
Referential Integrity with Scala Types

Patrick Prémont
BoldRadius Solutions, Canada

patrick.premont@boldradius.com

Abstract
Referential integrity constraints are critical elements of re-
lational data models, and have found widespread use in in-
dustry. However, their benefits in terms of data integrity do
not fully extend to program correctness. Constraint viola-
tions are identified at run-time and must then be handled ap-
propriately by programs. We show how Scala can be used to
build data models and programs where referential integrity
is enforced at compile-time. Scala’s type system, with its
variance annotations and path-dependent types, is especially
suited to express these constraints and proofs in a natural
manner. We also explore potential compiler improvements
that could enhance support for type-checked referential in-
tegrity.

Categories and Subject Descriptors D.3.3 [PROGRAM-
MING LANGUAGES]: Language Constructs and Features—
Data types and structures

Keywords Referential integrity, Dependent types, Vari-
ance, Data structures, Scala

1. Introduction
Software developers using typed functional languages like
Scala have generally moved away from using null refer-
ences. They explicitly document which references may be
invalid by the use of the Option type. This discipline allows
the compiler to verify that checks are present whenever they
are needed, which can lead to increased software reliability.

In many cases, empty Option instances have a meaning
within the normal operation of a program. In other cases
however, those empty Option should never occur based on
the intended invariants of the program. Their occurrence at
run-time is symptomatic of an error within the program. Dis-
tinguishing between these two scenarios can be difficult, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SCALA’15, June 13, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3626-0/15/06. . . $15.00.
http://dx.doi.org/10.1145/2774975.2774979

can lead the developer to apply inappropriate recovery mea-
sures in the presence of empty Option instances. Fortunately,
it is often possible to refactor programs to eliminate occur-
rences of Option that represent errors. This is often achieved
by encoding more invariants in program types.

We present a technique to encode referential integrity
constrains [2] in the Scala type system. Referential integrity
is concerned with ensuring that references within a table or
a data structure designate a valid entry and are not dangling
references.

The value of referential integrity has long been recog-
nized in the context of database systems. We believe it
to also be valuable to in-memory data structures. In spite
of database integrity checks, program errors outside of the
database may very well have adverse consequences on per-
sisted data.

Our proposal can increase application reliability signifi-
cantly by eliminating many occurrences of Option instances,
and the associated checks and recoveries. While these empty
Option instances appear as a result of data structure lookups,
they are in fact symptoms of errors that occur earlier in the
program: when data structures are modified in a way that
breaks referential integrity. The types we propose will iden-
tify those errors during compilation.

2. Types for Referential Integrity
2.1 Current Practice
Programs typically contain data structures whose elements
may be looked up by a corresponding key. In Scala, the Map

trait abstracts over such data structures. Let us consider only
its insertion and lookup methods in relation to referential
integrity:

Listing 1. Insertion and lookup in the Map trait
trait Map[A, +B] {
def +[B1 >: B](kv: (A, B1)): Map[A, B1]
def get(key: A): Option[B]
}

The insertion method + yields a Map with the same key
type A. As elements are added to the data structure, we
keep using the same key type for lookups with get. This
constraint forces developers to use a key type that contains

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SCALA’15, June 13, 2015, Portland, OR, USA
c© 2015 ACM. 978-1-4503-3626-0/15/06...$15.00

http://dx.doi.org/10.1145/2774975.2774979

30

a large number of values: enough values to accommodate
all elements that could potentially be added to the map. A
common choice is to use integers.

Using the same key type across unrelated Map instances
makes it likely that keys of one map will inadvertently be
used to lookup elements of another. A good practice that
limits such errors is to create distinct key types for the
various maps that have no need to share a key type:

Listing 2. Distinct key types
case class CustomerId(value: Int) extends AnyVal
case class AccountId(value: Int) extends AnyVal
val customers: Map[CustomerId, Customer]
val accounts: Map[AccountId, Account]

This practice is simple and provides significant safety
benefits. However there remains the potential for confusion
between the keys of multiple maps. Consider an extension
of the example above, where a program comprises a variable
number of services, each of which holds a map from the
AccountId type:

Listing 3. Remaining ambiguity with distinct key types
case class ServiceId(value: Int) extends AnyVal
case class Service(accounts: Map[AccountId, Account])
val services: Map[ServiceId, Service]

Here multiple maps of type Map[AccountId, Account] may
exist at run-time. The types do not constrain an AccountId

to be used for lookups only in maps where it was inserted.
Achieving this segregation require a more elaborate repre-
sentation:

Listing 4. Flexible Key Segregation
class AccountIdType {
case class AccountId(value: Int)
}
trait Service {
val accountIdType: AccountIdType
val accounts: Map[accountIdType.AccountId, Account]
}

Here we have deployed more elaborate tools, inner
classes and path-dependent types, to further reduce the pos-
sibility that lookups will be performed on the wrong maps.

The above measures can prevent many map lookups that
would have returned None, but they do not achieve the en-
forcement of referential integrity. As noted earlier, maps
must preserve the same key type when elements are added
or removed. Lookups for a key that has been removed, or
has not yet been inserted, would type-check but would fail
to yield a value.

2.2 Lookup as a Total Function
We now show a data structure that is similar to a map but
where lookups are guaranteed to yield a value. Here we will
refer to keys as identifiers since each key reliably refers to a
particular value.

The type used for identifiers needs to admit only values
that refer to elements present in a particular data structure.
This requires an immutable data structure, or at least one in
which the set of contained elements may not change.

We propose an immutable total map data structure where
the insertion and lookup methods are as follows:

Listing 5. Insertion and lookup in a total map
sealed trait Total[+V] {

type Id
def insert[V2 >: V](value: V2): Extension[Id, V2]
def apply(id: Id): V
}
trait Extension[K, V] {
val total: Total[V] {type Id >: K}
val newId: total.Id
}

The essential difference with the Map trait is that the
insertion method produces total maps with distinct Id types.
For any total map t, each value of type t.Id refers to an
existing element of t. Therefore the lookup operation, named
apply here, always returns a valid element of type V.

A notable change here is that the type parameter A has
been replaced by a type member Id. This avoids extensive
reliance on existential types by keeping the output Id types
within an object.

We also let the data structure allocate the identifiers dur-
ing insertion; we do not pass them in. The insert method
packages the newly allocated identifier with the resulting
Total in an Extension object. A tuple is not sufficient here
since we want the identifier type to be dependant on the re-
sulting total map.

A key element of this solution is the type constraint on the
Id of the total map produced by the insertion: it guarantees
that the new Id is a supertype of the original Id. This is
significant and means that all identifiers for the original
total map may still be used with the new total map. Scala’s
support for subtyping and covariance is invaluable here, as
it relieves us from explicitly converting all the identifiers we
may have stored in other covariant data structures.

2.3 Usage Example
Let us consider a sample application using a simple data
model of suppliers, parts and shipments (based on a similar
example in [1]). A shipment must refer to both a supplier
and a part, and we would like to enforce these two referential
integrity constrains.

31

Listing 6. Suppliers and parts example
case class Supplier(name: String, city: String)
case class Part(name: String, weight: Float)
case class Shipment[+S, +P](

supplierId: S,
partId: P,
quantity: Int)

trait SupplierParts { original =>
val suppliers: Total[Supplier]
val parts: Total[Part]
val shipments: List[Shipment[suppliers.Id, parts.Id]]

def addPart(newPart: Part) =
new SupplierParts {
val suppliers: original.suppliers.type = original.suppliers
val parts = original.parts.insert(newPart).total
val shipments = original.shipments
}

}

We parameterize the Shipment case class by the identi-
fier types for suppliers and parts, and mark the parameters
as covariant. The SupplierParts trait represents an immutable
value of the full data model. It enforces the referential in-
tegrity constraints by using path-dependent types to refer to
the Id types within the suppliers and parts total maps.

The addPart method creates a new SupplierParts with an
additional part. No shipment is added here so we want to
reuse the original shipment list. Its type refers to the original
parts and suppliers total maps. If we are to reuse it, its
new type, which refers to the new total maps, must be a
supertype. This is guaranteed by the following:

• the new suppliers total map was given the same singleton
type as the original, so it has the same Id type,
• the new parts total map has an Id type which is a super-

type of the original parts Id type,
• and both List and Shipment are covariant.

2.4 Removal
The removal process works in reverse: the resulting identi-
fier type is a subtype of the original. This implies an addi-
tional burden: some old identifiers can no longer serve as
identifiers in the new total map. The remove function there-
fore returns a filter function that may be used to narrow the
old identifiers into the new subtype of identifiers.

Listing 7. Removal form a total map
sealed trait Total[+V] {

type Id
def remove(removedKey: Id): Contraction[Id, V]
}
trait Contraction[K, V] {
val total: Total[V] {type Id <: K}
def filter(k: K): Option[total.Id]
}

2.5 Related Identifier Types
Refinement types allow us to express that multiple total
maps use identical or related identifier types. Assuming we
have a total map named t, we could use the following types
to represent a total map where the identifiers are a subset, the
same set, or a superset.

Listing 8. Related identifier types
Total[V] {type Id <: t.Id}
Total[V] {type Id = t.Id}
Total[V] {type Id >: t.Id}

A subtype relation between the identifiers of two total
maps can be seen as a referential integrity constrain from one
identifier (the subtype) to the other. This means that when
translating constraints from a relational model, we can also
express constrains that originate from a column that is also a
primary key.

2.6 Cyclical Constraints
To represent cyclical referential integrity constraints, it will
not be possible to express all constraints as path-dependent
types without first breaking the cycle. For example we can-
not use a single total map to represent an endofunction as
trait Endo {val f: Total[f.Id]}.

Instead we must use a total map to define the domain/-
codomain, and a separate one, sharing the same Id type, to
define an endofunction that references it.

Listing 9. Endofunction
trait Endo {
val ids: Total[Unit]
val values: Total[ids.Id] {type Id = ids.Id}
}

A similar technique can be used to break longer cycles.
The expression of such cyclical constrains comes at a cost

in terms of logical data independence. Adding a field to a
data structure could cause a cycle and force a refactoring.

3. Implementation
Our total maps are implemented as binary trees where each
internal node can hold one element of the collection. New

32

elements are inserted at the minimum depth where a free
node is available. Elements are removed from the node they
occupy, and no reorganization of the tree takes place beyond
pruning subtrees that are completely empty.

An element with a given identifier is never relocated in
the tree. Its identifier is in fact its path from the root node.

3.1 Concrete Identifier Types
The identifier type must characterize the set of paths in the
tree that lead to elements of the collection. Our solution is
to use a disjunction type with three alternatives and cor-
responding type parameters. A first type parameter is Unit

when the root is an admissible path, and Nothing otherwise.
The other two type parameters allow the recursive use of the
identifier type to describe valid subpaths.

Listing 10. Identifier types
sealed trait AnyId
trait Id2[+U<:Unit, +A1<:AnyId, +A2<:AnyId]

extends AnyId
case object Element

extends Id2[Unit, Nothing, Nothing]
case class Left[+A1<:AnyId](l: A1)

extends Id2[Nothing, A1, Nothing]
case class Right[+A2<:AnyId](r: A2)

extends Id2[Nothing, Nothing, A2]

An instance of the first alternative Element designates
the element at the root of the tree being considered. This
constructor is only applicable when U is Unit (when an
element is present in the root node). An instance of Left

designates an element in the left subtree, and contains the
rest of the path as a data member. An instance of Right has a
similar role for the right subtree.

Thanks to the covariance annotations of the three type
parameters, the identifier types are related by subtyping.
Given an identifier type, it is possible to find a supertype
that can represent any strict superset of paths. Similarly for
all non-empty identifier types, it possible to find a subtype
that can represents any strict subset of paths. This enables
the implementation of the insertion and removal operation
on total maps.

3.2 Integer Identifier Types
As an optimization, we have implemented a different iden-
tifier type that is parameterized in the same way as the Id

type above, but which uses constant space. It simply stores
an integer. This part of the implementation is not type-safe
internally, but its soundness can be validated by relating it to
the isomorphic Id type shown above.

3.3 Total Map Implementation
Our implementation of the total map sealed trait consists of
three subtypes. The EmptyTotal object implements an empty
total map, so its identifier type is Nothing. The TotalWith

class represents a total map that contains an element in its
root, while TotalWithout contains no element at the root. As
internal nodes of a binary tree, these two classes also contain
two other total maps t1 and t2.

Listing 11. Implementation of identifiers and lookup
case object EmptyTotal extends Total[Nothing] {

type Id = Nothing
def apply(k: Id): V = k
}
case class TotalWith[+V](v: V, t1: Total[V], t2: Total[V])

extends Total[V] {
type Id = Id2[Unit, t1.Id, t2.Id]
def apply(k: Id): V = k match {
case Element => v
case Left(l) => t1(l)
case Right(r) => t2(r)
}
}
case class TotalWithout[+V](t1: Total[V], t2: Total[V])

extends Total[V] {
type Id = Id2[Nothing, t1.Id, t2.Id]
def apply(k: Id): V = k match {
case Left(l) => t1(l)
case Right(r) => t2(r)
}
}

For EmptyTotal, the apply method will never be called
since it takes a Nothing as input. For the internal node classes
we simply pattern match on the identifier considering only
the admissible cases. When Left or Right is encountered we
delegate to the apply function of the appropriate child total
map.

Insertion, which is not listed here, proceeds as follows:
For EmptyTotal or TotalWithout, we return a TotalWith con-
taining the newly added element. As is required, the Id type
of the result will be a supertype. For a TotalWith, we insert
in one of its two children. To favor a balanced tree, our ap-
proach has been to store the number of total map elements
in every node, and select the smallest child.

Most common operations on maps have also been imple-
mented. These implementations follow quite naturally from
the strict type signatures.

4. Challenges
We have used the total map collection successfully in various
small examples. Overall, the programs remained clean and
concise. We did notice some concerns, which may cause
problems in the context of a full application. Some of these
could possibly be addressed by changes or extensions to the
Scala compiler.

33

4.1 Efficient Narrowing
There are inefficiencies in the filtering process that removes
occurrences of identifiers that have been removed from a
total map.

First, finding those identifiers rapidly would require in-
dexing. This appears very challenging in a context where
type safety must be maintained. We have not explored this.

Second, all data structures that contain identifiers of the
old type must be reallocated as part of the filtering opera-
tion, even all those that did not in fact contain the removed
identifier. Avoiding this seems challenging but possible us-
ing checked downcasts.

4.2 Propagation of Identifier Types
The explicit propagation of identifier types through type
parameters could become a concern in larger applications.
Classes must be parameterized explicitly over the identifier
types they contain, even indirectly, and they must bear co-
variance annotations. However we expect the nesting of data
structures to be more limited. In this approach the data mod-
els tends to be more relational, so perhaps the propagation
of identifier types will not be a significant practical concern.

4.3 Dependent Types in Constructors
As of Scala 2.11.6, it is not possible to declare classes with
constructors that have parameters with types that depend
on the values of other parameters. This limitation is the
subject of an open Scala improvement issue (SI-5712). In
this paper we have avoided the problem by directly using
type refinements to construct instances of our data model.
For larger examples, we can obtain more concise programs
by defining functions that create the instances. Once class
constructors with dependent parameter types are supported,
we will be relieved of this potentially repetitive task.

4.4 Inference of Singleton Types
In the addPart method of listing 6, we had to give an explicit
singleton type to the val suppliers. Inference of the singleton
type would have been convenient in this case. This is a minor
inconvenience once one understands the problem. However
it is likely that many developers would initially be puzzled
by this.

5. Future Work
5.1 Persistence
We suspect that the technique presented here can be ex-
tended to statically enforce the referential integrity con-
strains on data persisted within databases. It should be pos-
sible to implement a similar total map type which is backed
by a database.

To reconcile the mutable nature of most databases and the
immutability assumptions of the approach presented here, a

database access library could expose a lazily-loaded snap-
shot of the database at the beginning of a transaction, and
consume a similar snapshot at the close of the transaction.

The in-memory data models proposed here are closer to
typical relational data models. Similar models and interfaces
for in-memory and persisted data would be a step towards
to the convenience and reliability potential of orthogonal
persistence [3].

5.2 Improving Performance
We also intend to turn our attention to the performance
of our implementation. Insertion, removal and lookup are
all O(log(n)) operations, but traversals that also return the
identifiers are currently O(n log(n)) instead of the expected
O(n). This is due to the limited set of operations we have
exposed on identifiers. We hope to address this limitation in
future work, and to publish benchmarks for the total map
data structure.

6. Conclusion
We have developed the total map data structure which sup-
ports referential integrity constraints that can be directly ex-
pressed and enforced by Scala’s type system. This has in-
creased our appreciation for Scala’s path-dependent types,
subtyping and variance annotations. We believe implement-
ing total maps would not be practical or even possible in
most other programming languages.

The approach eliminates an important class of errors from
programs, and does so in a fairly natural manner. Although
we have yet to apply the technique in a real application,
the effort involved may be comparable to that involved in
weaker techniques based on creating distinct key types. Its
main drawback is that removing elements from total maps
requires a traversal of data structures that contain identifiers,
so that invalid identifiers may be excluded. However, this
may be a favourable tradeoff in applications where reliability
is a more pressing concern than performance.

The total map data structure is part of a freely available
library at: https://github.com/boldradius/total-map. Version
0.2.2 contains the work presented here.

References
[1] C. J. Date. An Introduction to Database Systems (8th Edition)

2003: Addison-Wesley.

[2] C. J. Date. 1981. Referential integrity. In Proceedings of the
seventh international conference on Very Large Data Bases -
Volume 7 (VLDB ’81), Vol. 7. VLDB Endowment 2-12.

[3] Alan Dearle, Graham N. C. Kirby, and Ron Morrison. 2009.
Orthogonal persistence revisited. In Proceedings of the Second
international conference on Object databases (ICOODB’09),
Moira C. Norrie and Michael Grossniklaus (Eds.). Springer-
Verlag, Berlin, Heidelberg, 1-22.

34

