =0;
6 int res =0;
7 while(v < val)
8 {
9 v = v + 2*i +1;
10 i = i+1;

11 }
12 res = i;
13 /* res = i - 1; */
14 assert((res*res <= val) &&

((res+1)*(res+1) > val);
15 return res;

}

6.4 Finding Faulty Loop Iterations
Program 3 contains a function to find the nearest integer square root
of a value. The post condition is specified as an assertion, and states
that the result res should be the closest square root for val. The
bug locations reported by BugAssist are underlined. The correct
code is given as a comment on line 13. Even though the actual bug
is not in the loop body, it requires an analysis of the loop body to
conclude that the right fix is at line 12. We gave the unwinding limit
50 to CBMC and BugAssist reports a potential repair at line 10 in
the 8th iteration of the loop. This gives clue to the programmer that
the error occurs if the loop is iterated atleast 8 times.

7. Discussions
Program analysis based on Boolean satisfiability has been ex-
tremely successful in detecting subtle errors in large software pro-
grams [4, 6, 32]. We show that techniques based on Boolean MAX-
SAT can be similarly effective in localizing program errors (as well
as in identifying potential fixes).

Our fault localization algorithm depends on the underlying
Boolean transform of the program to clauses, and is limited by the
scalability of bounded model checking tools. In most cases, a single
failing input was sufficient to locate the exact error location. Each
of the potential error locations are the unsatisfied clauses in each
iteration of the MAX-SAT solver. Our fault correction algorithm
works by changing existing clauses. We cannot detect or correct
code omission faults.

Our experimental results show that trace reduction techniques
are crucial in making our implementation scale to reasonably large
examples. Trace reduction techniques, such as delta-debugging or
slicing, are orthogonal to our approach, and we can build on the
extensive literature in these fields. Additionally, the performance
can be improved by using an incremental SAT solver for iterative
applications of MAX-SAT. While we have described error localiza-
tion at the line-number (or program statement) level, our reduction
to pMAX-SAT is general, and can be used at different levels of
granularity. For example, to localize bugs at the function or mod-
ule level, we can group clauses coming from the same function or
module in the pMAX-SAT instance.

To improve the usability of our tool, we have built an Eclipse
plugin to use BugAssist interactively during the development pro-
cess. The plugin marks potential bugs in the code under develop-
ment and assists in analyzing the right fix.

References
[1] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom

to cause: localizing errors in counterexample traces. In POPL ’03:
Principles of Programming Languages, pages 97–105, 2003. ACM.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using sat procedures instead of bdds. In DAC ’09:
Design Automation Conference, pages 317–320, 1999. ACM.

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI ’08: Operating Systems Design and Implementa-
tion, pages 209–224, 2008. USENIX Association.

[4] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. Exe: automatically generating inputs of death. In
CCS ’06: Computer and Communications security, pages 322–335,
2006. ACM.

[5] Yibin Chen, Sean Safarpour, Andreas Veneris, and Joao Marques-
Silva. Spatial and temporal design debug using partial maxsat. In
GLSVLSI ’09: Great Lakes Symposium on VLSI, pages 345–350, 2009.
ACM.

[6] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ANSI-C programs. In TACAS ’04: Tools and Algorithms

445

for the Construction and Analysis of Systems, volume 2988 of Lecture
Notes in Computer Science, pages 168–176, 2004. Springer.

[7] Martin Davis and Hilary Putnam. A computing procedure for quan-
tification theory. J. ACM, 7:201–215, July 1960.

[8] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Softw. Engg., 10(4):405–435, 2005.

[9] Niklas Eén and Niklas Sörensson. Minisat v2.0 (beta). In SAT-Race,
2006. http://fmv.jku.at/sat-race-2006/.

[10] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT
problem. In SAT ’06: Theory and Applications of Satisfiability Testing,
volume 4121 of Lecture Notes in Computer Science, pages 252–265,
2006. Springer.

[11] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed
automated random testing. In PLDI ’05: Programming Language
Design and Implementation, pages 213–223, 2005. ACM.

[12] Andreas Griesmayer, Stefan Staber, and Roderick Bloem. Automated
fault localization for C programs. ENTCS, 174:95–111, 2007.

[13] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error
explanation with distance metrics. Int. J. Softw. Tools Technol. Transf.,
8:229–247, 2006.

[14] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand.
Experiments of the effectiveness of dataflow- and controlflow-based
test adequacy criteria. In ICSE ’94: International Conference on
Software Engineering, pages 191–200, 1994. IEEE Computer Society.

[15] James C. King. Symbolic execution and program testing. Commun.
ACM, 19:385–394, July 1976.

[16] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints.
In Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 19, pages 613–631. IOS Press,
2009.

[17] Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules for
MAX-SAT. J. Artif. Int. Res., 30:321–359, October 2007.

[18] Mark H. Liffiton and Karem A. Sakallah. On finding all minimally
unsatisfiable subformulas. In SAT ’05: Theory and Applications of
Satisfiability Testing, volume 3569 of Lecture Notes in Computer
Science, pages 173–186, 2005. Springer.

[19] Joao Marques-Silva. Minimal unsatisfiability: Models, algorithms and
applications (invited paper). In ISMVL ’10: International Symposium
on Multiple-Valued Logic, pages 9–14, 2010. IEEE Computer Society.

[20] Joao Marques-Silva and Jordi Planes. Algorithms for maximum satis-
fiability using unsatisfiable cores. In DATE ’08: Design, Automation
and Test in Europe, pages 408–413, 2008. ACM.

[21] Todd C. Miller and Theo de Raadt. strlcpy and strlcat: consistent,
safe, string copy and concatenation. In USENIX Annual Technical
Conference, pages 175–178, 1999. USENIX Association.

[22] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani.
Darwin: an approach for debugging evolving programs. In ESEC/FSE
’09: European Software Engineering Conference and Foundations of
Software Engineering, pages 33–42, 2009. ACM.

[23] Manos Renieres and Steven P. Reiss. Fault localization with nearest
neighbor queries. In ASE ’03: Automated Software Engineering, pages
30 – 39, 2003. IEEE Computer Society.

[24] Sean Safarpour, Hratch Mangassarian, Andreas Veneris, Mark H. Lif-
fiton, and Karem A. Sakallah. Improved design debugging using max-
imum satisfiability. In FMCAD ’07: Formal Methods in Computer-
Aided Design, pages 13–19, 2007. IEEE Computer Society.

[25] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic
unit testing engine for C. In ESEC/FSE ’05: European Software
Engineering Conference and Foundations of Software Engineering,
pages 263–272, 2005. ACM.

[26] Ilya Shlyakhter, Robert Seater, Daniel Jackson, Manu Sridharan, and
Mana Taghdiri. Debugging overconstrained declarative models using
unsatisfiable cores. ASE ’03: Automated Software Engineering, pages
94–105, 2003. IEEE Computer Society.

[27] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodı́k, and Ke-
mal Ebcioğlu. Programming by sketching for bit-streaming pro-
grams. PLDI ’05: Programming Languages Design and Implemen-
tation, pages 281–294, 2005. ACM.

[28] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A.
Seshia, and Vijay A. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS ’06: Architectural Support for Programming
Languages and Operating Systems, pages 404–415, 2006. ACM.

[29] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. VS3:
SMT solvers for program verification. In CAV ’09: Computer-Aided
Verification, volume 5643 of Lecture Notes in Computer Science,
pages 702–708, 2009. Springer.

[30] F. Tip. A survey of program slicing techniques. Journal of Program-
ming Languages, 3:121–189, 1995.

[31] Wikipedia. Off-by-one error, the free encyclopedia, 2004. [Online;
accessed 28-March-2010].

[32] Yichen Xie and Alex Aiken. Scalable error detection using boolean
satisfiability. In POPL ’05: Principles of Programming Languages,
pages 351–363, 2005. ACM.

[33] Andreas Zeller. Isolating cause-effect chains from computer programs.
In FSE ’10: Foundations of Software Engineering, pages 1–10, 2002.
ACM.

[34] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Softw. Eng., 28:183–200, 2002.

446

