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Abstract

Debugging is difficult. When software fails in production, de-

bugging is even harder, as failure reports usually provide only

an incomplete picture of the failing execution. We present a

system that answers control-flow queries posed by developers

as formal languages, indicating whether the query expresses

control flow that is possible or impossible for a given failure

report. We consider three separate approaches that trade off

precision, expressiveness for failure constraints, and scalabil-

ity. We also introduce a new subclass of regular languages,

the unreliable trace languages, which are particularly suited

to answering control-flow queries in polynomial time. Our

system answers queries remarkably efficiently when we en-

code failure constraints and user queries entirely as unreliable

trace languages.

CCS Concepts • Software and its engineering → Soft-

ware testing and debugging; Software post-development

issues; Software performance; • Theory of computation →

Formal languages and automata theory; Regular languages

Keywords Deployed software, failure reporting

1. Introduction

When programs crash at user sites, debugging is difficult

and detailed execution information is very valuable. However,

deployed applications usually cannot gather full traces of run-

time information, and instead leave behind failure reports with

varying detail. For example, nearly all failure reports contain a

stack trace from the failing execution, but most do not contain

a trace of all executed statements. Developers must weigh

run-time overhead (including time, memory, and disk space)

against the benefits of traced data for postmortem failure

analysis. Prior approaches to post-deployment monitoring [4,

9, 17, 28, 33, 34, 41] routinely give up perfect information,

which necessarily results in an incomplete picture of any

failing execution.

Nevertheless, obtaining answers to questions about the

failing run is a key part of debugging. LaToza and Myers [22]

find that developers commonly ask reachability questions,

often based entirely on the program’s control flow. For

example, developers asked about possible transitive function

callers/callees and possible calling contexts. Additional

cases might arise when debugging deployed applications.

If developers suspect missed initialization, they might ask, “Is

it possible that init() did not run?” or, “Could x have been used

here before being initialized there?” Developers might also

ask whether an application has set the appropriate privilege

level, locked appropriate resources, or opened appropriate

streams. Each of these queries may consider operations across

all of execution or only in specific stack contexts. Some of

these questions may be interactive (e.g., during an active

debugging session), and require very fast answers. Others

may be non-interactive (e.g., a batch analysis job that runs

overnight), and allow time for more precise answers.

In this paper, we formalize and evaluate analysis techniques

that cope with incomplete data from post-deployment failure

reports. Our system allows developers to ask yes/no control-

flow questions (e.g., may a particular statement have executed

on the failing run?), and provides answers based on failure

report data. We consider three different underlying solvers

that present trade-offs in expressiveness for failure constraints,

precision in analysis results, and scalability.

This work substantially extends that of Ohmann et al. [30],

who extracted best-effort program coverage data given

possibly-incomplete failure report data of a very limited class.

We show that the failure data considered in that work actually

forms a special subclass of regular languages (which we title

the unreliable trace languages; see section 4), and we present

an algorithm that can answer the queries posed by Ohmann

et al. much more efficiently. We also define encodings for

a much wider range of failure constraints, and allow more

precise analysis by ensuring calling-context sensitivity (via

our solver based on visibly-pushdown languages [2]).

After providing a motivating example and describing our

goal of encoding failure reports to answer user queries at a

high level (section 2), we discuss our primary contributions:
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Failure Report
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Intersection Emptiness Test

main() {

if (/∗ ..A.. ∗/) {

/∗ ..B.. ∗/

} else {

/∗ ..C.. ∗/

foo();

}

/∗ ..E.. ∗/

/∗ ..F.. ∗/

bar();

/∗ ..G.. ∗/

}

foo() {

if (/∗ ..H.. ∗/) {

/∗ ..I.. ∗/

} else {

/∗ ..J.. ∗/

bar();

/∗ ..K.. ∗/

}

/∗ ..L.. ∗/

}

bar() {

/∗ ..M.. ∗/

/∗ ..N.. ∗/

}
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Figure 1. Overall system architecture and concrete example. Example inputs consisting of a program, failure report , and query

flow into one of our main analysis algorithms , yielding an answer consisting of a single possible/impossible judgment .

1. We formally define the problem of answering control-flow

queries from failure reports, and present a new system for

answering these queries based on language intersection

emptiness (section 3).

2. We introduce a new class of subregular languages, the

unreliable trace languages, which, though unable to

precisely express some failure report elements, are ideally

suited to answering queries in polynomial time (section 4).

3. We describe encodings for various common features of

failure reports, including stack traces, program coverage

data, and call traces (section 5).

4. We perform an extensive evaluation of our techniques on

a wide variety of failing applications (section 6). We can

answer queries remarkably efficiently when we encode

failure constraints entirely as unreliable trace languages.

Section 7 positions our approaches with respect to related

work, and section 8 concludes.

2. Problem and Motivating Example

This section describes the structure of our system using the

illustrative example given in fig. 1. Section 3 defines each

shown element more formally.

The left side of fig. 1 shows a source code skeleton and

its corresponding control-flow graph (CFG). Here, each node

refers to a statement in the program, solid lines refer to

intraprocedural control flow, dotted lines indicate calls, and

dashed lines denote returns. Call and return edges are labeled

with the call site and the called procedure. The CFG includes

three procedures: main consists of nodes {A, B,C,D, E, F,G},

foo consists of {H, I, J,K, L}, and bar consists of {M, N}.

Upon receiving a failure report like the one in the top right

of fig. 1, we allow a developer to pose queries like the one

shown in the bottom right of fig. 1.

The example failure report contains two elements: a failing

stack trace (the program crashed at statement N in function

bar, which was called from function foo at statement J, etc.),

and a single log message from the failing run. For the purposes

of this example, assume that we have statically determined

that the message “Processed” could only be printed by either

statement B or C. We discuss how to encode these and other

common failure report elements in section 5.

The lower right corner of fig. 1 shows a user query as prose.

We formally define our class of queries in section 3.3. In brief,

we allow any control-flow query that can be expressed as a

visibly-pushdown language [2]. Our system answers the query

with respect to the provided CFG and failure report. That is,

queries implicitly begin with: “On at least one path through

the CFG consistent with the failure report, . . . .”

In each of our approaches, we first encode the CFG, each

failure report element, and the query as formal languages

whose member strings correspond to sequences of statements

and call/return edge labels from the CFG. If the intersection

of all of these languages is non-empty, then there exists such

a sequence that (1) could occur in the CFG, (2) is consistent

with the entire failure report, and (3) satisfies the query. Thus,

we respond that the query is Possible. Otherwise, we answer

Impossible. An imprecise solver may always answer Possible

to a query. In fig. 1, a precise solver should answer Impossible,

as there is no path through the CFG that passes through node

E before resulting in the final crashing stack. The example

contains neither loops nor recursion, and statement E must

always follow the return from the in-progress call to foo seen

in the stack trace. Thus, a precise solver will ensure that the

language of the CFG respects matching labels on call and

return edges (simulating a program stack).

Our three approaches vary in the machinery used to

implement this high-level strategy. Specifically, the languages
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for each element are encoded differently by each technique,

and, therefore, the methods of computing intersections and

checking for language emptiness differ as well.

3. Querying Using Formal Languages

In this section, we describe the general structure of our system.

First, we formally define control flow graphs and the models

of automata we will use. Second, we show how to encode

the CFG as an automaton. Finally, we formally define our

recovery problem, and present two approaches that answer

queries by checking intersection emptiness of automata.

3.1 Preliminaries

We begin with the concept of a tagged alphabet. Given

a set of symbols S, we use (S to denote the set of open

symbols {(s | s ∈ S} and )S to denote the set of close symbols

{)s | s ∈ S}. The tagged alphabet of S is the set Ŝ = S∪(S∪)S .

Definition 1 A control-flow graph (CFG) is a tuple G =

(N, n0,L, Ei, Ec, Er ) where:

• N is a finite set of nodes;

• n0 is the entry node;

• L is a finite set of function names;

• Ei ⊆ N × N is a set of internal (intraprocedural) edges;

• Ec ⊆ N × (N ×L) × N is a set of function-call edges, such

that for every (n, (n1, α), n
′) ∈ Ec , n = n1; and

• Er ⊆ N × (N × L) × N is a set of function-return edges.

In the following, we say that G operates over N and L.

Concretely, all edges in Ec are of the form (n, (n, α), n′)

denoting that control transfers from node n to n′ through

a call identified by function α. Notice that the call site is

also part of the edge label. Similarly, edges in Er are of the

form (n, (n1, α), n
′) where control transfers from node n to n′

through a function return from α called from site n1. In the

CFG from fig. 1, edges are annotated with the calling node,

subscripted by the called function label from L for brevity.

Let E = Ei ∪ Ec ∪ Er denote the set of all edges.

We define the semantics of a control flow graph G using

configurations over N ×(N × L)∗, where G is in configuration

c = (n, 〈l1 · · · lk〉) if the current node is n and the call

stack contains the labels l1 · · · lk . The initial configuration

is c0 = (n0, ε) where ε is the empty stack. A sequence of

edges π = 〈e1 · · · ej〉, such that π ∈ E∗ forms a valid context-

sensitive path in the CFG G iff there exists a sequence of

configurations 〈(n0, l̄0) · · · (nj, l̄j)〉 such that for every i ≥ 1:

1. If ei ∈ Ei and ei = (v, v′), then ni−1 = v, ni = v
′, and

l̄i−1 = l̄i;

2. If ei ∈ Ec and ei = (v, (v, α), v′), then ni−1 = v, ni = v
′,

and l̄i = l̄i−1(v, α);

3. If ei ∈ Er and ei = (v, (v1, α), v
′), then ni−1 = v, ni = v

′,

and l̄i−1 = l̄i(v1, α).

Informally, a valid context-sensitive path only allows return

edges to be triggered for the last unmatched function call.

Note that this definition allows paths to terminate at any

node reachable from n0, and in configurations that contain a

non-empty stack, i.e., with pending function calls.

A sequence of edges π = 〈e1 · · · ej〉, such that π ∈ E∗

forms a valid context-insensitive path in the CFG G iff there

exists a sequence of configurations 〈n0 · · · nj〉 such that for

every i ≥ 1:

1. If ei ∈ Ei and ei = (v, v′), then ni−1 = v, ni = v
′;

2. If ei ∈ Ec and ei = (v, (v, α), v′), then ni−1 = v, ni = v
′;

3. If ei ∈ Er and ei = (v, (v1, α), v
′), then ni−1 = v, ni = v

′.

Informally, a valid context-insensitive path does not force

function calls and returns to be well-matched.

Definition 2 Define the projection proj(〈e1 · · · ej〉) of a path

as 〈n0 proj(e1) · · · proj(ej)〉, where for each edge e,

proj(e) =




v
′ if e ∈ Ei and e = (v, v′)

(v,αv
′ if e ∈ Ec and e = (v, (v, α), v′)

)v1,α
v
′ if e ∈ Er and e = (v, (v1, α), v

′)

Informally, the projection of a path is the sequence of CFG

nodes, calls, and returns traversed by the path. Formally, it is

a sequence over the tagged alphabet �N ∪ (N × L).

In the rest of the paper, we use NL to denote the alphabet

N ∪ N × L and N̂L to denote the alphabet �N ∪ (N × L).

Definition 3 (Traces) Let G be a CFG. Given a valid context-

sensitive path π in G, proj(π) ∈
(
N∪(S∪)S

)
is a valid context-

sensitive trace in G. Given a valid context-insensitive path π in

G, proj(π) ∈
(
N ∪ (S ∪ )S

)
is a valid context-insensitive trace

in G. Ls(G) and Li(G) denote the set of all context-sensitive

and context-insensitive traces in G, respectively.

The following theorem is immediate from our definitions

and shows that every context-sensitive trace is also a context-

insensitive trace.

Theorem 1 For every CFG G, Ls(G) ⊆ Li(G).

3.1.1 Symbolic Visibly-Pushdown Automata

Symbolic visibly-pushdown automata (s-VPAs) describe

languages of nested words over large or infinite alphabets [11].

Nested words are linear encodings of words with hierarchical

structure, such as traces of procedural programs. An s-VPA

operates over a tagged alphabet, Σ̂, and manipulates a stack.

The s-VPA pushes onto the stack only when reading symbols

in (Σ, and pops only when reading symbols in )Σ.

This partition of symbols is a visibly pushdown alphabet,

since it instructs the automaton on how to manipulate the

stack: call symbols push onto the stack while return symbols

pop from the stack (similar to function calls and returns in
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a program trace). A nested word over the alphabet Σ is a

sequence of symbols from Σ̂∗. To avoid explicit transition

on all possible symbols, s-VPA transitions carry predicates

describing sets of symbols from Σ. The set of predicates must

be closed under Boolean operators, and checking satisfiability

of a predicate must be decidable [11].1 We let PX represent

the set of predicates in our algebra with free variables X . For

example, if our alphabet is the set of numbers {1, . . . , 100},

the predicate ψ(x, y) = x , y ∧ x ≤ 10 ∧ y ≥ 5 is in Px,y .

The class of visibly-pushdown languages recognized by

s-VPAs maintain some of the expressiveness of context-free

languages (including the ability to express matched calls and

returns), but with important properties of regular languages.

In particular, they are closed under intersection [2].

Definition 4 A symbolic visibly-pushdown automaton is a

tuple A = (Q, q0, P, F, Σ, δi, δc, δr ) where:

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• P is a finite set of stack symbols,

• F ⊆ Q is the set of final (i.e., accepting) states,

• Σ is a set of input symbols,

• δi ⊆ Q × Px ×Q is a finite set of internal transitions,

• δc ⊆ Q × Px ×Q × P is a finite set of call transitions, and

• δr ⊆ Q × Px,y ×P × Q is a finite set of return transitions.

A transition (q, ϕ, q′) ∈ δi , where ϕ(x) ∈ Px , when reading a

symbol a such that ϕ(a) is true, starting in state q, updates the

state to q′. A transition (q, ϕ, q′, p) ∈ δc , where ϕ(x) ∈ Px ,

and p ∈ P, when reading a symbol (a such that ϕ(a) is true,

starting in state q, pushes the symbol (p, a) on the stack and

updates the state to q′. A transition (q, ϕ, p, q′) ∈ δr , where

ϕ(x, y) ∈ Px,y , is triggered when reading an input )b , starting

in state q, and with (p, a) ∈ P × Σ on top of the stack such

that ϕ(a, b) is true; the transition pops the element on the top

of the stack and updates the state to q′.

An accepting path for A is a sequence of configurations

over Q × (P × Σ)∗, defined similarly to valid context-sensitive

paths through a CFG. Informally, an accepting path is a

sequence of transitions that matches return symbols to the

most recent unmatched call symbol where all predicates on

transitions are satisfiable. A nested word, w, is accepted by A

iff there exists an accepting path for w in A. We use L(A) to

denote the set of all words accepted by A.

In figures and descriptions, we largely follow the style

of D’Antoni and Alur [11], and label transitions “I: ϕx ,”

“C: ϕx/p,” and “R: ϕx,y/p” for Internal, Call, and Return

respectively. Here, ϕx denotes a unary predicate on the input

symbol x (for internal and call transitions), while ϕx,y denotes

a binary predicate (for return transitions) with y as the current

1 In this paper, we only focus on the algebra where predicates are unions of

intervals over integers and we allow equalities between variables. Concretely,

each symbol in our alphabet—e.g., a node in the CFG—is mapped to a

unique integer. This algebra has all the desired properties.

I : x = A

I :
x
=

B
I : x
=

C

I
:
x
=
E

C
: x
=

C foo
/0

I : x = D

I :
x
=

E

I : x = F
C : x = Fbar/0

I : x = G

I : x = H

I :
x
=

I

I : x
=

J

I
:
x
=
L

C
:
x
=
J

b
a
r
/
0I : x = K

I :
x
=

L

R
: x
=

y
=

C
foo /0

I : x = M

I : x = N

R
: x
=

y
=

J ba
r
/0

R: x
= y
= F

bar /0

Figure 2. s-VPA formulation for the CFG from fig. 1

input symbol and x as the input symbol for the matched call

transition. For calls and returns, p is the pushed or popped

stack symbol.

An s-VPA that contains only internal transitions is a

Symbolic Finite Automaton (s-FA) [42, 43]. An s-FA that

operates over a finite alphabet accepts regular languages.

Notice that an s-FA can still operate over an alphabet S′
= Ŝ

for some set S and therefore not use the stack.

3.2 Encoding CFGs as Automata

We consider two encodings of a control-flow graph G (from

definition 1) as an automaton. The first preserves calling-

context sensitivity by encoding G as an s-VPA. However,

due to the complexity of checking intersection-emptiness for

s-VPAs, we also consider a second approach that encodes

G as an s-FA. The s-FA encoding cannot ensure calling-

context sensitivity in analysis results, reducing precision but

improving scalability. Prior work in model checking has used

similar approaches to encode transition systems [3].

Figure 2 shows the s-VPA encoding for the CFG from

fig. 1. States and transitions in fig. 2 match the nodes and

edges of the CFG, plus one additional state and transition for

each return site and each procedure entry. These additional

transitions allow us to express failure report constraints and

queries over procedure entries and return points.

Recall that an s-VPA containing only internal transitions

over a finite alphabet recognizes a regular language. Regular

languages can be recognized by (non-symbolic) finite state

automata (FSA), and we omit the “I: x =” prefix on transitions

in all context-insensitive automata figures. Figure 3 shows the

FSA encoding for the CFG from fig. 1. Here, our translation

results in a calling-context-insensitive representation of G,

393



A

B

C

E

(C foo

D

E

F (Fbar

G

H

I

J

L

(
J

b
a
r

K

L

)C
foo

M

N ) J ba
r

)Fbar

Figure 3. FSA formulation for the CFG from fig. 1

since we are unable to express call/return pairing relations.

This automaton accepts strings over Σ = N̂L. Our translation

is essentially identical to that for s-VPAs, except that call and

return transitions are instead replaced by internal transitions

on the corresponding tagged symbol from N̂L.

3.3 Problem Definition

We can now define the query recovery problem, which is

the task tackled in this paper. We use the word “constraint”

to describe a language. A constraint C is s-VPA-definable

(resp. s-FA-definable) if there exists an s-VPA (resp. s-FA) AC

such that L(AC) = C. Concretely, constraints will be given

as effective models such as automata, regular expressions,

or similar models. Consider the example queries given in

section 1. Constraints involving whether an application was

executing at the appropriate privilege level during a failure

would be s-VPA-definable but not s-FA-definable if the

privilege is established by the calling context (e.g., by a

function such as doPrivileged()). However, s-FA are perfectly

capable of expressing the query “Is it possible that init() did

not run?” where calling context is not necessary.

The inputs of our problem are:

• G, a control-flow graph

• {FP1, . . . ,FPn}, a set of s-VPA-definable failure con-

straints describing the failure report. These can be given

in various forms such as s-VPAs, s-FAs, or regular expres-

sions.

• R, an s-VPA-definable query constraint describing a

property we want to check against our failure report. For

example, we might want to ask whether the node E was

traversed, given our failure report.

Table 1. Complexity of the best known algorithm for comput-

ing intersection emptiness of n languages for various classes

of languages

s-VPA s-FA UTL

CS-CFG EXPTIME EXPTIME EXPTIME

CI-CFG EXPTIME PSPACE [20] PTIME (new)

Definition 5 (Context-sensitive recovery) Given a control

flow graph G with nodes in N and labels in L, a set of s-VPA-

definable failure constraints {FP1, . . . ,FPn} of nested words

over the alphabet NL, and an s-VPA-definable query constraint

R of nested words over the alphabet NL, the context-sensitive

query recovery problem is to check whether

Ls(G) ∩
⋂

i

FPi ∩ R , ∅.

Since CFGs can be encoded as s-VPAs, and all the

languages FPi and R are s-VPA-definable, the query recovery

problem is trivially decidable, though expensive. Intersection

emptiness for s-VPA can be solved in exponential time.

Moreover, since reachability is known to be co-PTIME, it is

unlikely that a PSPACE algorithm exists for computing s-VPA

intersection emptiness. The following problem has friendlier

complexity.

Definition 6 (Context-insensitive recovery) Given a con-

trol flow graph G with nodes in N and labels in L, a set of

s-FA-definable failure constraints {FP1, . . . ,FPn} of words

over the alphabet N̂L, and an s-FA-definable query constraint

R of words over the alphabet N̂L, the context-insensitive query

recovery problem is to check whether

Li(G) ∩
⋂

i

FPi ∩ R , ∅.

This definition only uses s-FAs. Since all the alphabets

used in this paper are finite, the intersection emptiness

problem for s-FAs has complexity PSPACE [20]. This paper

investigates new algorithms that can efficiently solve the

context-insensitive query recovery problem when all the

languages FPi and R, fall in a restricted class of languages

called unreliable trace languages (UTL). In the next section,

we present UTL and show that if all FPi and R are definable as

UTL, the query recovery problem can be solved in polynomial

time. Table 1 summarizes these complexity results.

Interestingly, the context-insensitive analysis can be used

to provide an unsound but complete algorithm for the

context-sensitive problem. Observe that a nested word over

the alphabet NL is also a word over the alphabet N̂L.

Ohmann et al. [32, section 3] formally states and proves

this completeness result.

4. Unreliable Trace Languages

This section introduces a new class of subregular languages:

the unreliable trace languages. The class is so named because
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n1 n4 n5

n2 n3 n6 n7

n8

n9

n11 n10

n1.nodes = {A} n7.nodes = {J}

n2.nodes = {B} n8.nodes = {(Jbar
}

n3.nodes = {C} n9.nodes = {D, E, F,K, L, M, N, (Fbar
, )Cfoo

, )Jbar
}

n4.nodes = {(Cfoo
} n10.nodes = {)Fbar

}

n5.nodes = {H} n11.nodes = {G}

n6.nodes = {I}

Figure 4. Condensation of CFG from fig. 1

the accepted languages correspond with traces of observed

program points that are “unreliable” in that they do not

guarantee that we have seen every instance of each observed

point. Section 4.2 gives a polynomial-time algorithm for

checking intersection-emptiness of the language induced from

a context-insensitive CFG with n unreliable trace languages.

Our approach does not encode the CFG and failure constraints

as automata, instead operating directly over the CFG and

testing for intersection-emptiness over context-insensitive

traces as in definition 3.

4.1 Formal Characterization

For an alphabet Σ, unreliable trace languages are of the class

UTL =
{
Σ
∗ σ1 Σ

∗ σ2 Σ
∗ . . . Σ∗ σn Σ

∗

for n ≥ 0 and such that all σi ∈ Σ
}

So, for example, the unreliable trace language

Σ
∗ M Σ∗ L Σ∗ M Σ∗

(defined over Σ = N̂L from fig. 1) indicates that accepted

strings must contain an M at some point before an L which

itself precedes another occurrence of M. However, other

occurrences of M or L may occur at any point before, during,

or after this sequence. Note that this characterization indicates

that an unreliable trace language can be represented by a

vector of symbols from Σ; the above example corresponds to

the vector 〈M, L, M〉. The remainder of this paper uses this

compact vector notation.

The unreliable trace languages are a sub-class of the

piecewise-testable languages [35, 40], which can be char-

acterized as any Boolean combination of unreliable trace

languages [18]. They also precisely correspond with the fail-

ure report obsYes constraints from Ohmann et al. [30]. While

very restricted, unreliable trace languages are able to express

many possible elements of failure reports including program

coverage data [17, 28, 33, 34, 41] and sampled observa-

tions [24]; with some loss of precision, they can also encode

many other common failure report elements (see section 5).

Unreliable trace languages are closed under concatenation,

but not under other Boolean operations such as negation, com-

plementation, conjunction, and disjunction. Unfortunately,

there are constraints that cannot be expressed (even impre-

cisely) as unreliable trace languages. For example, they cannot

express disjunction. Thus, the printed log message from fig. 1

is inexpressible since the CFG node that printed it is am-

biguous. The property of PTIME decidability for our context-

insensitive recovery problem (see definition 6) is tightly tied

to this language class. For more details, see Ohmann et al. [32,

section 4], where we argue for the tightness of this class

by proving that two small extensions to the unreliable trace

languages result in NP-hard recovery problems.

4.2 Checking Emptiness

We check intersection-emptiness directly over the program’s

context-insensitive CFG, G (from definition 1), and do not

encode Li(G) using automata. Inputs consist of:

• G = (N, n0,L, Ei, Ec, Er ), a control-flow graph;

• crash ∈ N, the stopping point from the failing run; and

• constraints = 〈c1, . . . , cm〉, a vector of unreliable traces

where each ci is a vector over N̂L.

We answer Possible if there exists a context-insensitive trace

in G, proj(π), such that proj(π) |proj(π) | = crash and each ci is a

subsequence of proj(π) (i.e., Li(G) ∩
⋂

i(ci) , ∅). Otherwise,

we answer Impossible.

We first split all labeled edges in G, adding a new node

named from the tagged symbol of the split edge label, forming

graph G′. For the example CFG from fig. 1, this results in

6 new nodes: (Cfoo
, (Fbar

, (Jbar
, )Cfoo

, )Fbar
, and )Jbar

. We then

collapse all strongly-connected components of G′ to form the

condensation of G′, sccG. Note that sccG is always a directed

acyclic graph (DAG). Each node of sccG is labeled with its

set of collapsed nodes. Figure 4 shows the condensation for

the CFG from fig. 1.

Intuitively, our goal is to walk forward through G, con-

suming symbols from each vector in constraints in order as

we cross the corresponding nodes and edges. If every vector
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in constraints has been completely consumed on some path

to crash, then we have found a possible execution that is

consistent with the program and failure report. Shifting our

attention from the original CFG, G, to the condensation graph,

sccG, has two key effects. First, passing through a nontrivial

condensation node scc consumes all scc.nodes symbols ap-

pearing in the unconsumed prefix of any constraint. This is

valid because each node in a nontrivial strongly-connected

component can reach all other nodes in the same component

as often as we like. Second, the lack of cycles in sccG means

that if we do not consume some symbol when passing through

the corresponding node, we will never have any future op-

portunity to do so. Thus, we proceed greedily: consume as

many symbols as possible, as early as possible, because we

will never get the chance to do so again.

More formally, checking intersection emptiness for Li(G)

from definition 3 (i.e., the context-insensitive CFG language)

with a set of unreliable trace language constraints (given as

vectors per section 4.1) can be cast as a standard iterative

data-flow analysis problem over sccG. The data-flow facts are

vectors of vectors over N̂L, forming a finite lattice where the

maximal element ⊤ = constraints, and there exists a unique

minimal element ⊥ that indicates that the provided constraints

are Impossible to satisfy. The second smallest element is the

vector of m empty vectors, which indicates that all constraints

have been satisfied. Elements are ordered such that f1 ⊑ f2 iff

for all i, f1i is a trailing substring of f2i (i.e., f2i = v q f1i for

some vector v where “q” is vector concatenation). Informally,

this indicates that fact f1 has consumed more of each initial

constraint than f2 has.

The standard [26] data-flow equations for a node scc are

in(scc) =




Init if n0 ∈ scc.nodes
/

P∈Pred(scc)

out(P) otherwise

out(scc) = Fscc(in(scc))

Instantiating this for our particular problem,

Init = constraints

f1 ⊓ f2 = merge( f1, f2)

Fscc(in(scc)) = consume(scc, in(scc))

Figure 5 shows function consume(). This function iterates

through each element of the input vector, marking as many

observations as possible as being now satisfied by passing

through this strongly-connected component of sccG. For ex-

ample, consume
(
n9,

〈
〈E〉 , 〈F, E, F,G〉

〉)
returns

〈
〈〉 , 〈G〉

〉
.

Trivial strongly-connected components may only consume

one element of each constraint vector, as paths through G may

only traverse that node once. Note that no later information

can ever invalidate prior satisfaction of a constraint.

Function consume(scc, inFact)
input: scc, a node from the condensation graph

input: inFact, the input fact from the predecessors of scc as a

vector of vectors over N̂L (indicating remaining

constraints)

outFact = 〈〉;

foreach constraint ∈ inFact do

start = 1;

while constraintstart ∈ scc.nodes do start++ ;

if start > 2 and scc is trivial then return ⊥ ;

outFact q=
〈
〈constraintstart . . . constraint |constraint |〉

〉
;

return outFact

Figure 5. Update constraints satisfied by consuming as much

of each constraint as possible

Function merge(f1, f2)

input: f1, a data-flow fact as a vector of vectors over N̂L
input: f2, a data-flow fact as a vector of vectors over N̂L

assert |f1| = |f2|;

if ∀i ∈ 1 . . . |f1|, f1i = αi q f2i for some αi then
return f1

else if ∀i ∈ 1 . . . |f2|, f2i = αi q f1i for some αi then
return f2

else return ⊥ ;

Figure 6. Merge information from predecessor facts

Figure 6 shows function merge(). Given a pair of input

facts, this procedure selects the minimal fact via our definition

of ⊑ above. That is, it finds the fact that is an element-wise

trailing substring of the other. If neither fact qualifies, then

the provided constraints are mutually unsatisfiable, and we

return ⊥. Since sccG is a DAG, this situation indicates that

no possible path through sccG can satisfy all constraints,

since each symbol from N̂L appears in at most one strongly-

connected component. For example,

merge
(〈
〈B, F〉 , 〈C, E〉

〉
,
〈
〈F〉 , 〈C, E〉

〉)
=

〈
〈F〉 , 〈C, E〉

〉

merge
(〈
〈F〉 , 〈C, E〉

〉
,
〈
〈B, F〉 , 〈E〉

〉)
= ⊥

All of our data-flow functions are clearly monotonic and

distributive; we only remove constraints from vectors during

each Fscc, and always minimize remaining constraints when

merging parent facts. Hence, our definition above computes

the optimal meet-over-all-paths solution [26].

Note that our data-flow analysis is operating over a DAG;

therefore, we topologically order the nodes in sccG and only

compute the data-flow fact for each node once. Thus, we will

need to perform merge() and consume() at most once for each

strongly-connected component. Suppose that S is the number

of nodes in sccG, C is the size of constraints, and L is the

length of the longest constraint vector in constraints. In the

worst case, merge() operates on a number of predecessor facts
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I: true

C: true/0

C: x = Cfoo/1

R: x = y/0

C: true/1

R: x = y/1

I: true

I: true

C: true/0

C: x = Jbar/1

R: x = y/0

C: true/1

R: x = y/1

I: true

I: true

C: true/0

I: x = crash

R: x = y/0

C: true/1

R: x = y/1

I: true

(a) Represented as an s-VPA

Σ

Cfoo

Σ

Jbar

Σ

crash

(b) Represented as an FSA

Figure 7. Encodings of crashing stack [Cfoo, Jbar, crash] as automata

on the order of S (all nodes in sccG), each of which contains C

constraints of length L. We can process all predecessors in one

merge() operation, which will find a predecessor vector that is

an element-wise trailing substring of all others. This requires

a linear scan over S predecessor facts, each with C constraints,

each of size L; this requires S × C × L total comparisons.

Next, the call to consume() for a given strongly-connected

component, scc, must find the first element of each c ∈ C

that is not a member of scc.nodes. In the worst case, each

constraint still contains L elements, so this requires C × L set

membership checks. Thus, merge() and consume() are each

polynomial in the size of sccG, constraints, and the longest

constraint vector. Since we perform at most S calls to each,

the whole approach is polynomial.

For the final result, we answer Possible if out(scci) is the

vector of empty vectors (i.e., all constraints have been satisfied)

and crash ∈ scci .nodes. Otherwise, we answer Impossible.

For partial correctness proofs (including a proof of soundness

with respect to definition 6), see Ohmann et al. [32, section 5].

5. Encoding Failure Reports

We now describe how to encode common failure report

elements as s-VPA, FSA, and unreliable trace languages.

Each failure element supplies a constraint that limits which

runs can be consistent with the failure. All elements are

defined over a CFG, G = (N, n0,L, Ei, Ec, Er ). Unless stated

otherwise, all FSA constraints are identical to their s-VPA

counterparts but with all transitions internal over N̂L.

5.1 Crashing Stack

Many failure reports include a stack trace at the point of failure.

A crashing stack trace consists of a sequence of symbols

[ℓ0, ℓ1, . . . , ℓn, crash]

where each ℓi ∈ N × L and crash ∈ N . Each ℓi indicates

a call that remains on the program stack at the time of the

failure. Note that we require call edge labels (rather than call

sites from N) because even calls through function pointers

are unambiguous when the call remains on the final crashing

call stack. Intuitively, a stack trace constrains the ordered,

unmatched calls on any corresponding execution. Concretely,

we represent this constraint as

L(stack) =W ℓ0 W ℓ1 W . . . ℓn W crash

whereW corresponds to a “well-matched” region of execution

(corresponding to the rest of the program’s execution between

the calls that appear in the crashing program stack).

Automata For visibly-pushdown languages, W perfectly

encodes matched sequences of calls and returns. Accepted

runs end with unmatched calls exactly matching those

in the final crashing stack. Figure 7a shows the s-VPA

encoding of the example crashing stack from fig. 1. Regular

languages cannot express matched call/return sequences, so

we replaceW with a simple Σ∗ self-loop. Figure 7b shows the

corresponding FSA for our running example.

Unreliable Trace Languages The FSA encoding of stacks

very nearly expresses an unreliable trace language. The

corresponding unreliable trace language is

〈Cfoo, Jbar, crash〉

This vector does not directly encode that execution must halt

after reading crash as the final symbol. Instead, this is managed

via the parameter crash in section 4.2. This difference does

not impact the precision of results.

5.2 Statement Coverage

Some production-run failure reports may include statement

coverage data. For example, developers may gather coverage

data for untested code [33, 34], or at specific program locations

(e.g., call sites) to aid program analysis tools [15, 27, 28, 31].

Binarized statement coverage data consists of a set of

independent observations, where each is a binary indicator

(valued true or false). So, for example,

{s1: true, s2: false}

indicates that statement s1 executed at least once during the

failing run, and statement s2 did not execute. We impose one

constraint for each covered or uncovered statement.
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C: true/0

R: true/0

I: x , s2

(a) Encoding of “s2: false”

C: true/0

R: true/0

I: true

I: x = E

C: true/0

R: true/0

I: true

(b) Encoding of “E: true”

Figure 8. Encodings of coverage data entries as s-VPAs

C: true/0

R: true/0

I: x < S

I: x = C

C: true/0

R: true/0

I: x < S

I: x = F

C: true/0

R: true/0

I: x < S

I: x = F

C: true/0

R: true/0

I: x < S

Figure 9. Call trace “[C, F, F]” as an automaton, where

S = {C, J, F}

One could encode false entries via an automaton similar

to that in fig. 8a. However, note that this automaton simply

ensures that s2 appears in no accepted strings (representing

paths through the CFG). Thus, in practice, we use a much

simpler approach, and remove s2 from the CFG prior to

encoding other failure constraints.

Automata For “s1: true”, we must ensure that any accepted

string contains at least one occurrence of s1. If we let s1 = E ,

we are encoding precisely the query from fig. 1. Figure 8b

shows the s-VPA to enforce this constraint.

Unreliable Trace Languages The above constraint (for

s-VPAs and FSAs) expresses an unreliable trace language.

Specifically, the constraint we want to impose for “E: true”

corresponds to the vector 〈E〉.

5.3 Call Traces

Call traces record occurrences of specific call sites during

a program’s execution. These traces come in many forms,

from logs of every call and return during a program’s

execution [9, 39, 44] to data gathered in short bursts [4]. Here

we focus on a traces over some set of call sites S = {s1, . . . , sn}

(not necessarily every call site in the program), where

each si ∈ N . Bursty traces are encoded similarly, and add

unconstrained execution (i.e., Σ∗) before and after each burst.

A call trace is of the form:

[c1, c2, . . . , cm]

where each ci ∈ S. Crucially, such a trace indicates that

we have seen every instance of each ci during the traced

execution.

As an example, consider the call trace [C, F, F]with respect

to the CFG from fig. 1. Assume that S = {C, J, F} (i.e., all

call sites). This failure constraint cannot possibly be satisfied

in any context-sensitive paths through G.

C: true/0

R: true/0

I: true

I: x ∈ {B,C}

C: true/0

R: true/0

I: true

Figure 10. Ambiguous coverage data entry “{B,C}: true”

as an automaton

Automata To encode the above constraint, we form an

automaton that accepts precisely the observed sequence of

calls, with no other instances of symbols from S. Figure 9

shows the s-VPA encoding for [C, F, F]. Note that this call

trace constraint is regular, since it does not encode the

matching relations between calls and returns, but, rather,

simply their order.

Unreliable Trace Languages Call trace constraints are

reliable traces. Unfortunately, as proven in Ohmann et al. [32,

section 4.2], we cannot precisely encode reliable traces

and use any known polynomial-time solver to obtain query

answers. Instead, we can encode the “[C, F, F]” constraint

as the unreliable trace language 〈C, F, F〉 with some loss of

precision. Specifically, this constraint no longer enforces that

we have seen all instances of the call sites from S.

5.4 Ambiguous Observations

Failure report data may be ambiguous. For example, when

a program logs some of its activity, an analysis tool may be

unable to determine precisely which output statement printed

the message. Here, exactly one of the output statements

executed on the failing run. In fact, all of the above constraints

have generalized variants, where each observation is a set of

symbols from Σ, rather than a single symbol. This subsection

considers the specific case of ambiguous coverage data.

Ambiguous binarized statement coverage data consists of a

set of independent, Boolean-valued observations of statement

groups. For example, for S1, S2 ⊆ N ,

{S1: true, S2: false}

indicates that at least one statement from S1 executed during

the failing run, and at least one statement from S2 did

not execute. The failure report from fig. 1 contains a log

message that was written by either statement B or statement

C. This corresponds to the ambiguous coverage observation

“{B,C}: true”.

Automata For “S1: true,” all accepted strings must contain

at least one occurrence of some s ∈ S1. Figure 10 shows the

s-VPA to enforce the constraint “{B,C}: true.”

The encoding for “S2: false” is less elegant, and potentially

requires an exponential number of states in the size of S2. We

create one unambiguous true coverage automaton for each

s ∈ S2 per section 5.2. Then, using this set of automata, A,
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Table 2. Evaluated applications

Mean Count Across Variants

Application Type Variants LoC Functions Basic Blocks SCCs

tcas Siemens 41 173 12 163 163

schedule2 Siemens 9 373 25 268 228

schedule Siemens 9 413 23 229 169

replace Siemens 31 563 27 437 245

tot_info Siemens 23 564 18 231 129

print_tokens2 Siemens 10 568 27 429 395

print_tokens Siemens 7 727 25 385 318

ccrypt Linux utility 1 5,280 116 1,677 1,409

gzip Linux utility 20 8,114 135 3,704 2,411

space ADL interpreter 34 9,563 158 3,895 3,389

sed Linux utility 31 14,314 219 6,612 3,481

flex Linux utility 53 14,946 184 6,408 3,992

grep Linux utility 19 15,460 177 7,121 2,886

gcc C compiler 1 222,196 2,267 142,121 51,668

the desired encoding is

¬
( ⋂

a∈A

a
)

Unreliable Trace Languages Recall that unreliable trace

languages (defined in section 4.1) do not allow disjunction.

In fact, ambiguous constraints (such as ambiguous coverage

data) cannot be expressed, even with loss of precision, as

unreliable trace languages. Put another way, since unreliable

trace languages cannot support character classes in constraints,

the above coverage constraints can only be expressed as Σ∗.

6. Evaluation

Our empirical evaluation assesses the precision and scalability

of each of our solving techniques. Specifically, we compared

the time it takes our system to answer queries when encoding

the CFG and all failure constraints as s-VPA, each of these

elements as FSA, and of answering unreliable trace language

queries over the context-insensitive CFG. We also compared

the precision of query answers when encoding constraints

using each of the formulations. (Recall that a solver is more

precise if it answers Impossible to more user queries.)

We compiled programs using Clang/LLVM 3.5 [23], aug-

mented by csi-cc [28] for optimized coverage instrumentation.

Our s-VPA solver builds upon D’Antoni’s symbolic automata

library [10], while our FSA solver uses OpenFst [1]. The

analysis infrastructure and our solver for unreliable trace

languages (UTL) from section 4.2 consist of 5,016 lines of

Python code. We ran all experiments on a quad-core Intel

Core i5-3450 CPU clocked at 3.10 GHz with 32 GB of RAM

and running Red Hat Enterprise Linux 6.7.

We tested our solvers on a large selection of buggy C

benchmark programs listed in table 2. ccrypt and gcc are

real, released programs; the remainder are from the Software-

artifact Infrastructure Repository (SIR) [12, 38] and were

used in prior work [28, 31]. The small Siemens applications

contain seeded faults, as do flex, grep, and gzip. sed contains a

mix of seeded and real faults, while ccrypt, gcc, and space all

contain real faults. Some applications have multiple versions

and multiple faults which can be enabled independently;

the “Variants” column of table 2 shows the total number of

builds across all versions and faults for each application. In

all experiments, we only enabled one fault at a time. The

programs’ test suites triggered a variety of failures. Some

produced core dumps due to invalid memory accesses. For

those that failed by producing invalid output, we forced the

program to abort and dump core at the first byte of incorrect

output. Table 2 also provides information about the CFGs for

each application: the number of functions, basic blocks, and

strongly-connected components (SCCs). We gathered these

statistics prior to incorporating any failure constraints which

cause us to split basic blocks or SCCs.

Our evaluation followed the experimental procedure of

Ohmann et al. [30], whose work provided the basis of our

FSA solver. For each failure, we used our system to recover

“best-effort” program coverage based on the failure report by

posing two queries for each basic block b:

1. May b have executed during the failing run?

2. May b not have executed during the failing run?

These queries are encoded precisely as statement coverage

per section 5.2, where we represent each basic block by the

first statement in that block. Recall that each of these queries

can return an answer of Possible or Impossible. Hence, if we

obtain a result of Possible to both queries for basic block b,

we say that b “Maybe” executed on the failing run. If only

one query is Possible, we can say definitively “Yes” or “No”

to whether b executed on the failing run. Thus, the precision

of an approach improves if it can more often answer “Yes”

or “No” based on the two above queries. Posing two queries
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Table 3. Mean number of constraints intersected

Call Coverage Constraints

Application Stack False True

tcas 2 8 7

schedule2 2 17 24

schedule 2 13 22

replace 2 30 20

tot_info 2 12 14

print_tokens2 2 27 40

print_tokens 2 29 26

ccrypt 2 164 25

gzip 2 381 23

space 2 390 108

sed 2 546 113

flex 2 590 132

grep 2 448 89

gcc 2 12,649 585

Table 4. Incomplete analyses using stacks only

Time, Memory

Application Variants s-VPA FSA UTL

ccrypt 1 1, 0 0, 0 0, 0

gzip 20 20, 0 0, 0 0, 0

space 34 34, 0 0, 0 0, 0

sed 31 28, 3 0, 0 0, 0

flex 53 50, 3 0, 0 0, 0

grep 19 14, 5 0, 0 0, 0

gcc 1 0, 1 1, 0 1, 0

per basic block is a thorough test of our system, and also

simulates the needs of an IDE when color-coding code based

on its execution status [29].

6.1 Crashing Stack Trace

Our first set of experiments used failure reports containing

only crashing program stacks. We randomly selected one

failing run from the test suite of each program for each

version and fault. Thus, the number of analysis runs for each

solver is identical to the number of variants listed in table 2,

and each failure involves intersecting the query language with

exactly 2 other languages: the language of the program’s

CFG and the failing stack trace. This is shown in the “Stack”

column of table 3. We limited solvers to 3 hours of running

time and 30 GB of memory. We tracked whether each analysis

run completed all queries within the time limit, ran out of time,

or ran out of memory. Table 4 shows these results, omitting

rows for applications that solved all queries for all solvers.

For each solver, we report the comma-separated pair of the

number of analysis runs that ran out of time and ran out of

memory.
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Figure 11. UTL-relative analysis time using stacks only

The s-VPA solver times out for all larger applications.

This solver completes at least one query for many of these

applications, but note that checking emptiness is significantly

more complex for an s-VPA than for an FSA (where it is

simply unconstrained state reachability). Hence, we find that

precisely answering queries with s-VPA does not scale to

larger programs. gcc’s CFG has over 140,000 basic blocks,

resulting in over 280,000 queries. No solver completed all

gcc queries within the 3-hour time limit. Both the FSA solver

and the unreliable trace languages (UTL) solver, however, are

able to answer queries in this case. The FSA and UTL solvers

averaged 7.88 and 5.19 seconds, respectively, to answer each

query for those that completed within the time limit.

Next we compared analysis times for those analysis runs

that multiple solvers completed. Figure 11 shows these results,

plotted as analysis time relative to the UTL solver, averaged

across each application. While each s-VPA bar summarizes

fewer runs than the corresponding FSA bar, note that all

runs that completed with the s-VPA solver also completed

with the FSA solver. Missing s-VPA bars toward the right

side of fig. 11 echo our earlier finding that s-VPAs do not

scale to large programs. Even for small programs, the s-VPA

approach takes much more time, with slow-downs up to

25× for schedule (where all solvers completed all failures,

per table 4). The FSA solver is slightly slower than the

UTL solver on all non-trivial applications, even when

incorporating only the crashing stack as the lone failure

constraint. The largest slow-down here is 2.2× for grep.

Finally, we measured the improvement in precision from

using the more expressive s-VPA solver. Per section 5.1,

s-VPAs allow a more precise encoding of the conditions

producing a failing stack than the regular language encoding.

Figure 12 shows the mean percentage of basic blocks that

each solver definitively categorized as “Yes” or “No” for each

failing run. We only show results for the s-VPA and UTL

solvers here; FSA results are always identical to those of

the UTL solver, as the language encoding of the CFG and

crashing stack are identical for these solvers. Two patterns
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Figure 12. Basic blocks definitively categorized as “Yes” or

“No” using stacks only

Table 5. Incomplete analyses using stacks and call coverage

Time, Memory

Application Variants s-VPA FSA UTL

schedule2 9 0, 9 2, 3 0, 0

schedule 9 0, 8 0, 5 0, 0

replace 31 0, 28 0, 0 0, 0

tot_info 23 0, 17 0, 0 0, 0

print_tokens2 10 0, 10 0, 10 0, 0

print_tokens 7 0, 7 1, 4 0, 0

ccrypt 1 0, 1 0, 1 0, 0

gzip 20 0, 20 4, 7 0, 0

space 34 0, 34 0, 34 0, 0

sed 31 3, 28 2, 26 0, 0

flex 53 18, 35 0, 52 0, 0

grep 19 0, 19 1, 18 0, 0

gcc 1 0, 1 1, 0 1, 0

are clear. First, for those failures that can tolerate its cost,

the s-VPA solver gives substantially more precise results.

For example, for tot_info, classified basic blocks grow from

8.1% to 19.5%: a 2.4× improvement. Second, information

about the crashing stack alone is not enough to reduce

execution ambiguity significantly for the larger programs.

In the following section, we address this by considering more

detailed failure reports.

6.2 Crashing Stack And Call Coverage

For our second set of experiments, we used failure reports

containing the crashing program stack and program coverage

data gathered at call sites. Prior approaches [27, 28] have

used call-site coverage for program analysis. We configured

csi-cc to gather coverage at call sites, per the dominator-

based optimization of Ohmann et al. [31]. Thus, some

optimized fraction of each program’s call sites were actually

instrumented. We encoded the resulting coverage data for
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Figure 13. UTL-relative analysis time using stacks and call

coverage

each failing run as described in section 5.2. The “Call

Coverage Constraints” columns of table 3 show the number of

constraints resulting from the true and false coverage entries

for each failing run, averaged by application. Thus, the sum

of these two columns indicates the total number of call sites

instrumented, averaged by application. As in section 6.1, we

ran one failing run per (application, version, fault) triple,

and limited solvers to 3 hours of running time and 30 GB of

memory.

Table 5 gives the number of analysis runs that ran out of

time or memory for each application. Here, both the s-VPA

and FSA solvers ran out of either time or memory analyzing

most failure reports, even for the smaller Siemens applications.

Memory issues are especially prevalent, as intersecting large

numbers of constraints results in a worst-case exponential

increase in the size of automata. The UTL solver was able to

solve every single failure except for gcc, where it averaged

8.12 seconds to answer each query that completed within the

time limit. The gcc failure had 585 true coverage entries in its

failure report (per table 3), so an automata-based solver would

need to compute an intersection over 587 automata (including

the CFG and crashing stack) to answer even a single query.

In our experiments, the FSA solver exceeded the 3-hour time

limit while performing intersections, but would certainly have

exceeded the 30 GB memory limit if given more time.

Next we again examined the total analysis time for those

runs that completed with each solver. Figure 13 plots these

results, again relative to UTL solve time. Note that s-VPA and

FSA bars cannot be directly compared, because the s-VPA

solver did not solve all of the failures solved by the FSA solver.

(This is especially relevant for replace and tot_info results,

where the s-VPA solver was slower, but timed out on longer-

running examples.) Overall, these results indicate that the

UTL solver is dramatically faster. The only exceptions are

for the small number of runs that completed for the FSA solver

in gzip, sed, and flex. Here, the particular failures occurred

very early in each application, so the majority of the CFG was
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Figure 14. Basic blocks definitively categorized as “Yes” or

“No” using stacks and call coverage

quickly marked as “No” by each solver. For all more complex

failures that completed with both solvers (including those for

the smaller test subjects), UTL outperforms FSA, often by

several orders of magnitude. These results are unsurprising,

given the number of timeouts recorded in table 5.

Figure 14 shows the number of basic blocks marked as

either “Yes” or “No” execution status for failure reports

containing the crash stack plus coverage data. Again, all failure

report data is recorded with equal precision for FSA and UTL,

so we display only the latter. The plot affirms that we gain

significant precision by encoding constraints to respect

context sensitivity (via the s-VPA solver). However, recall

that we were able to solve very few failure report analyses

with this solver. Another important result is that precision

improves significantly, even for imprecise solvers, when

we incorporate more detailed failure reports. For example

the s-VPA solver disambiguates the execution of 20% of

the basic blocks in print_tokens failures using only stack

data (fig. 12). Using call coverage data, the UTL solver

disambiguates 63% of basic blocks (fig. 14) despite being

unable to respect calling-context sensitivity during analysis.

6.3 Discussion and Practical Implications

Note that we set a 3-hour timeout for solvers to complete

all queries for a given failure (2 per basic block). Nearly all

subjects in tables 4 and 5 that fail due to timeout complete

at least one query. The only exceptions are in table 5, where

all s-VPA runs on sed and flex, and FSA on gcc, reach

the 3-hour time limit, but would have exceeded the 30 GB

memory limit if allowed to complete more intersections. Per

section 6.1, both the FSA and UTL solvers handle queries

over gcc (the largest subject) within seconds using a stack

trace. Per section 6.2, the UTL solver can even answer queries

over gcc with the full failure report (consisting of over 13,000

constraints) in seconds. Similarly, the s-VPA solver answers

queries for most failures on the larger applications using only

a stack trace. The larger SIR applications (sed, flex, and grep)

averaged 2 minutes per query. For overnight batch analyses

(e.g., extracting coverage data for an entire program), 3 hours

is quite reasonable, and vastly outperforms a developer trying

to reconstruct this information manually. Our solvers are also

fast enough to answer individual, interactive queries, such as

the examples from section 1.

Overall, our results indicate that we can answer many

control-flow queries based on failure data in reasonable time,

and point to different use cases for our three different solvers.

The UTL solver answers queries remarkably efficiently, even

when we include very large failure reports (with over 13,000

failure constraints for gcc). However, it sacrifices some

expressiveness in the types of failure report elements that it

can precisely encode (see section 5). Thus, we consider the

UTL solver to be an excellent choice for answering interactive

queries during a debugging session, where speed trumps

precision. In contrast, the s-VPA solver can answer queries

more precisely in many cases, but requires more time to

do so, and struggles with memory constraints on very large

failure reports. Thus, we consider the s-VPA solver to be

well-matched to longer, overnight batch analyses. The FSA

solver is a compromise between these extremes. As with

s-VPA, the FSA solver needs to constrain the size of failure

reports to avoid memory issues in its automata intersections,

but allows more expressiveness than the UTL solver while

often maintaining similar efficiency for answering interactive

queries.

In this work, we only evaluated program coverage queries

run as batch analyses. While this evaluation provides insight

into the scalability of our solvers to large numbers of failure

constraints, future work could more closely investigate other

scenarios. Our results suggest that failure reports with a

limited number of constraints are good targets for improving

precision by using the s-VPA and FSA solvers. This means that

detailed failure reports may need to intelligently drop some

constraints in order to make use of these solvers. Gathering

somewhat more expensive failure data—e.g., call traces rather

than call coverage (see section 5.3)—often results in a smaller

number of failure constraints. We expect this would improve

the performance and precision of the FSA and s-VPA solvers

because the complexity of checking automata intersection

emptiness depends on the number of constraints. Our results

using only a crashing stack trace suggest that reducing the

number of failure constraints is important in practice.

6.4 Validation and Threats to Validity

We have attempted to minimize threats to the external and

internal validity of our results. While it is obviously impossible

for us to test our approach on all possible programs and

failures, we selected applications that vary widely in size and

functionality. To control for other factors (outside of the choice

of solver and failure data) which could impact our memory

usage and execution time results, we ran all experiments on a

single machine under minimal load.
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We also validated our results in two ways. First, each of

our analyses should safely approximate complete, directly-

observed coverage. We spot-checked analysis results against

full coverage data for a selection of failing runs. All analyses

safely approximated the complete information: in every case

that we checked, if an analysis reported “Yes” for a basic block,

then that block did actually run; similarly, blocks reported as

“No” did not run. Our second approach to validation compares

the solvers to each other, one basic block at a time. Note that

our three solvers have theoretical relationships that should

be reflected in our results. Because all of our queries and

coverage constraints are precisely definable in UTL, and, per

section 5.1, our encoding of the crashing stack is equivalent for

FSA and UTL, the results of FSA and UTL should be identical

in our experiments. The s-VPA solver can encode any s-VPA-

definable constraint (subsuming all definable constraints for

FSA and UTL), more precisely encodes the crashing stack

(see section 5.1), and ensures well-matched calls and returns

for accepted strings; hence, its result should never be less

precise than FSA and UTL. For the subset of blocks where

multiple solvers’ results are available to compare, FSA and

UTL always agree while s-VPA either agrees or is strictly

more precise. That is, s-VPA never answers “Maybe” where

FSA or UTL answered “Yes” or “No.” This perfectly matches

the expected theoretical relationships among the three solvers.

7. Related Work

LaToza and Myers [22] find that developers commonly ask

reachability questions while debugging. This supports the

usefulness of our technique, as many of the examples they

consider are control-flow questions that we support.

Explorer [13] uses demand-driven pointer analysis to

allow users to pose interprocedural control-flow queries over

a program’s call graph. Our system allows queries at the

statement (rather than procedure) level, and answers queries

with respect to all runs consistent with a given dynamic failure

report, rather than (statically) all runs whatsoever.

Some prior approaches rely on complete tracing of

executions [19] or environment interactions [7]. Intensive

data collection of this sort allows for rich functionality, such

as deterministic replay or detailed causal inquiries. However,

the resulting overheads may be prohibitive for deployed

software. We explicitly trade off detail for efficiency, and

demonstrate that much of value can be learned even from quite

impoverished dynamic feedback. Manevich et al. [25] use

backward data-flow analysis to reproduce failing executions

based on only a failure location and typestate information

regarding the failure. While efficient, this approach is limited

to solving specific typestate problems with simple types.

Many prior approaches [5, 6, 8, 16, 37, 45] use symbolic

execution to replay failures based on varying styles of failure

data. Matching failures via symbolic execution is expensive,

and undecidable in general. We answer queries about any run

matching failure data, while replay produces one specific run

that may or may not completely match the traced failure.

Our weakening of s-VPA constraints to unreliable trace

languages resembles work by Place et al. [36] for automatically

separating regular languages by piecewise-testable languages.

UTL is a strict subset of the piecewise-testable languages;

similar techniques may apply here.

Gabow et al. [14] and Lal et al. [21] find paths through

CFGs that reach desired nodes. Our use of CFG condensation

graphs is similar to that of Gabow et al., but we generalize

to larger classes of constraints and cast the problem in data-

flow terms. Whereas Lal et al. allow incorporation of other

data-flow constraints, we dramatically broaden the class of

control-flow constraints, and offer time/precision trade-offs.

While our approach is complex, it has notable advantages

over simpler alternatives. Most prior approaches are limited

to specific categories of failure data [5, 8, 16, 28]. In contrast,

our approach can immediately take advantage of any s-VPA-

definable constraint. A simpler alternative approach might

simply mark compulsory statements based on failure data and

the user’s query, and then use a backward reachability analysis

to find a path satisfying the compulsory nodes, in the style

of Gabow et al. [14]. If we used only coverage information,

this approach would suffice for our problem, and is essentially

equivalent to UTL emptiness from section 4.2 (except that

we explore paths forward rather than backward). However,

the UTL solver allows a broader class of constraints, which

is why it maintains vectors of constraints, rather than simply

marking compulsory nodes along the path. Our full suite of

approaches is much more general, and allows an expansive

family of constraints and queries.

8. Conclusion

Failure reports from production runs generally paint an

incomplete picture of the failing execution. We present a

system that allows a developer to ask Possible/Impossible

questions about the control flow of program runs consistent

with observed failure data. We also introduce a new class of

subregular languages, the unreliable trace languages, that are

uniquely suited to answering these questions in polynomial

time. We propose three separate solvers that present trade-

offs in scalability, precision of results, and expressiveness in

encoding failure constraints. Experimental evaluation shows

that we can answer a broad class of queries remarkably

efficiently when encoding all failure constraints and user

queries as unreliable trace languages.
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