
Analysis of Pure Methods using Garbage Collection

Erik Österlund
Software Technology Labs

Linnaeus University
351 95 Växjö, Sweden

eosst08@student.lnu.se

Welf Löwe
Software Technology Labs

Linnaeus University
351 95 Växjö, Sweden
welf.lowe@lnu.se

ABSTRACT
Parallelization and other optimizations often depend on static
dependence analysis. This approach requires methods to be
independent regardless of the input data, which is not always
the case.

Our contribution is a dynamic analysis ”guessing” if meth-
ods are pure, i.e., if they do not change state. The analysis
is piggybacking on a garbage collector, more specifically, a
concurrent, replicating garbage collector. It guesses whether
objects are immutable by looking at actual mutations ob-
served by the garbage collector. The analysis is essentially
for free. In fact, our concurrent garbage collector includ-
ing analysis outperforms Boehm’s stop-the-world collector
(without any analysis), as we show in experiments. More-
over, false guesses can be rolled back efficiently.

The results can be used for just-in-time parallelization al-
lowing an automatic parallelization of methods that are pure
over certain periods of time. Hence, compared to paralleliza-
tion based on static dependence analysis, more programs
potentially benefit from parallelization.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—memory
management (garbage collection); I.2.2 [Artificial Intel-
ligence]: Automatic Programming—automatic analysis of
algorithms, program transformation

General Terms
Algorithms

Keywords
garbage collection, automatic parallelization, dynamic anal-
ysis, pure functions

1. INTRODUCTION
Computers are getting more CPU cores, but the cores are

not used very well by today’s sequential programs. With

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSPC’12, June 16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1219-6/12/06 ...$10.00.

Moore’s law potentially coming to an end [16], a necessity
to develop programs running tasks in parallel, thereby using
the cores better, has emerged again. In fact, the efficiency
of application programs follows the promises of Moore’s law
only if they execute their tasks in parallel.

Today’s application programming interfaces (APIs) for
programming parallel applications are getting more program-
mer friendly. But, regardless of how usable parallelization
APIs become and whatever abstractions they provide, the
complexity of parallel programming remains inherently higher
than the complexity of sequential programming. Moreover,
the huge amount of sequential object oriented legacy code
that has been developed since the early 90ies and still is in
use to date will hardly be rewritten.

Therefore, automatic parallelization of sequential object
oriented programs has some advantages. The code preserves
its simple sequential nature and allows programmers to focus
on the problem and its solution in the system itself, rather
than on how to manage correctness, liveliness, and numerical
stability of parallel implementations. Legacy codes could be
adopted to multi-core machines by recompilation instead of
re-implementation.

However, automatically parallelized sequential programs
can theoretically not achieve the efficiency of carefully man-
ually coded and tuned parallel programs, and the practical
success of automatic parallelization for object oriented lan-
guages was, to our knowledge, rather limited in the past. In
functional programming, calls to pure functions may be par-
allelized directly, as they have no side effects. For exploiting
this idea in object oriented languages by the parallelization
of sequential calls to methods, analysis needs to prove their
statements as mutually independent. Since typical object
oriented programs operate on dynamically allocated and dy-
namically bounded objects, few methods can be statically
proven as independent.

We observe that the independence of methods is, however,
a dynamic property, changing throughout the execution of a
program. Objects are mutated and then do not change state
over longer periods of time, i.e., they become immutable.
Methods that operate on (temporarily) pure objects become
(temporarily) mutually independent pure functions and can
be executed in parallel then.

Conservative static approaches to detect and parallelize
pure methods attempt to prove purity in general. Our ap-
proach is dynamic and optimistic instead: if it observes that
objects are not changing over time, it optimistically assumes
their immutability and“guesses”purity of the methods oper-
ating on them. This can be exploited for parallelization. It

48

also observes false guesses: methods assumed to be pure un-
expectedly attempt to change the state of alleged immutable
objects. In this case parallelization can be rolled back before
an illegal state change occurs.

Once again, automatic parallelization cannot outperform
programmers in finding optimal solutions for parallelization.
But on a smaller scale, automatic approaches can better
keep track of temporarily immutable objects and temporar-
ily pure functions and exploit this for parallelization. There-
fore, we (1) introduce an efficient just-in-time (JIT) ap-
proach that dynamically “guesses” immutable objects and
pure functions piggybacking on a carefully designed and
optimized garbage collector. We (2) introduce an efficient
just-in-time approach to correctly detect all false guesses us-
ing write barriers to detect unexpected state changes. We
(3) experimentally demonstrate the efficiency and the ef-
fectiveness of our approach using a proof of concept imple-
mentation: our garbage collector including analysis outper-
forms Boehm’s stop-the-world collector (without any anal-
ysis). We (4) make first estimates about the potential ben-
efit of the dynamic analysis with JIT-parallelization as an
example. It shows good speed-ups in the most fortunate
cases including time for rolling-back on false guessing, and
no losses of speed in the unfortunate cases.

Section 2 introduces necessary definitions and notions.
Section 3 introduces the dynamic analysis of pure meth-
ods, their parallelization and the roll back approach. Sec-
tion 4 discusses implementation details necessary for achiev-
ing high analysis performance, while Section 5 shows this
performance in experiments. Section 6 relates our work to
prior results. Finally, Section 7 concludes the paper and
presents directions of future work.

2. TERMINOLOGY AND DEFINITIONS
First, we define the notions of cells, objects and their pu-

rity property.

Cells and Mutators A dynamically allocated frame of mem-
ory in the heap is called a cell. Threads executing the actual
program potentially changing cells are called mutators.

We use the term cell when we talk about a memory frame
from the garbage collector’s (GC) perspective. We rather
refer to cells as objects when seeing them from the muta-
tor’s point of view as we specifically target object oriented
programs.

Immutable and Pure Objects An object is called im-
mutable iff the values of its attributes do not change. An
object is called pure if it is immutable and can only reach
immutable objects.

For pure objects, none of the transitively reachable objects
can mutate. In Figure 1 the pure, immutable and mutable

Figure 1: Pure, immutable and mutable objects.

1 2

3

4
5

6

objects have different texture. Object 1 in this case is mu-
table, objects 2, 3, 4 are immutable but not pure as object
1 is reachable. Objects 5, 6 are immutable and pure. We
call objects that are either mutable or can transitively reach
mutable objects dirty.

A pure object cannot change its own state nor the state of
transitively reachable objects. State changes in this context
are write operations to an object’s attributes. We assume an
environment (object) for global state changes such as I/O-
operations and certain system calls. Any such state changing
operation is regarded as a mutation of the environment.

Pure Methods A method is pure iff its receiver and all
its parameter objects are pure and it does not mutate the
environment.

Pure methods are side-effect-free functions. They are depen-
dent on other methods iff they use their results or provide
their parameters. Otherwise, they are independent and can
be executed in parallel to other methods.

During program execution objects and their references de-
fine an object graph.

Object Graph An object graph O = (N,R,E) is a rooted
directed graph with each heap object o defining a node
n(o) ∈ N . Object o contains an attribute with a reference
to object o′ iff (n(o), n(o′)) ∈ E. Roots R ⊆ N are all nodes
of heap objects referenced from the stack.

Live and Dead Cells A cell is live iff it can be reached
from a root node; it is called dead otherwise.

The object graph of a program changes during program ex-
ecution. A GC detects the subgraphs that are not reachable
from the roots in order to free the corresponding memory.
Objects of dead cells can be freed.

Extending Dijkstra’s color-coding, we distinguish the state
of an object during garbage collection using colors of cells of
the corresponding object graph.

White and Black Cells A cell is called white iff it has
not yet been found and black iff itself and all transitively
reachable cells have been found by the garbage collection
(note that this is stricter than Dijkstra’s definition).

Finally, we define Strongly Connected Components (SCCs)
of directed graphs, later applied to our object graphs.

Strongly Connected Component The Strongly Connected
Components of a directed graph O = (N, ,) is the parti-
tioning (N1, N2, . . . , Nk) of N such that n, n′ ∈ Ni, 1 ≤ i ≤ k
iff there is a cyclic path in O including n and n′.

3. IDENTIFICATION OF PURE METHODS
Methods operating on pure objects, i.e., with pure receiv-

ing and parameter objects, are pure functions and can be
automatically parallelized. To identify pure methods, we
identify pure objects. Purity of objects changes throughout
the execution of a program. Therefore, we dynamically de-
termine immutable objects, i.e., objects which do not change
attributes over a period of time, and, based on that, derive
the objects that are pure over that period of time.

Our approach is to “guess” whether objects are immutable
or not based on the assumption that if an object has not
changed for sufficiently long time, it is probable that it will

49

not do so even in the coming near future. Guessing is an au-
tomatic, dynamic, and optimistic analysis allowing to paral-
lelize methods which are not pure functions during the whole
lifetime of all program executions, but only during a period
of time of a particular execution. As we no longer have
to prove purity of a method regardless of the input data
and the execution state of a program, we get (hopefully a
lot) more opportunities for parallelization compared to what
static and conservative analysis provides.

Obviously, we might guess wrongly and an object that
hasn’t changed over a long time will eventually change. There-
fore, once we have guessed and exploited that an object is
immutable, we protect against write accesses to it and cancel
parallelization whenever the guess proves wrong. Note, that
we protect against state changes before they occur. There-
fore, we do not need to expensively roll back state transi-
tions. We only need to repeat the parallelized work in se-
quential order again. We will refer to this as re-computation.

3.1 A Garbage Collector which Guesses Pu-
rity

Most object oriented languages come with automated mem-
ory management using a GC. Our solution to the problem of
guessing pure objects is to define and exploit a custom-made
GC.

Tracing live objects takes most of the time in both copy-
ing [6] and mark & sweep [24, 9] garbage collectors. This can
be exploited to our advantage: as caches play an increasingly
important role in performance, we can perform some extra
analysis work on cells that have already been loaded into
caches during tracing. We get this analysis work essentially
for free, as the major part of the work had to be performed
anyway.

Our solution integrates garbage collection and purity anal-
ysis. It is based on two cornerstones: concurrent replicating
garbage collector [30, 31] using pointer reversal [34, 22] and
the actual purity detection using a modified version of Tar-
jan’s algorithm [35] for detecting Strongly Connected Com-
ponents (SCCs). We have managed to keep all this down
to one single depth-first-search (DFS) pass, making purity
analysis very efficient theoretically and practically, as we will
later see in the benchmarks.

3.1.1 Concurrent Replicating Garbage Collection
A replicating GC [30, 31] is a variation of a copying GC.

A copying GC separates the heap in two semi-spaces: from-
space and to-space. In a normal copying collector such as
Baker’s, only to-space is visible to the mutators. Live cells
are migrated from from-space to to-space whenever a read
access occurs in the wrong semi-space. When all cells have
been migrated, the GC flips from-space and to-space.

A concurrent replicating GC has a few subtle changes. It
is concurrent, i.e., it collects garbage while the mutators are
allowed to change the object graph. From-space is visible to
the mutator threads; the GC maintains to-space. In order to
keep the two semi-spaces synchronized, mutations to heap
cells are logged in a mutation log. Therefore our concurrent
replicating GC uses a write-barrier (instead of a read-barrier
as most copying garbage collectors).

The main idea with our approach is to analyze the mu-
tations that become available via the mutation log, which
has to be maintained anyway, and to use that information
for optimistic purity analysis. The mutation log is our main

source of information when we guess what objects are im-
mutable: cells that have no records in the mutation log are
guessed to be immutable.

The GC periodically reads the mutation log and updates
cells in to-space as needed. As a starting condition, garbage
collection kicks in when the heap is almost filled. Our start-
ing condition is a simple percentage of the heap being filled,
but there are adaptive solutions to this as well. Once it has
started, the GC periodically suspends execution of the mu-
tators at certain safe-points where cells in from-space syn-
chronize with corresponding replicas in to-space. Then it
samples the root set, and resumes the mutators and con-
tinues collecting garbage again. When collection is done, it
suspends the execution of the mutators at a safe-point and
collects the remaining live cells and flips sides.

Research by Hayes [18] shows that memory cells are cre-
ated and destroyed in clusters. Copying collectors, such as
ours, generally have good caching behavior since they com-
pact the memory being used. We use depth first search
(DFS) traversal, instead of the breadth first search (BSF)
traversal commonly used in copying garbage collectors, which
sometimes leads to even better caching behavior for many
languages. For instance, Moon found out that DFS is supe-
rior to BFS in Smalltalk [29].

Pointer reversal was used for DFS. Normally it would
be difficult to use pointer reversal in a concurrent GC as
it changes pointer words in cells. But, since the mutator
only sees from-space, we can use pointer reversal on cells in
to-space. This allows us to perform DFS with O(1) mem-
ory consumption and without being afraid of running out of
memory for a DFS stack.

3.1.2 Purity Detection based on Tarjan’s algorithm
Conceptually, we first condense the object graph into its

strongly connected components (SCCs). With this new graph,
we propagate a dirty property back from mutable cells using
a post-order traversal of the graph. All objects whose SCC
have not been marked as dirty are pure.

We developed a special variant of Tarjan’s algorithm to
detect SCCs. In our variant as in Tarjan’s original algo-
rithm, cells have to maintain a pointer to their “lowest” cell,
which becomes the representative of an SCC. However, there
are two things that we would like to remove from Tarjan’s
algorithm: the index fields in the nodes and the need for a
stack.

Normally, Tarjan’s algorithm needs to store an index rep-
resenting the order in which a cell was found in the DFS
traversal. With our concurrent replicating GC, this is not
needed. The memory address of the cells are guaranteed to
be in DFS order, so the index field is no longer necessary.
Note that only replicating GCs (to our knowledge) have this
property. Other GCs are either not moving GCs or have mu-
tators with barriers that break the order in which cells are
moved.

We can also eliminate the stack of cells for eventually iden-
tifying SCCs. Note, that we are not interested in the cells
contained in a particular SCC. The only information rele-
vant for us is whether cells are pure or not. Therefore, it is
not necessary to know what particular cells are in the stack,
only if a given cell is in the stack or not. We can decide
this based on our black cell property. A cell is black when
we retreat from it in DFS as all of its transitively reachable
cells have been recursively visited then. If traversal finds a

50

cell that is not white (i.e. is visited and hence has a root
assigned) and its “lowest” cell is not black, it is in the stack
meaning it is in the same SCC as the current cell. Other-
wise, it is not in the stack, hence, in another SCC. Therefore,
the black flag and the pointers to the “lowest” cells provide
sufficient information to determine if a cell is in the stack.
Therefore, we may safely eliminate the real stack.

The dirty property is propagated when we retreat to a cell
in DFS. A cell is dirty if any of its children is. It is pure if
neither the cell itself nor its “lowest” cell are dirty. Hence,
we do not need to propagate the dirty property in SCCs,
avoiding a second traversal.

3.1.3 Correctness Considerations
Since we are not only focusing on detecting objects that

certainly are pure, things can go wrong when speculations
are wrong. The first consideration is that the algorithm for
identifying pure objects might break because it is done in
several steps and in parallel to the mutators. While the GC
is analyzing, already analyzed cells could be mutated and
hence break the purity assumption about SCCs before the
decision is finalized, i.e. before semi-spaces are flipped and
the mutator gets access to the analyzed cells.

Assume we have an SCC X and a cell x ∈ X. If GC
first traverses X and x then mutates and adds a reference
to another cell y with lower index (memory address) than x,
then the lowest pointer of x will be wrong and x /∈ X. Hence,
the whole algorithm breaks as the SCCs are not detected
correctly. Correcting this mistake would require another
traversal of already collected heap cells.

Note that this breaks the algorithm only if cells that are
guessed to be pure are actually not. More specifically, if we
have a cell x ∈ X where X is a pure SCC and x mutates
after its purity is guessed. Naturally this would by definition
never happen if X really was pure. If, in contrast, we have a
mutable cell x such that x ∈ X, but the analysis incorrectly
assumes x ∈ Y , where Y is another mutable SCC then it
does not matter if it is placed in the wrong SCC as none of
them were mutable. If Y would be a pure SCC, then it still
would not matter as the condition for being pure is that the
cell itself and its “lowest” both are not dirty. In this case the
cell itself is dirty and it is correctly considered dirty.

So how to prevent the analysis from incorrectly marking
an object as pure before the decision has been finalized?
Each collection cycle—a collection cycle is the set of col-
lections that lead up to a flip of semi-spaces—has two col-
lections: an initial one Ci which does the actual collection
concurrently to the mutators, and then an exclusive, syn-
chronizing one Cs which collects the objects mutated during
Ci and any additional roots. Then it is time to flip semi-
spaces. The timing window where the algorithm could break
is in Ci because it is executed in parallel to mutators.

If a supposedly pure object mutates directly, we consider
it mutable. Other supposedly pure objects that should be
considered dirty are still regarded as pure. This is still
safe because their purity cannot be exploited for paralleliza-
tion until we flip semi-spaces. Thereafter, any mutation is
trapped by the mutator before it actually happens. There-
fore, any situation that breaks the detection algorithm is
either detected before it gets exploited by parallelization
(object considered pure but is directly mutated in Ci) or
trapped and reverted (object considered pure but is dirty
because of indirect mutation in Ci).

3.2 Parallelization of Pure Functions
With this dynamic analysis, we suggest using it for JIT-

parallelization. It determines if code can potentially be ex-
ecuted in parallel and, on the fly, adds parallel method in-
vocations which are possibly selected using context-aware
composition [19, 20, 27].

More specifically, if a method is identified as pure it is in-
voked in two variants: either in the normal sequential order
or in a separate thread with the results being synchronized.
These two invocations are guarded by a conditional state-
ment checking three so-called context attributes: purity of
the method, number of cores/processors currently available,
and profiling information about the potential gain of using
the threaded version over the sequential one from previous
invocations. Based on these context attribute values, the
parallel or sequential variant is selected dynamically. Since
JIT compilers often use profiling anyway to determine what
methods to compile to native code, the profiling information
could be reused here.

Standard loop transformations can be used in preparation
of parallelization: loop unrolling to get sequences of method
invocations to parallelize when the targets are pure and loop
splitting to separate pure and non-pure method invocations.
The transformations can even be combined. Still all trans-
formations are based on speculatively “guessed” instead of
conservatively statically analyzed purity.

3.3 Reverting False Guesses
For rolling back when speculations about an object’s pu-

rity prove wrong, we protect objects against any form of
mutation. This allows us to protect against a violation of
purity before it actually occurs.

Then we simply discard the work done based on incorrect
purity speculations. These penalty costs ought to be mini-
mized, i.e., we ought to discard as little as possible. Recall,
that parallel method invocations are started in sequential
execution order, executed then in parallel, and may not end
in the same original sequential order. Assume, we are to
execute n such invocations sequentially, we guess purity of
the targets, and decide to execute them in parallel instead.
Further assume invocation k : 0 ≤ k < n turns out to be not
pure actually, i.e., the object it is invoked on is not pure.
Then still the methods l : 0 ≤ l ≤ k can continue in parallel
as the sequential order of state changes is never violated.

Note that if k = 0, i.e., the first invocation in the sequen-
tial execution order breaks purity, this execution can con-
tinue. Hence, the sequential execution never gets discarded
and incorrect guesses never affect the original sequential ex-
ecution time.

The following two sections discuss how we trap mutations
and our strategy to control re-computations in a special han-
dler, resp.

3.3.1 Protecting pure objects against mutations
Mutations need to be trapped to avoid the speculatively

parallelized pure method invocations from creating inconsis-
tent global states. This can be done in several ways. One
way is to let the GC take a little bit more care where it puts
the cells that are copied from from-space to to-space. We
could for instance copy cells that are assumed to be pure to
the bottom of to-space while dirty cells are copied to the top
of to-space. Then when the collection cycle is done and it
is time to flip sides of the semi-spaces, we first write-protect

51

the pages of cells that are pure, i.e., at the bottom of to-
space. The mutator threads can then determine if a cell is
pure by looking at its address and seeing if it is inside of the
region we have write-protected.

If a mutator then attempts to mutate the cell, we could
trap to the operating system and handle the problem with
a re-computation handler by removing the write-protection
from the corresponding page and thereby marking all cells
within it dirty for the mutators. While this is a simple ap-
proach, some pure objects on the same page would then be
marked as dirty. GC would find and mark them as pure
again the next collection cycle.

The main problem with this approach is that mutators are
slowed down and we have to trap to the operating system
in case our guesses of purity were wrong. This overhead
even occurs regardless of whether we used the analysis for
parallelization or not. Even if we had only one mutator
thread, we still cannot write to the write-protected cell and
hence a re-computation is necessary regardless.

Another problem with this approach is that even cells that
did not mutate will be punished if they are on the same page.
If we remove write protection to accept a mutation to one
cell, all other cells on the same page lose their protection
as well. As we cannot detect mutations to these other cells
any longer, we need to assume conservatively that mutations
occur. Hence, we must stop and re-compute sequentially all
parallelized threads that assume these other cells are pure
(and protected).

Therefore, we have chosen another solution. Recall, we
need to log any mutation to any object because this is how
the replicating GC works and we decide now to do logging
before any such mutation occurs. As a tiny extension of this
logging, we additionally check if we attempt to mutate a
pure object and notify the re-computation handler in that
case (and would not do the mutation). This branch to the
re-computation handler is very cheap because of branch pre-
diction: we can easily see that almost never does a mutator
try to mutate a cell guessed to be pure.

With this approach we do not have to write-protect the
pages. It removes the problem of uselessly managing re-
computations in situations where we do not parallelize. If
no automatic parallelization is going on, the handler would
simply authorize mutation. It also solves the problem of
punishing cells on the same page as the cell violating the
presumed purity.

The same technique also allows us to trap mutations at
the beginning of safe-regions where for instance I/O-calls are
located, where page protection would not help.

3.3.2 Re-computation handler
Although we trap each mutated object immediately, a

garbage collection cycle has to be completed before we know
all objects that are affected, i.e, get all dirty objects reaching
the mutated object. This can be handled in several ways as
discussed below.

One strategy is to mark the mutated object as dirty and
only cancel the thread that encountered the mutation. In-
stead of waiting for the GC to determine what other objects
could transitively reach this mutable object, the concurrent
threads that did not yet encounter a mutation continue ex-
ecution. This is possible as state has not been changed yet
because they were trapped before the mutation occurred.
The pro with this approach is that all automatically par-

allelized threads do not need to stop because of one single
purity violation (mutation). The con is that many threads
could be invalidated for automatic parallelization because of
this mutation which would lead to many re-computations.
If n is the number of alleged pure but actually mutable ob-
jects, the penalty would be O(n) re-computing tasks in the
worst case.

An alternative strategy is to re-compute immediately but
only once and wait for the GC to determine exactly what
cells are still pure before any further parallelization. The con
is that tasks that were not affected by the object mutation
get penalized. The pro is that the worst-case is only one
re-computation phase per GC cycle which is O(1) instead.

We have chosen the second variant because we consider
it important not to perform worse than sequential execu-
tion in the worst case. The results are shown later in the
benchmarks.

It should be noted that these two approaches are in no
way mutually exclusive. It is possible to continue execut-
ing some threads concurrently optimistically until a certain
threshold when re-computations would become expensive.
Only then the system stops and waits until the GC pro-
vides better up to date analysis about the pure objects and
(re-)computations resume.

4. IMPLEMENTATION
We implemented our purity analysis in C. POSIX and

its pthread libraries have been used extensively. Our pu-
rity analysis needs to be integrated with a runtime system.
Therefore, we created a runtime system in C. The GC of our
purity analysis is concurrent and its synchronization reduces
to root sampling and mutation logging. We carefully imple-
mented the GC to reduce wait times and synchronization
overheads and increased allocation speed. Below are some
implementation details for reaching these goals.

4.1 Safe-points and Safe-regions
Our GC needs to stop the mutator for a short moment

to access root samples and flip semi-spaces. This is only
done when it is safe, i.e., safe-points are emitted where the
mutator and collector threads are known to have a coherent
state. At these points, a handshaking protocol is used to see
if the GC wants to suspend mutator execution. If so, the
mutators suspend their execution and give control to GC,
and then continues execution again.

The more frequently safe-points are reached in the muta-
tor code, the faster the collector will get response. This is
especially important if there are several mutators, because
otherwise one mutator might suspend quickly and then wait
a long time for another mutator to suspend its execution.
Therefore, safe-points are typically emitted in loops so that
mutators can quickly respond to a hand-shake request.

Sometimes safe-points are not enough. In a blocking sys-
tem call like a socket read, it is not feasible to wait until
it unblocks before we can respond to GC. Instead, a safe-
region is used. Before a blocking operation we tell GC that
we enter such an operation, and at the end we check if the
mutator is expected to be suspended.

Safe-regions are also used to trap mutations due to system
call or I/O operations. This will arguably not affect per-
formance as such a “mutation” takes a lot more time than
checking if the current object, which is already cached, is
considered pure.

52

4.1.1 Object Allocation
If only one mutator thread is running, allocating memory

becomes very cheap with our GC. It increases the current
allocation address and returns the old one. If the address
has reached a threshold, the GC thread is started to collect
garbage concurrently.

When there are multiple threads running, some kind of
synchronization mechanism is needed. We used a lock free
solution using thread-local storage (TLS) with an allocation
buffer for each mutator thread. Then no synchronization
mechanism was needed and we get rid of cache clashes when
several mutator threads allocate memory close to another.

4.1.2 Logging Mutations
Logging mutations in from-space was necessary to let to-

space know what has to be updated after a collection. This
update is then performed by copying mutated cells that GC
knows about already. Mutations to white cells don’t need
a copy but are noted for the analysis (flagged dirty). This
way, we can reduce the space necessary for mutation logs
while still being able to tell exactly what cells have mutated
since the last collection.

Our GC does not log actual mutations but what heap
objects did mutate (howsoever). This is done to keep caches
coherent which could otherwise cause problems as we cannot
write to two addresses at once [5]. As for allocation, we use
TLS with one mutation buffer per thread.

Amortized over a program run, a write-barrier (as we use
for logging mutation) is typically cheaper than a read-barrier
as there are normally more reads than writes in a program.
Also, a read-barrier often uses expensive mechanisms such as
read-protecting memory pages and trapping to the OS every
time a read is performed such as Baker’s GC [6]. Although
the overheads could be reduced a bit by migrating whole
pages to to-space instead of only one object such as in the
Appel-Ellis-Li GC [2], this is still expensive.

One could assume that the write-barriers of our GC are
still relatively expensive compared to arguably cheaper write-
barriers used in a mark & sweep GC. The latter only protects
writes to pointer words while ours, as all replicating GCs,
must write-protect any kind of mutation (and do a few more
things as well in our case). On the other hand, since we log
which cell mutated but not how, it is sufficient to use only
one write-barrier for each cell between any two safe-points
instead of one for each write access. So while a lot of muta-
tions might have happened to a cell, we only have one entry
in the log and one single invocation to the write-barrier.
A normal write-barrier such as the one used by Kung and
Song [24] would have potentially many invocations if many
pointer words changed.

5. BENCHMARKS
Our benchmark suite consists of two parts. First we as-

sess GC performance using GCBench and with a benchmark
which is unfortunate for our approach: it contains small ob-
jects in an (almost) linear object graph. It was run on a
2.93 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3 mem-
ory, running Mac OS X 10.6.7. Then we demonstrate what
the actual speed-up of parallelization could be in a hypo-
thetical example program run on a 2.53 GHz Intel Core i5
(2 CPU cores), 4 GB 1067 MHz DDR3 memory, running
Mac OS X 10.7.1.

Table 1: Result of different GCs in GCBench
GC Execution time Collector overhead
Boehm 2,555 ms 774 ms (30 %)
Our GC 1,781 ms 263 ms (13 %)
Boehm (inc) 12,255 ms 10,474 ms (86 %)
Manual 3,083 ms N/A
Boehm 2,017 ms 654 ms (32 %)
Our GC 1,363 ms 110 ms (7 %)
Boehm (inc) 5,521 ms 4,158 ms (75 %)
Manual 3,028 ms N/A
Boehm 19,985 ms 1,385 ms (5 %)
Our GC 18,600 ms 1,014 ms (5 %)
Boehm (inc) 88,366 ms 69,766 ms (77 %)

A limitation of this study is that we compare our replicat-
ing GC to a conservative mark & sweep GC. Furthermore all
benchmarks were written in C, but we wish to target OOP
languages. More CPU cores would also be useful for the
parallelization benchmark. Therefore this should be consid-
ered as an initial indication and a proof of concept. More
rigorous evaluation remains to be done.

5.1 Garbage collection benchmarks
GCBench is a quasi-standard benchmark originally cre-

ated by John Ellis and Pete Kovac, later modified by Hans
Boehm and others. Boehm-Demers-Weiser [9] is a famous
conservative GC that does not require any assistance from
a run-time system nor a compiler.

The purpose of this first benchmark is to compare how
our GC performs compared to Boehm’s GC. Specifically,
our intension is to show that dynamic purity analysis can be
performed by a GC while still being competitive in perfor-
mance. Our focus is not to show replicating GCs outperform
mark & sweep even though this may be true.

As our GC needs some support from the compiler and
the run-time system, the benchmark has been modified to
use our run-time system. Overheads related to the run-time
system are present for every GC, while things specific to our
GC such as safe-points and write-barriers are present only
when our GC runs the benchmark.

We fixed the heap sizes for the two GCs to 512 MB to
make it invariant. Note that having a large heap does not
harm Boehm’s GC as it uses lazy sweeping, as confirmed in
pretests of varying heap sizes. Since our GC is a variant of
a copying GC, it will need about twice as many collection
cycles.

Table 1 shows the result of our GC benchmarks. The
first part shows the GCBench results when run with holes
in the memory. The first column represents the memory
management system/GC used, where Boehm (inc) refers to
the incremental and generational version of Boehm’s collec-
tor. The execution time column represents the time from
the start to the end of the benchmark in milliseconds. The
collector overhead column shows the time for garbage col-
lection alone, again in milliseconds (and as percentage of
mutator and collector execution).

It is most interesting to compare our GC against Boehm’s
stop-the-world collector while Boehm’s incremental is out-
performed by far and manual memory management is just
added as a reference point. Our GC execution time and col-
lector overhead is smaller than the others although it was

53

triggered more than twice as many times as the others, cf.
collection cycles.

For evaluating the results, we ought to keep in mind that
our GC is concurrent, and Boehm’s GC is not. Therefore,
the execution time for Boehm’s GC includes collector over-
head, while our GC is almost free from collector overhead
in mutators, apart from sampling roots, the handshaking
protocol, flipping sides, etc.

We measured the collector overhead for our GC by sum-
ming the total time the collector thread was awake. For
Boehm’s collector, we approximated the collection overhead
by measuring the time difference between our execution time
and Boehm’s and used that as a lower bound of the garbage
collection overhead.

However, reality is slightly more complicated: the muta-
tors using our GC are not completely free from GC overhead
which affects running times. Apart from that, Boehm’s GC
might suffer from worse caching performance with its mark
& sweep approach, which also affects the running time. Con-
clusively, the time difference between the execution time of
our collector and Boehm’s is merely an approximation (as
all GC benchmarks are).

With our GC, each collection cycle has 2 collections. We
also need more than twice as many GC cycles, because we
have two semi-spaces. Due to the analysis payload and the
auxiliary information necessary to store the root and replica
pointers, pointer reversal information and the black flag, our
collector is a bit more wasteful in memory overhead.

The second part of Table 1 shows the same type of exper-
iments and results when running GCBench without holes in
the heap. Using the same reasoning as before, our GC has
about 1/6 of the collection overhead of Boehm’s collector.

What becomes clear in this benchmark is that our con-
tiguous memory layout of cells in the heap, that a mark &
sweep GC can not achieve, pays off with better caching per-
formance. This time caches obviously played a greater role
both for the collector and the mutators.

Finally, we tried running the benchmark with and with-
out doing dynamic analysis with our own GC. Using holes,
garbage collection took 257 ms without analysis and 263 ms
with analysis. So our hypothesis seems to be supported by
this result: we get this dynamic analysis essentially for free,
which is what we wanted to show.

Finally, we defined our own benchmark to compare how
the GCs perform when cells are small and our analysis mem-
ory overhead becomes more important. This benchmark
constructs many linked lists of random (but deterministic)
size. The results are shown in the third part of Table 1.

In this benchmark we have a lot more collection cycles
because cells are small, almost three times as many, but still
it performs well compared to Boehm’s GC. A conclusion
is that the time spent collecting is very low when the data
structures being collected have a contiguous memory layout,
because of the good caching performance of linear memory
accesses.

5.2 Parallelization Benchmark
We constructed a benchmark to determine how good the

garbage collector is at dynamically detecting temporarily
pure objects in a scenario where the purity of objects is
impossible to determine statically.

A tree is constructed where inner nodes have keys and
leaves have key-value-pairs. This reflects the structure of

Table 2: Result of analysis of BFS traversal of GiST

Run Iterations Tree height Sequential execution
1 3000 4 20.3 s
2 100 5 23.0 s
3 500 4 5.0 s
4 100 4 1.1 s

for instance a Generalized Search Tree (GiST)[23], B+ trees,
R-trees, etc. We traverse the tree using BFS. If a node has
no value we print a message and continue. This cannot be
parallelized automatically using static analysis as the print
message is a global state change that would violate sequen-
tial order if run in parallel.

In our specific program, each leaf node contains a matrix
A. If we reach a leaf, we compute something (the determi-
nant det(A), then a new matrix B = An for some integer
n, then the determinant det(B) and finally we compare how

much det(B)1/n and det(A) diverge). If the numbers di-
verged over a certain limit, which depends on the floating
point numbers and arithmetics, we print out a message that
the result was bad. This is a state mutation that static anal-
ysis couldn’t possibly detect. The program uses our GC to
guess when we could run code in parallel.

Figure 2: JIT parallelization using dynamic analysis

Table 2 shows the results using trees with node degree of
10 and 5x5 matrices. The first column is the run number, the
second one the matrix power n. The higher n, the longer the
execution time for each task. The third column represents
tree height. Higher tree means more nodes, and more nodes
means that GC will find the pure objects faster relative to
the program execution time. The fourth column is the total
execution time of the program when run sequentially.

Figure 2 shows the results of the different runs from ta-
ble 2. All values are in seconds.

The first bars of each run represent the sequential execu-
tion time of the program.

The second bars show the time it takes for all leaves to
execute. It is the fraction of the the sequential execution

54

that could run in parallel assuming perfect dynamic analysis.
Our GC can not suggest to execute all leaves in parallel
because it needs to see that objects are not mutated first.

The third bars show the fraction of the sequential execu-
tion that could run in parallel using the analysis from our
GC. It is close to the optimum in the first two runs. How-
ever, when run-times get too small, it does not have the time
to provide analysis as garbage collection merely had time to
finish. This shows in the third and fourth run.

The fourth bars show the required execution time of the
program when JIT-parallelization code is used based on the
dynamic purity analysis of our GC, i.e. code is executed
in parallel as soon as the GC says methods are pure. The
time for GC and for dynamic code selection (sequential vs
parallel variants) is included.

The last bars show the garbage collection overhead alone.
Note that the full potential of the parallelization was not
reached as it ran on a dual core CPU, and there are 3 com-
peting threads when garbage collection occurs.

Additionally, we constructed an interesting special version
of run 1 where all assumptions about purity were forced to
be wrong. It was designed to demonstrate the worst case
when re-computations are needed as many times as possi-
ble. As soon as a task is scheduled to be run in paral-
lel, it mutates immediately and the re-computation handler
is forced to preserve sequential execution as described in
Section 3.3. The execution time using JIT-parallelization
was 20.9s against the 20.3s when run sequentially. This
shows the benefit of not having to do a full roll-back, just
re-computations.

6. RELATED WORK
The related work on garbage collection has been discussed

already together with our dynamic analysis approach in Sec-
tions 3 and 4. In this section, we relate to other automated
parallelization approaches.

Automatic program parallelization has a long history dat-
ing back to the 1970s. An overwhelming majority of papers
published in this area, e.g. [1, 37, 7, 36, 4, 21, 25], has a focus
on static parallelization of programs dealing with numeri-
cal computations. More precisely, they use automatic loop-
index analysis [1] with subsequent loop-dependency anal-
ysis [37, 7, 36, 4] to identify loops suitable for loop-level
parallelism and loop transformations to parallelize for-loops
over array based numerical computations, and they only deal
with non object oriented languages like Fortran and C.

The number of papers dealing with automatic paralleliza-
tion of object oriented languages is rather low. And again,
these papers use static analysis for parallelization. More-
over, a large part of these papers are related to the so-called
Java Grande effort (www.javagrande.org) to promote Java
as a language suitable also for high performance comput-
ing [32]. Hence, also these papers, e.g. [3], have a strong
focus on parallelizing numerical applications.

Static analysis of object oriented programs for automati-
cally detecting purity of methods ought to combine points-
to analysis, e.g., [33, 28], with subsequent side-effect anal-
ysis, e.g., [14]. However, the few papers dealing with par-
allelization of object oriented general purpose programs al-
most exclusively rely on manual source code annotations to
decide which parts of the program to transform. Some pa-
pers, e.g. [11, 8], present different approaches for how to
transform a sequential Java program into a corresponding

parallel program. They are all a direct response to the new
generation of computers based on multi-core processors.

Duarte et al. [15] use algebraic laws to define different
types of static source code patterns that are possible to par-
allelize. They also describe how to parallelize each such
identified pattern. However, they do not present any analy-
sis detecting these patterns automatically.

Löwe et al. [27] adapt the above analysis and transfor-
mation techniques and combine them with context-aware
composition [19, 20]. Here, static analysis identifies paral-
lelizable components and transformations add parallel com-
ponent variants to the sequential ones. The actual selection
of a parallel or sequential variant is postponed to runtime.

Bradel et al. [10] also identify program parts suitable for
parallelization. They present a dynamic analysis identifying
computational intensive parallelizable loops. This analysis
information is later used as input to a source code transfor-
mation parallelizing these identified loops. Once again, it is
an approach focusing entirely on loop-level parallelism.

Some JIT and speculative approaches aggressively paral-
lelize statements regardless of their independency [26, 12,
17]. They use profiling to determine if parallelization is
worth it or not. Everything the mutator threads access is
copied (including heap and stack) and then results are copied
back. All data gets versions and versions not conforming to
the sequential order are discarded. These approaches could
work with hardware support [13], which is not present on the
mainstream market. On standard hardware, some programs
benefit but others significantly decrease performance.

7. CONCLUSIONS
We proposed an approach to dynamically guess pure meth-

ods at run-time based on analysis performed by a replicating
garbage collector. This analysis can be used to automati-
cally parallelize methods invoked on pure objects with pure
arguments. Rolling back is trivial as we trap before any
state violation. A proof of concept was built for evaluation.
Execution time is not negatively affected by the GC nor by
incorrect guesses which is confirmed by a number of initial
experiments. Experiments also show promising speed-up re-
sults of parallelization.

The major next step is to integrate our approach into a
real VM. This would allow a more elaborate experimental
assessment of pros and cons than the ones presented here.

Minor steps aim for improving our GC using, e.g., an
adaptive heap that can expand and contract. This might
lead to even smaller synchronization overheads when allocat-
ing memory and removes delays related to freezing mutators
when allocation is faster than predicted and the programs
run out of memory. Other GC optimizations include more
compact headers, handling small and big cells differently,
and adding generational collection.

Another direction of future work is to use the mutation log
to find what parts of an object can be split into several by
assessing memory access patterns of methods. This would
allow the detection for more pure objects as not the whole
original object would have to be pure. Another interesting
idea is to find not only pure objects, but subgraphs that are
independent of each other, but not everything.

Generally, the idea of a dynamic analysis piggybacking
on a GC for free could have other applications than just
dynamic purity analysis of pure objects.

55

8. ACKNOWLEDGEMENTS
This research was supported by the Swedish Research

Council under the grant 2011-6185.

9. REFERENCES
[1] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman.

Compilers: Principles, Techniques, and Tools (Second
Edition). Prentice Hall, 2007.

[2] A. W. Appel and Kai Li. Real-time concurrent
collection on stock multiprocessors. ACM SIGPLAN
Notices, 23, 1988.

[3] P.V. Artigas, M. Gupta, S.P. Midkiff, and J.E.
Moreira:. Automatic loop transformations and
parallelization for Java. In Int. Conf. Supercomputing
(ICS’00), page 1ff, 2000.

[4] T.M. Austin and G.S. Sohi. Dynamic dependency
analysis of ordinary programs. In 19th Ann. Int. Symp.
Comp. Architecture (ISCA’92), page 342ff, 1992.

[5] A. Azagury, E. K. Kolodner, and E. Petrank. A note
on the implementation of replication-based garbage
collection for multithreaded applications and
multiprocessor environments. Technical report, Dept.
of Sys. Tech., IBM Haifa Research Lab, Israel, 1998.

[6] H. G. Baker. List procesing in real-time on a serial
computer. Comm. ACM, 32, 1978.

[7] U.K. Banerjee. Loop Transformations for
Restructuring Compilers: The Foundations. Kluwer,
Norwell, USA, 1993.

[8] A.J.C. Bik, J.E. Villacis, and D.Gannon. javar: A
prototype Java restructuring compiler. Concurrency -
Practice and Experience, 9:1181ff, 1997.

[9] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software Practice and
Experience, 18:807ff, 1988.

[10] B.J. Bradel and T.S. Abdelrahman. Automatic
trace-based parallelization of Java programs. In Int.
Conf. Parallel Proc. (ICPP’07), page 26ff,
Washington, USA, 2007. IEEE Comp. Society.

[11] Michael K. Chen and Kunle Olukotun. The jrpm
system for dynamically parallelizing java programs. In
30th Ann. Int. Symp. Comp. Architecture (ISCA’03),
page 434ff, New York, USA, 2003. ACM.

[12] M. Cintra and D.R. Llanos. Design space exploration
of a software speculative parallelization scheme. IEEE
Trans. on parallel and distributed systems, 2005.

[13] M. Cintra, J.F. Martinez, and J. Torrellas.
Architectural support for scalable speculative
parallelization in shared-memory multiprocessors. In
27th Ann. Int. Symp. Comp. Architecture (ISCA),
2000.

[14] L.R. Clausen. A Java byte code optimizer using
side-effect analysis. Concurrency: Practice and
Experience, 9(11):1031ff, 1999.

[15] R. Duarte, A. Mota, and A. Sampaioo. Introducing
concurrency in sequential Java via laws. Inf. Process.
Lett., 111:129ff, Jan 2011.

[16] M. Dubash. Moore’s law is dead, says gordon moore.
Techworld, Apr 2005.

[17] M. Gupta. Techniques for speculative run-time
parallelization of loops. In ACM/IEEE Conf.
Supercomputing, 1998.

[18] B. Hayes. Using key object opportunism to collect old
objects. OOPSLA/ECOOP ’91 Works. Garbage
Collection in Object-Oriented Systems, page 33ff, Oct
1991.

[19] Ch. Kessler and W. Löwe. A framework for
performance-aware composition of explicitly parallel
components. In Parallel Computing: Architectures,
Algorithms and Applications, ParCo 2007, page 227ff.
IOS Press, 2007.

[20] Ch. Kessler and W. Löwe. Optimized composition of
performance-aware parallel components. Concurrency
& Computation: Practice & Experience (accepted),
2011.

[21] J. Knoop, O. Rüthing, and B. Steffen. Lazy code
motion. In ACM SIGPLAN 1992 Conf. Prog. language
design and implementation (PLDI’92), page 224ff,
New York, USA, 1992. ACM.

[22] D. E. Knuth. Fundamental algorithms. The art of
Comp. Prog., 1:501ff, Aug 1973.

[23] M. Kornacker. High-performance generalized search
trees. Proc. 24th Int’l Conf. on Very Large Data
Bases, Sep 1999.

[24] H. T. Kung and S. W. Song. An efficient parallel
garbage collection system and its correctness proof.
IEEE Symp. Foundations Comp. Science, page 120ff,
1977.

[25] A.W. Lim, S.-W. Liao, and M.S. Lam. Blocking and
array contraction across arbitrarily nested loops using
affine partitioning. In 8th ACM SIGPLAN Symp.
Principles & practices parallel prog. (PPoPP’01), page
103ff, New York, USA, 2001.

[26] D.R. Llanos, D. Orden, and B. Palop. Just-in-time
scheduling for loop-based speculative parallelization.
In Parallel, Distributed and Network-Based Proc.,
PDP 2008, page 334ff, 2008.

[27] W. Löwe and J. Lundberg. Towards parallelizing
object-oriented programs automatically. In Book of
Abstracts of the International Conference on Parallel
Computing (ParCo’11), page 132, Ghent, Belgium,
2011.

[28] J. Lundberg, T. Gutzmann, M. Edvinsson, and
W. Löwe. Fast and precise points-to analysis. J.
Information and Software Technology, 51(10):1428ff,
2009.

[29] D. A. Moon. Garbage collection in large lisp systems.
ACM Symp. Lisp and Functional Prog., page 235ff,
Aug 1984.

[30] S. M. Nettles and J. W. O’Toole. Real-time
replication-based garbage collection. SIGPLAN’94
Conf. Prog. Lang. Design and Implementation, 29,
Jun 1993.

[31] J. O’Toole and S. Nettles. Concurrent replicating
garbage collection. SIGPLAN Lisp Pointers, VII:34ff,
Jul 1994.

[32] M. Philippsen, R.F. Boisvert, V. Getov, R. Pozo, J.E.
Moreira, D. Gannon, and G. Fox. JavaGrande - high
performance computing with java. In 5th Int. Works.
Applied Parallel Computing, New Paradigms for HPC
in Industry and Academia (PARA’00), page 20ff,
London, UK, 2001. Springer.

[33] B.G. Ryder. Dimensions of precision in reference
analysis of object-oriented programming languages. In

56

Int. Conf. Compiler Construction (CC’03), volume
2622 of LNCS, page 126ff. Springer, 2003.

[34] H. Schnorr and W. Waite. An efficient machine
independent procedure for garbage collection in
various structures. Comm. ACM, page 501ff, Aug
1967.

[35] R. E. Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Computing, page 146ff, 1972.

[36] M.J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, Boston, USA, 1995.

[37] H. Zima and B. Chapman. Supercompilers for Parallel
and Vector Computers. ACM, New York, USA, 1991.

57

