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Abstract
This paper presents a new polyhedra scanning system called Code-
Gen+ to address the challenge of generating high-performance
code for complex iteration spaces resulting from compiler opti-
mization and autotuning systems. The strength of our approach
lies in two new algorithms. First, a loop overhead removal algo-
rithm provides precise control of trade-offs between loop over-
head and code size based on actual loop nesting depth. Second,
an if-statement simplification algorithm further reduces the num-
ber of comparisons in the code. These algorithms combined with
the expressive power of Presburger arithmetic enable CodeGen+
to support complex optimization strategies expressed in iteration
spaces. We compare with the state-of-the-art polyhedra scanning
tool CLooG on five loop nest computations, demonstrating that
CodeGen+ generates code that is simpler and up to 1.15x faster.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Compilers, Optimization

General Terms Performance, Algorithms

Keywords polyhedra scanning, polyhedral transformations

1. Introduction
The polyhedral model has long been considered a powerful tool
in loop nest optimization. In contrast, ad-hoc loop transformation
techniques typically apply one loop transformation at a time and
have to switch back to a loop’s syntactic form again for the next
loop transformation. Subsequent transformations have to deal with
increasingly complex loop structures, severely limiting the opti-
mization strategy a compiler can apply. A polyhedral model rep-
resents each statement’s execution in the loop nest as a lattice point
in the space constrained by loop bounds, known as the iteration
space. Then a loop transformation can be simply viewed as map-
ping from one iteration space to another, and various transforma-
tions can be composed. This enables reasoning about complex op-
timization strategies.
In a polyhedral model, polyhedra scanning is used to generate

optimized code. The polyhedra representing the iteration spaces of
an optimized loop nest are scanned from the first dimension to the
last to generate the corresponding output nested loop structure. The
quality of generated code directly affects the transformed code’s
performance. For example, unnecessary control flow in an inner-
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most loop would most likely severely degrade performance on to-
day’s architectures. Expensive arithmetic operations such as mod-
ulo that result from polyhedra scanning can also degrade perfor-
mance.
Polyhedra scanning has been studied by researchers since

the early 1990s. Generating code from unimodular and non-
unimodular transformations [6, 14, 20, 28–30] can be thought of as
a polyhedra scanning problem. Ancourt and Irigoin [1] are among
the first researchers to propose an algorithm to systematically scan
polyhedra to generate loop code. However this method only deals
with a single polyhedron. In a general polyhedral framework, state-
ments may have different iteration spaces from each other. Kelly et
al. [12] describe a polyhedra scanning system for a set of polyhedra.
Their algorithms remove loop overhead from inner loops iteratively
from the most compact code generated. Quillere et al. [18] argue
that the iterative algorithms in [12] are inefficient, and instead split
overlapping polyhedra at each dimension during the scanning pro-
cess without iterating. However, the method in [18] still requires
backtracking to remove dead code. In practice, removing overhead
indiscriminately might unnecessarily cause code explosion with
little benefit in performance. This might be a particular concern
when generating codes for embedded systems where limiting code
size is also important. Sometimes removing overhead from just the
innermost loop may be a better choice in balancing code size and
performance, as it is typically the structure of the inner loop body
that directly affects instruction scheduling.
More recently, CLooG [2, 26] tries to overcome the above men-

tioned problem in Quillere et al.’s method. Conceptually, its algo-
rithm can be thought of as the reverse of Kelly et al.’s method by
reducing code size from a starting point of maximal overhead re-
moval. However, we observe that CLooG’s code compacting pro-
cess does not follow the lexicographical order of iteration spaces.
One could argue that this reordering might be beneficial to pro-
viding flexibility in overhead removal, but it also might result in
incorrect code when there is a data dependence preventing such
statement reordering.
CodeGen+ uses the same basic concept of Kelly et al.’s method,

but its algorithms are completely reworked. Our goal is to pro-
duce high-performance code that is competitive with manually-
tuned code, so efficiency of generated code is paramount. As con-
text for this work, CodeGen+ has been used extensively as part of
an autotuning compiler system, whereby the compiler generates a
set of parameterized variants of a computation, and employs em-
pirical techniques to find the best variant and associated set of op-
timization parameter values [25]. The variants represent different
optimization strategies, while the optimization parameters are dis-
crete values that govern code generation such as tile size or un-
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roll factor. Due to its mathematical foundations, the polyhedral
model is a powerful underlying technology for an autotuning com-
piler because it can generate correct code under different param-
eter values and complex optimization strategies. The code result-
ing from this system has been shown to achieve performance that
is comparable and sometimes better than manually-tuned libraries
such as ATLAS, Goto, ACML, Cray Scientific Library, PETSc and
CUBLAS [3, 13, 19, 21, 23], and manually-tuned code written by
programmers targeting supercomputers [19, 22, 24].
Considering the optimization strategies used in hand-tuned

codes such as, for example, BLAS linear algebra libraries, to
achieve comparable performance polyhedral frameworks must be
able to compose a large collection of transformations, such as tiling,
permutation, iteration-space splitting, shifting, and unroll-and-jam.
Such complex optimization strategies result in correspondingly
complex iteration spaces. Parallel code introduces additional trans-
formations such as strip mining across threads, resulting in non-
convex iteration spaces, which further increases complexity. Auto-
tuning additionally introduces non-trivial parameter combinations
during the search that lead to significant clean-up code and elabo-
rate loop bound calculations.
To summarize, the requirements for polyhedral compilers tar-

geting modern memory hierarchies, multi-core and heterogeneous
systems pose significant challenges for polyhedra scanning algo-
rithms, particularly when the goal is to achieve very high levels of
performance. We describe in this paper algorithms in CodeGen+
that play an important role in meeting this goal. The main contribu-
tions of this paper are: (1) a new loop overhead removal algorithm
that can handle complex constraint relationships from Presburger
arithmetic among different polyhedra, and provides precise control
of trade-offs between loop overhead and code size based on actual
loop nesting depth; and, (2) a new algorithm to further simplify if-
statements for the code after trade-offs. Since CLooG has recently
been extended to use full Presburger arithmetic by integrating with
ISL [27], we will provide direct comparisons on five loop nest com-
putations for identical iteration spaces. These experiments demon-
strate that our bottom-up algorithms built with mathematical rigor
provide a better control of trade-offs between loop overhead and
code size and are capable of generating better quality code.
This paper is organized as follows. Section 2 introduces the

polyhedral model and the underlying mathematical model. Sec-
tion 3 describes our polyhedra scanning algorithms and code gener-
ation process. In Section 4, we explain the design features and code
quality improvements under the perspective of polyhedral frame-
work. Finally, Section 5 summarizes the related work, and Sec-
tion 6 concludes the paper.

2. Background
We first give a brief introduction of the polyhedral model for loop
transformations. Polyhedra scanning is part of this complete solu-
tion, and its various design decisions must be considered in this
greater context. As a prerequisite for the polyhedral model, we as-
sume that loop nests have affine loop bounds, and there is no control
dependence for statements inside the loop nest. We also explain es-
sential functions from the underlying mathematical system that are
critical to understand the polyhedra scanning algorithms described
in this paper.

2.1 Polyhedral Model
Statements inside a loop nest can be viewed as lattice points in a
polyhedron. Executing the loop nest sequentially is equivalent to
enumerating those lattice points in lexicographical order. This con-
ceptualization allows the compiler to reason about loop transforma-

tions as manipulating iteration spaces of loop nests. For example,
consider the following loop nest:

for (i=0;i<n;i++)
for (j=0;j<i;j++)

s0: a[i][j]=b[i][j]

Statement s0’s iteration space is

{[i, j] : 0 ≤ i < n ∧ 0 ≤ j < i}.

Dimension i in this iteration space corresponds to outer loop i in
the above loop nest and dimension j corresponds to inner loop j.
A reordering of a statement’s execution order is valid as long as it
preserves all data dependences, i.e., the source is always executed
before the sink after transformation for any data dependence. View-
ing a loop nest by its iteration spaces give us a powerful abstrac-
tion to transform a loop nest without being restricted to the original
loop structure. Thus, a loop transformation can be represented by a
mapping function from one space to the other and their dimension-
ality does not need to be the same. A mapping must be invertible
to guarantee that the same amount of work is done before and after
transformation, i.e., a reordering transformation. For example, ap-
plying mapping function {[i, j] → [i′, j′] : i′ = j ∧ j′ = i} to the
above iteration space would result in

{[i′, j
′] : 0 ≤ j

′
< i

′
< n},

which represents the iteration space of the interchanged loop nest.
Thus, after a loop nest has been transformed in the polyhedral

model, the new iteration spaces (set of polyhedra) must be con-
verted back to their syntactic format as nested loops to produce
code. This code generation is performed using polyhedra scanning.
For a single polyhedron, it simply scans from the first dimension to
the last while generating the loop bounds and step size for each di-
mension. Any other constraints that cannot be enforced by loops are
represented by if-statements, e.g., a guard to only execute a state-
ment on a subset of iterations of a loop. For example, the above
iteration space after loop interchange generates the following code
from polyhedra scanning:

for (t1=0;t1<=n-2;t1++)
for (t2=t1+1;t2<=n-1;t2++)

s0: a[t2][t1]=b[t2][t1]

Further challenges come from scanning a set of polyhedra and
allowing more complex constraints such as modulo constraints to
be described in iteration spaces. Different polyhedra may overlap
with each other with nontrivial constraint relationships. Polyhedra
scanning needs to generate concise loop bounds and optimally
place additional guard conditions, taking into account trade-offs
between loop overhead and code size.

2.2 Integer Linear Arithmetic
CodeGen+ depends on Omega+ (Presburger arithmetic) to manip-
ulate a system of integer equations and inequalities. Omega+ is an
updated Omega library [11] which uses enhanced Fourier-Motzkin
elimination as its core algorithm [15–17]. Omega+ further extends
the Omega library to better support integer modulo constraints
in various functions. This enables CodeGen+ to generate efficient
codes when iteration spaces do not have unit stride. In this section,
we describe a few high-level functions that provide key underly-
ing support in designing polyhedra scanning algorithms. These are
Project, Gist and Hull.

Project To project a variable from a polyhedron, the variable is
eliminated from all equations and inequalities from a linear
system. For example,

Project({1 ≤ y ≤ x ≤ 100}, x) = {1 ≤ y ≤ 100}.
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In some cases, Project will generate additional constraints if
necessary:

Project({1 ≤ x ≤ 100 ∧ y = 2x}, x)

= {2 ≤ y ≤ 200 ∧ ∃α(y = 2α)}.

Gist Gist is a unique function implemented in the Omega library.
It takes two relations and the result must satisfy the following
condition:

Gist(A, B) ∧ B = A ∧ B.

The function can be interpreted as this: given that we know B,
what is the extra knowledge inA that has not been known inB.
The following illustrates the behavior of this function.

Gist({i > 10 ∧ j > 10}, {j > 10}) = {i > 10},

Gist({1 ≤ i ≤ 100}, {i > 10}) = {i ≤ 100}.

A new enhancement in Omega+ enables Gist to reduce the
strength of modulo constraints. For example,
Gist({∃α(i = 6α)}, {∃α(i = 2α)}) = {∃α(i = 3α)}.

The above result can be proved correct using the Chinese re-
mainder theorem. Intuitively speaking, if we already know i is
an even number, the extra information included in the fact that
i is a multiple of 6 is that i must be a multiple of 3.

Hull Hull of a set of polyhedra returns a single polyhedron that
must include all points in the original set of polyhedra. Al-
gebraically, the result of Hull must be a conjunction of con-
straints. Although a convex hull is the minimal polyhedron that
encloses all input polyhedra, it can be very expensive to com-
pute in some cases. Our experience so far is that absolute tight
bounds are not necessary when dealing with real application
code. Instead, Hull is an approximation algorithm in finding the
enclosing polyhedron. A new enhancement in Omega+ makes
Hull handle stride conditions and find the lattice when input
polyhedra have different modulo constraints. Below is a simple
example illustrating Hull’s behavior:
Hull({1 ≤ i, j ≤ 100 ∧ ∃α(j = i + 4α)}∪

{1 ≤ i ≤ 50 ∧ 1 ≤ j ≤ 200 ∧ ∃α(j = i + 6α)})

= {1 ≤ i ≤ 100 ∧ 1 ≤ j ≤ 200 ∧ ∃α(j = i + 2α)}.

It should be pointed out that different mathematical frameworks
other than Omega+ can be used as long as the same functionality
is provided. The generated code quality may differ due to different
capability implemented in each framework.

3. Polyhedra Scanning and Code Generation
In this section we describe our improved polyhedra scanning al-
gorithms, including the ones for the loop overhead removal with
code size trade-off control and the subsequent if-statement simpli-
fication. These optimizations are becoming increasingly important
for generating high quality code, as optimization strategies become
more sophisticated in response to the growing complexity of mi-
croprocessors and many-core architectures.
To simplify the discussion, we assume that each polyhedron to

be scanned is the end result of applying a mapping function to
the original iteration space. The mapping function only affects the
variable substitution during the code generation process, which we
assume will be properly handled by the system. Also keep in mind
that CodeGen+ treats every dimension in the polyhedra during
scanning the same way without exception. This allows a clean and
consistent strategy for loop overhead optimization and provides
a predictable behavior to higher-level polyhedral transformation
frameworks.

split: node
set active;
(relation, node*) (restriction, body)[];

loop: node
set active;
int level;
relation known;
relation restriction;
relation bounds;
relation guard;
node* body;

leaf: node
set active;
relation known;
relation guards[];

Figure 1. AST node structure.

3.1 AST Structure
CodeGen+ relies on an abstract syntax tree (AST) to track the
breakdown of a conjunction of unordered constraints in iteration
spaces into levels of constraints, where constraints at each level can
only use loop variables of this level and the levels above. Our AST
is the same as [12] with only minor reinterpretation. There are three
types of nodes: split, loop and leaf. Figure 1 shows the structures
of these node types. Note the common active field which includes
statements that will be executed within the node or its subtree. In
addition, all the fields with an Omega+ relation type must be a
single conjunct, which is guaranteed after disjoint iteration spaces
are preprocessed to be split into separate ones. Below are detailed
descriptions of each node type.

Split A split node has as its fields an array of restrictions and asso-
ciated subtrees (called body). The order of subtrees is important
as it represents the lexicographical order of the scanning result.
For each body node, the corresponding restriction, as its name
implies, restricts the iteration space of any node in the subtree.
Unlike the other two node types, a split node does not corre-
spond to any actual code when converting from the AST to ac-
tual code. It only helps to separate disjoint iteration spaces at
the designated level.

Loop The loop node is the core part of the AST. Each loop node
corresponds to one loop level. Its known and restriction fields
are for bookkeeping information calculated from its ancestor
nodes. Known refers to what constraints have been enforced
by the code enclosing this loop, and restriction indicates the
restricted iteration space for this node. They are not necessar-
ily the same since not all constraints in the restricted iteration
spaces can be enforced by loop nodes seen so far from the top
down. Thus, known must be a subset of restriction, a prop-
erty maintained throughout AST restructuring. Two other fields,
bounds and guard, correspond to actual code that will be gener-
ated. Bounds is the condition that can be represented by a loop
structure, namely lower and upper bounds for this loop vari-
able and one stride condition for a constant step size. Guard is
a conjunction of those extra constraints that cannot be repre-
sented by a loop structure as they are too complicated and must
be enforced by a separate if-statement. The logical relationship
here is that guard is placed outside the loop structure that en-
forces bounds, and so constraints in guard cannot reference this
loop variable.

Leaf A leaf node represents those statements that will be executed
at the iteration space restricted by all its parent split nodes. Each
statement has an array guards field which represents the re-
maining constraints in the restricted iteration spaces that cannot
be enforced by any parent loop nodes and require additional
if-statements to enforce. Unlike the split node, there is no or-
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initAST(level, active, restriction)
input: level: current loop level;

active: set of active statements;
restriction: condition to restrict polyhedra;

output: root of AST

if (level > max level)
new leaf node with active;
return leaf node;

if (single statement in active)
child = initAST(level + 1, active, restriction);
new loop node with level and body = child;
return loop node;

for (each statement s ∈ active)
/* In the following statement,

ISs is the iteration space of the transformed statement. */
/* Approximate is an existing Omega operation to simplify the

iteration space representation. */
Rs = Approximate(restriction ∩ Project(ISs,
l(level+1) · · · lmax level)); /* no existentials */

for (each statement s ∈ active)
for (each constraint c ∈ Rs involving loop variable llevel)
if (c splits Rs∈active into disjoint sets active1 and active2)
WLOG assume llevel is smaller in the partition
constrained by c than the one constrained by c
child1 = initAST(level, active1, restriction ∩ c);
child2 = initAST(level, active2, restriction ∩ c);
new split node with (c, child1) and (c, child2);
return split node;

child = initAST(level + 1, active, restriction);
new loop node with level and body = child;
return loop node;

Figure 2. Algorithm to initialize AST.

der requirement for statements active at this location as they all
have the same lexicographical order.

3.2 Manipulating the AST
We first build an initial AST from a set of polyhedra as the basis
for further optimization. As a preprocessing step, each statement’s
iteration space is split into a disjoint set of polyhedra. In addition,
all polyhedra are extended to the same dimensionality of the max-
imum one, with constant values for additional dimensions. The ex-
tra dimensions are conveniently ignored when generating code, and
since they are constant values no extra complexity is introduced.
For completeness of discussion, Figure 2 shows the algorithm to
build the initial AST, which is essentially the same as the one used
by [12]. It is invoked initially with initAST(1, {all stmts}, { 〈l1,
TRUE 〉, . . . , 〈lmax level, TRUE 〉 }), which invokes the algorithm
on all statements in the loop nest, starting at the outermost loop
and with no restrictions on the loop indices. The algorithm uses
a simple strategy in that at any dimension, if there is an overlap
between polyhedra, they are enclosed in the same loop node. Oth-
erwise, several loop nodes with disjoint spaces to a common parent
split node are created. This approach represents minimal code size
from polyhedra scanning.

3.2.1 Computing Node Properties
After executing the algorithm in Figure 2, we still must initialize
other fields such as bounds and guards for loop nodes and guards
for leaf nodes. Figure 3 shows the algorithm to compute these node
properties, starting at the root of the AST. The algorithm will also
be invoked whenever the AST is updated due to a newly inserted
split node. There are several key points in the algorithm that are
important to overhead optimization and code generation. First, the
bounds selected for a loop node are represented directly in a loop

node.recompute(parent active, known, restriction)
input: parent active: set of active statements in parent node;

known: known condition for this node;
restriction: restriction condition for this node;

output: root of new AST

active = active ∩ parent active;
node.known = known;
node.restrictions = restrictions;
if (node is split node)
for (each restriction and child pair (r, c) in node)
c = c.recompute(active, known, restriction ∩ r);

elseif (node is loop node)
for (every statement s ∈ active)
Rs = Project(ISs, l(level+1) · · · lmax level) ∩
restriction;

if (Rs == ∅)
active = active - {s};

hull = Hull(Rs∈active);
let i be the index for the loop at level
if (i is degenerate)
bounds = i’s equality constraint in hull;
guard = TRUE;

else
bounds = i’s lower and upper bounds and single
modulo constraint with unit coefficient in hull;

guard = Gist(Project(hull, i), known ∩ bounds);
endif
body = body.recompute(active, known ∩ bounds ∩
guard, restriction ∩ bounds ∩ guard);

if (body == NULL)
delete node;
return NULL;

else return node;
elseif (node is leaf node)
for (each statement s ∈ active)
guards[s] = Gist(ISs ∩ restriction, known);
if (guards[s] == FALSE)
active = active - {s};

if (active == ∅)
delete node;
return NULL;

else return node;

Figure 3. Algorithm to compute AST node properties.

structure. This guarantees that overhead optimization decisions de-
scribed in the next algorithm are indeed based on the actual output
loop nesting structure. Second, for a loop level with a single itera-
tion (called degenerate loops), its guard condition is always set to
true. This strategy postpones the extra constraints that cannot be
enforced at this loop level into lower level (inner loop) nodes. Be-
cause there is an inherent comparison operation for each loop, by
pushing the constraints inward, we avoid redundant checking by
the guard at this level and an inner loop nest encountered in the
subtree.

3.2.2 Loop Overhead Removal
Figure 4 shows the algorithm to lift overheads out of inner loops
by duplicating the code. The level of code duplication is controlled
by parameter d which is the loop nesting depth. The loop nesting
depth can be calculated from the previous computed AST using
a recursive function. The leaf node has a nesting depth zero. The
nesting depth for other nodes is based on the maximum nesting
depth, max depth, among its children. For non-degenerate loop
nodes, nesting depth is max depth+1, and it is max depth for all
other node types. The liftOverhead algorithm also takes another
parameter propagate up as a flag to tell whether it is currently
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working on a node that is inside the subloop with a nesting depth
≤ d.
Loop overheads arise from non-tautology guard conditions in

loop and leaf nodes. They correspond to if-statements in a loop
nest. In our algorithm, a single overhead condition selected to be
lifted out of the current position corresponds to a constraint or a
combination of constraints whose complement is a single conjunct.
For example,

i ≤ 5

can be one selected overhead condition. And

∃α(5α ≤ i ≤ 5α + 2)

can also be lifted out as a whole since its complement

∃α(5α + 3 ≤ i ≤ 5α + 4)

is a single conjunct. This requirement allows a single split node to
partition the space into two disjoint subspaces each constrained by
a single conjunct.
The algorithm begins at the root of the AST with propagate up

set to FALSE, and descends the AST recursively. The main part of
the algorithm deals with loop nodes with a nesting depth ≤ d, and
thus it will be explained in more detail. When a suitable overhead
to be optimized is located, it is propagated up the tree to the highest
level possible. The highest level is the loop node such that one
of the following conditions is satisfied: (1) the required nesting
depth is reached; (2) for constraint(s) with existential variables, the
maximum loop level of variables appearing inside is this loop level
minus one; or, (3) for constraints without existential variables, the
maximum loop level of variables appearing inside is this loop level.
The reason for (1) is straightforward since that is the intended place
to lift the overhead. Further up will cause more code duplication
than required. The reason for (2) and (3) is that this overhead cannot
be propagated higher since otherwise it will cause a referenced
variable to be projected away.
At this point, the algorithm has identified the location in the

AST for inserting a split node for the overhead condition to be
lifted. A new split node is inserted at this location and the orig-
inal subAST is duplicated and reinserted as two children to this
newly created split node, one constrained by satisfying the over-
head condition and the other by its complement. The order of these
two subtrees follows the lexicographical order. Both subASTs are
then recomputed for node properties since they are under different
restricted spaces now. The algorithm liftOverhead is then recur-
sively invoked on this new split node. This process stops when all
candidate overhead conditions have been lifted.
Currently we do not treat min/max bounds in a loop nest as over-

head since we have not found the run-time costs of such operations
to be significant. Nevertheless, if desired, min/max bounds can be
easily added into the algorithm and controlled by a different nest-
ing depth parameter if needed. The constraint type is much simpler
than those that would appear in the guard condition, and thus the
implementation is straightforward.

3.2.3 If-statement Simplification
Our previous algorithm for lifting loop overhead only deals with
trade-offs between loop overhead and code size. It is possible that
guard conditions from loop nodes of the same level at different
subASTs use the same constraint or they contradict each other.
This gives us the opportunity to further reduce the control overhead
without any negative impact on code size by constructing if-then-
else subtrees (represented by IF nodes in the algorithm) and avoid-
ing unnecessary conditionals. This algorithm is invoked for a set of
adjacent nodes at the same nesting depth, with postponed guard set

node.liftOverhead(d, propagate up)
input: d: loop nesting depth counted from innermost;

propagate up: flag whether inside a loop nest of
nesting depth ≤ d;

output: (overhead constraint, root of new AST)

if (node is split node)
for (each restriction and child pair (r, c) in node)
(r2, c2) = c.liftOverhead(d, propagate up);
(r, c) = (r, c2);
if (r2 �= TRUE)
return (r2, node);

return (TRUE, node);
elseif (node is loop node)
if (nestingDepth(node) > d)
(r, c) = body.liftOverhead(d, FALSE);
body = c;
return (TRUE, node);

else
if (propagate up)
pick one guard r with single conjunct complement;
if (r �= TRUE)
return (r, node);

if (propagate up || bounds is not an equality)
(r, c) = body.liftOverhead(d, TRUE);

else
(r, c) = body.liftOverhead(d, FALSE);

body = c;
if (r == TRUE)
return (TRUE, node);

if (bounds is an equality)
substitute llevel in r using the equation;

if (!propagate up || (r has existential variables and
the maximum level of loop variables used is level − 1) ||
(r has no existential variables and the maximum level of
loop variables used is level))
WLOG assume llevel is smaller in the partition satisfying r;
new split node with (r, node) and (r, node);
split node.recompute(active, known, restriction);
return split node.liftOverhead(d, propagate up);

else
return (r, node);

elseif (node is leaf node)
for (each statement s ∈ active)
if (guards[s] �= ∅)
pick one constraint r from guards[s] with single
conjunct complement;
if (r �= TRUE)
return (r, node);

return (TRUE, node);

Figure 4. Algorithm to lift loop overhead.

to NULL, and known guard representing the context in which the
nodes are nested.
There are two scenarios for if-statement simplification. For loop

nodes, only guard conditions from neighboring nodes can be con-
sidered for merging since the generated code must follow the lexi-
cographical order. On the other hand, for statements in a leaf node,
since they all have the exact same lexicographical order, simplify-
ing if-statements can be done in any order and this provides more
flexibility in reducing the number of comparisons. Figure 5 shows
the algorithm mergeIfInOrder to merge if-conditions in order.
Merging if-conditions out-of-order can be done in a similar fash-
ion, and it is omitted here due to space limitations.
The algorithm in Figure 5 takes the input of an array of contigu-

ous loop nodes of the same level. It also takes two additional param-
eters: one tracks those constraints yet to be enforced, and one tracks
constraints already generated. The basic idea of the algorithm is to
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test if a constraint from the guard condition in the first node matches
the constraint appearing in the immediately following ones. For the
remaining nodes, the algorithm tests if the guards contradict. This
partitions the nodes into three contiguous parts with regard to the if-
statement for this particular constraint: the first and second part are
the then and else part of the if-statement respectively, and the third
part follows this if-statement. Then the algorithm recursively works
on each group until all constraints are processed. Note that simply
comparing the constraints in isolation is not optimal in reducing the
number of comparisons. These constraints have additional known
conditions guarding execution of the code at this point, and there
is no need to retest these conditions. Instead, the algorithm tests
whether they are equivalent and complementary given the known
condition using the Gist function. For example, as shown later in
Figure 8(f), if we already know variable i is an even number from
its enclosing loops, then the constraint ∃α(i = 4α) is the exact
complement of constraint ∃α(i = 4α + 2). We can then put the
statements guarded by ∃α(i = 4α + 2) into the else part of the
if-statement with condition (mod(i, 4) == 0).
However, recall that in the algorithm to compute node proper-

ties (Figure 3), we postpone the computation of guard conditions
for those loop nodes which are assignments (degenerate loops).
This will cause a problem here in that now the guard conditions
at the different loop levels in the AST might actually be translated
to neighboring if-statements in the generated code if intermediate
loop nodes are all degenerate. As a preprocessing step, we con-
ceptually propagate guard conditions in the child loop nodes into
upper level loop nodes if loop nodes between them are all degen-
erate, with variable substitutions according to those assignments.
Such propagation may involve multiple levels of degenerate loop
nodes or multiple split nodes if necessary. Figure 6 illustrates this
behavior using one AST snippet as an example. Guard conditions
in nodes C, D, E and F are translated to neighboring if-statements
in the actual code. Thus in our preprocessing step, the guard condi-
tion in node C is propagated to node A, and the guard condition in
node F is propagated to node E. Finally, node A, D, E and G with
updated guard conditions are the first parameters to the algorithm
in Figure 5.

3.3 Code Generation
Once the AST is constructed and subsequently optimized, it corre-
sponds to a compiler’s high-level intermediate representation (IR)
AST if all split nodes are ignored. Thus code generation is a
straightforward process that follows from scanning the AST. Some
details of converting constraints to code are presented here.
For a loop node with unit stride, lower and upper bounds come

from inequalities in bounds conditions, with min/max added if
there are multiple such inequalities. For non-unit stride, CodeGen+
must know whether the lower bounds always satisfy the stride
condition. Suppose K is the intersection of the known condition
and bounds condition for this loop node. First, we create a relation
with a modulo constraint for this loop variable with the same
stride but starting at a lower bound and test whether there is new
knowledge in this relation given K. If not, we further test whether
there is new knowledge in the stride condition when this loop
variable is set to the lower bound in K. Both tests are done by the
Gist function and if both results are a tautology, we can safely use
this lower bound; otherwise, we generate a remainder expression to
be added to the lower bound.
For degenerate loop nodes (single iteration loops), we either

generate assignment code directly or substitute every appearance
of this loop variable in its child AST with a substitution expres-
sion. The choice depends on how complex the expression is, and
whether it can be adjusted by a parameter. Additional consideration
is needed when the coefficient c for this loop variable is not a unit;

mergeIfInOrder(nodes[], postponed guard, known guard)
input: nodes[]: neighboring nodes for their guard conditions;

postponed guard: guard conditions yet to be enforced;
known guard: guard conditions already considered;

output: if-then-else tree

/* for convenience of illustration, assume parameter nodes always
indexed from 1 to n */

if (nodes == ∅)
return NULL;

r = Gist(nodes[1].guard, known guard);
if ((nodes[1].known ∩ known guard) ⊆ r)
for (i in 2..n)
if (Gist(nodes[i].guard, known guard) �= TRUE)
break;

s1 = code for nodes[1..(i− 1)] without their guard condition;
s2 = mergeIfInOrder(nodes[i..n], NULL, known guard);
s3 = concatenate s1 and s2 in this order;
if (postponed guard �= ∅)
return new IF(postponed guard, s3, NULL);

else
return s3;

else
c = select a constraint from nodes[1].guard that maximizes
the contiguous region of nodes starting from 2 to satisfy it;

Let c partition nodes into three contiguous regions nodes1,
nodes2 and nodes3 in this order where nodes1 satisfies c,
nodes2 satisfies c and nodes3 remaining nodes in the end;
if (nodes2 == ∅ ∧ nodes3 == ∅)
return mergeIfInOrder(nodes1, postponed guard ∩ c,
known guard ∩ c);

elseif (nodes2 == ∅)
s1 = mergeIfInOrder(nodes1, c, known guard ∩ c);
s2 = mergeIfInOrder(nodes3, NULL, known guard);
s3 = concatenate s1 and s2 in this order;
if (postponed guard �= ∅)
return new IF(postponed guard, s3, NULL);

else
return s3;

else
s1 = mergeIfInOrder(nodes1, NULL, known guard ∩ c);
s2 = mergeIfInOrder(nodes2, NULL, known guard ∩ c);
s3 = mergeIfInOrder(nodes3, NULL, known guard);
s4 = new IF(c, s1, s2);
s5 = concatenate s4 and s3 in this order;
if (postponed guard �= ∅)
return new IF(postponed guard, s5, NULL);

else
return s5;

Figure 5. Algorithm to merge neighboring if-conditions in order.

that is, when |c| 	= 1. We must test if the right hand side of the as-
signment without dividing by the c part is always a multiple of c us-
ing the Gist function given the known condition when code reaches
here. If not, an if-statement with condition (mod(RHS, |c|) == 0)
must be created to guard the assignment and the code from the child
AST, where RHS is the right hand side of the assignment without
dividing by the c part.
Here are a few examples where constraints in the guard condi-

tions have existential variables:

∃α(4i = 5j + 4α) → mod(4 ∗ i − 5 ∗ j), 4) == 0,

∃α(4α ≤ i ≤ 5α) → ceil(i, 5) <= floor(i, 4).

Our implementation also tries to recognize floor definitions from
constraints and generate clean code whenever possible. For exam-

504



�����

�����

��	

��	

��	

��	






�

������

�
������

�
������

�
������

�
������

�
������




�
������

����� �����

Figure 6. Propagate guard conditions up through degenerate loop
nodes (marked by “=”).

ple, with α defined by �m
4
� in the following relation,

{[i] : ∃α(m − 4 < 4α <= m ∧ 4α <= i <= n)},

the generated lower bound for i is 4 ∗ floor(m, 4). Thus there
is no if-statement needed for the generated loop code from this
polyhedron.

4. Experiments
With precise control of trade-offs between loop overhead and code
size and reduction of if-conditions, while at the same time preserv-
ing the lexicographical order among statements represented in the
input iteration spaces, CodeGen+ provides a clean interface and
predictable behavior for high-level polyhedral loop transformation
frameworks. In this section, we examine the quality of code gener-
ated by CodeGen+ after composing a sequence of transformations
in a polyhedral framework for a set of loop nest computations. We
will compare CodeGen+ with the state-of-the-art polyhedra scan-
ning tool CLooG using examples to illustrate the improvements re-
sulting from our new algorithms.
For the generated codes in this section, we use CLooG 0.16.3

and CodeGen+ 2.2.3. For code compilation and performance, we
use gcc 4.6.1 with -O3 flag. For performance measurements, the
target architecture is a single core of a 2.8GHz Intel Core i7 930
with 2GBytes memory. We first consider a set of simple code
examples shown in Figures 7 and 8 to illustrate the differences
resulting from the algorithms in the previous section. Subsequently,
we examine a set of kernel computations, shown in Table 1. The
code inputs are standard hand written kernels (e.g., a simple 3-
deep loop nest for gemm) to which transformations are applied
using the CHiLL transformation and code generation system [4].
While CHiLL can invoke CodeGen+ internally, we instead capture
the iteration spaces of the transformed statements. Then, identical
iteration spaces are input to both Codegen+ and to CLooG (via the
iscc frontend to ISL in Barvinok) [27]. The output code from both
are compared to produce the results in the table.

4.1 Control of Trade-offs
Precise control of trade-offs between loop overhead and code size
is important in tailoring the output of polyhedra scanning. For ex-
ample, in optimizing for high performance, code generation of an
innermost loop impacts instruction-level parallelism or SIMD exe-

cution in multimedia extensions, which are critical for overall per-
formance. Thus removing loop overhead from innermost loops is
usually the best choice in balancing loop overhead and code size.
For other situations, a different choice might be selected. As exam-
ples, we might not want to lift any overhead to avoid code growth in
an embedded system, or we might want to remove as much control
flow as possible from loops for the highest performance.
Figure 7(b-d) shows the three variations of generated code from

iteration spaces in (a) with different trade-offs of removing loop
overhead from subloops of depth 0, 1 and 2, respectively. Note that
statement s0 is enclosed in loop t1 which itself is a loop nest of
depth 2. Thus when removing loop overhead from nesting depth 0
and 1, its enclosing if-condition (n>=2) is not moved out of the
t1 loop. Only when removing loop overhead from all subloops of
depth 2 is it moved out of the t1 loop; no more if-conditions re-
main inside any loop in the generated code (Figure 7(d)). CLooG
generates almost identical code to Figure 7(d), which follows the
lexicographical order. However, it does not provide such a guaran-
tee when generating codes for other trade-off points using the -f
or -l flags, which move conditions based on the first or last loop’s
nesting depth, respectively.

4.2 If-condition Overhead
The algorithms presented in this paper can reduce the number
of unnecessary if-conditions in the generated codes, especially in
some difficult situations. Figure 8 shows two examples to com-
pare number of if-conditions in the codes generated from CLooG
and CodeGen+. For the iteration space in Figure 8(a), the output
of CLooG in Figure 8(b) contains redundant modulo checking in
the innermost loop, but this is removed by CodeGen+ as shown
in Figure 8(c). Consider the iteration space of Figure 8(d) and the
output of CLooG in Figure 8(e). Given that c1 is even, based on
loop bounds, the condition ((c1+2)%4 == 0) can be determined
statically to be the complement of condition (c1%4 == 0). Thus,
the mod operation occurs just once in the CodeGen+ code of Fig-
ure 8(f), and the outermost condition on variable n is not generated
since the first loop encountered will check the same condition again
as part of its standard bounds checking.

4.3 Application to Code Optimization
We now demonstrate that the improvements in the polyhedra scan-
ning algorithms indeed make a significant impact on generating
high-quality codes when complex optimization strategies are ap-
plied in polyhedral frameworks. Table 1 shows our comparison re-
sult with CLooG using the same iteration spaces generated from
CHiLL [4] for three programs generated from scripts in CHiLL’s
example directory, matrix-vector multiply (gemv), matrix-matrix
multiply (gemm) and LU factorization (lu), and two codes qr and
swim taken from CLooG [26]. These examples illustrate the effect
of complexity of iteration spaces on generated code. The kernel
gemv is the simplest, followed by qr, swim and gemm. Iteration
spaces for lu are by far the most complex.
For gemv’s simple unroll-and-jam optimization, both CLooG

and CodeGen+ take roughly the same amount of time generating
the codes, and the resulting codes have the same performance al-
though the code generated by CLooG is somewhat larger because it
generates extra if-conditions corresponding to modulo constraints.
The optimization strategy for qr involves peeling, shifting and fu-
sion; the resulting code is larger using CLooGwhich increases code
generation and compile time, but performance is comparable for
the two systems. For swim, the optimization strategy is very close
to that of [8], employing peeling, shifting, and fusion. While the
transformations are similar to what was used in qr, the iteration
space complexity grows because there are three loop nests that all
must be peeled and shifted different amounts to enable fusion. The
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s0 : {[i] : 1 ≤ i ≤ 100 ∧ n > 1};
s1 : {[i, j] : 1 ≤ i, j ≤ 100 ∧ n > 1};
s2 : {[i, j] : 1 ≤ i, j ≤ 100};
(a) iteration spaces

for (t1=1;t1<=100;t1++)
if (n>=2)

s0(t1);
for (t2=1;t2<=100;t2++)

s2(t1,t2);
if (n>=2)

s1(t1,t2);

for (t1=1;t1<=100;t1++)
if (n>=2)

s0(t1);
for (t2=1;t2<=100;t2++)

s1(t1,t2);
s2(t1,t2);

else
for (t2=1;t2<=100;t2++)

s2(t1,t2);

if (n>=2)
for(t1=1;t1<=100;t1++)

s0(t1);
for (t2=1;t2<=100;t2++)

s1(t1,t2);
s2(t1,t2);

else
for (t1=1;t1<=100;t1++)

for (t2=1;t2<=100;t2++)
s2(t1,t2);

(b) no loop overhead removal (depth 0) (c) remove overhead from depth 1 loops (default) (d) remove overhead from depth 2 loops

Figure 7. Different trade-offs between loop overhead and code size in CodeGen+.

s0 : {[i, j] : 1 ≤ i ≤ n ∧ i ≤ j ≤ n ∧ ∃α, β(i = 1 + 4α ∧ j = i+ 3β)};
(a) single iteration space with complex stride conditions

if (n>=1)
for (i=1;i<=n;i+=4)

for (j=i;j<=n;j+=3)
if ((11*i+4*j+9)%12 == 0)

s0(i,j);

for (t1=1;t1<=n;t1+=4)
for (t2=t1;t2<=n;t2+=3)

s0(t1,t2);

(b) CLooG output from (a) (c) CodeGen+ output from (a)

s0 : {[i] : 1 ≤ i ≤ n ∧ ∃α(i = 4α)}; s1 : {[i] : 1 ≤ i ≤ n ∧ ∃α(i = 4α+ 2)};
(d) two iteration spaces with complex relationship with each other

if (n>=2)
for (c1=2;c1<=n;c1+=2)

if (c1%4==0)
s0(c1);

if ((c1+2)%4==0)
s1(c1);

for (t1=2;t1<=n;t1+=2)
if (intMod(t1,4)==0)

s0(t1);
else

s1(t1);

(e) CLooG output from (d) (f) CodeGen+ output from (d)

Figure 8. Comparison of number of if-conditions in the generated codes.

code generated by CLooG is more than four times larger than that
generated by CodeGen+, and code generation time and compile
time are consequently increased. Swim achieves CodeGen+’s high-
est execution-time speedup over CLooG of 1.15x. To consider a
very different optimization strategy, both gemm and lu require mul-
tiple levels of tiling and result in many statements generated for
the final set of iteration spaces. In addition, lu requires extensive
splitting of the iteration spaces, for example to separate the com-
putation into a mini-LU, triangular solve and matrix-matrix multi-
ply as in highly-tuned implementations [10]. CodeGen+ generates
significantly less lines of code for gemm and lu as compared with
CLooG, a reduction of over 8x and 24x, respectively, while the re-
sulting code performs 1.12x faster than the CLooG output for both.
Moreover, code generation time and compilation time have up to an
order of magnitude speedup; for example, 25x and 34x reductions,
respectively, for lu.
Overall, the combined effect of lifting control overhead from in-

nermost loops and if simplification in CodeGen+ results in simpler
code with less branching than that generated by CLooG for identi-
cal iteration spaces. This simpler code takes less time to generate
and compile. For the more complex examples, where tiling or un-
rolling is used resulting in modulo constraints, or where peeling and
shifting causes additional control flow, the code generated by Code-
Gen+ also performs better, up to 1.15x faster. This performance
difference is very significant in the high-performance computing
community, where programmers are willing to expend significant
extra effort to increase utilization of precious supercomputing re-
sources. As future architectures become more complex, we antic-
ipate the compiler transformation strategies must also increase in

complexity, so that this gap in generated code quality is likely to
grow.

5. Related Work
Early work on polyhedra scanning focuses on how to generate
code for a single polyhedron. Ancourt and Irigoin [1] use Fourier-
Motzkin elimination to find loop bounds for unimodular trans-
formations. Their method is improved later by Le Fur; however
only transformed iteration spaces without holes are considered [7].
Other research [6, 14, 20, 30] expands the mapping function to
allow non-unimodular transformations. Hermite Normal Form is
used to find loop strides. Besides using Fourier-Motzkin elimina-
tion to extract loop bounds from a system of linear inequalities,
different mathematical solutions are pursued. Collard et al. [5] use
a dual simplex method. Chernikova’s algorithm is another geomet-
ric approach to simplify a set of linear inequalities. It is used by
Quillere et al. [18] which will be mentioned later in this section.
Kelly et al. [12] are among the first to address the problem of

code generation for a set of polyhedra. Moreover, their system is
built on a systematic approach to integer linear systems, imple-
mented as part of the Omega library [15–17]. However, loop over-
head trade-off decisions are based on static loop levels, without
taking into account that modern polyhedral frameworks often rely
on additional auxiliary dimensions, some of which are constants, to
manage complicated optimization strategies. Moreover, flaws in its
code generation logic will cause suboptimal or incorrect code to be
generated in some difficult cases.
Griebl et al. [9] also present their code generation solution for

multiple polyhedra, which allows non-unimodular transformations.
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lines of generated code code generation time gcc compile time code performance
CLooG CodeGen+ Reduction CLooG CodeGen+ Speedup CLooG CodeGen+ Speedup CLooG CodeGen+ Speedup

gemv 39 24 1.70x 0.151s 0.132s 1.14x 0.095s 0.071s 1.34x 0.091s 0.091s 1.00x
qr 88 35 2.51x 0.316s 0.104s 3.04x 0.115s 0.057s 2.02x 4.255s 4.254s 1.00x
swim 501 107 4.68x 0.622s 0.251s 2.49x 2.767s 0.590s 4.69x 0.599s 0.522s 1.15x
gemm 373 42 8.88x 6.552s 1.082s 6.06x 0.364s 0.086s 4.23x 136.667s 121.736s 1.12x
lu 2635 106 24.86x 106.984s 4.170s 25.66x 7.360s 0.211s 34.88x 49.973s 44.551s 1.12x

Table 1. Comparison of code generation performance using iteration spaces representing real optimization strategies.

Their approach can generate two flavors of code from polyhedra
scanning: a run-time solution and a compile-time solution, which
loosely correspond to minimal code size and minimal overhead ver-
sions, respectively. Their method in reducing overhead would result
in N ! possibilities in loop bounds for N parameters, which can
be handled by Omega code generation [12] with proper min/max
bounds with significantly fewer loops. One innovation of Griebl et
al.’s approach is that it allows non-invertible mapping by expand-
ing the matrix to an invertible one, filling in unit vectors, during
polyhedra scanning. However, this may not be necessary if higher-
level tools can select missing dimensions using better knowledge
of intended transformations.
Quillere et al. [18] propose that by splitting overlapping itera-

tion spaces at any dimension during the process of scanning polyhe-
dra, they can generate minimum loop overhead code without the it-
erative method used by [12]. However, this method can easily cause
code explosion and provides no control of trade-offs between loop
overhead and code size. CLooG [2, 26] uses the same approach of
Quillere et al., but it tries to overcome its code explosion limitation.
After initial processing, the algorithm will try to reduce the number
of polyhedra previously split. However, CLooG does not provide a
guarantee of generating code respecting the lexicographical order
in iteration spaces during its trade-offs other than the default choice.

6. Conclusion
This paper describes a polyhedra scanning system that can meet
the challenge of supporting sophisticated polyhedral frameworks
combined with autotuning to generate high-performance code. The
algorithms are based on a strict mathematical foundation and are
designed to handle complex constraint relationships among a set of
polyhedra, with precise control of trade-offs between loop overhead
and code size. We compare with the state-of-the-art polyhedra scan-
ning tool CLooG on five loop nest computations, demonstrating
that CodeGen+ generates code that is simpler and up to 1.15x faster.
We believe that such a system is critical to expand the applicability
of polyhedral frameworks and enable compilers to close or signif-
icantly narrow the performance gap between compiler-optimized
loop nests and hand-tuned code, including domain-specific perfor-
mance libraries such as BLAS.

Editorial Note. Author Chun Chen passed away shortly after sub-
mission of this manuscript. Anand Venkat, Protonu Basu and Mary
Hall made minor editing changes to the document to respond to
reviewer requests and improve readability, and most significantly,
added experimental results for two additional benchmarks, qr and
swim. Questions about the contents of the paper can be directed to
{anandv,protonu,mhall}@cs.utah.edu.
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