
An Optimizer for Ada - Design, Experiences and Results

Birgit Schwarz, Walter Kirchgiissner, Rudolf Landwehr

GMD Forschungsstelle an der Universit&t Karlsruhe
Haid-und-Neu-Str. 7, D-7500 Karlsrube 1, Germany

Abstract

In this paper we describe the design of a global machine in-
dependent low level optimizer for the Karlsruhe Ada Com-
piler. We give a short overview on the optimizations and
data structures used in the optimizer as well as some experi-
ences with the optimizer. Detailed measurements are prcl
vided for a collection of benchmarks. The average improve
ment of code speed is 40%.

1. Introduction

This paper describes our experiences with the development
of a global optimizer that was embedded in the Karlsruhe
Ada Compiler [PersXS]. The optimizer is designed to be
machine independent (and therefore portable). It is running
on the tree structured low level intermediate language of the
compiler and allows free and interactive combination of the
implemented optimizations. This permits experiments with
the choice and the ordering of the optimizations.

In the following we present the data structures and the data
flow information used by the optimizer and the implemented
optimization techniques. These are local and global com-
mon subexpression elimination, strength reduction, induction
variable elimination, dead assignment elimination, transfor-
mations of expressions and of the flow graph, mapping of l*
cal variables to registers, propagation of constants, variables
and expressions, and elimination of checks and dead paths.
Our algorithms used for global common subexpression elimi-
nation and strength reduction are closely related to those
described in]MoRe79] and [Chow83]. If a timespace

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM 0-89791-269-l/88/0006/0175 $1.50

Atlanta, Georgia, June 22-24, 1988

tradeoff exists, time optimizations are considered to be more
important.

Then we describe how the optimizer is parameterized with
target dependencies and which requirements the code gen-
erator has to fulfill.

In the last chapter we give some results concerning t,he ef-
fectiveness and the order of the applied optimizations. The
advantages of the choice of a tree structured intermediate
language are discussed.

The appendix contains a detailed example which demon-
strates the effects of the optimization techniques described.

2. Structure of the Optimizer

The optimizer is a separate pass in the compiler. It is run-
ning on the low level intermediate language AIh/i [JaLa82],
i.e. it transforms AIM to ATM. First the control flow graph
(with basic blocks as nodes) is constructed. After that data
flow analysis (expression numbering and object management,
computation of local and global information) is done. The
optimizations are independent of each other (in some cases
data flow analysis has to be repeated). They can be interac-
tively combined. At the end an AIM program is constructed
from the control flow graph and passed to the code genera-
tor.

The optimizer is written in Ada. It consists of approximate
ly 13-000 lines of code (without comments, test output and
blank lines).

3. Data Structures

In this chapter we briefly describe the data structures used
by the optimizer.

175

3.1 The Intermediate Language

AIM [JaLa%] is a low level but target machine independent
intermediate language. An AIh4 program is a sequence of
routines. Each routine is a sequence of basic blocks which
are sequences of statements. A statement is represented by
an attributed expression tree. The top level operators of
each tree represent the only operations with side effects on
the values of objects. Control flow is expressed with
branches and labels.

The operations available in AlM are similar to operations
commonly found on target machines, e.g. integer and float
arithmetic. Address paths are visible, i.e. all calculations
for selection and indexing are described by expression trees.
Checks are integrated in the expressions that access a
checked value. This means that there exists a check operator
with one operand which is the value to be checked, an attri-
bute which indicates the relation and a second operand
which is the bound for the check. The check operator re-
turns the first operand as result or raises an exception.

9.2 The Control Flow Graph

The control flow graph is a partition of an AIM program
into basic blocks. Basic blocks contain only one label (at the
start) and one transfer statement (at the end). As local and
global data flow information is computed blockwise the
results of these computations are stored in the control flow

graph.

3.3 Management of Expressions and Objects

Aliasing is one of the main problems in optimizing com-
pilers. In AIM we have the concept of areas. An area is a
part of the storage. Two different areas are always disjoint.
An area can be a scalar variable, the heap for one pointer
type or a composite object. All AIM operations that access
the storage have an attribute indicating the areas that are
concerned.

The area attributes are computed by the transformation
phase (transforming the source oriented high level inter-
mediate language DIANA [GoWu83] to AIM) of the com-
piler. This phase also computes an attribute that indicates
whether the whole area is destroyed by an operation.

This is correct as long as no aliasing introduced by parame-
ters passed by reference occurs. Although not exactly de-
fined in [Ad&J, the intended interpretation of the Ada
reference manual seems to be that alias analysis need not be
done because Ada programs are err0neOu.s if the values of
variables are accessed after they have been altered by using
an alias name of this variable.

Expressions are numbered, i.e. each AIM tree is given a
number to be able to detect multiple occurrences of the
same expression and to handle sets of expressions. Two
AIM trees are given the same number if their evaluation
leads to the same result in case no area on which the expres-
sions depend is changed between the two evaluations.
Currently we assert this by giving the same number to AIM
trees that are syntactically identical or that are syntactically
identical after exchanging the operands of a commutative
operator. Two trees are syntactically identical if their sons
have the same number, if the root operators are identical
and if all attributes that are relevant for the value of the
tree have the same value. The expression number is stored
as an attribute of the numbered tree.

There is one module that does the numbering and the
management of expressions and areas. It computes all the in-
formation concerning the dependencies between expressions
and areas, e.g. which expressions depend on an area, which
expressions are subexpressions of an expression, which areas
are used by an expression, etc. It also determines whether an
exception can be raised by an expression.

4. Data Flow Analysis

In this chapter we describe the information computed by
data flow analysis. Data flow analysis is done in three lev-
els: local data flow analysis, global data flow analysis and
interprocedural data flow analysis. Problems introduced by
tasking and by the exception handling concept of Ada are
also handled on the level of data flow analysis.

4.1 Local Data Flow Analysis

Local data flow analysis computes the summary information
for one basic block. This is afterwards used to compute the
global data flow information.

For areas we compute the KILL and the PALIVE informa-
tion. KILL indicates whether there is an assignment in the
basic block that destroys the whole area. An area is
PALIVE (potentially alive) if its current value may be ac-
cessed by a content operation in the basic block or in an ex-
ception handler which might be reached by an exception
raised in the block.

For expressions we compute TRANSP, LAVAIL, LANTI-
CIP and LASSERT. TRANSP(b,e) is true (b is transparent
for e) if in the basic block b there is no operation that alters
the value of the expression e. LAVAIL(b,e) is true (e is lo-
cally available in b) if e is computed in b and if after the
last computation of e in b there is no operation that alters

176

the value of e. LANTICIP(b,e) is true (e can be locally an-
ticipated in b) if e is computed in b and if before the first
computation of e in b there is no operation that alters the
value of e. LASSERT(b,) t e 1s rue e can be locally asserted (
in b) if the predicate represented by the expression e can be
evaluated to true in b and if until the end of b there is no
operation which invalidates e. These predicates are checks
and equivalences introduced by assignments (e.g. v=a for
v:=a where a does not contain v). In addition LASSERT
contains predicates which can be easily derived from an ex-
pression (e.g. i>=O from i:=l) and which an earlier pass
has determined to be of interest.

4.2 Global Data Flow Analysis

With the help of the local data flow information we can
compute the global information AVAIL, ANTICIP, PA-
VAIL, ASSERT, and PALIVE. AVAIL, ANTICIP and PA-
VAIL are used for global common subexpression elimination,
code motion and strength reduction, ASSERT is used for
propagation of constants, variables and expressions, and for
elimination of checks and dead paths, and PALIVE (and
KILL) are used for dead assignment elimination and induc-
tion variable elimination.

AVAIL(p,e) says that at point p in the program the expres-
sion e is available, i.e. e is computed on each path from the
entry to p and between the last computations and p the
value of e does not change.

ANTICIP(p,e) says that at point p in the program the ex-
pression e can be anticipated, i.e. e is computed on each
path from p to an exit and between the first computations
and p the value of e does not change.

PAVAIL(p,e) says that at point p in the program the ex-
pression e is partially available, i.e. e is computed on at
least one path from the entry to p and between the last
computation and p the value of e does not change.

ASSERT(p,e) says that at point p in the program the predi-
cate represented by the expression e can be asserted on each
path from the entry to p.

PALIVE(p,a) says that at point p in the program the area a
is potentially alive, i.e. there exists a path from p to an
operation using the contents of a and between p and this
operation a is not killed. The PALIVE information can also
be used to inform the programmer of variables that might
be used before initialization. Only the potentially alive local
areas at the entry of the procedure need to be determined.

These predicates are only computed for the entry and the
exit points of basic blocks by solving a system of recursive
equations.

4.3 Interprocedural Data Flow Analysis

The optimizer allows the choice of three different ways of
handling the procedure calls:

The first is to make worst case assumptions, i.e. to assume
that the call of a procedure alters all expressions, uses all
areas and does not kill an area.

The second approach is to use visibility information. A
called procedure can only modify memory locations that are
visible to it or that may be visible for other routines it can
call. An important consequence of the visibility rules is that
the call of a global procedure cannot modify local variables
of the calling procedure except by parameter passing.

The third possibility (currently the default) is to compute a
summary information that indicates which areas are ac-
cessed by a content operation and to which areas a new
value might be assigned. This is done in a prepass by com-
puting the direct information of the procedures of the actual
module. For procedures in other modules or written in a dif-
ferent language the visibility information is used. Then with
the help of a call graph for the procedures of the actual
module the transitive closure is computed. This information
could still be improved if the summary information for pr+
cedures of other compilation units were kept in a data base
(not implemented).

4.4 Problems with Exception Handling and Tasking

As Ada comprises exception handling we have to take care
of expressions raising an exception. One way to handle this
problem would be to insert an edge from the point where
the exception can be raised to the corresponding exception
handlers (when an exception is raised, control is transferred
to the corresponding exception handler which is determined
by going back along the dynamic calling chain and searching
the first Ada block or procedure which has an exception
handler). This insertion of edges would introduce many ad-
ditional basic blocks and make data flow analysis very ex-
pensive. Therefore we decided to use another solution.

The first problem was that we had to assert that an assign-
ment to an area which is read in an exception handler could
not be eliminated. This is done by computing summary in-
formation which objects are alive in the exception handlers
and by adding these areas to the alive set of all the expres-
sions which might raise an exception.

The second problem was to prevent that expressions which
can raise an exception are moved out of (or into) an Ada
block with an exception handler (this could happen during
code motion and propagation). This has to be reflected by
the data flow predicates: At the begin of an Ada block with

177

an exception handler a new basic block starts and at the end
of an Ada block with an exception handler this basic block
ends. Then the ANTICIP information has to be modified in
such a way that an expression cannot be anticipated at the
exit of a basic block if one of the following basic blocks be-
longs to another Ada block. AVAIL and ASSERT are
modified in such a way that an expression is not available
(cannot be asserted) at the entry of a basic block if one of
the predecessor blocks belongs to another Ada block. The
same mechanism is used to prevent movements beyond syn-
chronization points of tasking constructs.

Our last problem was that the call of a procedure might
raise a user-defined exception. In this case expressions which
raise a predefined exception must not be moved beyond this
call. This problem can be solved by assuming that a call de+
troys all expressions which might raise a predefined excep
tion. Better results can be achieved if the called procedures
are analyzed during a prepass to determine whether they (or
a transitively called procedure) raise a user-defined excep
tion. Only calls of such procedures have to be considered as
destroying expressions that might raise predefined excep
tions.

5. Optimizations

In this chapter we give a short description of the techniques
used for optimization. All optimizations rely on the concept
that for each expression there exists a corresponding tem-
porary and that temporaries are mapped to registers by the
code generator. Whether the computation of an expression is
expensive enough to be kept in a register is decided by cost
functions (modelling the target dependencies).

5.1 Propagation

Propagation is based on the ASSERT information. ASSERT
is very closely related to the AVAIL information. It
comprises the AVAIL information for assignments and
checks. Additionally some predicates are derived (e.g.
p/=NULL at the point of an assignment p:=NEW...). For
each successor of a transfer statement ASSERT contains the
condition that is valid for this path.

The ASSERT information is used to propagate constants,
variables and expressions (if an assignment v:=expr or an
equality predicate v=expr are available at a point where v
is used, v can be replaced by expr). Checks that can be as-
serted are eliminated. Dead paths are recognized and elim-
inated if the negation of the path condition can be asserted.
For more details see [Kirc87].

5.2 Dead Assignment Elimination

Assignments are dead if the variable on the left hand side is
not used until the end of the program or until the next
operation that assigns a new value to the whole variable, i.e.
that kills the area. The PALIVE information contains the
information whether a path starting at the end of a basic
block contains a use of an area before it is killed. Such by
initializing a local PALIVE set with this information and by
always updating it when an area is used or killed, we can
recognize and eliminate dead assignments during a backward
traversal of the basic block.

5.3 Global Common Subexpression Elimination and Code
Motion

Moving invariant code out of loops and eliminating global
common subexpressions are considered as elimination of par-
tial redundancies. A computation of an expression is par-
tially redundant if it is partially available at this point (this
is true for loop invariant expressions and for the second
computation in the case of common subexpressions). Par-
tially redundant computations can be removed if the expres-
sion is made available by introducing computations of the
expression on paths leading to the partially redundant com-
putation and not yet containing a computation. This is done
by an improved version of the algorithm of Morel and Ren-
voise [MoRe79] (for more details, especially for a systematic
derivation of the data flow equations, see [S&88]).

They introduced a system of data flow equations which com-
putes a set of insertion points and a set of deletion points.
The algorithm guarantees that on each path over an expres-
sion that is inserted there is an expression that will be delee
ed, that between an insertion and a deletion point there is no
further insertion and that all deletions are safe, i.e. the ex-
pression is computed before the deletion point. So this op
timization is correct and does not introduce additional com-
putations at runtime.

In the context of a tree structured language, insertion of an
expression means inserting an assignment of the expression
to a temporary, and deletion of an expression means replac-
ing the expression by the use of the corresponding tem-
por ary .

The main advantage of this algorithm is that code motion
and global common subexpression elimination are handled in
a uniform way without the necessity of computing the loop
structure of the program. This advantage is also inherited
by the algorithm for strength reduction (see 5.4).

178

5.4 Induction Variable Optimitations

Strength reduction is considered as a special case of code
motion and therefore handled with an algorithm based on
the method introduced in chapter 5.3 (a similar approach
can be found in [Chow83]). To be able to move candidates
for strength reduction (for example i*4, a multiplication of
an induction variable with a constant) before a loop, the
TRANSP information is modified in such a way that for
these candidates induction assignments (e.g. i:=i+l) are ig-
nored. By this trick the candidates become loop invariant
and are replaced by uses of the corresponding temporaries,
and an assignment of the candidate to the corresponding
temporary is introduced before the loop. After the algorithm
of Morel and Renvoise the “errors” introduced by ignoring
the induction progressions have to be corrected, i.e. at each
point where the induction variable is altered the correspond-
ing progression of the temporary has to be inserted. At the
points where the expression has been replaced by the tem-
porary the checks which were part of the expression (e.g.
1 <=i<=lO) have to be reintroduced on the statement lev-
el (but without using the result).

After strength reduction it is often possible to get rid of the
induction variable if this is used only for initialization, in
checks on statement level or in conditions for the loop exit.
This is done by first replacing tests for the value of the in-
duction variable by the corresponding tests for the value of
the temporary (e.g. i<=lO by t<=40) and by propagating
the initial value of the induction variable into the initializa-
tion of the temporary. Then dead assignment elimination is
done with a modified data flow information for PALIVE
(reading of induction variables in induction assignments is
ignored). So if the only use of the induction variable was
the induction assignment, this assignment is eliminated.

As a summary, strength reduction and induction variable
optimizations are handled as special cases of redundancy el-
imination and dead assignment elimination. This is done by
modifying local properties of basic blocks, so no information
about the loop structure is required.

5.5 Local Optimizations

Local optimizations are optimizations that can be done by
considering one basic block at a time.

Local common subexpression elimination is done by two
passes over the program. The first pass is a backward pass
which for each AIM tree conlputes an attribute

USECOUNT. USECOUNT indicates how often the
corresponding expression is still used until the end of the
basic block or until the value of one of the operands

changes. In parallel this pass can do local dead assignment
elimination. The second pass is a forward pass where an ex-
pression that is used more than once before the value of one
of its operands changes (or before the end of the basic block)
is replaced by the use of a temporary. Before the first oc-
currences of the temporaries an assignment of the expression
to the temporary is inserted.

5.6 Expression Transformations

Arithmetic and boolean laws are used to do constant folding
and to simplify the expressions. Conditional gotos are
transformed to unconditional gotos if there exists only one
successor or if the value of the condition is known at com-
pile time. Another effect of expression transformations is
the normalization of expressions. Tree pattern matching is
used to find expressions that can be transformed.

5.7 Graph Transformations

The optimizer simplifies the flow graph whenever possible.
For example, basic blocks with only one predecessor are
fused with this predecessor if it has only one successor. Emp-
ty basic blocks (containing only a single goto statement) are
eliminated by connecting all the predecessors with the suc-
cessor. If conditional gotos are transformed to unconditional
gotos by the expression transformation, some basic blocks
may become unreachable and can be eliminated. The ad-
vantage of these optimizations is that the number of basic
blocks and jumps is reduced.

5.8 Mapping of Local Variables to Registers

Local scalar variables are mapped to registers by replacing
all assignments to the variable by assignments to a tem-
porary and all content operations on the variable by uses of
this temporary (the code generator will then map the tem-
poraries to registers). The local variables that are mapped
to temporaries are chosen by a cost function.

6. Handling of Target Dependencies

Although being performed on a target independent level the
effect of the optimizations is target dependent. The availa-
bility of resources or address modes can influence the success
of an optimization to a high degree. Therefore the optimiz-
ing algorithms are parameterized by cost functions and the
code generator has to fulfill some requirements.

179

6.1 Cost Functions

As the number of available registers and the costs of com-
puting an expression are highly machine dependent, the op-
timizer makes use of two cost functions. The first deter-
mines whether the computation of an expression is expensive
enough to put the expression into a register. This is done by
inspecting the expression tree (for exa.mple constants and
simple address computations are not kept in registers). The
second cost function chooses the local variables which are
mapped to registers. There is an upper limit on the number
of local variables that can be put into registers. Induction
variables have the highest priority, because it is assumed
that they occur in loops and are therefore very often used.
The other variables are chosen arbitrarily if they fulfill the
constraint that they need not be saved too often during pro-
cedure calls.

6.2 Requirements on the Code Generator

The code generator has to map temporaries to registers
since this is assumed by the optimizer and by the cost func-
tions. Because the optimizer is doing global optimizations,
the code generator has to do global register allocation. Oth-
erwise spill code would be introduced. In our compiler we
use a code generator that was generated by a code generator
generator (Jan&]. It does global register allocation by
graph colouring.

The success of the optimizations depends to a high degree on
the ability of the code generator to avoid spill code (and in-
directly on the cost functions). Otherwise the program can
be slower after optimization because spill code has been in-
troduced.

7. Experiences and Results

In this chapter we want to present our experiences wit.h a
tree structured intermediate language, some results on the
order of the optimizations and some measurements.

7.1 Ezperiences with the Tree Structure

The tree structure has shown to be very useful because some
optimizations, for instance common subexpression elimina-
tion and code motion can be done for arbitrarily complex
expressions. The same applies to expression transformations
because one tree contains the whole pattern to be con-
sidered.

The integration of checks in the expression was advanta-
geous for code motion because it guaranteed that the check
is moved together with any expression accessing the checked

value. On the other hand, strength reduction is more com-
plicated with integrated checks.

7.2 Order of Optimizations

There are some constraints on the order of the optimiza-
tions:

Expression propagation should only be done before common
subexpression elimination because it makes the program
slower (variables are replaced by more expensive expres-
sions). Nevertheless, expression propagation should be done
because it has a normalizing effect on the program, i.e. after
expression propagation there are more opportunities for
common subexpression elimination than before.

After propagation, it is useful to do structural transforma-
tions (in fact expression transformations are done together
with propagation in one pass over the program) because pr@
pagation provides more opportunities for constant folding.
There are also more possibilities for jump elimination be
cause the information on the values of conditions is better
after propagation. For new trees expression transformations
should be done because they have a normalizing effect and
make the trees smaller.

Another constraint is that it is dangerous to do code motion
after strength reduction because then some checks may be
separate from the use of the checked expression (see 5.4),
and therefore there is no more guarantee that the use of the
checked expression will not be moved before the check.

A problem is the ordering of check elimination and common
subexpression elimination (together with strength reduction
and induction variable elimination):

If check elimination is done first, opportunities for common
subexpression elimination may be destroyed. This happens if
checks are parts of common subexpressions but only the
check of the second computation is eliminated. In this case
the second computation will have an expression number dif-
ferent from the number of the first computation and is
therefore not recognized as redundant.

On the other hand, the replacement of an induction variable
in checks by the temporary of a candidate (after strength
reduction) introduces difficulties for the elimination of
checks. There are more opportunities for check elimination
in loops if the checked induction variable is altered by an in-
crement of 1 instead of an increment of a constant c, c>l
(cf. [Kirc87]).

So check elimination is currently done after strength reduc-
tion but before the replacement of the induction variable in
checks and conditions.

180

7.3 Measurements

The figures we give here are for a set of benchmarks origi-
nally collected by John Hennessy and then used to test the
optimizers of Chow [Chow831 and Powell [Powe84). It con-
tains a program that computes permutations with recursion
(perm), a recursive program solving the Towers of Hanoi
problem (towers), a program recursively solving the Eight
Queens problem (queens), a program computing the product
of two integer matrices (intmm) and a program to compute
the product of two real number matrices (mm), a program
that solves a puzzle about packing blocks into a cube (par-

tially recursive) (puzzle), a program that performs Quick
Sort (quick), a program for Bubble Sort (bubble), a program
that performs the recursive Insertion Sort in a binary tree
and checks the correctness of the insertions (tree), and a
program performing Fast Fourier Transformation (fft).

The execution times for the whole benchmark (Total) and
for the different subprograms have been measured with
several options (on a SIEMENS S7550). Checks are always
generated (but the compiler uses type information to avoid
the generation of checks).

The table below consists of two parts: results for single op
timizations and results for combinations of all optimizations.

For procedure calls, we use worst case assumptions or visi-
bility or summary information as indicated. The execution
time for the non-optimized code has been chosen as the
reference point (1.0).

In the first part, the results for the optimized code for some
selected optimizations are given. These are expression
transformation, graph transformation, constant propagation
together with check elimination and expression transforma-
tion (con& prop), global dead assignment elimination (gdae),
local dead assignment elimination (ldae), local common su-
bexpression elimination (lcse), mapping of local variables to
registers (lova), global common subexpression elimination
and code motion (gcse,cm), strength reduction together with
global common subexpression elimination and code motion
(gcse,cm,sr), strength reduction together with global com-
mon subexpression, elimination code motion and induction
variable elimination (gcse,cm,sr,ive), and finally local optim-
ization and mapping of local variables to registers (“cheap”).

In the second part, the results for three different arrange
ments of all optimizations are given (case A, B, and C).
For case C, which usually gives the best results, figures are
given for different levels of information for procedure calls.

Execution Times (normalized)

towers queens intmm mm puzzle quick bubble tree rrt Total Aver

not opt

expr transformation

graph transformation 1.0 1.0 1.0 .99 1.0 1.01 1.00 1.01 1.01 1.0 1.0 1.0

const prop summary .92 98 .a0 .85 28 133 .a2 56 .90 .77 .77 .82

summary 1 .96 .94 .99 1.0 .99 .99 .98 1.0 .98 1.0 1 .99 1 .98

visibility 92 .78 .95 .89 .91 .9a .a9 .a3 .97 .59 .a9 .a7

Idae visibility 1.0 1.0 38 .99 1.01 1.02 1.0 1.0 .99 .99 1.0 1.0

lova summary [.93 .98 .92 .94 .95 .89 .86 .94 1.0 .93 1 .93 1 .93

gc*,cm summary .a9 .93 1.03 .85 .89 .74 .92 .69 26 .87 .82 .a7

gcse,cm,sr summary .a6 .93 .a4 .49 .57 .69 33 53 .89 .57 .71 .73

gcse,cm,sr,ive summary 1 .81 .87 .a3 .50 .59 66 .89 .59 .a3 .58 1 .69 I .72

cheap opt visibility I .!%I .77 .77 90 .91 68 .74 .70 .91 .75 1 .78

full opt,A summary 58 64 .74 38 .47 .53 30 .44 .79 .59 36 38

full opt,B summary .73 .64 .73 .39 .52 .52 .59 .46 .75 .59 .57 .59

lull opt,C worst 92 .69 .79 .59 64 66 .67 .49 .81 .62 .67 .69

lull opt,c visibility .85 66 .76 .41 xl 33 330 .40 .79 .59 sa .61

lull 0ot.c summarv I .72 63 .73 38 .47 so .57 .41 .74 .59 I 55 I .57

181

In case C we are doing (in this order) expression transforma-
tion, mapping of local variables to temporaries, expression
propagation (with dead path elimination and expression
transformation), graph transformation, local common subex-
pression elimination, strength reduction (with global com-
mon subexpression elimination and code motion), variable
propagation (with check elimination, dead path elimination
and expression transformation), graph transformation, in-
duction variable elimination, local dead assignment elimina-
tion and local common subexpression elimination, and finally
global dead assignment elimination. Case A is identical to
case C, except that only constants are propagated instead of
expressions. In case B check elimination is done together
with expression propagation at the beginning rather than
after strength reduction (otherwise it is identical to case C).

For full optimization, the table shows a reduction of more
than 40% of execution time using interprocedural summary
information. Almost the same result can be achieved by con-
sidering only visibility information for procedure calls. So
the question arises whether it really is worthwhile to invest
much effort in the analysis of called procedures. Full optimi-
zation with worst case assumptions for procedure calls still
yields about 30%.

Local optimizations and mapping of local variables to regis-
ters which are very cheap to implement and to perform al-
ready account for an improvement of 22% (table entry
“cheap”).

At the beginning of our experiments, the effect of global op
timization was often spoiled because the code generator
could not map all temporaries to regist,ers. After some tun-
ing of the cost functions, most of the spill code could be
avoided. For the benchmark programs, in the case of full
optimization spill code is generated only for the Fast
Fourier Transformation (fft), and there mostly for floating
point subexpressions, where we considered recomputing to be
more expensive than spilling. In the case of single optimiza-
tion spill code is generated for the Eight Queens problem
(for global common subexpression elimination with code mo-
tion), for Puzzle (for global common subexpression elimina-
tion, for strength reduction and for strength reduction with
induction variable elimination) and again for Fast Fourier
Transformation (for local common subexpression elimina-
tion, for global common subexpression elimination, for
strength reduction, for strength reduction with induction
variable elimination and for local optimizations with map
ping of local variables to registers).

Our optimizer does currently not perform inline expansion
of subprograms. This technique provides more opportunities
for most optimizations (but a,lso for spill code) and avoids

the overhead of procedure calls. Since especially this bench-
mark contains many calls of small procedures within loops,
we did some inline expansion by hand on the Ada source.
The result was about 7% improvement in the case of full
optimization as well as for the not optimized code. So for
this benchmark the expected effect that inline expansion pro
vides more opportunities for optimizations did not hold.

Low level machine properties like caches or instruction pipe-
lines are not considered by our optimizer, but they can influ-
ence the execution time more than most of the single optimi-
zations. Properties of particular machine models also
strongly influence the effect of optimizations. When we exe-
cuted the benchmark programs on a SIEMENS 7590, the
fastest of this series of machines, we got an average im-
provement of 38%, and the improvements were differently
distributed over the single programs.

Although time optimization had precedence of space optimi-
zation the code size has been significantly reduced. The code
size after full optimization (case C, with summary informa-
tion) is 66% of the code size without optimization.

References

[Ada831

[Chow831

[GoWu83]

[Jans85]

[JaLa82]

[Kirc87]

IMoRe

The Programming Language Ada, Reference
Manual, ANSI/MIL-STD-1815A-1983, LNCS
155, Springer-Verlag Berlin 1983

F.C. Chow. A Portable Machine-Independent
Global Optimizer - Design and Measurements,
PhD Thesis, Dep. of Electrical Engineering and
Computer Science, Stanford University, CA,
Technical Report No. 83-254

G. Goes, W. Wulf, A. Evans, K. Butler. DIA-
NA - An Intermediate Language for Ada,
LNCS 161, Springer-Verlag Berlin 1983

H.-St. Jansohn. Automated Generation of Op
timized Code, PhD Thesis, GMD-Bericht Nr.
154, R. Oldenbourg Verlag Miinchen 1985

H.-St. Jansohn, R. Landwehr. A Code Genera-
tor for Ada, Universilt Karlsruhe, Fakultat
fur Informatik, Bericht 33/82

W. Kirchgassner. Assertion Propagation - A
New Approach to Program Optimization,
internal paper

E. Morel, C. Renvoise. Global Optimization by
Suppression of Partial Redundancies, CACM
22(2) (February 1979), 96103

182

[Pers83]

[Powe84]

[Schrss]

G. Persch, J. Uhl, H.-St. Jansohn, W.
Kirchgmner, R. Landwehr, M. Dausmann, S.
Drossopoulou, G. Goos. Ada Compiler
Karlsruhe - Overview, Proc. Ada
Europe/AdaTEC Joint Conference, Brussels
1983

M.L. Powell. A Portable Optimizing Compiler
for Modula-2, Proceedings SIGPLAN Confer-
ence on Compiler Construction, SIGPLAN No
tices 19(6) (June 1984), 310-318

F.W. Schroer. Districts : A Foundation for
the Suppression of Partial Redundancies, Ar-
beitspapiere der GMD, Nr. 304

Appendix: Example

The following example shows how the optimizer is step by
step transforming the AIM program for the scalar product.
For brevity AIM is represented in a condensed notation. Iv
denotes the contents of the variable v, and @ stands for ad-
dress addition. Checks are written as !, e.g. tv!<=lOO
means that the contents of v is checked against 100; if the
relation is valid the result is tv, otherwise constraint-error
is raised.

The Ada Program:

TYPE vector IS ARRAY (l..lOO) OF integer;
PROCEDURE scalar (a. b : Ill vector; r : OUT integer) IS

h : integer := 0;
BEG11

FOR i II 1 . . 100 LOOP
h := h l a(i) l b(i);

EID LOOP;
r := b;

EBD;

Step 1: The original AIM program

<< 6 >>

<< 3 a>

<< 5 >>

<< 4 >>

<< a >>

<< 1 >>

h:=O
IF l>lOO THEM 2 ELSE 3

i:=l
COT0 5
h:=th +

t(trO(((ti!<=lOO)!>=l)-1)*4) l

t(tb@(((ti!<=lOO)!>=l)-1)*4)
IF fi>=lOO THE1 2 ELSE 4
i:=li*l
COT0 5
r:=fh
COT0 1
RETURII

Step 2: Expression transformation, mapping of local vari-
ables to temporaries and graph transformation

<< 6 >> T26:=0
T27:=1
COT0 5

<< 5 >D 12tl:=fT26 l

~~~~~~~~tT27!~=100)!>=1>-1)~4) t 
t(tb@(((~T27!<=100)~>=1)-1)*4) 

IF fT%+=lOO THEE 2 ELSE 4 
<< 4 >> T27:=fT27+1 

GOT0 6 
<< 2 >> r:=tT26 

RETURl 

Step 3: Local common subexpression elimination 

<< 6 B> T26:=0 
T27:=1 
GOT0 6 

<< 5 >> T28:=(((~T27!<=100)!>=1)-1)*4 
126:=fT26 l t(ta@fT23) * t(tb@tT2R) 
IF fT27>=100 THEI 2 ELSE 4 

<< 4 >> T27:=fT27+1 
GOT0 6 

<< 2 >> r:=tT28 
RETURI 

183 



Step 4: Strength reduction (with global common subexpres- 
sion elimination and code motion) 

c< 6 >> T28:=0 

X27:=1 

128:=(fT27-1124 

133:=fbOf128 

132:=fa@tT28 

GOT0 5 

<< 5 >> void((TT27!<=100)!>=1) 

void((fT27!<=100)!>=1) 

ras:=yr2e l tt132 * ffI33 

IF fT27>=100 THEII 2 ELSE 4 

<< 4 >> T28:=fT28+4 

132:=fT32@4 

133:=fT33@4 

127:=fI27+1 

COT0 5 

<< 2 >> r:=fT26 

RETURII 

Step 5: Variable propagation (with check elimination, dead 
path elimination and expression transformation) 

C< 0 >> T26:=0 

127 : =l 

T28:=0 

T33:=fb 

T32:=ta 

GOT0 5 

<< 5 >> T26:=fT26 + ffT32 * ffT33 

IF fT27>=100 THEE 2 ELSE 4 

<< 4 >> 128:=fI28*4 

132:=~132@4 

133:=fT3301 

T27:=fT27*1 

GOT0 5 

<< 2 >> r:=fI26 

RETWI 

Step 6: Induction variable elimination (with dead assignment 
elimination) 

<< 6 >> T26:=0 

128 : =0 

T33:=fb 

T32:=fa 

GOT0 5 

<< 5 >a T26:=fT26 + lfT32 * If133 

IF tT28>=396 IHEI 2 ELSE 4 

<< 4 >> T28:=fT28*4 

r32:=tr32@4 

T33:=fT33@4 

COT0 5 

<< 2 >> r:=fT26 

RETuRn 

184 


