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Abstract 

In this paper we describe the design of a global machine in- 
dependent low level optimizer for the Karlsruhe Ada Com- 
piler. We give a short overview on the optimizations and 
data structures used in the optimizer as well as some experi- 
ences with the optimizer. Detailed measurements are prcl 
vided for a collection of benchmarks. The average improve 
ment of code speed is 40%. 

1. Introduction 

This paper describes our experiences with the development 
of a global optimizer that was embedded in the Karlsruhe 
Ada Compiler [PersXS]. The optimizer is designed to be 
machine independent (and therefore portable). It is running 
on the tree structured low level intermediate language of the 
compiler and allows free and interactive combination of the 
implemented optimizations. This permits experiments with 
the choice and the ordering of the optimizations. 

In the following we present the data structures and the data 
flow information used by the optimizer and the implemented 
optimization techniques. These are local and global com- 
mon subexpression elimination, strength reduction, induction 
variable elimination, dead assignment elimination, transfor- 
mations of expressions and of the flow graph, mapping of l* 
cal variables to registers, propagation of constants, variables 
and expressions, and elimination of checks and dead paths. 
Our algorithms used for global common subexpression elimi- 
nation and strength reduction are closely related to those 
described in ]MoRe79] and [Chow83]. If a timespace 
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tradeoff exists, time optimizations are considered to be more 
important. 

Then we describe how the optimizer is parameterized with 
target dependencies and which requirements the code gen- 
erator has to fulfill. 

In the last chapter we give some results concerning t,he ef- 
fectiveness and the order of the applied optimizations. The 
advantages of the choice of a tree structured intermediate 
language are discussed. 

The appendix contains a detailed example which demon- 
strates the effects of the optimization techniques described. 

2. Structure of the Optimizer 

The optimizer is a separate pass in the compiler. It is run- 
ning on the low level intermediate language AIh/i [JaLa82], 
i.e. it transforms AIM to ATM. First the control flow graph 
(with basic blocks as nodes) is constructed. After that data 
flow analysis (expression numbering and object management, 
computation of local and global information) is done. The 
optimizations are independent of each other (in some cases 
data flow analysis has to be repeated). They can be interac- 
tively combined. At the end an AIM program is constructed 
from the control flow graph and passed to the code genera- 
tor. 

The optimizer is written in Ada. It consists of approximate 
ly 13-000 lines of code (without comments, test output and 
blank lines). 

3. Data Structures 

In this chapter we briefly describe the data structures used 
by the optimizer. 
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3.1 The Intermediate Language 

AIM [JaLa%] is a low level but target machine independent 
intermediate language. An AIh4 program is a sequence of 
routines. Each routine is a sequence of basic blocks which 
are sequences of statements. A statement is represented by 
an attributed expression tree. The top level operators of 
each tree represent the only operations with side effects on 
the values of objects. Control flow is expressed with 
branches and labels. 

The operations available in AlM are similar to operations 
commonly found on target machines, e.g. integer and float 
arithmetic. Address paths are visible, i.e. all calculations 
for selection and indexing are described by expression trees. 
Checks are integrated in the expressions that access a 
checked value. This means that there exists a check operator 
with one operand which is the value to be checked, an attri- 
bute which indicates the relation and a second operand 
which is the bound for the check. The check operator re- 
turns the first operand as result or raises an exception. 

9.2 The Control Flow Graph 

The control flow graph is a partition of an AIM program 
into basic blocks. Basic blocks contain only one label (at the 
start) and one transfer statement (at the end). As local and 
global data flow information is computed blockwise the 
results of these computations are stored in the control flow 

graph. 

3.3 Management of Expressions and Objects 

Aliasing is one of the main problems in optimizing com- 
pilers. In AIM we have the concept of areas. An area is a 
part of the storage. Two different areas are always disjoint. 
An area can be a scalar variable, the heap for one pointer 
type or a composite object. All AIM operations that access 
the storage have an attribute indicating the areas that are 
concerned. 

The area attributes are computed by the transformation 
phase (transforming the source oriented high level inter- 
mediate language DIANA [GoWu83] to AIM) of the com- 
piler. This phase also computes an attribute that indicates 
whether the whole area is destroyed by an operation. 

This is correct as long as no aliasing introduced by parame- 
ters passed by reference occurs. Although not exactly de- 
fined in [Ad&J, the intended interpretation of the Ada 
reference manual seems to be that alias analysis need not be 
done because Ada programs are err0neOu.s if the values of 
variables are accessed after they have been altered by using 
an alias name of this variable. 

Expressions are numbered, i.e. each AIM tree is given a 
number to be able to detect multiple occurrences of the 
same expression and to handle sets of expressions. Two 
AIM trees are given the same number if their evaluation 
leads to the same result in case no area on which the expres- 
sions depend is changed between the two evaluations. 
Currently we assert this by giving the same number to AIM 
trees that are syntactically identical or that are syntactically 
identical after exchanging the operands of a commutative 
operator. Two trees are syntactically identical if their sons 
have the same number, if the root operators are identical 
and if all attributes that are relevant for the value of the 
tree have the same value. The expression number is stored 
as an attribute of the numbered tree. 

There is one module that does the numbering and the 
management of expressions and areas. It computes all the in- 
formation concerning the dependencies between expressions 
and areas, e.g. which expressions depend on an area, which 
expressions are subexpressions of an expression, which areas 
are used by an expression, etc. It also determines whether an 
exception can be raised by an expression. 

4. Data Flow Analysis 

In this chapter we describe the information computed by 
data flow analysis. Data flow analysis is done in three lev- 
els: local data flow analysis, global data flow analysis and 
interprocedural data flow analysis. Problems introduced by 
tasking and by the exception handling concept of Ada are 
also handled on the level of data flow analysis. 

4.1 Local Data Flow Analysis 

Local data flow analysis computes the summary information 
for one basic block. This is afterwards used to compute the 
global data flow information. 

For areas we compute the KILL and the PALIVE informa- 
tion. KILL indicates whether there is an assignment in the 
basic block that destroys the whole area. An area is 
PALIVE (potentially alive) if its current value may be ac- 
cessed by a content operation in the basic block or in an ex- 
ception handler which might be reached by an exception 
raised in the block. 

For expressions we compute TRANSP, LAVAIL, LANTI- 
CIP and LASSERT. TRANSP(b,e) is true (b is transparent 
for e) if in the basic block b there is no operation that alters 
the value of the expression e. LAVAIL(b,e) is true (e is lo- 
cally available in b) if e is computed in b and if after the 
last computation of e in b there is no operation that alters 
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the value of e. LANTICIP(b,e) is true (e can be locally an- 
ticipated in b) if e is computed in b and if before the first 
computation of e in b there is no operation that alters the 
value of e. LASSERT(b, ) t e 1s rue e can be locally asserted ( 
in b) if the predicate represented by the expression e can be 
evaluated to true in b and if until the end of b there is no 
operation which invalidates e. These predicates are checks 
and equivalences introduced by assignments (e.g. v=a for 
v:=a where a does not contain v). In addition LASSERT 
contains predicates which can be easily derived from an ex- 
pression (e.g. i>=O from i:=l) and which an earlier pass 
has determined to be of interest. 

4.2 Global Data Flow Analysis 

With the help of the local data flow information we can 
compute the global information AVAIL, ANTICIP, PA- 
VAIL, ASSERT, and PALIVE. AVAIL, ANTICIP and PA- 
VAIL are used for global common subexpression elimination, 
code motion and strength reduction, ASSERT is used for 
propagation of constants, variables and expressions, and for 
elimination of checks and dead paths, and PALIVE (and 
KILL) are used for dead assignment elimination and induc- 
tion variable elimination. 

AVAIL(p,e) says that at point p in the program the expres- 
sion e is available, i.e. e is computed on each path from the 
entry to p and between the last computations and p the 
value of e does not change. 

ANTICIP(p,e) says that at point p in the program the ex- 
pression e can be anticipated, i.e. e is computed on each 
path from p to an exit and between the first computations 
and p the value of e does not change. 

PAVAIL(p,e) says that at point p in the program the ex- 
pression e is partially available, i.e. e is computed on at 
least one path from the entry to p and between the last 
computation and p the value of e does not change. 

ASSERT(p,e) says that at point p in the program the predi- 
cate represented by the expression e can be asserted on each 
path from the entry to p. 

PALIVE(p,a) says that at point p in the program the area a 
is potentially alive, i.e. there exists a path from p to an 
operation using the contents of a and between p and this 
operation a is not killed. The PALIVE information can also 
be used to inform the programmer of variables that might 
be used before initialization. Only the potentially alive local 
areas at the entry of the procedure need to be determined. 

These predicates are only computed for the entry and the 
exit points of basic blocks by solving a system of recursive 
equations. 

4.3 Interprocedural Data Flow Analysis 

The optimizer allows the choice of three different ways of 
handling the procedure calls: 

The first is to make worst case assumptions, i.e. to assume 
that the call of a procedure alters all expressions, uses all 
areas and does not kill an area. 

The second approach is to use visibility information. A 
called procedure can only modify memory locations that are 
visible to it or that may be visible for other routines it can 
call. An important consequence of the visibility rules is that 
the call of a global procedure cannot modify local variables 
of the calling procedure except by parameter passing. 

The third possibility (currently the default) is to compute a 
summary information that indicates which areas are ac- 
cessed by a content operation and to which areas a new 
value might be assigned. This is done in a prepass by com- 
puting the direct information of the procedures of the actual 
module. For procedures in other modules or written in a dif- 
ferent language the visibility information is used. Then with 
the help of a call graph for the procedures of the actual 
module the transitive closure is computed. This information 
could still be improved if the summary information for pr+ 
cedures of other compilation units were kept in a data base 
(not implemented). 

4.4 Problems with Exception Handling and Tasking 

As Ada comprises exception handling we have to take care 
of expressions raising an exception. One way to handle this 
problem would be to insert an edge from the point where 
the exception can be raised to the corresponding exception 
handlers (when an exception is raised, control is transferred 
to the corresponding exception handler which is determined 
by going back along the dynamic calling chain and searching 
the first Ada block or procedure which has an exception 
handler). This insertion of edges would introduce many ad- 
ditional basic blocks and make data flow analysis very ex- 
pensive. Therefore we decided to use another solution. 

The first problem was that we had to assert that an assign- 
ment to an area which is read in an exception handler could 
not be eliminated. This is done by computing summary in- 
formation which objects are alive in the exception handlers 
and by adding these areas to the alive set of all the expres- 
sions which might raise an exception. 

The second problem was to prevent that expressions which 
can raise an exception are moved out of (or into) an Ada 
block with an exception handler (this could happen during 
code motion and propagation). This has to be reflected by 
the data flow predicates: At the begin of an Ada block with 
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an exception handler a new basic block starts and at the end 
of an Ada block with an exception handler this basic block 
ends. Then the ANTICIP information has to be modified in 
such a way that an expression cannot be anticipated at the 
exit of a basic block if one of the following basic blocks be- 
longs to another Ada block. AVAIL and ASSERT are 
modified in such a way that an expression is not available 
(cannot be asserted) at the entry of a basic block if one of 
the predecessor blocks belongs to another Ada block. The 
same mechanism is used to prevent movements beyond syn- 
chronization points of tasking constructs. 

Our last problem was that the call of a procedure might 
raise a user-defined exception. In this case expressions which 
raise a predefined exception must not be moved beyond this 
call. This problem can be solved by assuming that a call de+ 
troys all expressions which might raise a predefined excep 
tion. Better results can be achieved if the called procedures 
are analyzed during a prepass to determine whether they (or 
a transitively called procedure) raise a user-defined excep 
tion. Only calls of such procedures have to be considered as 
destroying expressions that might raise predefined excep 
tions. 

5. Optimizations 

In this chapter we give a short description of the techniques 
used for optimization. All optimizations rely on the concept 
that for each expression there exists a corresponding tem- 
porary and that temporaries are mapped to registers by the 
code generator. Whether the computation of an expression is 
expensive enough to be kept in a register is decided by cost 
functions (modelling the target dependencies). 

5.1 Propagation 

Propagation is based on the ASSERT information. ASSERT 
is very closely related to the AVAIL information. It 
comprises the AVAIL information for assignments and 
checks. Additionally some predicates are derived (e.g. 
p/=NULL at the point of an assignment p:=NEW...). For 
each successor of a transfer statement ASSERT contains the 
condition that is valid for this path. 

The ASSERT information is used to propagate constants, 
variables and expressions (if an assignment v:=expr or an 
equality predicate v=expr are available at a point where v 
is used, v can be replaced by expr). Checks that can be as- 
serted are eliminated. Dead paths are recognized and elim- 
inated if the negation of the path condition can be asserted. 
For more details see [Kirc87]. 

5.2 Dead Assignment Elimination 

Assignments are dead if the variable on the left hand side is 
not used until the end of the program or until the next 
operation that assigns a new value to the whole variable, i.e. 
that kills the area. The PALIVE information contains the 
information whether a path starting at the end of a basic 
block contains a use of an area before it is killed. Such by 
initializing a local PALIVE set with this information and by 
always updating it when an area is used or killed, we can 
recognize and eliminate dead assignments during a backward 
traversal of the basic block. 

5.3 Global Common Subexpression Elimination and Code 
Motion 

Moving invariant code out of loops and eliminating global 
common subexpressions are considered as elimination of par- 
tial redundancies. A computation of an expression is par- 
tially redundant if it is partially available at this point (this 
is true for loop invariant expressions and for the second 
computation in the case of common subexpressions). Par- 
tially redundant computations can be removed if the expres- 
sion is made available by introducing computations of the 
expression on paths leading to the partially redundant com- 
putation and not yet containing a computation. This is done 
by an improved version of the algorithm of Morel and Ren- 
voise [MoRe79] (for more details, especially for a systematic 
derivation of the data flow equations, see [S&88]). 

They introduced a system of data flow equations which com- 
putes a set of insertion points and a set of deletion points. 
The algorithm guarantees that on each path over an expres- 
sion that is inserted there is an expression that will be delee 
ed, that between an insertion and a deletion point there is no 
further insertion and that all deletions are safe, i.e. the ex- 
pression is computed before the deletion point. So this op 
timization is correct and does not introduce additional com- 
putations at runtime. 

In the context of a tree structured language, insertion of an 
expression means inserting an assignment of the expression 
to a temporary, and deletion of an expression means replac- 
ing the expression by the use of the corresponding tem- 
por ary . 

The main advantage of this algorithm is that code motion 
and global common subexpression elimination are handled in 
a uniform way without the necessity of computing the loop 
structure of the program. This advantage is also inherited 
by the algorithm for strength reduction (see 5.4). 
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5.4 Induction Variable Optimitations 

Strength reduction is considered as a special case of code 
motion and therefore handled with an algorithm based on 
the method introduced in chapter 5.3 (a similar approach 
can be found in [Chow83]). To be able to move candidates 
for strength reduction (for example i*4, a multiplication of 
an induction variable with a constant) before a loop, the 
TRANSP information is modified in such a way that for 
these candidates induction assignments (e.g. i:=i+l) are ig- 
nored. By this trick the candidates become loop invariant 
and are replaced by uses of the corresponding temporaries, 
and an assignment of the candidate to the corresponding 
temporary is introduced before the loop. After the algorithm 
of Morel and Renvoise the “errors” introduced by ignoring 
the induction progressions have to be corrected, i.e. at each 
point where the induction variable is altered the correspond- 
ing progression of the temporary has to be inserted. At the 
points where the expression has been replaced by the tem- 
porary the checks which were part of the expression (e.g. 
1 <=i<=lO) have to be reintroduced on the statement lev- 
el (but without using the result). 

After strength reduction it is often possible to get rid of the 
induction variable if this is used only for initialization, in 
checks on statement level or in conditions for the loop exit. 
This is done by first replacing tests for the value of the in- 
duction variable by the corresponding tests for the value of 
the temporary (e.g. i<=lO by t<=40) and by propagating 
the initial value of the induction variable into the initializa- 
tion of the temporary. Then dead assignment elimination is 
done with a modified data flow information for PALIVE 
(reading of induction variables in induction assignments is 
ignored). So if the only use of the induction variable was 
the induction assignment, this assignment is eliminated. 

As a summary, strength reduction and induction variable 
optimizations are handled as special cases of redundancy el- 
imination and dead assignment elimination. This is done by 
modifying local properties of basic blocks, so no information 
about the loop structure is required. 

5.5 Local Optimizations 

Local optimizations are optimizations that can be done by 
considering one basic block at a time. 

Local common subexpression elimination is done by two 
passes over the program. The first pass is a backward pass 
which for each AIM tree conlputes an attribute 

USECOUNT. USECOUNT indicates how often the 
corresponding expression is still used until the end of the 
basic block or until the value of one of the operands 

changes. In parallel this pass can do local dead assignment 
elimination. The second pass is a forward pass where an ex- 
pression that is used more than once before the value of one 
of its operands changes (or before the end of the basic block) 
is replaced by the use of a temporary. Before the first oc- 
currences of the temporaries an assignment of the expression 
to the temporary is inserted. 

5.6 Expression Transformations 

Arithmetic and boolean laws are used to do constant folding 
and to simplify the expressions. Conditional gotos are 
transformed to unconditional gotos if there exists only one 
successor or if the value of the condition is known at com- 
pile time. Another effect of expression transformations is 
the normalization of expressions. Tree pattern matching is 
used to find expressions that can be transformed. 

5.7 Graph Transformations 

The optimizer simplifies the flow graph whenever possible. 
For example, basic blocks with only one predecessor are 
fused with this predecessor if it has only one successor. Emp- 
ty basic blocks (containing only a single goto statement) are 
eliminated by connecting all the predecessors with the suc- 
cessor. If conditional gotos are transformed to unconditional 
gotos by the expression transformation, some basic blocks 
may become unreachable and can be eliminated. The ad- 
vantage of these optimizations is that the number of basic 
blocks and jumps is reduced. 

5.8 Mapping of Local Variables to Registers 

Local scalar variables are mapped to registers by replacing 
all assignments to the variable by assignments to a tem- 
porary and all content operations on the variable by uses of 
this temporary (the code generator will then map the tem- 
poraries to registers). The local variables that are mapped 
to temporaries are chosen by a cost function. 

6. Handling of Target Dependencies 

Although being performed on a target independent level the 
effect of the optimizations is target dependent. The availa- 
bility of resources or address modes can influence the success 
of an optimization to a high degree. Therefore the optimiz- 
ing algorithms are parameterized by cost functions and the 
code generator has to fulfill some requirements. 
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6.1 Cost Functions 

As the number of available registers and the costs of com- 
puting an expression are highly machine dependent, the op- 
timizer makes use of two cost functions. The first deter- 
mines whether the computation of an expression is expensive 
enough to put the expression into a register. This is done by 
inspecting the expression tree (for exa.mple constants and 
simple address computations are not kept in registers). The 
second cost function chooses the local variables which are 
mapped to registers. There is an upper limit on the number 
of local variables that can be put into registers. Induction 
variables have the highest priority, because it is assumed 
that they occur in loops and are therefore very often used. 
The other variables are chosen arbitrarily if they fulfill the 
constraint that they need not be saved too often during pro- 
cedure calls. 

6.2 Requirements on the Code Generator 

The code generator has to map temporaries to registers 
since this is assumed by the optimizer and by the cost func- 
tions. Because the optimizer is doing global optimizations, 
the code generator has to do global register allocation. Oth- 
erwise spill code would be introduced. In our compiler we 
use a code generator that was generated by a code generator 
generator (Jan&]. It does global register allocation by 
graph colouring. 

The success of the optimizations depends to a high degree on 
the ability of the code generator to avoid spill code (and in- 
directly on the cost functions). Otherwise the program can 
be slower after optimization because spill code has been in- 
troduced. 

7. Experiences and Results 

In this chapter we want to present our experiences wit.h a 
tree structured intermediate language, some results on the 
order of the optimizations and some measurements. 

7.1 Ezperiences with the Tree Structure 

The tree structure has shown to be very useful because some 
optimizations, for instance common subexpression elimina- 
tion and code motion can be done for arbitrarily complex 
expressions. The same applies to expression transformations 
because one tree contains the whole pattern to be con- 
sidered. 

The integration of checks in the expression was advanta- 
geous for code motion because it guaranteed that the check 
is moved together with any expression accessing the checked 

value. On the other hand, strength reduction is more com- 
plicated with integrated checks. 

7.2 Order of Optimizations 

There are some constraints on the order of the optimiza- 
tions: 

Expression propagation should only be done before common 
subexpression elimination because it makes the program 
slower (variables are replaced by more expensive expres- 
sions). Nevertheless, expression propagation should be done 
because it has a normalizing effect on the program, i.e. after 
expression propagation there are more opportunities for 
common subexpression elimination than before. 

After propagation, it is useful to do structural transforma- 
tions (in fact expression transformations are done together 
with propagation in one pass over the program) because pr@ 
pagation provides more opportunities for constant folding. 
There are also more possibilities for jump elimination be 
cause the information on the values of conditions is better 
after propagation. For new trees expression transformations 
should be done because they have a normalizing effect and 
make the trees smaller. 

Another constraint is that it is dangerous to do code motion 
after strength reduction because then some checks may be 
separate from the use of the checked expression (see 5.4), 
and therefore there is no more guarantee that the use of the 
checked expression will not be moved before the check. 

A problem is the ordering of check elimination and common 
subexpression elimination (together with strength reduction 
and induction variable elimination): 

If check elimination is done first, opportunities for common 
subexpression elimination may be destroyed. This happens if 
checks are parts of common subexpressions but only the 
check of the second computation is eliminated. In this case 
the second computation will have an expression number dif- 
ferent from the number of the first computation and is 
therefore not recognized as redundant. 

On the other hand, the replacement of an induction variable 
in checks by the temporary of a candidate (after strength 
reduction) introduces difficulties for the elimination of 
checks. There are more opportunities for check elimination 
in loops if the checked induction variable is altered by an in- 
crement of 1 instead of an increment of a constant c, c>l 
(cf. [Kirc87]). 

So check elimination is currently done after strength reduc- 
tion but before the replacement of the induction variable in 
checks and conditions. 
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7.3 Measurements 

The figures we give here are for a set of benchmarks origi- 
nally collected by John Hennessy and then used to test the 
optimizers of Chow [Chow831 and Powell [Powe84). It con- 
tains a program that computes permutations with recursion 
(perm), a recursive program solving the Towers of Hanoi 
problem (towers), a program recursively solving the Eight 
Queens problem (queens), a program computing the product 
of two integer matrices (intmm) and a program to compute 
the product of two real number matrices (mm), a program 
that solves a puzzle about packing blocks into a cube (par- 

tially recursive) (puzzle), a program that performs Quick 
Sort (quick), a program for Bubble Sort (bubble), a program 
that performs the recursive Insertion Sort in a binary tree 
and checks the correctness of the insertions (tree), and a 
program performing Fast Fourier Transformation (fft). 

The execution times for the whole benchmark (Total) and 
for the different subprograms have been measured with 
several options (on a SIEMENS S7550). Checks are always 
generated (but the compiler uses type information to avoid 
the generation of checks). 

The table below consists of two parts: results for single op 
timizations and results for combinations of all optimizations. 

For procedure calls, we use worst case assumptions or visi- 
bility or summary information as indicated. The execution 
time for the non-optimized code has been chosen as the 
reference point (1.0). 

In the first part, the results for the optimized code for some 
selected optimizations are given. These are expression 
transformation, graph transformation, constant propagation 
together with check elimination and expression transforma- 
tion (con& prop), global dead assignment elimination (gdae), 
local dead assignment elimination (ldae), local common su- 
bexpression elimination (lcse), mapping of local variables to 
registers (lova), global common subexpression elimination 
and code motion (gcse,cm), strength reduction together with 
global common subexpression elimination and code motion 
(gcse,cm,sr), strength reduction together with global com- 
mon subexpression, elimination code motion and induction 
variable elimination (gcse,cm,sr,ive), and finally local optim- 
ization and mapping of local variables to registers (“cheap”). 

In the second part, the results for three different arrange 
ments of all optimizations are given (case A, B, and C). 
For case C, which usually gives the best results, figures are 
given for different levels of information for procedure calls. 

Execution Times (normalized) 

towers queens intmm mm puzzle quick bubble tree rrt Total Aver 

not opt 

expr transformation 

graph transformation 1.0 1.0 1.0 .99 1.0 1.01 1.00 1.01 1.01 1.0 1.0 1.0 

const prop summary .92 98 .a0 .85 28 133 .a2 56 .90 .77 .77 .82 

summary 1 .96 .94 .99 1.0 .99 .99 .98 1.0 .98 1.0 1 .99 1 .98 

visibility 92 .78 .95 .89 .91 .9a .a9 .a3 .97 .59 .a9 .a7 

Idae visibility 1.0 1.0 38 .99 1.01 1.02 1.0 1.0 .99 .99 1.0 1.0 

lova summary [ .93 .98 .92 .94 .95 .89 .86 .94 1.0 .93 1 .93 1 .93 

gc*,cm summary .a9 .93 1.03 .85 .89 .74 .92 .69 26 .87 .82 .a7 

gcse,cm,sr summary .a6 .93 .a4 .49 .57 .69 33 53 .89 .57 .71 .73 

gcse,cm,sr,ive summary 1 .81 .87 .a3 .50 .59 66 .89 .59 .a3 .58 1 .69 I .72 

cheap opt visibility I .!%I .77 .77 90 .91 68 .74 .70 .91 .75 1 .78 

full opt,A summary 58 64 .74 38 .47 .53 30 .44 .79 .59 36 38 

full opt,B summary .73 .64 .73 .39 .52 .52 .59 .46 .75 .59 .57 .59 

lull opt,C worst 92 .69 .79 .59 64 66 .67 .49 .81 .62 .67 .69 

lull opt,c visibility .85 66 .76 .41 xl 33 330 .40 .79 .59 sa .61 

lull 0ot.c summarv I .72 63 .73 38 .47 so .57 .41 .74 .59 I 55 I .57 
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In case C we are doing (in this order) expression transforma- 
tion, mapping of local variables to temporaries, expression 
propagation (with dead path elimination and expression 
transformation), graph transformation, local common subex- 
pression elimination, strength reduction (with global com- 
mon subexpression elimination and code motion), variable 
propagation (with check elimination, dead path elimination 
and expression transformation), graph transformation, in- 
duction variable elimination, local dead assignment elimina- 
tion and local common subexpression elimination, and finally 
global dead assignment elimination. Case A is identical to 
case C, except that only constants are propagated instead of 
expressions. In case B check elimination is done together 
with expression propagation at the beginning rather than 
after strength reduction (otherwise it is identical to case C). 

For full optimization, the table shows a reduction of more 
than 40% of execution time using interprocedural summary 
information. Almost the same result can be achieved by con- 
sidering only visibility information for procedure calls. So 
the question arises whether it really is worthwhile to invest 
much effort in the analysis of called procedures. Full optimi- 
zation with worst case assumptions for procedure calls still 
yields about 30%. 

Local optimizations and mapping of local variables to regis- 
ters which are very cheap to implement and to perform al- 
ready account for an improvement of 22% (table entry 
“cheap”). 

At the beginning of our experiments, the effect of global op 
timization was often spoiled because the code generator 
could not map all temporaries to regist,ers. After some tun- 
ing of the cost functions, most of the spill code could be 
avoided. For the benchmark programs, in the case of full 
optimization spill code is generated only for the Fast 
Fourier Transformation (fft), and there mostly for floating 
point subexpressions, where we considered recomputing to be 
more expensive than spilling. In the case of single optimiza- 
tion spill code is generated for the Eight Queens problem 
(for global common subexpression elimination with code mo- 
tion), for Puzzle (for global common subexpression elimina- 
tion, for strength reduction and for strength reduction with 
induction variable elimination) and again for Fast Fourier 
Transformation (for local common subexpression elimina- 
tion, for global common subexpression elimination, for 
strength reduction, for strength reduction with induction 
variable elimination and for local optimizations with map 
ping of local variables to registers). 

Our optimizer does currently not perform inline expansion 
of subprograms. This technique provides more opportunities 
for most optimizations (but a,lso for spill code) and avoids 

the overhead of procedure calls. Since especially this bench- 
mark contains many calls of small procedures within loops, 
we did some inline expansion by hand on the Ada source. 
The result was about 7% improvement in the case of full 
optimization as well as for the not optimized code. So for 
this benchmark the expected effect that inline expansion pro 
vides more opportunities for optimizations did not hold. 

Low level machine properties like caches or instruction pipe- 
lines are not considered by our optimizer, but they can influ- 
ence the execution time more than most of the single optimi- 
zations. Properties of particular machine models also 
strongly influence the effect of optimizations. When we exe- 
cuted the benchmark programs on a SIEMENS 7590, the 
fastest of this series of machines, we got an average im- 
provement of 38%, and the improvements were differently 
distributed over the single programs. 

Although time optimization had precedence of space optimi- 
zation the code size has been significantly reduced. The code 
size after full optimization (case C, with summary informa- 
tion) is 66% of the code size without optimization. 
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Appendix: Example 

The following example shows how the optimizer is step by 
step transforming the AIM program for the scalar product. 
For brevity AIM is represented in a condensed notation. Iv 
denotes the contents of the variable v, and @ stands for ad- 
dress addition. Checks are written as !, e.g. tv!<=lOO 
means that the contents of v is checked against 100; if the 
relation is valid the result is tv, otherwise constraint-error 
is raised. 

The Ada Program: 

TYPE vector IS ARRAY (l..lOO) OF integer; 
PROCEDURE scalar (a. b : Ill vector; r : OUT integer) IS 

h : integer := 0; 
BEG11 

FOR i II 1 . . 100 LOOP 
h := h l a(i) l b(i); 

EID LOOP; 
r := b; 

EBD; 

Step 1: The original AIM program 

<< 6 >> 

<< 3 a> 

<< 5 >> 

<< 4 >> 

<< a >> 

<< 1 >> 

h:=O 
IF l>lOO THEM 2 ELSE 3 

i:=l 
COT0 5 
h:=th + 

t(trO(((ti!<=lOO)!>=l)-1)*4) l 

t(tb@(((ti!<=lOO)!>=l)-1)*4) 
IF fi>=lOO THE1 2 ELSE 4 
i:=li*l 
COT0 5 
r:=fh 
COT0 1 
RETURII 

Step 2: Expression transformation, mapping of local vari- 
ables to temporaries and graph transformation 

<< 6 >> T26:=0 
T27:=1 
COT0 5 

<< 5 >D 12tl:=fT26 l 

~~~~~~~~tT27!~=100)!>=1>-1)~4) t 
t(tb@(((~T27!<=100)~>=1)-1)*4) 

IF fT%+=lOO THEE 2 ELSE 4 
<< 4 >> T27:=fT27+1 

GOT0 6 
<< 2 >> r:=tT26 

RETURl 

Step 3: Local common subexpression elimination 

<< 6 B> T26:=0 
T27:=1 
GOT0 6 

<< 5 >> T28:=(((~T27!<=100)!>=1)-1)*4 
126:=fT26 l t(ta@fT23) * t(tb@tT2R) 
IF fT27>=100 THEI 2 ELSE 4 

<< 4 >> T27:=fT27+1 
GOT0 6 

<< 2 >> r:=tT28 
RETURI 
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Step 4: Strength reduction (with global common subexpres- 
sion elimination and code motion) 

c< 6 >> T28:=0 

X27:=1 

128:=(fT27-1124 

133:=fbOf128 

132:=fa@tT28 

GOT0 5 

<< 5 >> void((TT27!<=100)!>=1) 

void((fT27!<=100)!>=1) 

ras:=yr2e l tt132 * ffI33 

IF fT27>=100 THEII 2 ELSE 4 

<< 4 >> T28:=fT28+4 

132:=fT32@4 

133:=fT33@4 

127:=fI27+1 

COT0 5 

<< 2 >> r:=fT26 

RETURII 

Step 5: Variable propagation (with check elimination, dead 
path elimination and expression transformation) 

C< 0 >> T26:=0 

127 : =l 

T28:=0 

T33:=fb 

T32:=ta 

GOT0 5 

<< 5 >> T26:=fT26 + ffT32 * ffT33 

IF fT27>=100 THEE 2 ELSE 4 

<< 4 >> 128:=fI28*4 

132:=~132@4 

133:=fT3301 

T27:=fT27*1 

GOT0 5 

<< 2 >> r:=fI26 

RETWI 

Step 6: Induction variable elimination (with dead assignment 
elimination) 

<< 6 >> T26:=0 

128 : =0 

T33:=fb 

T32:=fa 

GOT0 5 

<< 5 >a T26:=fT26 + lfT32 * If133 

IF tT28>=396 IHEI 2 ELSE 4 

<< 4 >> T28:=fT28*4 

r32:=tr32@4 

T33:=fT33@4 

COT0 5 

<< 2 >> r:=fT26 

RETuRn 
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