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Abstract

Traditional profilers identify where a program spends most of its
resources. They do not provide information about why the pro-
gram spends those resources or about how resource consumption
would change for different program inputs. In this paper we intro-
duce the idea of algorithmic profiling. While a traditional profiler
determines a set of measured cost values, an algorithmic profiler
determines a cost function. It does that by automatically determin-
ing the “inputs” of a program, by measuring the program’s “cost”
for any given input, and by inferring an empirical cost function.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement techniques; D.2.8 [Software Engineering]:
Metrics—Performance measures

General Terms Performance, Measurement

Keywords Algorithmic Profiling, Algorithmic Complexity

1. Introduction

When developers need to understand and optimize the performance
of their code, they use traditional profilers. Since the introduction
of gprof [5], profilers have been focused on finding the locations
in software that are responsible for excessive resource consump-
tion, be that execution time, memory allocation, usage, or leaks,
cache performance, various forms of contention, or even energy
consumption. One commonality of such profiling approaches is that
they only provide information about a specific program run. Dif-
ferent runs, with different inputs, may lead to different profiles. A
profile created by a traditional profiler does not enable the devel-
oper to predict how the program might scale to larger inputs, and it
provides only limited information for the reasons of the observed
resource consumption.

The resource consumption of a software system is affected by
three main factors, (1) the algorithm used, (2) the problem size (the
program input), and (3) the implementation of that algorithm in a
programming language running on a concrete execution platform.
Traditional profilers provide measures of resource consumption
that conflate all three factors: they only report the overall cost.
They do not help in understanding how the cost was affected by the
algorithm, the program input, and the underlying implementation.

Our new profiling approach, Algorithmic Profiling, addresses
this limitation. Instead of providing a single number representing
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the cost of a given run, we provide a cost function that relates
program input to algorithmic steps.

Algorithms researchers and advanced practitioners use cost
functions when analyzing the complexity of their algorithms. They
usually perform asymptotic analysis to bound cost. In contrast, our
algorithmic profiling approach automatically determines approx-
imate cost functions based on multiple program runs. Our cost
functions are approximations, not bounds. They thus provide no
guarantees, but they have the advantage that they represent the ex-
pected realistic cost, not a possibly loose worst case bound or an
idealized, potentially unrealistic, average case cost.

The program in Listing 1 shows an implementation of the in-
sertion sort algorithm for a linked list. If we run this program under
a traditional hotness profiler, we learn that most of the execution
time is spent in method sort. A finer grained profile would tell us
in which lines, statements, or bytecode instructions we spent most
time. However, the profile would not provide any information about
the algorithmic complexity of the program. An algorithmic profiler,
on the other hand, would automatically produce results such as the
ones shown in Figure 1. The figure shows three examples. In all
three examples the program was run on a set of inputs that are rep-
resentative of the expected application usage. In the top plot (a),
that usage corresponds to sorting random lists, in the middle plot
(b), it corresponds to sorting lists that are already sorted, while in
the bottom plot (c), it correspond to sorting lists that are already
sorted in reverse order. The x-axis in each plot shows the input
size (corresponding to the length of the list), and the y-axis shows
the number of algorithmic steps (corresponding to overall iteration
counts). Each dot represents a program run with a different input,
and the curves represent the approximate cost functions of the pro-
gram expected for the given type of inputs.

These plots may look simple, and indeed, they are what a pro-
grammer would produce when manually determining the empirical
cost function of an algorithm. The programmer would study the
code to (1) locate the algorithm, to (2) determine the algorithm’s
essential operations (e.g., the comparisons or the swaps in the inser-
tion sort), to (3) determine what the input of the algorithm could be
(e.g., the linked list passed as an argument to the sort function), and
to (4) determine how to quantify the input’s size (e.g., by traversing
the linked lists to count the number of nodes). He would then (5)
instrument the program to count these operations and to measure
the input’s size. Our algorithmic profiling approach performs all
the above steps automatically for arbitrary programs. It only needs
the original program and a set of representative program executions
to produce graphs like those in Figure 1.

These graphs of cost functions provide the developer with much
deeper insight into program performance than a simple hotness
profile. A hotness profile provides a single number (or a number for
each code region). An algorithmic profile uncovers the relationship
of execution cost and program input. It provides the programmer
with scalability information by pointing out algorithms with high
complexity, and it uncovers which inputs are the causes of long
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(a) Random Inputs
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(b) Sorted Inputs
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(c) Reverse-Sorted Inputs
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Figure 1. Cost Function of Insertion Sort

Listing 1. Insertion Sort
1 p u b l i c c l a s s L i s t {
2 p r i v a t e Node head , t a i l ;
3 p u b l i c vo id s o r t ( ) {
4 i f ( head == n u l l | | head . n e x t == n u l l ) return ;
5 Node f i r s t U n s o r t e d = head . n e x t ;
6 whi le ( f i r s t U n s o r t e d != n u l l ) {
7 Node t a r g e t = f i r s t U n s o r t e d ;
8 Node n e x t U n s o r t e d = f i r s t U n s o r t e d . n e x t ;
9 whi le ( t a r g e t . p rev != n u l l &&

10 t a r g e t . p rev . va lue>t a r g e t . v a l u e ) {
11 f i n a l Node c a n d i d a t e = t a r g e t . p rev ;
12 f i n a l Node pred = c a n d i d a t e . p rev ;
13 f i n a l Node succ = t a r g e t . n e x t ;
14 i f ( p red != n u l l ) {
15 pred . n e x t = t a r g e t ;
16 } e l s e {
17 head = t a r g e t ;
18 }
19 t a r g e t . p rev = pred ;
20 i f ( succ != n u l l ) {
21 succ . p rev = c a n d i d a t e ;
22 } e l s e {
23 t a i l = c a n d i d a t e ;
24 }
25 c a n d i d a t e . n e x t = succ ;
26 t a r g e t . n e x t = c a n d i d a t e ;
27 c a n d i d a t e . p rev = t a r g e t ;
28 }
29 f i r s t U n s o r t e d = n e x t U n s o r t e d ;
30 }
31 }
32 p u b l i c vo id append ( i n t v a l u e ) {
33 f i n a l Node node = new Node ( v a l u e ) ;
34 i f ( t a i l == n u l l ) {
35 t a i l = node ;
36 head = t a i l ;
37 } e l s e {
38 t a i l . n e x t = node ;
39 node . p rev = t a i l ;
40 t a i l = t a i l . n e x t ;
41 }
42 }
43 }

running times. Moreover, by combining an algorithmic profile with
a traditional hotness profile, the developer can understand all three
factors (problem size, algorithmic complexity, and implementation
cost) affecting the overall performance of the program.

This paper makes the following contributions:

1. We introduce Algorithmic Profiling, an approach to automat-
ically infer approximations of the expected algorithmic cost
functions of algorithm implementations. An algorithmic pro-
filer requires no human intervention or code annotations. It sim-
ply analyzes program executions on a set of representative in-
puts.

2. We discuss different approaches to automatically determine the
input of an algorithm and its size (the domain of the cost func-
tion). Traditionally, a human analyst has to define the concrete
meaning of the abstract notion of “input size” (e.g., the size of
this array, the number of nodes in this tree) for a given algorithm
implementation.

3. We discuss different approaches to automatically determine the
cost of an algorithm (the range of the cost function). Tradition-
ally, a human analyst has to specify how to measure the cost of

68



Listing 2. Example Program
1 p u b l i c c l a s s Main {
2 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
3 measure ( ) ;
4 }
5 p r i v a t e s t a t i c vo id measure ( ) {
6 f o r ( i n t s i z e =0 ; s i z e <1000; s i z e ++) {
7 f o r ( i n t i =0 ; i <10; i ++) {
8 f i n a l L i s t l i s t = new L i s t ( ) ;
9 cons t ruc tRandom ( l i s t , s i z e ) ;

10 s o r t ( l i s t ) ;
11 }
12 }
13 }
14 p r i v a t e s t a t i c vo id cons t ruc tRandom (
15 L i s t l i s t , i n t s i z e ) {
16 f i n a l Random r = new Random ( ) ;
17 f o r ( i n t i =0 ; i<s i z e ; i ++) {
18 l i s t . append ( r . n e x t I n t ( s i z e ) ) ;
19 }
20 }
21 p r i v a t e s t a t i c vo id s o r t ( L i s t l i s t ) {
22 l i s t . s o r t ( ) ;
23 }
24 }
25

26 p u b l i c c l a s s Node {
27 p u b l i c Node prev ;
28 p u b l i c Node n e x t ;
29 p u b l i c f i n a l i n t v a l u e ;
30 p u b l i c Node ( i n t v a l u e ) {
31 t h i s . v a l u e = v a l u e ;
32 }
33 }

an algorithm (e.g., the number of comparisons, or the number
of swaps).

4. We present an approach to automatically partition a program
into multiple algorithms. Any realistic program involves many
different algorithms, and the boundaries between algorithms are
difficult to define. We introduce an intuitive heuristic to identify
boundaries between different algorithms in a program.

5. We describe AlgoProf, our prototype implementation of an
Algorithmic Profiler for Java programs, and we demonstrate it
in several small case studies.

The remainder of this paper is structured as follows. Section 2
presents our approach, Section 3 describes our implementation,
Section 4 demonstrates the approach, Section 5 discusses limita-
tions and future work, Section 6 presents related work, and Sec-
tion 7 concludes.

2. Approach

This section describes the idea of Algorithmic Profiling on a con-
ceptual level. The next section will describe our prototype, Algo-
Prof, which implements some, but not all, of the key aspects of this
approach. We explain our approach based on a running example,
which consists of the full program (Listing 2) containing the inser-
tion sort algorithm shown in Listing 1. The program constructs an
unsorted linked list of Nodes in Main.constructRandom() and
sorts that list in Main.sort(). This process is repeated for lists of
length 0 to 999, ten times for each length, in Main.measure().

Most traditional profilers attach execution cost to syntactic con-
structs (e.g., methods or statements) of the program. Figure 2 il-
lustrates an example of such a profile, showing the calling context

Main.main()

1 call

15992.400 ms

Main.measure()

1 call

 15992.395 ms

List.<init>()

10000 calls

1.425 ms

Main.constructRandom()

10000 calls

1634.355 ms

Main.sort()

10000 calls

14347.270 ms

List.append()

4995000 calls

1056.992 ms

List.sort()

10000 calls

14344.644 ms

Node.<init>()

4995000 calls

307.916 ms

Figure 2. Traditional Profile: Calling Context Tree

Construction of

Node-based recursive structure

steps = size

Data-structure-less algorithm

Data-structure-less algorithm

Modification of

Node-based recursive structure

steps = 0.25*size^2

Program

Main.measure loop at line 6

Main.constructRandom loop at line 17

Main.measure loop at line 7

List.sort loop at line 6

List.sort loop at line 9

Figure 3. Algorithmic Profile: Repetition Tree

tree of our running example. Each method (or, more precisely, each
calling context) is annotated with the number of times it was called
and the total time spent in it (its hotness). The profile shows that
List.append and the Node constructor are the most frequently
called methods, and that List.sort is the hottest method (in terms
of exclusive time). The profile does not provide any information
for the cause of the hotness (why the method takes so much time),
and it does not allow the developer to predict how different inputs
would affect the hotness. These two aspects are important for un-
derstanding and improving program performance.

Our algorithmic profiles provide this missing information. They
focus on repetitions, which are the essential ingredients of any
algorithm [21]. We identify all loops in control-flow graphs and
all recursions in the program’s call graph. Instead of attributing
execution cost to a calling context tree, we attribute execution cost
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and inputs to a “repetition tree” (a dynamic loop and recursion
nesting tree). Figure 3 shows the repetition tree for our running
example. It shows that our program contains five loops, and it
shows their dynamic nesting. Instead of using cost metrics such
as invocation counts, wall-clock time, or instruction counts, we
use higher-level cost metrics such as repetition counts and data
structure access counts. Moreover, unlike traditional profilers, we
also determine the algorithm input and the size of that input. Given
a set of program runs, each providing an input size and a cost,
we then produce plots mapping input size to cost (like those in
Figure 1) and we infer cost functions (like steps = 0.25*size^2
in Figure 3).

For our running example, the annotation in the bottom right gray
box in Figure 3 shows that our profiler automatically identified an
algorithm that modifies a Node-based recursive structure (a data
structure consisting of objects of class Node). This tells us that the
algorithm does not just traverse the structure, but that it modifies it,
without creating new Nodes. It also shows that, given a structure of
size Nodes, this algorithm takes 0.25*sizeˆ2 algorithmic steps. This
information represents a high-level summary of the algorithm’s
performance. A developer can retrieve the data from which that cost
function was inferred (the plot in Figure 1 (a)), and get summary
statistics (such as the number of times the algorithm was called, or
the range of input sizes it encountered). Given this information –
that the algorithm’s expected complexity is quadratic, and that the
sizes of the inputs are not negligible – the developer can decide to
constrain the size of the input, or to replace the algorithm with a
more efficient one.

2.1 Construct Repetition Tree

The repetition tree is our basic structure for representing a set of
program executions. Figure 3 shows a repetition tree for a pro-
gram without recursion. To construct repetition trees of recursive
programs, we collapse recursive call chains, and we represent the
header method of the recursive chain as a node in the repetition tree.
The repetition tree thus consists of loop nodes and recursion header
nodes. Each node represents a repetitive computation. It keeps track
of each invocation of that computation (entrance to the loop, and
entry call of the recursion header method). For each invocation of a
repetitive computation, we gather the number of repetitions (count-
ing loop back edge traversals, and counting subsequent calls to the
recursion header method).

An algorithm corresponds to a connected subgraph of the rep-
etition tree. It has a root node, to which we attribute cost and in-
put size. It may also contain descendants of the root node, if they
are deemed to be part of the same algorithm (see Section 2.5 for
how we group repetition nodes into algorithms). Figure 3 repre-
sents each algorithm with a gray rectangle, annotated with infor-
mation about its input and with an empirical cost function.

2.2 Measure Cost

Computational complexity theory uses models of computation that
define the set of primitive operations used in the computation and
their respective costs. These models, and their primitive operations,
are chosen by the person performing the analysis. A commonly
used model is the random access machine model, where the prim-
itive operations are memory reads and writes, and where these op-
erations have unit cost.

Our algorithmic profiling approach also admits multiple possi-
ble cost models. Our models are defined by their primitive opera-
tions. We abstract away from the underlying platform and focus on
operations that are meaningful to the developer at the source code
level:

Algorithmic Steps. An algorithmic step corresponds to one iter-
ation of a loop or recursion. An algorithmic step is a generic

operation that abstracts away from the specific operations per-
formed in each repetition. It thus allows the comparison of the
cost of arbitrary repetitions using a single measure.

Structure Reads. A structure read corresponds to a read of a ref-
erence in a recursive data type or a load of an element in an
array. It allows us to distinguish between read-only traversals
of structures and modifications of structures.

Structure Writes. Analog to a structure read, a structure write
corresponds to an update of a reference in a recursive data type
or a store of an element in an array.

Structure Element Creations. A structure element creation cor-
responds to the allocation of a new object of a recursive data
type. It allows us to distinguish between modifications and con-
structions of a data structure.

Input Reads. An input read corresponds to a read operation of data
from outside the program (e.g., a read from a file or network
socket). Some algorithms may not operate on in-memory struc-
tures, but they may consume input from outside the program.

Output Writes. An output write corresponds to a write operation
of data to the outside world (e.g., a write to a file or network
socket).

2.3 Determine Inputs

To determine the inputs of an algorithm, an algorithmic profiler
determines which data structures or external files the algorithm
accesses.

Recursive Data Structures. To find the recursive data structures
related to an algorithm, the profiler tracks accesses to field ref-
erences within all recursive data structures (Node.next and
Node.prev in our running example), and whenever an access
occurs at runtime, it determines the current node in the repeti-
tion tree (the innermost loop or recursion), and it associates that
data structure with the corresponding repetition node.

Arrays. To find arrays related to an algorithm, the profiler tracks
all array loads and stores and associates the corresponding
arrays with the current repetition tree node.

Program Inputs/Outputs. To find program inputs and outputs re-
lated to an algorithm, the profiler tracks all reads and writes to
the external world, and associates the corresponding streams or
file handles to the current repetition tree node.

Given our approach, an algorithm can be related to multiple
inputs. For example, an algorithm may traverse a graph-like data
structure and serialize it into a file, it may traverse a given data
structure and produce a “translation” in the form of a different
structure (e.g., convert a linked list into an array), or it may process
information from two independent data structures (e.g., compute
the dot product of two vectors). An algorithmic profiler will keep
track of all the inputs it encounters.

Some algorithms (for example mathematical algorithms) do
not operate on data structures and do not read or write external
data, but they encode data in primitive types (e.g., in variables of
type int). For such algorithms, determining the “input” (and input
size) is difficult. For example, the input size n for multiplication
(with a complexity of O(n2) when using the schoolbook long
multiplication algorithm) is defined by the number of digits in the
factors, while the input size m for the factorial algorithm (with a
complexity of O(m2 logm) when using bottom-up multiplication)
is the value of the argument. Note that for arbitrary precision
arithmetic, the algorithms will have to use either recursive types
or arrays to represent their numbers, and thus our approach will be
able to compute some measure of the input size.
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2.4 Measure Input Size

To measure the input size, we traverse the recursive data structure,
we count the array’s elements, or we measure the size of the ex-
ternal file. In an executing program, structures are dynamic: they
shrink and grow. Many algorithms do not just traverse a structure,
but they modify it throughout their execution. There thus is no sin-
gle size of a structure, and we have to measure the size of a struc-
ture every time an algorithm accesses that structure. To find a single
number representing the size (needed to compute a cost function re-
lating structure size to execution cost) we use the maximum size of
the structure throughout the algorithm’s operation. Using the max-
imum is reasonable as it produces intuitive results for the many
common algorithms that create a structure (size is 0 at the begin-
ning and N at the end), or algorithms that destroy a structure.

If we repeatedly want to measure the size of a continuously
changing structure, we need to address the issue of identity. How
do we know whether two structures that are not identical should
be considered the same? Is a structure with one less element still
the same structure? We answer these questions as follows. Each
time a structure is accessed, we take a snapshot of that structure
by traversing it. A snapshot of a structure I corresponds to the set
S of all elements in that structure at that time. We use one of the
following equivalence criteria to determine whether two snapshots
represent the same structure.

All Elements Equivalent. Two snapshots S1 and S2 are equiva-
lent if all elements of the two snapshots are equivalent (S1 ≡
S2).

Some Elements Equivalent. Two snapshots S1 and S2 are equiv-
alent if some of the elements of the two snapshots are equiva-
lent (S1 ∩ S2 6= ∅). This less strict equivalence criterion is not
only useful because data structures evolve, but also because the
traversals capturing the two snapshots may have started from
different elements, and thus the two snapshots may not see all
the elements of the entire structure (if the structure instance is
not strongly connected).

Same Array. This equivalence criterion only works for arrays. Ar-
ray elements are contained in an array object, and thus two
snapshots that correspond to identical arrays (I1 ≡ I2) can be
considered equivalent.

Same Type. Two snapshots are equivalent if they have the same
type (t(S1) ≡ t(S2)). This criterion considers two entirely
disconnected structure instances equivalent.

2.5 Group Repetition Nodes into Algorithms

Given a realistic program, does that program implement one big al-
gorithm, or does it implement a collection of multiple algorithms?
We argue that both answers are valid, and that algorithms can in-
voke other algorithms just like methods can invoke other methods.
While a program could be described as one large algorithm, the
computational constructs programmers usually call “algorithm” are
more limited in focus. In our motivating example, sorting the list
represents a traditional algorithm, and constructing the list repre-
sents another algorithm. The loop nest in the measure method is
more difficult to classify: it could be considered yet another algo-
rithm, each of its two loops could be considered an independent
algorithm, or the two loops could be considered too trivial for be-
ing called an algorithm at all. To approximate an intuitive notion of
algorithm, we partition the repetition tree of an entire program run
into connected subgraphs using one of several possible strategies.
Moreover, given an interactive visualization tool for the repetition
tree, developers could group nodes into algorithms according to
their own intuition.

Listing 3. Combining Costs
f o r ( i n t o =0; o<3; o ++) {

. . .
f o r ( i n t i =0 ; i<o ; i ++) {

. . .
}
. . .

}

Our profiling approach uses an automatic strategy for grouping
repetition tree nodes into algorithms. The general idea is to group
parent and child repetitions that access at least one common input
into a single algorithm. We use the equivalence criteria defined
in the previous section to determine whether the two structure
snapshots from the two repetitions represent the same structure. In
our running example, the two loops in the sort method intuitively
form a single algorithm. For this example, all of the applicable
equivalence criteria (Same Array is not applicable for a recursive
data structure) would lead to this intuitive grouping of repetition
nodes. One could envision other strategies, such as the grouping of
loops located in the same method (which would work for the sort
algorithm in the running example).

2.6 Combine Costs

When two repetition tree nodes are grouped into an algorithm,
the child’s cost is added to the parent’s cost. In particular, for a
given invocation of the parent, the parent’s overall cost is equal
to the parent’s cost (e.g., algorithmic steps) plus the sum of the
child’s costs across all invocations of the child inside that parent
invocation.

In the example of Listing 3, the cost of an invocation of the
outer loop would be 3 outer loop iterations plus (0+1+2) inner loop
iterations, leading to a total of 6 algorithmic steps. By also counting
the outer loop’s iterations, this approach accounts for outer loop
iterations even when the inner loop does not execute.

2.7 Infer Cost Function

Given a set of <input size, cost> tuples, an algorithmic profiler
should produce plots like those in Figure 1. Those plots show the
raw data and a cost function. The step of automatically inferring a
cost function or estimating an upper bound asymptotic complexity
from the raw data is the subject of study in the area of empirical
algorithmics [8, 9, 14], which investigates the use of regression
approaches and heuristics for this purpose. In this paper we do
not discuss this step, and in our algorithmic profiling prototype we
currently fit cost functions by hand.

2.8 Classify Algorithms

Besides inferring a cost function for an algorithm, an algorithmic
profiler can provide additional information that helps in under-
standing the algorithm. In particular, given the information about
the algorithm’s input, the profiler can distinguish between several
different kinds of algorithms:

Traversal. A traversal algorithm performs a read-only traversal
of a recursive data structure or an array. It performs Structure
Reads, but does not perform any Structure Writes or Structure
Element Creations.

Modification. A modification algorithm modifies the links of a re-
cursive data structure or the contents of an array. It performs
Structure Writes, but does not perform any Structure Element
Creations. As Figure 3 shows, the loop nest in List.sort is
considered a “Modification of a Node-based recursive struc-
ture”.
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Construction. A construction algorithm performs Structure Ele-
ment Creations, that is, it allocates objects of recursive types.
As Figure 3 shows, the loop in List.constructRandom is
considered a “Construction of a Node-based recursive struc-
ture”.

Input. An input algorithm performs Input Reads, that is, it con-
sumes external input.

Output. An output algorithm performs Output Writes, that is, it
produces external output.

Data-structure-less algorithm. Any algorithm that does not fall
into any of the above categories is considered data-structure-
less. The absence of a measurable input also means that we are
unable to infer the input size and cost function. As Figure 3
shows, the two loops in Main.measure are considered “Data
structure-less algorithms”.

Traversal, modification, and construction are mutually exclusive
with respect to a given data structure. That is, if an algorithm con-
structs a specific data structure (e.g., the constructRandom loop in
the running example creates a Node-based structure), it is classified
as a construction of that data structure, but not as a modification or
traversal of that data structure. This mutual exclusion is limited to
operations on the same data structure, e.g., the same algorithm may
traverse one data structure and construct a different data structure.

3. Implementation

To evaluate our algorithmic profiling approach we built AlgoProf,
an algorithmic profiler for Java. AlgoProf analyzes and instruments
Java bytecode.

3.1 Instrumentation

AlgoProf uses dynamic binary instrumentation to instrument the
following constructs in the application code:

Loop entry and loop exit. These drive the construction of the
loop nodes in the repetition tree.

Loop back edges. These support counting algorithmic steps.

Method entries and exits. These enable the construction of the
recursion nodes in the repetition tree. Moreover, they enable
the counting of algorithmic steps in recursive algorithms. By
using a static analysis to determine headers in recursive method
cycles [21], AlgoProf can limit this instrumentation to only
those methods that are recursion headers.

Array and reference instance field accesses. These *ALOAD and
*ASTORE as well as PUTFIELD and GETFIELD bytecode
instructions enable the detection and measurement of input
data and the counting of read or write-based costs. By using
a static analysis to determine recursive data structures [22], Al-
goProf can limit field access instrumentation to accesses of
fields participating in a recursive cycle (e.g., Node.next and
Node.prev, but not Node.payload).

Object allocations. These NEW bytecode instructions enable the
counting of allocation-based costs. Static analysis can limit this
instrumentation to allocations of instances of classes that are
part of a recursive type (e.g., Node).

AlgoProf currently does not track external program input and
output operations. Support for this could be added by instrumenting
the Java I/O classes.

3.2 Dynamic Analysis

At runtime, AlgoProf is called from the instrumented code. It
collects all the information necessary for producing an algorithmic

profile. Most importantly, it incrementally builds a repetition tree
for each thread executing in the program. The tree already folds
recursive calls, so on any given path to the root, a given method
can only occur once. To support the unwinding of recursive calls,
AlgoProf also maintains an unfolded shadow stack (stack). Each
stack element represents a loop or recursion and points to the
corresponding repetition tree node. At any given time, AlgoProf
maintains a reference to the current repetition tree node (tn). The
element at the top of the shadow stack (stack.top()) usually
points to the same repetition tree node pointed to by tn. AlgoProf
handles calls from the instrumented code in the following ways:

Loop entry.
t n = t n . g e t O r C r e a t e C h i l d ( loop )
s t a c k . push ( t n )

Loop exit.
r e m e a s u r e I n p u t s ( )
f i n a l i z e R e p e t i t i o n ( t n )
t n = s t a c k . pop ( )

Loop back edge.
t n . c o s t {STEP}++

Method entry.
h e a d e r = t r e e . f indOnPathT oRoot ( tn , method )
i f ( h e a d e r != n u l l ) {

t n = h e a d e r
t n . c o s t {STEP}++

} e l s e {
t n = t n . g e t O r C r e a t e C h i l d ( method )

}
t n . r e c u r s i o n D e p t h ++
s t a c k . push ( t n )

Method exits.
t n . r e c u r s i o n D e p t h −−
i f ( t n . r e c u r s i o n D e p t h ==0) {

r e m e a s u r e I n p u t s ( )
f i n a l i z e R e p e t i t i o n ( t n )

}
t n = s t a c k . pop ( )

Array access.
t n . c o s t { t y p e ( a r r a y ) , LOAD/ STORE}++
i d e n t i f y A n d M e a s u r e A r r a y ( a r r a y , t n )

Reference instance field access.
i f ( p a r t O f R e c u r s i v e T y p e ( t y p e ( o b j e c t ) ) ) {

t n . c o s t { i d ( o b j e c t ) , GET/ PUT}++
t n . c o s t { i d ( o b j e c t ) , t y p e ( o b j e c t ) , GET/ PUT}++
i d e n t i f y A n d M e a s u r e S t r u c t u r e ( o b j e c t , t n )

}

Object allocation.
i f ( p a r t O f R e c u r s i v e T y p e ( t y p e ( o b j e c t ) ) ) {

t n . c o s t { t y p e ( o b j e c t ) , NEW}++
}

Note that AlgoProf correctly handles exceptional control flow,
i.e., when exceptions cause control to exit a loop or a method,
AlgoProf performs the corresponding Loop exit or Method exit
operation.
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3.3 Measuring Cost

The cost field in the repetition tree nodes represents a map from
specific primitive operations (on specific inputs) to their execution
counts.

Algorithmic step. cost{STEP} → 15 means that the repetition
performed 15 algorithmic steps.

Array access. cost{input#1, LOAD} → 10 means that the
repetition performed 10 LOAD operations on an array known
as input with ID 1.

Recursive structure access. cost{input#3, PUT} → 99 means
that the repetition performed 99 PUT operations on the recur-
sive structure known as input with ID 3.

Recursive structure access (by element type). cost{input#3,
Vertex, PUT} → 33 means that the repetition performed
33 PUT operations on fields of type Vertex in the recursive
structure known as input with ID 3 (e.g., a recursive structure
modeling a graph as Edge and Vertex objects).

Recursive structure element creation. cost{ListNode, NEW}
→ 9 means that the repetition allocated 9 ListNode instances
(a class that is part of a recursive structure).

The analysis calls finalizeRepetition whenever a repetition
terminates (at a loop exit or at a return from the outermost call of a
recursive method). This finalization of the repetition adds the con-
tents of the cost field to the history of invocations of this repetition
tree node. This means that each node in the repetition tree contains
historical information (data structure sizes and operation counts)
for each and every invocation of that repetition. While this can lead
to large memory requirements for our profiler, keeping historic in-
put size and cost information is necessary to infer cost functions.
To reduce this overhead, an optimized version of a profiler could
try to infer the cost function online, and discard the individual data
points, or it could try to sample a subset of invocations for fre-
quently invoked repetitions.

3.4 Measuring Input Size

To identify an input and to determine its size, we traverse the
corresponding array or recursive structure. We measure input sizes
in three possible situations:

IdentifyAndMeasureArray is called due to an array access.
For array identification, out of the strategies described in Sec-
tion 2.5, AlgoProf implements the Some Elements Identical
strategy, because it is effective for algorithms that “resize” ar-
rays by reallocation1.

AlgoProf supports two strategies for measuring the size of an
array: the capacity strategy uses the array’s capacity (the num-
ber of elements the array can store), while the unique element

count strategy traverses all elements of the array (for reference
arrays, all non-null elements), and computes the size of the set
of unique elements. This second strategy is useful to approxi-
mate the amount of space used in an array by algorithms that
allocate an array but only use a small fraction of its capacity.
However, it has the drawback that it does not count duplicate
elements. This is particularly problematic for arrays of small
primitive types (e.g., booleans or bytes).

AlgoProf treats multi-dimensional arrays analog to algorith-
mic steps. That is, it counts all elements of the top-level ar-

1 Implementations of resizable arrays allocate a new, larger, array when the
current backing-array gets full. Treating the original (small) and the newly
allocated (grown) array as the same input is essential when reasoning about
an algorithm operating on such a dynamically resizable array.

ray and all elements of the lower-level arrays. For example, the
2-dimensional triangular array new int[][] {new int[0],
new int[1], new int[2]} has a size of 3 + (0+ 1 + 2) el-
ements, which is exactly the same as the number of algorithmic
steps in the analog loop nest in Listing 3.

IdentifyAndMeasureStructure is called due to a recursive ref-
erence field access. For recursive data structure identification,
out of the strategies described in Section 2.5, AlgoProf imple-
ments the Some Elements Identical strategy.

A recursive data structure can consist of multiple Java classes.
For example, a graph can be modeled as a recursive structure
involving a Vertex and an Edge class. AlgoProf provides a to-
tal object count (i.e., the total number of objects involved in a
graph), and it provides separate counts of objects for each spe-
cific type (i.e., the number of Vertex objects involved in the
graph, and the number of Edge objects involved in that graph).
Many recursive structures also involve arrays. For example, a
tree may consist of a Node class that has a Node[] field con-
taining references to all its children. When traversing a recur-
sive structure, we also traverse these arrays. In addition to ob-
ject counts, AlgoProf also provides the counts of non-null array
elements traversed in this way. Analog to object counts, Algo-
Prof provides a total reference count as well as separate refer-
ence counts by types. For example, for a graph modeled with a
Vertex class that has a Vertex[] field containing references
to all its incident vertices, the graph’s edges are implicit and
correspond to the references in the Vertex[].

IdentifyAndMeasureStructure receives an object refer-
ence. It starts traversing the structure at that reference. If the
structure is not strongly connected, then it will not reach all
objects that might be deemed part of that structure (had the
traversal started from a different object reference). This is one
reason for why AlgoProf uses the Some Elements Identical
strategy to determine the equivalence of two recursive structure
snapshots.

RemeasureInputs is called when control exits the repetition (exit
from a loop or recursive call chain). It enables an optimization:
instead of taking a structure snapshot at every access to a struc-
ture, we only take two snapshots: first at the repetition’s first
accesses of the structure (starting from the first reference ac-
cessed), and a second time when the repetition exits (starting
from the last reference accessed in that repetition). This way, if
a repetition is a Construction, such as in one of the examples
in Listing 4, we can still traverse and measure the completely
constructed input in the end, but we do not need to traverse the
structure at every access. We only need to memorize the one
accessed reference at every access, so we know where to start
our traversal from at the exit of the repetition.

3.5 Using AlgoProf

AlgoProf produces an algorithmic profile consisting of a repetition
tree similar to the one shown in Figure 3. For each algorithm, it pro-
duces multiple plots of its complexity, based on the combinations
of their inputs (sizes of all their accessed structures) and cost mea-
sures (algorithmic steps, the various structure access counts, and
element allocation counts). Figure 1 (a) shows an example of such
a plot for the sort algorithm in Figure 3, with the number of Node
objects in the Node-based recursive structure as input size and al-
gorithmic steps as the cost measure. AlgoProf currently does not
automatically fit a cost function onto the measured data points, but
we manually fit those functions using a statistics package. Given
that we have several cost measures, and given that some algorithms
access multiple inputs, the number of cost functions for each algo-
rithm can become large. We use simple heuristics to automatically
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Listing 4. First access in Constructions cannot see whole structure
Node c o n s t r u c t L i s t W i t h L o o p ( i n t s i z e ) {

Node l i s t ;
f o r ( i n t i =0 ; i<s i z e ; i ++) {

Node head = new Node ( ) ;
/ / f i r s t PUTFIELD: r e a c h a b l e s t r u c t u r e s i z e 1

head . n e x t = l i s t ;
l i s t = head ;

}
return head ;

}
Node c o n s t r u c t L i s t W i t h R e c u r s i o n ( i n t s i z e ) {

i f ( s i z e ==0) return n u l l ;
e l s e {

Node l i s t = c o n s t r u c t L i s t ( s i z e −1);
Node head = new Node ( ) ;
/ / f i r s t PUTFIELD: r e a c h a b l e s t r u c t u r e s i z e 1
head . n e x t = l i s t ;
return head ;

}
}
vo id c o n s t r u c t P a r t i a l l y U s e d A r r a y ( ) {

i n t [ ] v a l u e s = new i n t [ 1 0 0 0 ] ;
f o r ( i n t i =0 ; i <10; i ++) {

/ / f i r s t IASTORE : a r r a y ” s i z e ” 1
v a l u e s [ i ] = i ∗2 ;

}
}

highlight useful ones: we focus on algorithmic steps as a cost, and
we exclude those cost functions of inputs that never change in size
or that cause constant cost.

Moreover, for realistic applications, we use traditional CCT
hotness profiles (gathered with Java’s built-in hprof profiler) to
focus algorithmic profiling on hot regions of code.

4. Demonstration

We now summarize the behavior of AlgoProf on several examples
representing creations and traversals of various data structure im-
plementations, and we present two small, illustrative examples.

4.1 Handling Different Kinds of Data Structures

Table 1 provides an overview over 18 illustrative example pro-
grams we profiled with AlgoProf. Those programs essentially im-
plement traversals of various data structure implementations. Each
example focuses on one kind of data structure but implements sev-
eral algorithms (e.g., building the structure, traversing the structure
iteratively, and traversing the structure recursively).

The examples involve naked arrays, lists, trees, and graphs (col-
umn “Struct”). Column “Impl.” shows how this structure is im-
plemented (as an “array”, or as a “linked” (recursive) data struc-
ture). Column “Linkage” shows how the elements of the structure
are linked. Column “T” describes how one can define the struc-
ture’s payload type (the type of the information stored inside the
elements): the type of the payload is hard-coded (B), the struc-
ture uses inheritance to allow subclasses to define the payload type
(I), or the structure uses generics (G) to allow defining the payload
type. Column “Rem.” contains further remarks: For arrays it spec-
ifies whether they are one or multi-dimensional, for dynamically
resized array-based lists it describes how they grow (grow by one,
or double in size), and for trees it describes their arity (binary or
N-ary).

The remaining three columns summarize the results. Column
“I” states whether all the inputs we as programmers considered
inputs were detected (x) or not (-). For all these examples, AlgoProf

Listing 5. Repetition nest not grouped by AlgoProf
i n t [ ] [ ] a r r a y = . . . ;

f o r ( i n t i =0 ; i<a r r a y . l e n g t h ; i ++)
/ / no a c c e s s t o a r r a y [ i ] here
f o r ( i n t j =0 ; j<a r r a y [ i ] . l e n g t h ; j ++)

a r r a y [ i ] [ j ] = . . . ;

detected the inputs as expected. Column “S” shows that AlgoProf
correctly measured the size of each input. Column “G” describes
whether the loops we consider to be part of one algorithm were
indeed grouped together (x) or not (-). In this column, a (*) means
that we ended up with a correct grouping, but that a slight change in
the algorithm’s implementation could lead to an incorrect grouping.
The way AlgoProf groups repetitions into algorithms does not
work well for array-based systems. The reason is that in repetition
nests that implement an algorithm, such as the one in Listing 5,
sometimes only the innermost repetition actually accesses the array.
That is, outside the innermost loop, the outer loop contains no
*ALOAD or *ASTORE instructions that would access the array.
Thus, AlgoProf does not merge the two loops into one algorithm,
but it creates two separate algorithms instead: the innermost loop
which is accessing the array, and the outer loop as a data-structure-
less algorithm.

We believe that this limitation could be overcome with a data-
flow analysis that determines which loops increment the indices
used in the array accesses. For Listing 5, the outer loop increments
variable i, which is then used in the array access in the inner loop.
Such an approach could be considered the dual to the way we
handle recursive structures: we look at the accesses of the recursive
links (e.g., the next field in a linked list node), not at the accesses
of the payload (e.g., the value field in a linked list node; or the
element in an array).

Struct Impl. Linkage T Rem. I S G
array array NA B 1d x x *
array array NA B 2d x x -
list array NA B double x x *
list array NA B grow by 1 x x *
list array NA G grow by 1 x x *
list array NA I grow by 1 x x *
list linked directed B x x x
list linked directed G x x x
list linked directed I x x x
tree array NA B binary x x *
tree linked directed B binary x x x
tree linked bidi B binary x x x
tree linked directed B n-ary x x x
tree linked bidi B n-ary x x x
graph array directed B 2d x x -
graph linked directed B x x x
graph linked bidi B x x x
graph linked unidirected B x x x

Table 1. Data Structure Examples

4.2 Uncovering Algorithmic Inefficiencies

Listing 6 shows an implementation of a dynamically-growing
array-backed list. Given that Java’s arrays cannot grow, such a
list needs to allocate a new, larger array when it runs out of space
in the current array. A naive developer will grow the array by one
element (or by a constant number of elements) which will lead to
quadratic cost. By changing one line in the code (grow the array by
doubling its size), the cost can be made linear.
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Listing 6. Growing an array-backed list
f i n a l A r r a y L i s t l i s t = new A r r a y L i s t ( ) ;
f o r ( i n t i =0 ; i<s i z e ; i ++) {

l i s t . append ( ” n ”+ i ) ;
}
. . .
p u b l i c vo id append ( f i n a l S t r i n g v a l u e ) {

g r o w I f F u l l ( ) ;
a r r a y [ s i z e ++] = v a l u e ;

}
p r i v a t e vo id grow ( ) {

i f ( s i z e == a r r a y . l e n g t h ) {
f i n a l S t r i n g [ ] newArray =

new S t r i n g [ a r r a y . l e n g t h + 1 ] ; / / n a i v e
new S t r i n g [ a r r a y . l e n g t h ∗2 ] ; / / i d e a l

f o r ( i n t i =0 ; i<a r r a y . l e n g t h ; i ++)
newArray [ i ] = a r r a y [ i ] ;

a r r a y = newArray ;
}

}

Harness

Appending Elements

and growing array when required

Program

Main.main

Main.testForSize

ArrayList.grow

Figure 4. Repetition tree for growing an array-backed list

Figure 4 shows the program’s repetition tree, indicating three
repetition nodes grouped into two algorithms. The top algorithm
consists of the harness running testForSize with various sizes.
The lower algorithm consists of the loop calling list.append()
and the inner loop that grows the list. Given that the two loops are
grouped together, we see the total cost of appending size elements.
Figure 5 shows the corresponding cost function. For the naive
developer’s implementation, the cost grows quadratically in the size
of the list. For the ideal implementation, the cost grows linearly.

4.3 Being Agnostic to Programming Paradigm

The insertion sort implementation in Listing 1 is imperative, itera-
tive, and uses a mutable data structure. Does AlgoProf produce the
same profile for an insertion sort implementation that is functional,
recursive, and uses an immutable data structure? We found that the
profile was almost identical2. The repetition tree contains the same
repetitions as the tree in Figure 1, and the repetitions are grouped
into the same algorithms with the same complexities. This demon-
strates one of the key points about algorithmic profiling: the im-
plementations may look entirely different, but their automatically
generated algorithmic profiles agree.

2 http://sape.inf.usi.ch/algorithmic-profiling
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Figure 5. Cost functions for growing array by 1 and doubling array

5. Limitations and Future Work

AlgoProf is based on heuristics. Its grouping of repetitions into al-
gorithms and its notion of “input” (the way it identifies the data an
algorithm is tied to) may not always match the developer’s intu-
ition. Moreover, AlgoProf can only infer a cost function for algo-
rithms that operate on data structures, because it cannot infer any
input size for algorithms that operate on primitive data types. Fi-
nally, its cost functions only represent approximations. However,
we believe that the repetition tree, the (partial) grouping of repeti-
tion tree nodes into algorithms based on the data they access, the
classification of these algorithms (into construction, modification,
traversal, input, and output), and the approximations of their cost
functions, provide useful information to a developer. We are not
aware of any other profiling approach that can produce such infor-
mation automatically.

The probably most severe limitation of AlgoProf is its over-
head, both in terms of space and time. Realistic benchmarks exe-
cute several orders of magnitude slower under AlgoProf. However,
AlgoProf only represents an initial prototype, without any signifi-
cant optimizations. There is a clear need – and we believe a great
potential – for optimizations. For example, taking complete snap-
shots of structures at ever access, or even at every start and end
of a repetition, and storing the complete snapshots in memory, is
wasteful, and incremental approaches, together with more power-
ful static analyses, could probably drastically reduce the overhead
of our current prototype. Similar gains might be possible by piggy-
backing data structure size measurements on the heap traversals
performed by the garbage collector

While AlgoProf correctly deals with multiple threads, our ap-
proach specifically targets sequential algorithms. AlgoProf pro-
duces a repetition tree for each thread, and it completely ignores
any communication between threads.

Besides investigating possible optimizations for our approach,
we also would like to perform a more thorough evaluation. Algo-
Prof cannot possibly be “correct” in what it deems an algorithm,
that algorithm’s input, and a useful measure of cost. All it can do is
match a human developer’s intuition. Thus, it would be interesting
to explore how algorithmic profiles help developers to detect and
fix performance bugs, and which of its strategies and heuristics are
most effective for this purpose.
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6. Related Work

Goldsmith et al. [4] had a similar goal to ours: they ran a program
given several inputs, measured cost and fitted a curve. However, ex-
cept for the cost, which was automatically determined by counting
basic block invocations, the other aspects (e.g., algorithm identi-
fication and input size determination) had to be performed manu-
ally. Later work [3] proposed to switch the cost metric from basic
block counts to loop iterations, but it ignored recursions, and it still
required all the former manual interventions. Related work in em-
pirical algorithmics [8, 9, 14] discusses the difficulties in inferring
algorithmic cost functions and asymptotic complexity from exper-
imental data. And further research analyzes program executions to
extract performance models other than cost functions, for example
models in the form of layered queueing networks [6].

Jump [7] introduces dynamic shape analysis, focusing on the
shapes and sizes of recursive structures in the heap. Prior re-
search [13, 15] performed shape analysis statically. We traverse
recursive heap structures at runtime, when identifying inputs, and
we measure their sizes. We do not, however, try to infer any shape
properties. We possibly might benefit from understanding their
shape properties, for example to incrementalize our approach to
measuring structure sizes.

Further work on analyzing data structures at runtime includes
approaches to find costly data structures [10], to measure object
lifetimes [2], to track data structures for post-mortem analysis [16],
to profile the use of recursive data structures [11, 12], to perform
“copy profiling” [19], to find “low-utility data structures” [20], to
perform “container profiling” [17] and to find “inefficiently used
containers” [18]. It would be interesting to try to combine those
approaches with algorithmic profiling.

Recently, Bergel et al. presented domain-specific profiling [1],
an approach that also produces higher-level profiles. That work
takes almost the opposite direction as ours: algorithmic profiling
is a domain-independent profiling approach that strives to achieve
a level of abstraction without requiring any developer involvement.

7. Conclusions

Algorithmic profiling is an automatic approach to infer the com-
putational cost of the algorithms embodied in a program. Given
a program and a set of representative program executions, an algo-
rithmic profiler identifies algorithms and inputs to those algorithms,
measures meaningful notions of cost, and infers a cost function for
each algorithm that relates cost to input size. The profiler presents
the programmer with a repetition tree, in which it highlights the al-
gorithms. It annotates each algorithm with the kind of operations it
performs (e.g., construct, modify, traverse), the kind of data struc-
tures it processes, and an estimated cost function.

Developers can use algorithmic profiles to identify algorithms
with high computational complexity, or to better understand pro-
gram regions with high measured execution times. Given an algo-
rithmic profile, programmers can further estimate how a program
scales, that is, how a program’s running time would be affected by
further increases in input size.

We believe that algorithmic profiling relates to algorithmic com-
plexity analysis like software testing relates to formal verification:
it does not provide any guarantees, but can be effective in finding
and fixing real-world problems.
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