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Abstract
This paper describes a completely memory-safe compiler for C lan-
guage programs that is fully compatible with the ANSI C specifi-
cation.

Programs written in C often suffer from nasty errors due to dan-
gling pointers and buffer overflow. Such errors in Internet server
programs are often exploited by malicious attackers to crack an
entire system. The origin of these errors is usually corruption of
in-memory data structures caused by out-of-bound array accesses.
Usual C compilers do not provide any protection against such out-
of-bound access, although many other languages such as Java and
ML do provide such protection. There have been several proposals
for preventing such memory corruption from various aspects: run-
time buffer overrun detectors, designs for new C-like languages,
and compilers for (subsets of) the C language. However, as far as
we know, none of them have achieved full memory protection and
full compatibility with the C language specification at the same
time.

We propose the most powerful solution to this problem ever pre-
sented. We have developed Fail-Safe C, a memory-safe implemen-
tation of the full ANSI C language. It detects and disallows all un-
safe operations, yet conforms to the full ANSI C standard (includ-
ing casts and unions). This paper introduces several techniques—
both compile-time and runtime—to reduce the overhead of runtime
checks, while still maintaining 100% memory safety. This compiler
lets programmers easily make their programs safe without heavy
rewriting or porting of their code. It also supports many of the
“dirty tricks” commonly used in many existing C programs, which
do not strictly conform to the standard specification. In this paper,
we demonstrate several real-world server programs that can be pro-
cessed by our compiler and present technical details and benchmark
results for it.

Categories and Subject Descriptors D.3.4 [PROGRAMMING
LANGUAGES]: Processors – Compilers

General Terms Languages, Security

Keywords Memory Safety, C language
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1. Introduction
The C language, which was originally designed for programming
early Unix systems, allows a programmer to code flexible mem-
ory operations for high runtime performance. It provides flexible
pointer arithmetic and type casting of pointers, which can be used
for direct access to raw memory. Thus, C can be easily used as a re-
placement for assembly languages to write many low-level system
programs such as operating systems, device drivers, and runtime
systems of programming languages.

Today, C remains one of the major languages for writing ap-
plication programs, including those running on various Internet
servers. As requirements for applications have become more com-
plex, though, programs written in C have often been used to per-
form very frequent complex pointer manipulations. This has cre-
ated serious security flaws. In particular, if in-memory data struc-
tures are destroyed by array buffer overflows or dangling pointers,
the behavior of a running program becomes completely different
from its text. In addition, by forging specially formed input data,
malicious attackers can sometimes hijack the behavior of programs
that contain such bugs. Most of the recently reported security holes
have been due to such misbehavior.

Many countermeasures to this problem have been proposed.
Buffer-overrun detection techniques, such as StackGuard [6],
ProPolice [7], and dmalloc [21], are well matured and have been
introduced into many commercial and open-source compilers, al-
though they prevent only some of the possible attacks. There have
been many proposals for C-like languages that satisfy type safety
and memory safety, such as Cyclone [9, 11]. Necula et al. [16, 5]
proposed a type-based program analysis for compiling a large sub-
set of C languages and succeeded in compiling existing C bench-
marks with a small amount of program modification. However, as
far as we know, no one has achieved both complete memory safety
(e.g., comparable to Java or many Lisp/ML dialects) and full com-
patibility with the C language at the same time.

To resolve the current situation, we have developed Fail-Safe C,
a special implementation of the full ANSI C language that prevents
all of the dangerous memory operations that lead to execution
hijacking. Our compiler inserts check code into the program to
prevent operations that destroy memory structures or execution
states. If a buggy program attempts to access a data structure in
a way that would lead to memory corruption, the runtime system
of our compiler system cooperates with the inserted codes to report
the error and terminate program execution. Use of our compiler
system instead of usual C compilers enables safe execution of
existing C programs.

Our compiler supports all programs written in conformity with
the 1989 version of the ANSI C specification [10, 1, 14], includ-
ing casts, unions, arbitrary pointer arithmetics, function pointers
(cast and uncast), and variable-number arguments (varargs). More-
over, it also supports many of the “dirty tricks” popular with C
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programmers in order to ensure it can accept most existing pro-
grams. Of course, our compiler cannot accept every existing pro-
gram: programs that really need raw memory access (e.g., the core
part of operating system kernels) conflict with our memory protec-
tion scheme. However, our scheme is powerful enough to accept
many security-critical programs used on Internet servers, most of
which do not need raw memory access. The current implementation
of our compiler accepts several existing, realistic server programs
such as OpenSSL, OpenSSH, and BIND9.

This paper describes several implementation techniques and de-
signs introduced in Fail-Safe C. The rest of the paper is organized
as follows: Section 2 describes the basic ideas of our system design
to support memory-safe execution of C programs including cast
and pointer arithmetics. Section 3 describes some details of the im-
plementation, including tricks for better performance and support
for various subtle features of C. Sections 4 and 5 present the current
status of Fail-Safe C implementation and some benchmark results
for performance evaluation. Section 6 compares the design of Fail-
Safe C with those in some previous reports. Section 7 concludes by
summarizing the main points and mentioning future work.

This work is based on the implementation method proposed
in the author’s Ph.D. dissertation [19] with various design and
implementation improvements. For more specific details of our
implementation, please refer to the dissertation as a full version
of this paper.

Note Throughout this paper, we assume that the underlying ar-
chitecture uses 32-bit pointers and integers for clarity. This is just
for an example: our technique, as well as those in most other re-
ports, can support various word widths such as 32 and 64. The term
“word” refers to the natural size of pointers, i.e., 32 bits or 4 bytes.
Example program code shown in this paper was written by hand
for clear understanding of concepts: it is not textually equal to the
program generated by the compiler.

2. Basic Designs
There are many language constructs in C that are not found in var-
ious safe languages (such as Java, C#, Lisps, and MLs) and make
safe implementation of the language difficult. First, C supports flex-
ible arithmetic operations on the pointers. In most safe languages,
“references” to objects or arrays are designed so that they point
only to a whole array or an object. Such languages allow refer-
ences handled as only opaque data and do not allow arbitrary arith-
metic operations on them. This is a common design choice to ease
runtime checking of array boundaries: by allowing references that
point only to a fixed location inside an object, the language run-
time systems can easily access metadata associated with each ob-
ject such as array sizes and perform required runtime validations.
In C, however, pointers are allowed to point anywhere inside array
objects, which makes boundary checking hard. Storing the object
boundaries (e.g., using memory object tables) does not work well:
pointers that have overflowed might even point to the interior of
another object.

Cast operations and union types make safe implementation of
the language very hard. C is a weakly statically typed language:
unlike many other strongly statically typed languages, a pointer in
C can be cast to another type so that it points to an object that
does not have a data type expected by the static type system. This
breaks many assumptions that are essential for ensuring the type
safety of statically-typed languages. Many people might think that
as long as cast operations exist, it is impossible to implement C in
a memory-safe way. Furthermore, there are many more obstacles
to safe implementation: function pointers (with cast operations),
varargs (common in printf-family functions), untyped malloc

functions, and guaranteed cast operations between pointers and
integers.

Our goal in designing our compiler was to invent a set of
new implementation techniques that can solve all of the above
problems. We introduced the following set of techniques, amongst
other things. They are described in more detail in subsections
2.1–2.7. Although some of them are mutually related, they are
nevertheless described in sequential order.

Fat Pointer: A pointer that accepts arithmetic operations and still
keeps information about the objects being pointed to.

Fat Integer: An integer that can hold a fat pointer value.

OO-based Typed Memory Block: A memory block implemented
using object-oriented techniques that stores both its own types
and sizes.

Virtual Offset: A special memory addressing technique that hides
internal representation of any data types and provides a uniform
view over objects of various types.

Access Methods: A set of methods associated with memory blocks;
it supports dereferencing operations on cast pointers.

Cast Flag: A hint embedded in fat pointers for shortcutting mem-
ory access operations to reduce runtime overhead.

Safe Memory Management: A memory management method
that prevents any temporal memory access errors such as dan-
gling pointers and double block releases.

2.1 Fat pointer
To access various meta-information about blocks (e.g., the block
size and content type) regardless of the pointer arithmetic, Fail-
Safe C internally represents all pointers using two-word fat-pointer
representations: a pair consisting of a base and an offset.

The base of a fat pointer always keeps the address of the top
of a block, and the 32-bit offset keeps the relative position of the
element referred to by the pointer from the block top. The spe-
cial value 0 can be used as a base part representing “null point-
ers”; i.e., pointer values that do not point to any objects. The offset,
which is initially 0, represents the byte offset of the referred ele-
ment from the block top. In all pointer arithmetic operations, only
the offset is modified.

The fat pointer technique itself is not very original: fat pointers
or “smart” pointers have already been introduced in various im-
plementations. For example, CCured [16] introduces a three-word
representation for “seq” pointers (one of the kinds of pointers in
CCured that allow pointer arithmetic inside objects), and many peo-
ple implement it by hand when they need to simulate internal point-
ers in existing safe languages. However, the fat pointer in our de-
sign has been extended from existing ones in the following ways:

• It holds a special flag called the “cast flag” embedded in a two-
word representation.

• The offset holds “virtual offsets” instead of real memory ad-
dress offsets or element indexes.

Both these features are described in more detail below.

int *p = &a; → base p b = &a;
ofs p o = 0;

p++; → p o += 4;

2.2 Fat integer
In ANSI-C, integers equal to or larger than the pointer size are
required to be able to hold any pointer value. Integer values that
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type = int *
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Pointers (int *):

Int:

Float:

Figure 1. Block structure for arrays of pointers and primitive
types.

were originally pointers can be cast back to corresponding pointer
types if the values were not modified while they were integers.
To implement this behavior, the usual one-word representation of
integers is of course insufficient because we cannot distinguish such
integers (valid as pointers) from arbitrary integers. Therefore, we
also use two-word representation for integers, which are called fat
integers.

Conceptually, fat integers could use the same representation
as fat pointers. However, to enable more efficient implementation
of integer arithmetic operations, a fat integer in our system is
internally handled as a pair consisting of the base and a value (or
virtual address) defined to be equivalent to the sum of the base and
the offset. All arithmetic operations on integers ignore the bases of
operands and operate on only the value parts. An arithmetic result
always has a base part of 0, corresponding to a null pointer. A cast
operation between pointers and integers converts offsets to virtual
addresses, and vice versa.

int i = (int)p; → base i b = p b;
int i v = p b + p o;

int *p = (int *)i; → base p b = i b;
ofs p o = i v - i b;

i *= 5; → i b = 0; i v *= 5;

(Cast flags are not shown in these examples.)

2.3 Typed Memory Blocks
In safe languages, every memory access operation must ensure that
the offset and the type of a pointer are valid. If a statically typed
language has no casts, or only a cast respecting subtype relations
(as in objects in Objective Caml), no runtime type information
is needed. However, as C does not impose such restrictions on
cast operators, the system must know the boundary and the type
of contents for every memory block in order to check this safety
property at runtime. The runtime system of Fail-safe C keeps track
of these by using custom memory management routines.

A memory block is an atomic unit of memory management
and boundary overflow detection. Each block consists of a block
header and a data area. A block header contains information about
the block’s size and its dynamic type, which we call the data
representation type.

The actual layout and representation of the data stored in a block
depend on its data representation type: a different representation is
used for each representation type in our system. This allows the
implementation to utilize several different representations for each
type appearing in user programs. For example, if there is an array of
pointers, it is stored as a collection of packed fat pointers (Figure 1).
This is also true for arrays of fat integers. However, for an array
of simple primitive types (which cannot hold pointers), such as
characters or floats, we use a packed array without any base parts,
to gain better performance for I/O operations (If the representation
of char arrays is the same as the native one, the runtime system
can use the internal address of data directly for file I/O operations).
For each user-defined struct, the compiler automatically generates
more complex runtime representations (an example is shown in
Figure 2), and generates various related data structures as well.

In our current implementation, all unions are translated as a
combination of casts and structs. For example, if there is a dec-
laration

union {
int a;
char *b;
double c;

} x;

it will be translated as if it were a struct holding only the first
element and any necessary padding (if any):

union {
int a;
char __pad[(sizeof(double) - sizeof(int)];

} x;

A member access “x.b” is treated as an equivalent code

*((char **)&(x.a))

and translated to a code which uses cast pointer handling.

2.4 Virtual offsets
Several methods may be used to indicate a specific element in a
memory block. The usual methods used in conventional language
implementations use one of the memory addresses of elements,
the index count of elements from the block top (sometimes called
the word offset), or the difference between the memory address
and block top address (the byte-offset). For most implementations,
some or all of these will work.

In our system, the situation is more complicated because there
is a cast operation that needs to be implemented safely and consis-
tently. The method using real addresses or offsets of real addresses
creates a safety problem (although these are used for many exist-
ing systems aimed at making C secure): if a pointer is cast to the
char * type, it will point to every byte of the internal representa-
tions of several data including pointers. If such internal informa-
tion about pointers (e.g., base parts of fat pointers) are compro-
mised through these cast pointers, the safety of the system is no
longer ensured. Several proposed systems, including Safe-C [2] and
BCC [12], seem to suffer from this problem. CCured [16, 5] solves
the problem by maintaining a bit-array for each memory block to
indicate whether each word in the block can be used as a valid
pointer to the block top; however, the handling is rather complex
and unintuitive.

The element index does not have a similar problem for primitive
types if alignment requirements are equal to the size of the corre-
sponding type. However, this complicates the implementation of
cast operations and makes it impossible to properly represent a cast
pointer to data types having alignment requirements smaller than
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Example of struct { double d; char c; float f; char *p[3]; } s[1];

Native representation:

d p[0] p[1]

s[0]

0 8 12 16 24 28 32offset

c

9 20

f p[2]
pad
[3b]

pad
[4b]

Translated representation:

base offset
d p[0]

base offset

p[1]

s[0]

0 8 12 16 24 28 32
0 8 16 40 4812 20 36 44

c
pad
[3b]

9 20

pad
[4b]

9 24 28 32

f
base offset

p[2]

virtual offset:
real offset:

1. A 3-byte padding labeled “pad[3b]” aligns field f to a word boundary in both virtual and real addressing.

2. A 4-byte padding labeled “pad[4b]” aligns the whole struct to a double-word boundary (required by double-word aligned field d) in the native addressing.

3. A 4-byte padding at the last word of the translated representation aligns the whole structure to a double-word boundary in the real addressing. This padding
is invisible to the user program.

Figure 2. Example of the representation of a struct.

the element size (e.g., structs); that is, the C specification allows
pointers that are not aligned to elements.

Consequently, another method of addressing had to be invented
for our system. The addressing used in Fail-Safe C, which is called
virtual offset, corresponds to the program-visible size (hereinafter
called the virtual size) of elements, not to the actual size of repre-
sentations altered to implement security mechanisms. For example,
the virtual size of a natural-sized integer in our system will be equal
to the native word size—although these values use two-word repre-
sentation internally—because its value range visible to the running
user program will still correspond to one word. The virtual size of
pointers will also be one word, and floating numbers and smaller
integers (which cannot hold pointer values) will have virtual sizes
equivalent to their real sizes. Figures 1 and 2 shows some examples
of the differences between virtual and real offsets.

In other words, the virtual size of every type will be the real size
of the equivalent data type in the native implementation of C. This
definition of virtual offsets does not lead to the problems that arise
with the other two methods: a cast pointer temporarily pointing to
the middle of elements can be properly cast back to its original
type and pointing to only the base part of fat pointers is impossible
because there is no specific offset that points to only the base part
of pointers.

Another important consequence of this representation is the
possibility of consistent definition for memory access performed
via cast pointers. Although the ANSI-C standard does not support
memory access via cast pointers, an ill-typed memory access is
sometimes safe (e.g., when the first byte of a pointer is read). Ac-
tually, C programmers are often skilled at using this sort of access
and find it useful. Fail-Safe C allows the use of ill-typed memory
access as far as possible unless it collapses runtime memory struc-
tures since such accesses appear frequently in most application pro-
grams. Because the virtual sizes used in Fail-Safe C correspond to
real sizes in native implementation, the mapping from our repre-
sentation of data to the corresponding native representation can be
defined simply; in short, we can simulate “what will happen when
the operation is performed in the native implementation”. For ex-
ample, if there is an integer 0x12345678 (hexadecimal) and one
reads a single byte from that address via a cast pointer, it will be
read as either 0x78 or 0x12 (depending on the byte order). The
same holds when there is a pointer to the offset 8 of the memory
block at address 0x12345670.

2.5 Type information and access methods
As the actual representation of data in a memory block differs from
that in conventional compilers, some methods to support memory
access via a cast pointer must be provided for every combination of

a pointer type and a block representation type. Our compiler uses
an object-oriented implementation technique for this purpose.

In the header of each block, there is a typeinfo field that con-
tains a pointer to a block containing several items of information
about its representation type. One type-information block is gen-
erated for each representation type that appears in a user program.
Furthermore, a method table similar to that usually used in a C++
implementation is stored in the type-information blocks.

Access methods stored in the method tables implement a generic
interface for read/write block contents with various access sizes—
such as a byte or word, regardless of the type of block. A read
method receives a virtual offset and returns the corresponding con-
tent in a data area as a fat integer1 if the given virtual offset falls
inside the block boundary. The write method receives a virtual off-
set and a value to be written as a fat integer and performs an appro-
priate write operation depending on the actual data representation.
These methods will signal a runtime error if the virtual offset is
outside the block boundary.

Type information blocks and access methods for primitive types
are implemented in the runtime library provided in the compiler
distribution. For user-defined types such as structs or pointers, the
compiler system automatically generates them for every type used
in the program.

2.6 Faster memory access and cast flags
Given typed memory blocks, access methods, and fat pointers,
there is always a simple way to access the contents of memory
blocks, regardless of pointer casts. To access word data referred to
by a non-null fat pointer, the program can always look up type in-
formation in the block header using the base part of the fat pointer,
pick up the associated access method from the type information
block, and invoke it. The called access method always knows the
representation of the referred data block and returns the corre-
sponding data as a fat integer. This can then be easily converted
back to any type that the program wants.

However, as one can easily guess, this process with indirect
function invocation is very slow compared with usual unsafe mem-
ory access in C, or even compared with memory access in other
statically typed languages. Our experiments have shown that ex-
ecution takes more than 10 times longer even for a very simple
program when this access method is used for every memory access.
Since this is an unacceptable performance penalty, we implemented
a shortcut for memory access.

For every fat pointer, there is a one-bit flag called the “cast flag”
embedded in an unused bit in the base part. This flag indicates

1 Returned values will be narrow (native) integers if the access size is
smaller than the word size.
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Figure 3. Basic procedure for memory access via pointers.

whether or not a pointer is cast. More precisely, when this flag is
zero, and if the pointer is not null, the memory block referred to
by the base part must have a correct representation type for the
pointer’s static type, and the offset part of the pointer must be
a multiple of the (virtual) size of the element. This ensures that
the following property holds during runtime: if there is a pointer
with cast flag = 0, the pointer may be a null pointer, point to a
valid element inside the memory block, or point outside the valid
memory block.

The introduction of a cast flag enables memory access opera-
tions to be optimized as follows (Figure 3):

• check whether the pointer is null; if not,
• check whether that cast flag is set; if it is set, use an access

method; otherwise,
• check whether the offset is smaller than the block size; then,
• convert the virtual offset into a real memory offset and access

the memory directly.

int i = *p; →

fat int i; base i b; int i v;
/* NULL check */

if ((p b & ~CASTFLAG) == 0)
raise error();

/* cast check */
if (p b & CASTFLAG != 0 ||

/* overflow check */
get header(p b)->size <= p o)

/* invoke an access method */
i = (*get header(p b)

->read int method)(p b,p o);
else

/* read memory directly */
i = *(fat int *)(p b + p o * 2);

/* real/virtual size ratio for int is 2 */
i b = base of fat int(i);
i v = value of fat int(i);

The cast flag of a pointer is recalculated each time when a
pointer (or integer) is cast to another pointer type. It uses a rep-
resentation type of the referred block stored in the block header.

int *p = (int *)q; →

p b = q b & ~CASTFLAG;
/* NULL check */

if (p b == 0 ||
/* type check */
get header(p b)->type !=

type of int pointer ||
/* alignment check */
o q % 4 != 0)

p b |= CASTFLAG;
p o = q o;

As most pointers in C programs are not cast, the introduction of
cast flags greatly reduces the runtime overhead of real programs.
In the real implementation of Fail-Safe C, the memory access is
further optimized by a clever scheme, as described in Section 3.1.

2.7 Safe memory management
Another cause of memory errors in C programs is bad use of mem-
ory management routines. Unlike most safe language implementa-
tions, memory management in C is completely non-automatic: pro-
grammers must specify when heap-allocated memory blocks are
deallocated. If they fail to specify the correct timing, there will be
a dangling pointer pointing to the debris of an already-deallocated
block, which could lead to further invalid memory accesses. In ad-
dition, local variables in C can be pointed to by pointers, but they
are automatically released at the end of the function’s execution
regardless of such pointers.

We utilize a garbage-collection technique, as is used in almost
all implementations of safe languages, to prevent fatal misbehavior
related to the early deallocation of memory blocks. When a user
program requests deallocation of a memory block, the runtime sys-
tem will not immediately release the block, but only forbid further
access to it .2 The garbage collector will later check that there are
no pointers pointing to the block, and it will release the memory
block only after all dangling pointers pointing to the block have
disappeared. It also collects any unreferenced “leaked” objects in
memory. The current implementation uses Boehm-Weiser’s con-
servative GC library [3, 4] as a backend library. In future, we may
implement a type-exact garbage collector in order to avoid false
pointers.

For the local variables, the compiler performs a simple check on
the use of local variables and pointers, and if there is a pointer to
any local variable, the compiler automatically moves that variable
to the heap area. The memory blocks for such variables are allo-
cated at the start of the function, and they are automatically “deal-
located” at the end of the function. The area will be then under the
management of garbage collectors, like other heap-allocated mem-
ory blocks.

3. Implementation Details
This section gives further details of the implementation techniques
(tricks) introduced in the compiler to improve performance and
compatibility.

3.1 Fast checking of cast flags
As described in the previous section, when a fat pointer is derefer-
enced, three properties must be checked before any direct access to

2 This behavior differs slightly from that of most safe languages because
user programs are supposed to call the free() function to declare explicitly
that the memory blocks are no longer to be used.
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Figure 4. Bit allocation in fat pointers.
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Figure 5. Fast cast-flag check.

the data area of the referred memory block: (1) pointer is not null,
(2) the pointer is not cast, and (3) the pointer’s virtual offset points
to an interior part of the memory block (Figure 3). While (1) and
(3) are common to almost all safe languages having flat array types
(e.g., Java, ML, and Lisp), in our implementation we also needs
(2), whose overhead is not negligible. A preliminary experiment
has shown that checking that a pointer is not cast slows the exe-
cution of memory-heavy benchmarks by several percent. To avoid
this overhead, our implementation uses a clever trick.

First, all blocks and block headers are double-word aligned so
that every base address of a block will have 0 as the bit correspond-
ing to the cast flag. Next, the cast flag in fat pointers is located to
the “third bit”, the one corresponds to the word size (Figure 4) so
that the base part of a cast fat pointer will have an integer value
which is the real block address plus 4. Finally, each block header
has an extra word that always contains a zero at a location exactly
one word after the field field containing the virtual block size used
for boundary checking. As a consequence of these three properties,
if the code refers to the size field of the header via some cast pointer
through offset-calculation as if it were not cast, it will read the zero
stored in the header block instead of the true size field (Figure 5).

In other circumstances, if a null pointer is dereferenced as if
it were a valid pointer, offset checking code that attempts to read
the size field will access the very end of the address space (be-
cause of an integer wraparound). In most operating systems, no
memory is mapped to these addresses and a SIGSEGV signal will
always be raised if they are accessed. This condition can be reli-
ably detected by checking the address information passed to signal
handlers. Thus, those checks can be merged into one offset check,
which is generally necessary anyway, without damaging the safety
properties. The resulting optimized memory access procedure is
shown in Figure 6. Compared with Figure 3, there is only one check
on its “fast path”.

offset overrun
test

calculate
real offset

read/write
block contents

DONE

pick up
access method

delegate access to
access method

convert
result type

START

ERROR

overrun, cast pointer

offset OK

Success
Failure

segmentation fault

null pointer

Figure 6. Procedure for memory access via pointers with fast
access checking.

int i = *p; →

fat int i; base i b; int i v;
/* single combined check */

if (get header(p b)->size <= p o)
/* slow path: invoke an access method */
i = (*get header(p b)

->read int method)(p b,p o);
else /* fast path: read memory directly */

i = *(fat int *)(p b + p o * 2);
i b = base of fat int(i);
i v = value of fat int(i);

3.2 Separate Compilation
Separate compilation and reuse of modules are important features
in any modern programming language. Virtually all languages cur-
rently in use have some provision for separate compilation of mod-
ules. In implementations of most statically typed languages, it is
important that the type safety of the whole program is guaranteed
when type-safe modules are linked together. However, in C, inter-
module type safety is not guaranteed in usual implementations.
Conventional C linkers hardly check inter-module consistency and
simply unify sets of the same symbols. If a function or value in
one module is referenced from another module as that of some
other type, or if a type definition of structs or unions is inconsis-
tent among modules, the type safety is easily broken in C.

Most existing works on safe C implementation offer no pro-
vision for link-time type safety or no separate compilation at all.
CCured provides a source-level preprocessor that “links” several
source files together before compilation so that any type inconsis-
tency can be found at compile time, but it discards most of the
benefits of separate compilation. Frankly, it is a good design choice
for CCured, which depends heavily on static analysis even with-
out separate compilation and requires whole-program analysis be-
fore compiling a single component module (because the result of
whole-program analysis sometimes requires a change in the value
representations in the module). However, for our compiler, we took
a different approach.

In Fail-Safe C, there is virtually no requirement at all for whole-
program analysis. Whether or not a pointer is cast outside one
module, the value representation for any type does not change,
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unlike in CCured. Because virtually no performance overhead is
imposed by the existence of a cast pointer thanks to the fast cast-
flag checking described above, Fail-Safe C always generates code
that can handle cast pointers appearing in any location.

Fail-Safe C implementation provides a special linker that checks
inter-module type consistency at link time. The compiler stores in-
formation about every type definition appearing in a module in a
generated object module file. The linker extracts the information
from all modules to be linked and detects any mutual inconsisten-
cies. It also generates all type-related metadata and various access
methods associated with the user-defined types (such as structs) at
link time to avoid duplicate code in the resulting executable files.

Our linker also implements some tricks for better compatibility:
it has special support for undeclared functions and a workaround
for the GNU autoconf system. Details of our linker are given
elsewhere [20].

3.3 Determination of block types allocated by malloc()

The implementation of memory blocks in Fail-Safe C depends on
the type information associated with each memory block. However,
there are many situations where the block type is not known. For
example, the interface for the malloc() function in the standard
C library does not take any type information. Many existing sys-
tems assume that type inference for memory allocation is always
possible or ensure this by introducing some explicitly typed mem-
ory allocation syntax (like C++’s new operator). In contrast, our
system does not completely rely on static knowledge of types, but
combines static (compile-time) and dynamic (runtime) approaches.

3.3.1 Compile-time type analysis
First, Fail-Safe C implements a combination of static type analy-
sis and a dynamic type-passing mechanism to determine the type
of memory allocation. Our system inserts an additional argument
internally into any function that returns void * type (including
malloc() and calloc()). At each invocation of such a function,
the compiler performs a simple data-flow analysis to find out what
type the return value will be cast to. If it succeeds in finding such
a type, the generated code passes a pointer to the type informa-
tion block of that type as an additional argument as a hint. Memory
allocators such as malloc() and calloc() can use this hint to
initialize a new memory block in the correct type.

In a special case, when such return values are used as return val-
ues of another function returning void *, the compiler generates
code that passes the hint received from the caller to the child func-
tion. This enables the implementation of wrapper functions (such as
allocx, which is equal to malloc except that it aborts the program
when an allocation fails) around memory allocation functions. This
mechanism also works without whole program analysis, if separate
compilation is needed.

If there is no single type that can be used as a hint (e.g., when
such a return value is cast to two different types in an if statement),
the compiler does not pass any hints to the callee, and the runtime
system falls back to the runtime type analysis below.

3.3.2 Runtime type analysis (delayed type decision)
If the type cannot be reliably deduced through the analysis above,
the Fail-Safe C system delays deciding the type of dynamically
allocated blocks from allocation time to the first use.

If a block is allocated without a type hint, the system first as-
signs a special pseudo-type (called type-undecided) to the block.
Because this pseudo-type is not equal to any real types, the first
write access to this block will always be forwarded to access meth-
ods associated with the pseudo-type. Access methods for the “type-
undecided” pseudo-type will then guess the block type based on the
type used for the access.
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contains 2 elements and 6 bytes of remainder area. Two block size
values are stored in the header: 16 is the size without the remainder
area (this one is used for boundary checks), and 22 is the size of the
whole block.

Figure 7. Formats of remainder area and additional bases.

A type-undecided block has basically the same structure as
ordinary blocks. The real size of the allocated buffer will be about
twice the requested virtual size, as this is sufficient. The type
information field in the header points to a specially defined type-
information block. In addition, the size of the structured data area
is initialized to zero. This causes all accesses to this block to be
trapped and delegated to the associated access methods. The write
access methods associated with type-undecided blocks initialize
the data area according to the access type, which is passed as an
additional argument to the access methods. After initialization, its
size and the typeinfo field of the block’s header is reinitialized to
turn the block into a normal block. Finally, the method handles the
write request from a caller by delegating it to the newly associated
access methods.

As a last resort, if both the block type estimations fails, the
memory block may have been assigned the wrong type In that case,
cast pointers and access methods will maintain the compatibility
and the program will continue running; the only effect is that this
slows the execution.

3.4 Memory block extensions
Memory blocks allocated by users using malloc() in real pro-
grams are used in some weird ways in many real programs. For
example, C programmers often allocate a memory area whose size
is not a multiple of the size of its data type in order to implement a
“variable-sized structure”3. They define a 1-element array as the
last element of a struct and use it as an array of arbitrary size,
which is determined at allocation time. In other cases, some heap-
allocated objects can be first initialized as a simple char array and
then later used in a different type, which confuses the type determi-
nation algorithm in the previous section.

To cope with such tricky programs, our implementation con-
tains two general workarounds. First, the memory management
routines maintain a “remainder area” in the heap block, which is
not a multiple of the element size. Such a memory area is format-
ted in the same way as an array of characters and used by access
methods to simulate a memory access between the end of all el-
ements and the end boundary of the block. Second, if a non-null
pointer is to be written in the array or in a field of a primitive type
that does not normally hold a pointer value, the runtime system will
allocate a separate cache called an “additional base area” to store

3 This technique is officially supported in the newer version of the C speci-
fication (often called C99).
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Figure 8. Handling of varargs in Fail-Safe C.
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Figure 9. Data structure for functions in Fail-Safe C.

the base parts of the values. This area is also used as a last resort
when type determination for heap blocks fails and guessed type was
incorrect. The formats of additional base areas and remainder areas
are shown in Figure 7.

3.5 Varargs and cast function pointers
Some C functions such as printf accept variable numbers of
arguments. The ANSI-C specification even allows users to de-
fine such functions and handle arguments using macros defined in
stdarg.h. In usual native compilers for most architectures, such
arguments are put onto the stacks in the same way as for other fixed
arguments. The corresponding access macros read the stack area
directly to fetch variable arguments, which is obviously an unsafe
operation.

Our system implements a similar behavior in a safe way (Fig-
ure 8). If functions with variable arguments are called, then any
parameters that fall into the variable arguments will be automat-
ically coerced and stored in a fat integer array in a heap, instead
of the native stack4. The array is then passed to the function us-
ing hidden arguments and can be accessed through system-defined
macros. Of course, block boundaries are checked during accesses
to variable parameters, and if excess arguments are accessed, an
error is generated.

The same technique is used when a pointer to a function is cast.
For each function, the compiler generates a second entry point that
receives all parameters as variable arguments, as well as a stub

4 This varargs block is heap-allocated because an address of this block may
leak if the called function uses a va list value returned from the va start
macro inappropriately.

memory block which contains pointers for both the main and the
second entry (Figure 9). A pointer to a function is represented by
the address of the stub blocks internally. If an uncast pointer is used
for an invocation, the caller extracts the address of the main entry
point from the pointed stub block and call it directly. However,
if a cast pointer is used for an invocation, the caller prepares all
arguments as variable arguments and invokes the second entry point
instead. The second entry point extracts the real arguments and
passes them to the main entry of the function.

3.6 Runtime libraries
Almost all C programs require some library functions and system
call functions to work correctly. The standard library requires many
functions: the ANSI C and POSIX specifications of Unix system
calls define more than 1000 functions. We have already imple-
mented more than 500 functions, mostly by hand. Some functions,
such as many string-related functions in string.h, can be imple-
mented in a usual C language and compiled by Fail-Safe C.

However, some functions, especially ones that interact with un-
derlying systems (including kernel-level system calls) cannot be
implemented in that way. For those functions, we implemented a
custom wrapper around the function. Each wrapper receives argu-
ments encoded in our system’s representation, converts all the ar-
guments to the corresponding native representations, and calls the
native function to perform system interaction. Returned values are
also converted back to our representation. In addition, the wrap-
pers are responsible for keeping the memory safety of the whole
of our system and so on: before invoking a native function, they
check boundary preconditions such as the length of an I/O opera-
tion and buffer lengths. We have implemented a preliminary wrap-
per generator to reduce some of the cumbersome work involved in
implementing such wrappers.

As an implementation choice, we used the same technique for
several complex user-level C library functions that interact with op-
erating systems, such as file I/O (stdio functions), locales, and
setjmp. When such functions are implemented, some native point-
ers, such as FILE * pointers, must be stored in data structures ac-
cessible from user programs. To prevent such pointers from being
exploited, they are wrapped as a special memory block and associ-
ated with special access methods that deny all memory accesses.

4. Current status
Here, we briefly report on the current status of our implementation.
We have implemented the whole proposed system. The current
compiler accepts most features (including all essential features)
of the ANSI-C specification on the Intel x86 architecture. Ports to
other 32-bit architectures do not seem very hard, and 64-bit support
is also theoretically possible (although many runtime routines must
be rewritten accordingly).

Fail-Safe C system consists of the compiler and linker (written
in Objective Caml), runtime and standard C libraries (written in
our C compiler itself and in native C with a custom wrapper helper
language), and some support scripts (in Perl). The compiler part
was written as a source-to-source C translator; in other words,
we used the native C compiler (Gnu C compiler) as a backend
“rich assembler”. The current implementation does little program
analysis; but some local code optimizations such as redundant
value elimination are implemented. Our system supports the same
command-line syntax as conventional C compilers. Many library
functions from ANSI C and POSIX are already implemented and
are contained as part of the system.

The system has been published on our website [17] as open-
source software since April 2008. We provide both a source dis-
tribution and an unofficial binary package for Debian GNU/Linux.
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Fail-Safe C can compile various server programs in real use on the
Internet. The currently supported programs include:

• OpenSSL version 0.9.8j, the most widely used open-source
cryptographic library and tools

• OpenSSH version 5.1p1, the most widely used remote secure
login software

• ISC BIND (Berkley Internet Name Domain) server version
9.4.2, the most widely used Internet domain name server,

• thttpd version 2.25b, a compact web server,
• qmail version 1.03, a famous Internet mail server,
• postfix version 2.5.5, another recently famous Internet mail

server,
• libtiff version 3.8.2 and libpng version 1.2.34, libraries for man-

aging image files,
• zlib version 1.2.3, a file compression library.

During compilation, almost all of the main program code was
left unchanged; most of the modifications required to accept those
programs are fixes for small bugs in the programs themselves to
adhere the stricter type and declaration checking of the Fail-Safe C.
These modifications will be available on our website as patch files.
This is very unlike any existing methods that provide complete
memory safety: even CCured requires the modification of up to 1%
of the original source code. We changed build procedures such as
Makefiles accordingly.

During the implementation, we found a small off-by-one bug in
thttpd. Luckily, although this bug was unsafe, it is almost never
exploitable. We reported it to the original author. We have also
tested our system against several real vulnerabilities in existing
programs such as older versions of Sendmail and xv by extracting
some of the buggy code as a test program, and we verified that our
scheme can correctly handle and detect such memory corruption
attempts.

5. Evaluation
We have applied Fail-Safe C to a few benchmark programs to eval-
uate the performance of the current implementation. The programs
that we used were:

• ByteMARK benchmark version 2,
• the “Speed” subcommand available in OpenSSL.

We also include the results of three small micro-benchmarks here
for evaluating the performance of primitive operations.

The performance of the current implementation is shown in Fig-
ure 10. The values in the figure are normalized to give the speed
index of the program compiled by the native compiler the value
1.0 (smaller is better). We used a computer with dual-core AMD
Opteron processors running at 2.4 GHz and a GNU C Compiler ver-
sion 4.1.2 distributed with Debian GNU/Linux 4.0 (release etch).
The points marked by ¦ show the performance of the assembly rou-
tines implemented in OpenSSL, for reference.

The micro-benchmark “micro fib 44” calculates an element of
the Fibonacci sequence by simple recursion. It shows that there is
little performance overhead (∼2%) on the handling of fat integers.
The two tests “micro sumup”, which sums up an array of random
integers, and “micro qsort”, which sorts an array of random inte-
gers, show performance on memory operations. They show that
memory accesses with fat integers take about 1.7 to 2.2 times as
long to perform as one compiled by a native compiler. However,
when we force access methods to be used for all memory accesses
(shown as “CAST”), the overhead grows to more than 10 times.

This shows importance of cast flags and short-cut memory accesses
in Fail-Safe C.

In the OpenSSL RSA tests, the performance depended on the
length of the public key: in the range conventionally used (1024 to
4096), the program compiled by our compiler took about two to
four times as long to run as one compiled by the conventional com-
piler. For AES tests, unfortunately, the slowdown was about five
times. The reason for this is not yet completely determined, but we
guess that the programming style of the OpenSSL implementation
(implemented in a kind of object-oriented programming style in C)
involves moderate use of cast pointers.

The Bytemark benchmark shows that performance varies greatly
depending on the way that programs are written. In the Fourier test,
our compiler imposed almost no performance penalty. The worst
test was emfloat, which showed performance results about six times
as long. The reason for this seems to be a limitation of the current
implementation, which detects only some of the local variables
that can be safely allocated in the stack: the emfloat test allocates
many local structs whose addresses are passed around among sev-
eral functions. Current function-local analysis does not find such
variables as stack-allocatable. In future, we will implement a bet-
ter analysis to solve this problem, which should work well with
separate compilation.

On average, we can see that safety checks performed by our sys-
tem increased the execution time of computation-bound programs
by around two to four times in the ByteMARK test. For server pro-
grams with much heavier I/O overhead than these benchmarks, we
would expect slightly better performance than indicated by these
evaluation results.

6. Related Work
Canary-word techniques The “canary word” technique, which
is a well-known way to avoid simple kinds of sequential-access
buffer overflows, has been implemented for a long time. Protection
on stack buffers was provided by StackGuard [6]. Recent versions
of the Microsoft Visual C compiler include the /GS compile option,
which has a similar function on the Windows operating system
platform. The recent GNU C compiler also implements a similar
buffer smashing protection (-fstack-protector option) based
on ProPolice [7]. The benefits of the canary-based technique are
its low overhead and high compatibility with existing systems.
These systems modify only the structure of stack frames and the
unreferenced area between global variables, both of which are not
usually accessed directly by user programs. However, the limitation
of this approach is also obvious: it can only prevent sequential-
access buffer overflows that are used to directly attack execution-
controlling data; it cannot prevent even a buffer overflow based
on random access. If the execution-controlling data is overwritten
directly without modifying the canary words (e.g., by random-
access overflow and other exploits), the system is ineffective. For
example, both StackGuard and GCC stack smashing protector are
unable to prevent a security exploit found in the option parsing
routine in the old Sendmail.

Safe memory management for C There have been some pro-
posals for safe memory management of C programs. Loginov
et al. [15] proposed a method of ensuring pointer safety by adding
a 4-bit tag to every octet in the working memory. “Backward-
compatible bounds checking” by Jones and Kelly [12] modifies the
GNU C compiler (gcc) by inserting bounds-checking code that uses
a table of live objects. Safe-C [2] can detect all errors caused by
early deallocation of memory regions. However, as far as we know,
these proposals are not only slower than our method, but also in-
complete. They seem to have limitations regarding the source and
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Figure 10. Performance of the current compiler.

destination types of cast operations or do not protect pointers stored
in memory overwritten by integers via a cast.

Safe languages There are already plenty of languages (both stat-
ically and dynamically typed) that ensure complete memory safety.
Some of these, such as ML and Lisp, are accepted by some pro-
grammers for writing programs in a memory-safe way. However,
although these languages are good for new programs, it is hard to
reuse existing C programs on those systems. The syntax of Java
seems to have been designed intentionally to be similar to C, for
acceptance in the real world. Thanks to this, porting C programs to
Java is a little bit easier than porting them to other languages, but it
still requires heavy rewriting of the code.

Some other safe imperative languages resemble C more closely.
For example, Cyclone [9, 11] is designed to ease the porting of C
programs so that they become type safe. For common C programs
to conform to Cyclone, however, about 10% of the program code
must still be rewritten [9, 11], which is a considerable task.

CCured Necula et al. have designed and implemented CCured [16,
5], a sound type system that can support C programs that include
cast operations. The approach of CCured is to analyze the en-
tire program and then split it into two parts: the “type-safe part”
that does not use cast operations and the “type-unsafe part” that
could be contaminated by cast operations. However, to the best
of our knowledge, the designers did not focus on perfect source-
level compatibility with existing programs, and the system does in
fact support only a subset of the ANSI-C semantics. The reported
amount of code that must be rewritten is less than 1% of the source
code, which is much smaller than for other proposals such as Cy-
clone, but still a significant amount. Our work was designed with
a greater focus on complete compatibility with the ANSI-C spec-
ification and on the highest possible compatibility with existing
programs.

The main technical difference between CCured and our pro-
posal is that CCured is based mainly on static analysis of cast oper-
ations, while ours uses dynamic handling as its main tool. CCured
statically determines which variables might have a cast pointer, and
“quarantines” the wild part from the pure part of the program. The
pure part will then behave almost like a program of a pure statically
typed language; e.g., there will be no type information inside. The
weakness of this method is that the system cannot allow any point-
ers in the wild part to point to values in the pure part. In addition,
as value types are completely determined statically, a pointer that
could point to wild values must always point to wild values. This
means that wild pointers have a “pollution” problem: if one pointer

in a variable is found to have a cast in some case, all the data struc-
tures that might be pointed to by the same variable, and even all the
data structures that could be indirectly traversed from the variable,
must be in the wild part. Thus, the relative size of the program’s
wild part is likely to increase with program size.

In our scheme, on the other hand, a cast pointer does not infect
any other data because each memory block has a representation
type: even if there is a cast pointer pointing to a memory block, the
pointers in that block can still be typed (not cast).

Another problem with CCured is conflicts between the system
library and the pointer-type pollution described above. As system
libraries are compiled beforehand, a library must have a single
static type. However, in CCured, one wild pointer may pollute other
values by forcing them to be the wild type, including data to be
passed to the system library. If a library has already been compiled
as a non-wild type, the program cannot be linked safely. This makes
it harder to compile the large programs used in the real world.

Extensions to our work Kamijima and Sumii [13] have imple-
mented a C-to-Java translator which supports pointer arithmetic
and arbitrary pointer cast based on our scheme. They have intro-
duced local static to reduce additional overhead imposed by the
representation of Fail-Safe C’s data structure on Java.

Furuse proposed VITC [8], an extension of our scheme with
analysis and enforcement of information flow restriction. As our
compiler enforces basic memory safety and runtime conformity to
the defined language semantics, it can be combined with various
static/dynamic analysis to ensure stronger safety/security proper-
ties on the C language.

7. Conclusion
We have designed a completely memory-safe implementation of
the full ANSI-C language that can support all of the features of
ANSI-C, including casts and unions. We have introduced several
techniques to support C language features that most safe languages
do not have. We also exploited several implementation tricks to
reduce the runtime overhead as much as possible.

We have implemented both the compiler system and the runtime
library, which contains over 500 standard library functions defined
in the ANSI-C and POSIX specifications. The system accepts many
existing, well-used server programs such as OpenSSL, OpenSSH,
and BIND9.

A performance evaluation showed that, on average, the safe
programs compiled by Fail-Safe C take two to four times as long to
compute as unsafe programs compiled by native compilers.
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7.1 Future work
Compatibility with more existing programs: Due to the nature
of the memory-safety provided by our system, the current com-
piler does not directly support programs that use custom memory
management, including Apache httpd and many implementations
of programming languages. Such programs may either run very
slowly (due to the heavy use of cast pointers and access methods) or
simply not work correctly (if integer arithmetics are used in point-
ers).

We are considering implementing a compatibility library that
supports an interface for several custom memory managements
routines, e.g., the Apache APR and Boehm-Weiser’s GC library.
We expect the introduction of such libraries to enable our system
to support a broader range of existing programs.

Optimization: As an instant safety measure for existing pro-
grams, we think that the current performance is acceptable but
not completely satisfactory. We will investigate several compiler
optimization techniques to further reduce runtime overheads. We
observed that programs written in some safe languages with so-
phisticated implementations (such as Java and Objective Caml),
usually ran at about (very roughly) half the speed of heavily tuned
C programs. We have currently set this value as a future goal for
our optimization efforts.

However, we must be aware that not all existing optimizations
are directly applicable to our system. Needless to say, the optimiza-
tions to be applied must be sound. Moreover, many optimizations
assume that if the boundary checks fail, the program execution does
not continue, (or at least that the current scope of execution is ter-
minated e.g., by escaping via exceptions). This not always true in
our system: as can be seen in Figure 6, there is a control path that
leads from the “failed” branch of a boundary check and merges
back to the main path. We intend to implement optimizations care-
fully without sacrificing any safety.

Extensions: An extension of our compiler to accept programs
written in the 1999 revision of C (C99, ISO/IEC 9899 : 1999) will
not be difficult: however, C99 defines that a byte-to-byte copy of a
valid pointer will become a valid pointer, which is not supported in
current Fail-Safe C. We think that this will not cause any critical in-
compatibility to any existing programs, since this definition might
be intended to ensure that pointers copied by memcpy will be valid
pointers, which is supported in Fail-Safe C.

To support C++ language, we have designed an extension to the
cast flags of Fail-Safe C to support class inheritance, nominal sub-
type relations on pointers and virtual method invocations [18]. The
extended scheme uses 2-bit cast flags to distinguish uncast point-
ers (which allow pointer arithemtic), and pointers to subtype ob-
jects (which do not allow pointer arithmetic), from arbitrary-cast
pointers. However, supporting full C++ language will require huge
amount of implementation efforts on various language features un-
related to memory safety (such as method and operator overload-
ing, templates, and huge standard libraries).
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