
Practical Program Analysis Using General Purpose Logic Programming

Systems — A Case Study*

Steven Dawsont C.R. Ramakrishnan David S. Warren

dawson@csl .sri. com cram@cs. sunysb. edu warren@cs.sunysb .edu

Department of Computer Science

SUNY at Stony Brook

Stony Brook, NY 11794-4400

Abstract

Many analysis problems can be cast in the form of evaluating
minimal models of a logic program. Although such formula-

tions are appealing due to their simplicity and declarative-

ness, they have not been widely used in practice because,

either existing logic programming systems do not guarantee
completeness, or those that do have been viewed as too inef-
ficient for integration into a compiler. The objective of this
paper is to re-examine this issue in the context of recent ad-

vances in implementation technologies of logic programming

systems.

We find that such declarative formulations can indeed

be used in practical systems, when combined with the ap-
propriate tool for evaluation. We use ezisting formulations

of analysis problems — groundless analysis of logic pro-

grams, and strictness analysis of functional programs — in
this case study, and the XSB system, a table-baaed logic
programming system, as the evaluation tool of choice. We

give experimental evidence that the resultant groundless
and strictness analysis systems are practical in terms of both
time and space. In terms of implementation effort, the an-

alyzers took less than 2 man-weeks (in total), to develop,

optimize and evaluate. The analyzer itself consists of about
100 lines of tabled Prolog code and the entire system, includ-

ing the components to read and preprocess input programs

and to collect the analysis results, consists of about 500 lines

of code.

1 Introduction

Modern compilers perform a variety of analyses to gather

information about the input program for use in program op-
timization. For instance, in imperative languages, inter- as

well as intra- procedural dat aflow analysis techniques col-
lect information about variable usage, which is then used

to optimize storage allocation (see [1]); abstract interpreta-

“ This work was supported in part by NSF grants CCR-9404921,
CDA-9303181, CDA-9504275 and INT-9314412.

t Current Address: SRI International, 333 Ravens wood Ave.,
Menlo Park, CA 94025-3493.

Permissionto nleks digNaWardcopy of part or all of this work for personal
or daasroom w ia granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the ublication and its date appear, and noti~ is given that

tcopying is y perrniseionof ACM, Inc. To copy otherwise, to republish, to
post on servers,or to redistribute to Iisk, requires prior specific permission
andor a fee.

PLDI ‘9S 5/96 PA, USA
O 1996 ACM o-89791 -795-XWO005...$3,5O

tion techniques (e.g., [12]) detect loop invariants, optimize

array bounds checking and promote code hoisting. In func-
tional programming, a large number of analyses have been

recognized as useful: strictness analysis [26], binding time
analysis [20] and update analysis [19], to name just a few.

Compiler writers for logic languages have long realized the
importance of information such as groundless, freeness and
types for performing routine aa well as sophisticated opti-
mization [13, 41]. Many of these analyses can be cast in the
form of evaluating the minimal model of a (constraint) logic

program (see e.g., [39, 9]). Although such formulations are

appealing due to their simplicity and declarativeness, they
have seldom been used in practice. The main reason for this
gap is that, until very recently, there have been few logic

programming tools that offered the two fundamental ingre-
dients needed to make such formulations usable in a practi-

cal compiler: completeness (the ability to find the minimal
model whenever one exists) and efficiency. Lacking this,
such formulations have been deemed impractical.

Recent developments in the area of logic program imple-
mentation have made available a few systems that guaran-
tee completeness while offering good performance. Efficient

systems such as Coral [29], which are based on complete

(bottom-up) evaluation strategies, have emerged from the
deductive database community. The performance of these

systems has been considerably improved upon by the XSB

system [36], XSB combines the benefits of the WAM tech-

nology [2] — a well-optimized engine developed primarily for

Prolog program execution — with the completeness gnar-

ant eed by the use of extension tables. Although resolution

methods such as OLDT [38], and SLG [7] (on which XSB is
based) have been known for some time, it is only now that

the technology is mature enough to offer an implementation
with good raw performance [35]. Availability y of such sys-

tems forces one to re-evaluate the question: can one obtain
practical implementations of program analysis from a logical

formulation with minimal programming effort ?
We find that it is indeed possible to use declarative for-

mulations in practical systems, when combined judiciously
with the appropriate tools of evaluation. In this paper, we

describe the implementation of logical formulations of two
existing analysis techniques: groundless analysis of logic

programs using the Prop-domain [23] and strictness anal-
ysis of functional programs based on demand propagation
[37]. We use the XSB system, currently the fastest system
available that guarantees completeness, as the evaluation

tool.

117

Our experiments, results of which are presented here,
provide evidence of the practicality of the resulting ground-

less and strictness analysis systems: the total times for anal-
ysis (including preprocessing, evaluation and result collec-
tion) are significantly less than the compilation time. More-

over, the groundless analyzer is competitive with the fastest
known implementation of the same analysis constructed us-

ing special-purpose analysis tools. It should, however, be

noted that to obtain efficient analyzers, the logical rules were
coded so as to take advantage of the underlying evaluation

mechanism. The techniques used to encode the rules, al-
though relatively straightforward, are noteworthy since they

often result in significant performance gains.
In both groundless and strictness analyses, we find that

preprocessing dominates the cost of analysis. Most of the
published literature on program analysis ignores preprocess-

ing costs, but our experiments suggest that the evaluation
times are small enough that reducing the preprocessing times

is a problem of significant practical import ante. Apart from
analysis time, the analyzers have very low space require-

ments — an important metric that impacts the practicality
of the system. In terms of programming effort, the analyzers

took less than 2 man-weeks to build. The entire system con-

sists of about 500 lines of tabled Prolog code, with the code
for the analysis phase accounting for less than 100 lines. It

is very encouraging to find that an easily verifiable logical

formulation is no longer confined to being just a prototype
but can be directly used to build a practical system.

AS of the time of this writing, we have but prelimin=y
experiment al evidence about the practicality y of perform-

ing dat aflow analysis of imperative programs using a gen-
eral purpose logic programming system. The shape anal-
ysis for programs with destructive updates [33] has been

implemented in XSB very recently, and exhibits good per-
formance. However, the practicality of this implementation

(in terms of how it compares to special-purpose dataflow

analyzers) remains to be established. Nevertheless, the fig-

ures in [31] indicating the relative performance of dat aflow
analysis implemented using Coral with respect to that in

C, and the relative performance of shape analysis in Coral
and XSB lead us to believe that the practicality results will
carry over to datailow analysis of imperative programs as
well. We discuss this issue at greater length in Section 7.

All analyses modeled in this paper are performed over
finite abstract domains. Analysis over infinite domains will

require support for on-the-fly approximation operations such
as widening [12]. Moreover, the system used for this case

study, XSB, currently handles term-equality constraints only.
The mechanisms needed to make the implementations of

analyses based on infinite domains and/or other constraint
domains as straightforward and efficient as those reported
in this paper are discussed in Section 6.

The rest of the paper is organized as follows. In the

next section we discuss the advantages of logic-based for-
mulation of program analysis and provide a brief overview
of tabled evaluation and its implementation. The formula-
tion of groundless and strictness analyses forms the topic

of Section 3. In Section 4 we describe the implementation
and performance of the analyses. In Section 5 we discuss
the implementation of analyses using non-enumerative rep-
resentations, to illustrate the power of combining tabling

with meta-programming. Optimizations and extensions to
the system are described in Section 6. We compare this
work with current literature in Section 7. Concluding re-
marks appear in Section 8.

2 Background

Analysis methods are usually described in terms of seman-
tic equations whose fix point represents the program prop-
erty under consideration. These semantic equations can be

viewed as a (constraint) logic program, where each equation
is translated into a Horn clause. Many program analysis

methods have been explicitly formulated as logic programs.

For instance, a formulation of flow analysis problems as a

logic program is presented in [39, pages 984–987]. Not sur-
prisingly, there have been many proposals to formulate logic
program analysis in this form (see, e.g., [9]); some carry this

approach a step further, to the level of implementation (e.g.,
[8]). The main advantage of this approach is that it sepa-
rates the concepts of formulation from the implementation

details, yielding the following benefits:

●

●

●

The logic program is a straightforward representation

of the abstract semantic equations. Hence, once the

soundness of the analysis is established (at the level of

the semantic equations), and given a sound and com-

plete implementation to evaluate the logic program,

the overall correctness of the analysis is readily estab-

lished.

The interface bet ween the formulation and its imple-

mentation is a well-established language. This allows
the implementor to choose any complete logic pro-

gramming system as the evaluation engine.

Active research in the logic programming area to en-
hance the power and performance of thes; systems im-

mediately benefits the implement ation of analyses.

There are two strategies for complete evaluation of logic
programs that are available in existing systems: bottom-up

evaluation (used, e.g., in Coral), and top-down tabled eval-
uation (used, e.g., in XSB). Below, we briefly review the

mechanism of tabled evaluation, the evaluation method used
in this case study. For an exposition of bottom-up analysis

methods see [39].

Tabled Evaluation At a high level, a top-down, tabled eval-

uation engine evaluates programs by recording subgoals (re-
ferred to as calls) and their provable instances (referred to
as am wers) in a table. Predicates may be marked as either

tabled or non tabled. A program is evaluated as follows. For
nont abled predicates, the subgoal is resolved against pro-
gram clauses. For tabled predicates, if the subgoal is already

present in the table, then it is resolved against the answers
recorded in the table; otherwise the subgoal is entered in

the table and its answers, computed by resolving the sub-
goal against program clauses are also entered in the tablel.

The answer entries are associated with the corresponding
subgoal entries. For both tabled and nontabled predicates,
program clause resolution is carried out using SLD.

The XSB System The tabled evaluation engine of XSB

system provides an efficient fix-point algorithm that t ermi-
nates for finite domains. This means that the system can
be directly used to compute fix points for Galois-connection

lIn XSB, the presence of a subgoal in the table is tested in the
engine by searching for a variant of the subgoal in the table. Two
terms tland t2are variants of each other if they are identical up to
variable nammg. Only umque answers are entered in the table, and
duplicates are filtered out using variant checks.

118

based analyses where all approximations are performed a

priori. Moreover, being a full Prolog system, XSB permits

metaprogramming. This facility can be used to perform ap-

proximations during the course of analysis — a feature that
is necessary for implementing infinite domain analyses.

The XSB system permits dynamic compilation, mainly

in the form of assert. The primitives for dynamic compi-
lation in XSB are, in general, faster than the corresponding

primitives provided by other Prolog systems such as SICS-
tus and Quintus Prolog. Dynamic compilation is an impor-

tant feature affecting the practicality of analyzers built using
XSB, since it results in much lower preprocessing overheads

compared to full compilation, while adding little to the eval-
uation time. The preprocessing times, which dominate the

total analysis times, are low enough that analyzers built us-

ing dynamic compilation are significantly fast er than their

fully compiled counterparts.

3 Formulation of Finite-domain Analyses

In this section, we describe the formulation of two simple

tinite domain analyses — groundless analysis of logic pro-
grams based on the Prop-domain [23] and strictness analysis

of fictional programs based on demand propagation [37].

3.1 Groundless Analysis using the Prop-domain

The Propdomain [23] is a simple, yet effective abstract do-

main to compute groundless properties of logic programs.
The substitutions in the concrete program are represented

in the l+o~domain by boolean formulae over the variables
in the substitution, with the connective A, V and ~. For

instance, a concrete substitution {X + t} is mapped to the
formula X % (YI A YZ A ...Y~), where {Y1, Y2,..., Y~} is

the set of variables in t. Substitutions over multiple vari-
ables and sets of substitutions are represented by conjunc-
tion and disjunction of formulae representing individual sub-

stitutions. This domain has been used in several previous

implementations (e.g., [8, 40]) and has been shown to yield
accurate results for both offline and online analyses.

Following [8], we represent the boolean formulae by

their truth tables. For instance, Xl @ X2 A Xa is repre-
sented by a predicate iff (Xl, X2 j X3) whose success set
is {(true, true, true) ~ (false, false, true), (false,

true, false), (false, false, false)}. Disjunction and
conjunction are simply the union and join of the success
sets. This leads to a simple transformation, given in Fig-
ure 1, which maps a given logic program P to an abstract

program P’ that computes the groundless properties of the
predicates in P. The transformation is such that the out-

put .groundness of a predicate p in P is represented by the
success set of the corresponding predicate gpP in P’. Each

variable X in the source program is associated with a unique
variable TX in the target program.

An example program, append, is given in Figure 2a and
the corresponding abstract program is given in Figure 2b.

Based on the definition of if f, it is easy to verify that
the success set of gp-ap(X, Y,Z) is { (true, true, true) ,
(true, false, false) , (false, true, false) , (false,
false, false) }, the truth table for the formula XAY + Z
which represents the output groundless of ap.

Input and Output Groundless The translation rules in
F@re 1 can be used directly to obtain a program P’ whose

minimal model computes the output groundless properties

of a given program P. In order to obtain the inputground-

less, we can deiiue a second transformation based on the
Magic Sets transformation [3, 34] (such as the one given in
[8]) such that the minimal model of the resultant program
P’ represents the input groundless of the given program

P. However, table-driven methods, such as OLDT and SLG,
record all the subaoals (calls) encountered durimz evaluation.

.J, ,

as well as their answers (returns). If an implementation of
these resolution methods selects the literals in left-to-right

order, the calls of P’ capture the input groundless of P.
Since the calls are anyway recorded, we do not have to pay

an additional price for obtaining input modes. This prop-
ert y is exploited by engines designed for top-down abstract
interpretation, such as GAIA [22], and can also be readily
exploited by evaluating P’ using the XSB system.

3.2 Strictness Analysis based on demand propagation

A function ~ is said to be strict in its i-th argument iff eval-
uation of $(el, . . . , ei, en) fails to terminate whenever

evaluation of e, is nonterminating. It follows that $ is strict
in its i-th argument iff e, needs to be evaluated in every
terminating application ~(el, e,, en) of ~. Since ex-

pressions in a lazy functional program are evaluated only if

necessary, the process of evaluation can be considered as a
form of demand flow. When an application of ~ needs to be

evaluated, we say that there is a demand on the output of

j; if $ is strict in its z-th argument, then ~ transforms a de-

mand on its output to a demand on its i-th argument. We
encode the strictness equations from [37], considering the
following demand extents: normal form demand denoted by
e, head normal form demand denoted by d and null demand

denoted by n.2
For each function ~ in the input program, we derive a

predicate Spf that models the propagation of demand by

an application of f. For a function ~(x) we derive a predi-

cate sp (D, X) such that the substitutions of X represent the
ddeman s on the variable x whenever the demand on the

output of an application of ~ is D. For instance, the strict-
ness of the list building operator ‘:’ may be defined using

a predicate sp-cons (D, X, Y) such that sp.cons (e, X, Y)
succeeds only with X = e and Y = e; sp-cons (d, X, Y) and

sp_cons (n, X, Y) succeed for any values of X and Y.

For each user-defined function ~, we derive a clause defin-
ing SP ~ corresponding to each equation defining j, based on

the demand propagation properties of the two basic con-

structs: function composition (application) that is used to
define expressions, and pattern matching that guides the se-

lection of the appropriate equation. Let ~(g(z)) be a func-

tion application on the rhs of some equation. The strict-

ness property of this application is given by the conjunction
Spt (D, D1) , Spg (Dl, X), where D represents the demand

on ~(g(x)), X represents the demand on x and D1 represents
the demand placed on g(x) by the application of ~. The
demands on the variables of a rhs expression are transferred
to the demands on the arguments of the lhs by interpreting
the pattern matching operation. For instance, consider a
position on the lhs with a pattern x : ZS. If the demand

flow is such that the evaluation of the rhs expression places
an e-demand on both z and XS, then we can conclude that

the evaluation of this equation places an e-demand on x : XS.

2It should be noted that the strictness analysis of [37] used here
generalizes Mycroft’s strictness analysis [26] to non-flat domains.

119

P ~(tl, t2,..., tn)c]c] +

f[t] a-+

z [1,,12] -+

L [q(tl, t2,tk)] +

z[x=t] +

gpP(Xl, X2,..., Xn) :-

& [tl] XI, ~ [tz] x2,..., ~ [t~]Xn, L [c] D.

iff (a, al, cw,ak)

where{ al, 042, . . . , a,}= Vars(t)

L [11], z [12]

let

{a,, a,,... }ak} +

in

s [tl]cl’~,& [t2]
gpq(al,crz,ak)

s [t]7X

GetNewVariableso

Crz, ..., s [tk] O’k,

Figure 1: Formulation of Groundless Analysis

gp-ap(Xl ,X2,X3)
iff(Xl) ,

ap([l, Ys, ys).
ap([XIXsl, Ys, [X IZsl) :-

ap(Xs, Ys, Zs).

(a)

Figure 2: The ap program (a),

The effect of mat thing an input expression with the pattern

z : xs can be described by using a predicate pm-cons (D, X,

Xs) such that pm-cons (D, e, e) succeeds only with D = e,
while pm-cons (D, X, Xs) succeeds with D = d whenever ei-

ther X or Xs is not bound to e.
The construction of strictness predicates from an input

functional program is given in Figure 3. As in Figure 1,
each variable z in the source program is associated with a

unique variable I-Z in the target program. In addition to the
Horn clauses generated by the rules in Figure 3, for each

user-deiined function symbol ~ we derive one clause ‘spf (n,
xl, x2, h) .‘ to handle the propagation of n-demand

that arises due to non-strictness of functions.
The strictness predicates thus derived for the example

program in Figure 4a is given in Figure 4b. The query
sp.ap (e, X, Y) has only one solution, with X = e and Y
= e, indicating that the function ap is ee-strict in both its
arguments. On the other hand, sp-ap (d, X, Y) has two

solutions, {X = e, Y = d} and {X = d, Y = n}, indicating that
up is old-strict in the first argument, but not in the second
argument.

Efficiency Issues In the formulation of strictness, we have

treated the output program as a definite logic program, and
correctness was based on the minimal-model semantics. In
essence, the order of the lit erals in the rhs of clauses, as well

as the order of clauses themselves, is irrelevant to the sound-
ness of the analysis. However, note in Figure 3 that, apart
from the fact that & generates sp predicates while P gener-
ates pm predicates, ~ and P differ only in the order of the
literals in the output conjunction. This follows from the ob-
servation that while the demand flows top-down through the
rhs expressions (i. e., from an expression to its components),

iff (X2 ,X3) .

gp-ap(Xl ,X2,X3) :-
iff (Xl ,X,XS) ,
iff(X3, X,Zs) ,
gp-ap(Xs ,X2 ,Zs) .

(b)

and its abstraction gp-ap (b).

evaluation extents flow bot t em-up through the pattern in

the lhs. The order of literals encodes this flow information,

and significantly improves the eficiency of the resultant pro-

gram by reducing backtracking.

4 Implementation and Experimental Results

Once the Horn clauses have been generated according to
the analysis formulation of the previous section, they can
be evaluated directly to produce the results of the analysis

by any logic programming system that guarantees complete-
ness. The straightforward approach is to compile the clauses

just as any other logic program. However, for practical anal-

ysis, we must consider all of the costs involved, including the

time required to prepare the rules for evaluation. We assess
the performance of the analysis implementations using the

following metrics corresponding to the different phases of
analysis.

Preprocessing time The total time required to prepare
the source program for analysis, including the time
required to transform the program into the logical rules
to be evaluated and the time to “compile” the logical

rules for evaluation (e.g., full compilation into WAM
code, or ssserting the rules as dynamic code).

Analysis time The total time required to evaluate the log-

ical rules to yield their minimal model.

Collection time The time required to extract the results
of the analysis.

3In a goal-oriented set-at-s-time evaluation (ss in bottom-up eval-
uation with Magic Sets), the reduction in backtracking corresponds
to reduction in the size of the joins,

120

t[z] a-+
P [c(tl, t2,.,., tk)] c1 +

SPf(D, xl, Xn). –

& [e] D, P [tl]Xl, P [tz]X2,..., P [tn] Xn.

let

{a,, cY2,..., CV1} + GetNew Variubleso

in

spf(cY,al,cY2, . . . ,ffl),

8 [cl] CVI, t’ ~e2_j CV2,..,, & [e~l CYJ

7==0’

let

{crl, a2,... , CYk} + GetNewVariableso

in

P [tl] al, P [t2] Crz,..., P [tk] CYk,
prnC(a,w,cz2, .,. ,ak)

T.=CY

Figure 3: Formulation of Strictness Analysis

sp-ap(D, Xi, X2) :-
Tys = D,

pm-nil (Xl), Tys = X2.
ap(nil, gs) = gs sp_ap(D, Xl, X2) :-

ap(z :zs, ys) = x :ap(xs, gs) sp-cons(D,Dl,D2), Tx = Dl,

sp-ap(D2,Txs ,Tys),
pm-cons(Xl, Tx, Txs), Tys = X2.

sp-ap(n,Xl,X2) .
(a) (b)

Figure4: The apperad program: (a) Concrete program, and (b) Abstract program

The total of the three times listed above is the overall anal-
ysis time, and this will betheprimary indicator of theprac-
ticality of our analysis implementations.

When all of the above costs are taken into account, it
is not clear that full compilation of the rules for evaluation

is the best approach. An alternative is to compile the rules

dynamically (assert) andinterpret them (through call/iin
Prolog). Although it may not be obvious at first, the lat-
ter method turns out to be the better choice. As will be

shown in Sections 4.1 and 4.2, preprocessing time is gener-

ally much greater than analysis (evaluation) time, so that
keeping preprocessing time as low as possible is critical to

good overall analysis times. When reconsider that theolo-

gical rules generated for logic program analysis resemble the

original logic program, it becomes apparent that compiling
those rules for fastest evaluation may itself take as much

time (or even more, when initial transformation time is in-
cluded) decompiling the original program itself. By loading
the analysis rules as dynamic code, preprocessing time is
reduced substantially, at some cost in evaluation time due

to the overhead of interpretation (call\ l). However, even
using this interpretation approach, the evaluation times we
observe are generally low compared to preprocessing time.

The last performance metric, collection time, is inde-
pendent of the evaluation approach. For either full com-
pilation or interpretation the calls occurring during evalua-
tion and the computed returns are stored in a table using

the same tabling mechanisms. When the analysis phase is

completed, there maybe multiple calls and/or answers that

must be combined into unique analysis results. For exam-
ple, in the Prop formulation of groundless analysis, if the
return table for some predicate p/3 contained two answers

p(true ,false, true) and p(true, true, false), they would
be combined into the single result p (true, f alse, f alse).

At first glance, our use of an enumerative representa-

tion of boolean formulae may seem to be inefficient. Many

implement ations [10, 40] use Bryant’s Decision Diagrams

(BDDs) [6] to represent boolean formulae compactly. How-
ever, experimental results show that our analysis times are

very competitive. This effect is due to the underlying en-

gine which computes fix points incrementally: computing in
one iteration using the change in results (delta-sets, in de-

ductive database terms) from the previous iteration, The
apparently inefficient represent ation we use actually allows

for efficient computation of the delta-sets.

4.1 Performance of Groundless Analysis

Table 1 shows performance measurements for Prop-based
groundless analysis in XSB on a set of benchmarks from
[40]4. The column labeled “Compile time increase” shows

the ratio of total analysis time to total compilation time

(with no analysis) in XSB, and indicates the increase in

4Measurements were taken on a Sun SPARCSt at ion 10/30, with
64M memory, running SunOS version 4.1.3 and XSB version 1.4.2,
The machine configuration was chosen to match that used by [40],

121

Program Program size Time sec.) Compile time Table space

(lines) Preproc. Analysm ColIectlon Total increase (70) (bytes)

Cs 182 0.31 0.11 0.15 0.57 22.1 8056

Disj 172 0.27 0.03 0.10 0.40 26.9 5768

Gabriel 122 0.20 0.05 0.11 0.36 43.6 6912

Kalah 278 0.48 0.06 0.23 0.77 37.4 10580

Peep 369 0.84 0.16 0.09 1.09 23.4 5800

PG 53 0.10 0.01 0.02 0.13 31.0 2332

Plan 84 0.14 0.01 0.03 0.18 30.8 2888

Pressl 349 0.62 0.38 0.82 1.82 59.5 29400

Press2 351 0.60 0.41 0.83 1.84 60.7 29400

QSort 21 0.04 0.00 0.01 0.05 33.3 916

Queens 33 0.04 0.00 0.01 0.05 27.8 976

Read 443 0.72 0.60 0.70 2.02 64.4 26528

Table 1: Performance of Prop-based groundless analysis in XSB

System] CS I DLs.j I Gab. \ Kalah I Peep I PG I Plan I Pressl I Press2 I QSort I Queens I Read

XSB I 0.57 I 0.40 I 0.36 \ 0.77 I 1.09 I 0.13 I 0.18 I 1.82 I 1.84 1 0.05 I 0.05 2.02
I GAIA I 1.34] 1.01 0.47 I 0.93 \ 1.16 I 0.16 I 0.12 I 5.96 I 6.03 I 0.05 I 0.04 1 1.66 1

Table 2: Comparison of XSB and GAIA

compilation time that could be expected if groundless anal-

ysis were included as a phase of compilation. In all cases,
total analysis time is less than compilation time, indicating
that simple, high-level analysis implementations can indeed
be practical. The table space used during analysis is given in

the last column, and affirms the practicality y of the analysis.
Table 2 compares the total analysis time for XSB with

analysis times reported for GAIA [40] on the same bench-

marks. It should be noted that the times given for XSB

include the time needed to extract all results from the in-
t ernal representation (the tables), while those for GAIA do
not. The results obtained on the two systems are identi-

cal, since they implement the same analysis. It is indeed
encouraging to note that our high-level implementation in

a general purpose system not only performs well enough

to be practical, but compares very well with a fast, highly

optimized C-based system designed specifically for abstract
interpret ation.

4.2 Performance of Strictness Analysis

Table 3 reports the performance of strictness analysis in
XSB5. The programs were taken from the benchmarks for
EQUALS [21], and include those translated from the bench-
marks in [16]. The preprocessing times include the time
to compute and output the logic rules for strictness from
EQUALS programs and to read and load these rules into the
XSB system. Thus the total time represents the increase in

compilation time due to strictness analysis. The analyzer
processes about 200 to 350 source lines per second. The to-
tal time to perform the analysis is about 570 of time taken

by ghc, the Glasgow Haskell Compiler, to compile (without
analysis or optimization) an equivalent program written in
Haskell. The speed of the analysis and its space behavior
provide strong evidence of its practicality.

Observe from the table that the preprocessing times once
again dominate the total analysis times, except for the pro-
gram pcprove. The analysis times are higher for pcprove

5Measurements were taken on a Sun SPARC LX with 64M mem-
ory, running SunOS version 5.4 and XSB version 1.4,2,

for Prop-based groundless analysis

mainly due to a characteristic of the formulation (see Fig-

ure 3): deep nesting of function applications result in ex-
cessively long Horn clauses. This, in conjunction with the

enumerative definition of base functions, leads to deep back-
tracking. However, that the occurrence of demand variables

is highly localized means that tabling intermediate results
(thereby eliminating the existentially quantified demand
variables) will reduce backtracking, thereby potentially im-

proving analysis times. Such an optimization, called supple-
rn entarg magic sets [4] is performed in deductive databases,

and XSB offers an analogous (compile-time) optimization
called supplementary tabling. However, the effectiveness of

this optimization in reducing analysis time remains to be
established.

5 Beyond Enumerative Analyses

The underlying representation used in the implementations

of groundless and strictness analyses is enumerative. Al-
though enumerative representations may be efficient for small

domains, performance may significantly degrade when the

domain sizes increase. The results of [10] show that even
when a particularly efficient enumerative representation, such
as a BDD [6] is used, analysis times increase with increases in
domain size. In contrast, analyses based on non-enumerative
represent ations such as symbolic constraints show little re-
duction in performance due to increase in the size of the

underlying domain [27]. In this section, we describe how
such an analysis can be implemented efficiently in XSB.

The abstract domain is the set of all terms of depth k
or less, constructed using the function symbols that occur
in the program, a special O-ary symbol -y and a countable
set of variables. The symbol y is used to represent the set

of all ground terms. The concretization function maps each
abstract term t to the set of concrete terms S, such that for

each s 6 S, either (i) t is a variable, or (ii) t= v and s is
ground, or (iii) the roots of t and s are identical and each
subt erm of s is a concretization of the corresponding sub-
term in t. The abstract term can be viewed as a constraint,

with the symbol y representing a membership constraint

122

Program

eu

event

fft
listcornpr

mergesort

nq

odprove
pcprove

quicksort
strassen

Program

Cs

Disj
Kalah

Peep
PG

Plan

QSort
IJueens
Read

Program size

(lines)

67

384
343
241
65
90

160
595

70
93

0.67
0.63
0.75
0.11
0.20
0.39
1.01
0.10
0.09

Times

X@EG-

0.03
0.63
0.19
0.07
0.02
0.12
0,17
1.60
0.03
0.08

sec.)

CollectIon IT Otal

1
0.01 0.16
0.08 1.38
0.06 0.88
0.02 0.84
0.01 0.14
0.02 0.34
0.02 0.58
0.10 2.71
0.01 0.14
0.01 0.18

Table 3: Performance of Strictness Analysis in XSB

Time
~

0.16
0.14
0.24
0.44
0.05
0.08
0.02
0.03
0.36

Xiajm
0.03
0.03
0.05
0.08
0.01
0.01
0.01
0.00
0.25

cc.),,
CollectIon

0.07
0.06
0.11
0.05
0.02
0.02
0.02
0.01
0.43

Tmr
0.26
0.23
0.40
0.57
0.08
0.11
0.05
0.04
1.04

70 Compile

Time

16

23
29

18
29
29
56

33
50

Table space

(bytes)

2852

22056

15780
4688

2332

8912
3776

25972
2660
2760

~
(bytes)

12988
9552

17068
12784
4136
5324
1684
1740

52508

Table 4: Performance of groundless analysis with term depth abstraction in XSB

(constraining a term to the set of all g-round terms), and the secruences by extrap elating the it erat es. The new iteration
other symbois representing equality ~onstraints. ‘‘

Abstract unification unifies two abstract terms up to

depth k, with -y unifying with any ground term. Note that
abstract unification is different from the unification opera-
tion provided by the underlying engine; hence we have to

implement abstract unification at a higher level. Table 4
shows performance measurements for groundless analysis

with tem depth abstraction in XSB6 on the set of bench-
marks used in Section 4.1.

6 Discussion

6.1 Analyses over Infinite Domains

It should be noted that the abstract domains used in all

analyses described thus far are finite. Below, we describe
strategies to handle infinite domains, including those with

infinite ascending chains.

Widening Consider the evaluation of the fix point of a func-
tional F, over a domain D. An iterative technique to find

fix points computes a sequence of ,iterates XO, Xl,... such
that XO = l.~ and Xi+l = &’(X’). The iteration process

terminates when X’ = Xi+l. If the domain D has infinite
ascending chains, iteration may not terminate even when F
is monotonic. For analysis over such domains, termination

is ensured by using “on-the-fly” approximation operations

such as widening [12]. Intuitively, we use a widening op-
erat or to accelerate the convergence of fix-point iteration

6 Me=ur,ment, ~er~ t~ken cm a Sun SPARCSt ation Zo with 64M

memory, running SunOS version 5.3 and XSB version 1.4.2.

sequence is ‘such that Xi;l = Xi V F(X’), where V is

the widening operator. See [11] for a formal definition of
widening operation and the requisite properties that ensure

termination of the iteration sequence.
In the context of tabled evaluation, widening operations

require (1) the knowledge of other returns already present in
the table, and (2) a mechanism to modify any or all of the re-

turns in the table. Although this can be accomplished using
existing low level system primitives, a high level abstraction

of widening will enable infinite domain analyses to be imple-

mented as directly ae finite domain analyses. Operations for

aggregation over sets, provided by many deductive database
systems, have exactly the same requirements, and we believe
that widening can be implemented along the same lines.

Constraints In a logic programming system, constraint op-

erations can be implemented using the programming prim-

itives provided by the system. Thus, the programmability

of the system not only provides a way to control the ef-
ficiency of the resulting analyses (see Section 3), but also

permits implementation of a larger class of analyses. A case
in point is the groundless analysis using a constraint-baaed
representation, described in Section 5.

It should be noted that the methods described in this

paper are not restricted to analyses where the size of con-
straints are fixed a priori. For instance, consider Hindley-

Milner type analysis [18, 24] for functional programs, where

the type of functions in the input program is formulated

as the solution to type equations, which are equations over
the domain of equality constraints, The type equations are
nonrecursive, since any recursion in the input program is
eliminated using an explicit fix-point operator. Note that

123

tabled evaluation is not needed to solve the nonrecursive
type equations. Indeed, the only requirement is that occur-

check be performed by the unification operation. In case
the unification operation provided by the underlying engine
does not meet this condition, unification with occur-check
can be easily programmed at a higher level. In fact, the ab-

stract unification operation of the depth-bounded constraint
analysis of Section 5 performs occur-check. Thus, a straight-

forward implementation of the logical formulation is not lim-
it ed to only finite-domain analyses. However, whether such

an implementation of the Hindley-Milner type analysis can
be practical remains to be seen.

6.2 Impact of Engine Optimization

Answer Collection Using generic aggregation operations,
such as those typically provided by deductive database sys-
tems, answer collection can be implemented very simply and
at a high level. Efficiency of these operations depends on

the tabling primitives provided by the system, as well as
the scheduling strate~v used to return answers to tabled

predicates. W; are in~~stigating the impact of breadth-fist
scheduling strategies on aggregation. It should be noted

that such strategies are being sought mainly to improve the
efficiency of the system for database programs [15]. This il-

lustrates one of the advantages in formulating analysis prob-
lems as logic programs: the analyzer can benefit directly
from optimization to the evaluation techniques motivated

by the application of the underlying system to problems in

other areas.

Bottom-up Analysis Top-down analyses benefit from a goal-
directed evaluation strategy. This benefit is clear from the

implementation: the tabling mechanisms enable the com-
putation of input and output modes in one analysis pass
without requiring transformations such as Magic (e.g., [8]).
However, such goal orientation may lead to inefficiencies in

bottom-up analyses, especially when variant checks are used
for tabling. For instance, while evaluating logic programs

derived for bottom-up analysis, open calls (i.e., calls of the

form P(XI, X2), where Xl and X2 are variables) are even-
tually made. Moreover, many particular calls, (i. e., of the

form p(tl, tz) where tlor .tz are non-variables) maybe gener-
ated. For each predicate in the program, two cases naturally

arise: (1) the open call is encountered before any particular
call (forward subsurnption), and (2) some particular calls
are encountered before the open call (ba ckzsa rd subsurnp-
tion). In a tabling system based on variant checks, answers
for particular calls are recomputed instead of reusing the

answers for the open call.
Recently, we completed the implementation of an engine

that exploits forward subsumption at a relatively low cost
[30]. At present, it is unclear whether backward subsump-

tion can be exploited as effectively. Nevertheless, bottom-up
computations can be performed efficiently by using a simple
strategy that uses forward subsumption as follows. On the

first call to a tabled predicate, we generate am open call,

since we know that open calls will eventually be made. For-

ward subsumption can now be used to return the answers

to any specific call. The effectiveness of this strategy is cur-

rently under evaluation.

7 Related Work

As mentioned in Section 2, a number of analyses for logic

programs have been formulated in terms of rules. Of di-
rect relevance are the works where such a formulation has

been used in an implementation, as in [14, 8]. The use of
extension tables to compute fix points, and the approach
of analyzing the program by executing an abstract program

were presented in [14]. However, the technology was not

mature enough at that time to study the practicality of the
approach. Our formulation of the l-%o~domain analysis is

based on the formulation in [8], where magic-set transforma-
tion was used to obtain call patterns. In contrast, we obtain

both call and answer pattens by simply executing the ab-
stract program on a (complete) top-down engine. Our im-

plementation establishes that analyses derived in this man-

ner are practical, and paves way for further investigation of
factors affecting practicality y, such as seeking the right bal-
ance between compilation and interpretation to reduce total

analysis time.
In [17], analyses are formulated in terms of solving Set

Constraints, and implemented using a special-purpose con-

straint solver. In [10], groundless and type analysis of logic

programs have been formulated as a constraint solving prob-
lem, and implemented using Toupie, a finite domain con-

straint solver. In the area of logic programming, many anal-

yses for logic programs have been implemented based on the

framework in [5]; generic tools for abstract interpretation,
such aa GAIA [22] and PLAI [25] have been implemented
and have evolved into well-optimized systems. In contrast,

in this paper, we investigated the use of a general purpose
logic programming system for solving analysis problems (ir-

respective of the application language) and its practicality.

In [31, 32], dataflow properties for imperative programs
have been formulated as database facts. The demand canal-

ysis problem is formulated as a query solved over such a
set of facts. Results in [31] suggest that a general purpose

system (Coral) takes about 6 times longer to evaluate the
queries, compared to a special purpose demand algorithm

implement ed in C. In [35] it is reported that XSB is roughly

a order of magnitude faster than Coral. In particular, for
the sample demand analysis program given in [32] we find

that it is indeed the case, leading us to believe that XSB can

be used to construct practical dataflow analyzers7. Fiu-ther
investigation is clearly needed.

8 Conclusion

Many program analysis problems can be cast in the form
of evaluating minimal models of a logic program. The re-

sults of the paper strongly suggest that practical analyzers
can be built from such declarative formulations with min-

imum effort using general purpose logic programming sys-
tems. Furthermore} we find that these systems offer suffi-

cient expressive power to formulate many common analyses.
Nevertheless, as with any general purpose system, carefully
exploiting the capabilities of the system is crucial to attain
good performance. There is reason to believe that the re-
sults of this paper will carry beyond functional and logic
program analyses. Such extensions are the subject of ongo-

ing research.

7It must be noted that the results presented in this paper were
taken using XSB v 1.4.2, which offers significant performance improve-

ment over earlier releases due to optimized tabling primitives (see

[2s]).

124

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

A.V. Aho, R. Sethi, and J.D. Unman. Compilers —

Principles, Techniques, and Tools. Addison Wesley,

1988.

H. Ait-Kaci. Warren’s Abstract Machine: A Tutorial
Reconstruction. MIT Press, Cambridge, Maas., 1991.

F. Bancilhon, D. Maier, Y. Sagiv, and J. Unman. Magic
Sets and other strange ways to implement logic pro-

grams. In ACM Symposium on Principles of Database
Systems, pages 1–15. ACM Press, 1986.

C. Beeri and R. Ramakrishnan. On the power of magic.

In ACM Symposium on Principles of Database Systems,

pages 269–283. ACM Press, 1987.

M. Bruynooghe. A practical framework for the abstract
interpretation of logic programs. Journal of Logic Pro-
gramming, 10:91–124, 1991.

R.E. Bryant. Symbolic boolean manipulation with or-

dered binary-decision diagrams. ACM Computing Sur-
oeys, 24(3):293–318, 1992.

W, Chen and D.S. Warren. Query evaluation under

the well-founded semantics. In ACM Symposium on

Principles of Database Systems. ACM Press, 1993.

M. Codish and B. Demo en. Analysing logic programs

using “Prop’’- ositional logic programs and a Magic
wand. In International Logic Programming Symposium,
pages 114–129. MIT Press, 1993.

P. Codognet and G. Fil& Computations, abstractions
and constraints. In International Conference on Com-
puter Languages, pages 155-164. IEEE Press, 1992.

M-M. Corsini, K. Musumbu, A. Rauzy, and B. Le
Charlier. Efficient bottom-up abstract interpretation

of Prolog by means of constraint solving over sym-

bolic finite domains. In International Symposium on

Programming Language Implementation and Logic Pro-
gramming, number 714 in Lecture Notes in Computer

Science, pages 75–91. Springer Verlag, 1993.

P. Cousot and R. Cousot. Abstract interpretation and
application to logic programs. Journal of Logic Pro-
gramming, 13:103-179, 1992.

P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In A CM
Symposium on Principles of Programming Languagesl

pages 84-96. ACM Press, 1978.

S. Debray. Static inference of modes and data depen-

dencies in logic programs. ACM Transactions on Pro-
gramming Languages and Systems, 11(3):418–450, July
1989.

S. Debray and D.S. Warren. Automatic mode infer-
ence for Prolog programs. In Proceedings of the Third
Symposium on Logic Programming, pages 78-88, 1986.

J. Freire, T. Swift, and D.S. Warren. Taking 1/0 seri-
ously: Resolution reconsidered for disk. Technical re-
port, Department of Computer Science, SUNY, Stony
Brook, 1996.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P.H. Hartel and K.G. Langendoen. Benchmarking im-

plementations of lazy functional languages. In Sympo-

sium on Functional Programming Languages and Com-
puter Architecture, pages 341-349. ACM Press, 1993.

N. Heintze. Set Based Program Araal@s. PhD thesis,
Carnegie Mellon University, 1992.

J. Hindley. The principal type-scheme of an object in
combinatory logic. Transactions of the American Math-
ematical Society, 146:29–60, 1969.

P. Hudak. A semantic model for reference counting and
its abstraction. In S. Abramsky and C. Hankin, editors,

Abstract Interpretation of Declarative Languages, pages
45–62. Ellis Horwood, 1987.

N.D. Jones. Automatic program specialization: A re-
examination from basic principles. In Partial Evacu-
ation and Mixed Computation, pages 225–282. North-
Holland, 1988.

0. Kaser, C.R. Ramakrishnan, I.V. Ramakrishnan, and
R.C. Sekar. EQUALS — a parallel implementation of
a lazy language. Journal of Functional Programming,
To appear.

B. Le Charlier and P. Van Hentenryck. Experimen-
tal evaluation of a generic abstract interpretation algo-

rithm for PROLOG. ACM Transactions on Program-
ming Languages and Systems, 16(1):35–101, January

1994.

K. Marriot and H. Sondergaard. Notes for a tutorial

on abstract interpretation of logic programs (unpub-
lished). In North American Conference on Logic Pro-
gramming, 1989.

R. Milner. A theory oft ype polymorphism in program-
ming. Journal of Computer System Sciences, 17:348-

375, 1978.

K. Muthukumar and M. Hermenegildo. Compile-time

derivation of variable dependency using abstract inter-

pretation. Journal of Logic Programming, 13:315-347,
1992.

A. Mycroft. Abstract Interpretation and Optimizing

Transformations for Applicative Programs. PhD the-
sis, University of Edinburgh, 1981.

C.R. Ramakrishnan, I.V. Ramakrishnan, and R.C.
Sekar. A symbolic constraint solving framework for

analysis of logic programs. In ACM Symposium on
Partial Evaluation and Semantics-based Program Ma-

nipulation, pages 12–23. ACM Press, 1995.

I.V. Ramakrishnan, P. Rae, K. Sagonas, T. Swift, and
D.S. Warren. Efficient tabling mechanisms for logic pro-

grams. In International Conference on Logic Program-
ming, pages 697–711. MIT Press, 1995.

R. Ramakrishnan, P. Seshadri, D. Srivastava, and

S. Sudarshan. The Coral user’s manual. Technical
report, Computer Sciences Department, Univerit y of
Wisconsin, Madison, 1993.

125

[30] P. Rae, C.R. Ramakrkhmm, and I.V. Ramakrishnan.
A thread in time saves tabling time. Technical report,

Department of Computer Science, SUNY, Stony Brook,
1996.

[31] T. Reps. Demand interprocedural program analysis us-
ing logic databases. In R. Ramakrishnan, editor, Ap-

plications of Logic Databases. Kluwer Academic, 1994.

[32] T. Reps. Shape analysis as a generalized path prob-

lem. In ACM Symposium on Partial Evaluation and
Semantics-based Program Manipulation, pages 1–11.
ACM Press, 1995.

[33] T. Reps, M. Sagiv, and R. Wilhelm. Solving shape-

analysis problems in languages with destructive updat-

ing. In ACM Symposmrn on Principles O! Programming
Languages. ACM Press, 1996.

[34] R. Rohmer, R. Lescoeur, and J.-M. Kersit. The Alexar-

der method, a technique for the processing of recursive

axioms in deductive databases. New Generation Com-
puting, 4(3):273–285, 1986.

[35] K. Sagonas, T. Swift, and D.S. Warren. XSB as an

efficient deductive database engine. In ACM SIGMOD
Symposium on Management of Data. ACM Press, 1994.

[36] K. Sagonas, T. Swift, and D.S. Warren. The XSB pro-

grammer’s manual, Version 1.4.2. Technical report, De-
partment of Computer Science, SUNY, Stony Brook,

1995.

[37] R.C. Sekar and I.V. Ramakrishnan. Fast strictness

analysis based on demand propagation. ACM Transac-
tions on Programming Languages and Systems, 17(6),

November 1995.

[38] H. Tamaki and T. Sate. OLDT resolution with tabu-

lation. In International Conference on Logic Program-

ming, pages 84–98. MIT Press, 1986.

[39] J.D. Unman. Principles of Database and Knowledge-
base SyStems, Volume 11. Computer Science Press,

1989.

[40] P. Van Hentenryck, A. Cortesi, and B. Le Charlier.

Evaluation of the domain Prop. Journal of Logic Pro-
gramming, 23(3):237–278, 1995.

[41] P. Van Roy, B. Demoen, and Y. D. Willems. Improv-
ing the execution speed of compiled Prolog with modes,
clause selection and determinism. In Theory and Prac-

tice of Software Development, pages 111–125, March

1987.

126

