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1.0 GOALS AND FRAMEWORK 

Our goal is to develop a practical 
syntactic error recovery method applicable 
within the general framework of viable 
prefix parsing. Our method represents an 
attempt to accurately diagnose and report 
all syntax errors without reporting errors 
that are not actually present. Successful 
recovery depends upon accurate diagnosis 
of errors together with sensible 
"correction" or alteration of the text to 
put the parse back on track. The issuing 
of accurate and helpful diagnostics is 
achieved by indicating the nature of the 
recovery made for each error encountered. 
The error recovery is prior to and 
independent of any semantic analysis of 
the program. However, the method does not 
exclude the invocation of semantic actions 
while parsing or preclude the use of 
semantic information for error recovery. 

The method assumes a framework in 
which an LR or LL parser, driven by the 
tables produced by a parser generator, 
maintains an input symbol buffer, state or 
prediction stack, and parse stack. The 
input symbol buffer contains part or all 
of the sequence of remaining input tokens, 
including the current token. The LR state 
stack is analogous to the LL prediction 
stack; except when restricting our 
attention to the LL case, prediction stack 
shall serve as a generic term indicating 
the LR state or LL prediction stack. The 
parse stack contains the symbols of the 
right hand sides that have not yet been 
reduced. 
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In most applications a similar stack is 
required for semantic analysis or for 
constructing an abstract syntax tree. The 
parse stack may be combined with such a 
"semantic" stack with negllglble 
additional cost. When a right hand side 
has been completed on the parse stack and 
the next input token can legally be 
shifted, the right hand side symbols are 
replaced by the left hand side symbol of 
the rule being reduced. At the same time 
a "semantic action" routine may be 
invoked. 

2.0 THE METHOD 

2.1 Overiew 

The error routine is invoked when no 
legal parsing action is possible. In such 
a circumstance the current token is 
referred to as the error token. The error 
routine adjusts the input symbol buffer 
and prediction and parse stacks in such a 
way that parsing can continue beyond the 
error token. On entry the parse and 
prediction stacks are required to be in 
the configuration that obtained when the 
token preceding the error token was 
shifted onto the parse stack. If LR(1) 
parsing is used without default 
reductions, this condition will always be 
satisfied. In an LL, LALR, or SLR 
implementation, or in the presence of 
default reductions, however, reductions 
may occur when the next token is not 
shiftable. Given the possibility of such 
premature reductions, it is necessary 
during the parse to delay reductions until 
the next token is to be shifted. In LL(1) 
and LALR(1) implementations, we have 
developed techniques for deferring 
reductions without noticable overhead. 
These techniques are discussed in detail 
in section 5.1. 

The first concern of our method is to 
determine whether an error is simpler 
i.e. correctable by a single token 
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insertion, deletion, or substitution. If 
so, the correction is made; otherwise a 
portion of the program text is to be 
deleted, new text is to be inserted, or 
both. The discarded text may precede, 
follow, or surround the error token. The 
new text inserted, if any, consists of a 
sequence of tokens inserted to close one 
or more open scopes. Scopes are 
syntactically nested constructs such as 
procedures, blocks, control structures and 
parenthesized expressions. We refer to 
this form of recovery as scope recovery. 
The analysis is divided into two phases 
called primary recovery and secondary 
recovery. 

2.2 Primary Recovery Phase 

The primary recovery phase attempts 
to make a simple correction or a scope 
recovery. Its first task is to locate the 
actual point of error. Starting at the 
error token, it uses the parse stack to 
"back up" over the symbols of the 
uncompleted right hand sides in an effort 
to identify one of them as the locus of 
the error. Here backing up over a symbol 
means removing it from the parse stack and 
appending it, whether a terminal or 
nonterminal, to the front of the input 
symbol buffer. The first symbol on the 
input buffer is called the current token. 

We refer to an attempt in primary 
recovery to perform a repair at a given 
point as a trial. The repairs for a 
trial, in the order attempted, are: token 
merging, insertion, substitution, scope 
recovery, and deletion. Token merging is 
attempted only on the first trial and 
consists of joining the previous token 
with the current token or the current 
token with the next token. Insertion 
refers to the insertion of a terminal 
symbol before the current token. 
Substitution refers to the substution of a 
terminal symbol for the current token. 
Substution is quite restricted in that a 
reserved word is not generally substutited 
for another reserved word is not 
substituted for an identifier unless the 
latter is a "misspelling" of it. Scope 
recovery is discussed in section 2.4~ It 
is essentially a form of multiple token 
insertion. Deletion refers to the 
deletion of the current token. Only 
terminal symbols are deleted. 

In a trial first the set of tokens 
that will serve as candidates for 
insertion and substitution is generated by 
including all tokens that appear to be 
legal in the current configuration. Each 
candidate determines a possible repair. 
The criterion for a successful repair is 
that it "parse checks": a repair is 

tested by determining how far it enables 
the parse to progress into the forward 
context (up to twenty-five tokens in our 
implemenation). For token merging and 
deletion some minimum distance must be 
achieved. For insertion, substitution, 
and scope recovery all possible candidate 
repairs must be considered. When trying a 
set of candidates, for insertion, say, it 
may happen that some candidates parse 
check the full distance. All such 
candidates are considered valid 
corrections and are reported as such. For 
the recovery, however, one is chosen 
arbitrarily from the set. But it may 
happen that no candidate parse checks the 
full distance. If there is exactly one 
candidate that parse checks the farthest, 
then that candidate is chosen for the 
recovery, provided some minimum distance 
is exceeded. We call this the unique 
selection criterion. The threshold value 
is determined by the context in which the 
check is made, but is at least some 
implementation-defined minimum value 
MIN_CHECK (three in our implementation). 
The minimum amount that must check cannot 
be too small or spurious corrections may 
be allowed, and it must at least guarantee 
that the parser advances after recovery. 
Because errors may be in close proximity 
it cannot be too large: choosing the 
right threshold value is a matter of 
tuning. To keep it as small as possible, 
special language specific maps are used to 
control insertions and substitutions by 
prohibiting them in certain contexts. 

If no correction succeeds at the 
current token, one or more elements are 
peeled from the parse stack and appended 
to the input symbol buffer. The 
prediction stack is adjusted accordingly. 
Again attempts at simple correction and 
scope recovery are made. If this trial 
also fails, the process repeats, and 
continues until either a successful 
correction is made or the backward move 
down the parse stack arrives at a scope 
opener. The presence of a scope opener 
such as "BEGIN" marks the beginning of a 
grammatical unit that has proven to be 
flawed. The text is to be repaired within 
this unit, and so it is unnecessary and 
undesirable to back up the parse beyond 
its scope. 

2.3 Secondary Recovery Phase 

If primary recovery fails, secondary 
recovery is invoked. The secondary 
recovery mechanism discards some already 
parsed and/or future tokens in an attempt 
to resume the parse. This mechanism may 
also involve the closing of open scopes. 
First the parse and predict stacks are 
restored to the configuration obtaining 
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upon invocation of the error routine. 
Starting with the error token~ it is 
checked whether parsing can resume by 
simply discarding a portion of the parse 
stack (appropriately adjusting the 
prediction stack) along with possibly 
inserting one or more scope closer 
sequences. A backward move takes place as 
in primary recovery, but here the parse 
stack symbols are not returned to the 
input buffer. We continue backing down 
the parse stack until either successfully 
resuming the parse or backing down below 
the topmost scope opener: as with primary 
recovery, the presence of a scope opener 
limits the extent of the backup over left 
context. We do, however, continue to 
attempt scope recovery all the way down 
the parse stack. The length of the parse 
check performed to test whether parsing 
can resume is once again dependent upon 
context, but is at least MIN_CHECK + 2. 
If the parse cannot be resumed at the 
current token, it is ignored and the next 
one obtained and the backup down the parse 
stack is repeated. Either there is a 
point at which the parse can continue or 
the end of file token is reached. In the 
latter case special action is taken if 
necessary to ensure recovery. 

2.4 Scope Recovery 

Primary and secondary recovery 
include scope completion efforts: i.e. 
the closing of one or more open syntactic 
scopes by means of the insertion of 
appropriate closer token sequences. 
Typical examples of closer token sequences 
are the right parenthesis, ")" and 
"END;". In Ada "END IF;" and "END 
RECORD;" are further examples of such 
sequences. This important class of 
correction stands apart from the others 
tried during primary recovery in that the 
closer typically consists of multiple 
tokens. Nonterminals are not used in 
closers. The choice of scope openers and 
closer sequences depends on the language, 
but is for the most part straightforward. 
Of course, this mode of recovery may be 
entirely omitted. 

Closing multiple scopes is achieved 
in the following way. On entry to the 
parse error procedure the locations of 
scope openers on the parse stack are 
determined. Only for these scopes is 
scope recovery attempted. The set of 
possible scope closers for a given opener 
is first determined. Language dependent 
maps may be used to narrow the 
possibilities and to prevent premature 
closing. Each candidate closer sequence 
is parse checked. If the parse cannot 
advance through the candidate sequence, 
the candidate is rejected. If parse 

advances through the candidate and beyond 
the threshold distance, the candidate is 
accepted as the recovery and appended to 
the input symbol buffer. If the parse 
advances only through the candidate, then 
the scope recovery procedure is invoked 
recursively with the parse stack updated 
by the parsed candidate to close the next 
opener. In this way the candidate 
sequence is extended with additional 
closer sequences to match other openers. 
If no sequence of closers is found, the 
candidate is rejected; otherwise the 
entire sequence is appended to the input 
symbol buffer. 

3.0 LR PARSING 

3.1 The LR Parser 

An LR parser, in addition to the 
token buffer and parse stack, maintains a 
state stack. Input tokens are shifted 
onto the parse stack until the handle has 
been obtained. This determines a rule to 
be reduced, and its left hand side 
replaces the handle on the parse stack. 
The parse stack thus contains the shifted 
terminal symbols and the reduced 
nonterminal symbols. An entry for a 
nonterminal symbol may contain additional 
information (e.g., a parse derivation 
subtree, partial abstract syntax tree, or 
semantic attributes). 

3.2 LR Error Recovery 

In a primary recovery trial, the set 
of candidate tokens consists of those that 
appear to be legal in the current state 
(we say "appear" because of the 
possibility that a premature reduction is 
defined for a given token). Backing up 
from one trial to the next is simply a 
matter of peeling the top state and top 
parse stack element TP from the state and 
parse stacks, respectively. TP is 
appended to the token buffer and becomes 
the current token. Similarly secondary 
recovery is attempted at a token by 
peeling one item off the state and parse 
stacks at a time, at each point checking 
whether parsing can resume. If the parse 
cannot be resumed at a token, it is 
skipped and the next one obtained and the 
iteration down the state and parse stacks 
is repeated. Once a state and input are 
found for which the parse can continue, 
the state and parse stacks are cut back to 
this point, and control is returned to the 
parser. 
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4,0 LL PARSING 

4.1 The LL Parser 

LR shift and reduce actions both have 
LL counterparts. When a terminal symbol 
on top of the prediction stack matches the 
next input symbol, it is popped from the 
stack and the input cursor is advanced. 
In this case, the terminal is pushed onto 
the parse stack (the analogue to 
shifting). A nonterminal on top of the 
prediction stack is replaced by the RHS of 
the appropriate rule R as determined by 
the next input symbol (in our 
implementation we also push on a rule 
marker to mark the end of the RHS of a 
rule). The rule number R is then pushed 
onto a stack of pending nonterminals: it 
represents a nonterminal that has been 
predicted but not yet completed, and so 
has no LR analogue. As in the LR case, 
the parse stack consists only of shifted 
terminals and nonterminals for completed 
rules. When the right hand side of a rule 
has been successfully predicted, and the 
next input symbol can be shifted, then the 
right hand side symbols are removed from 
the parse stack and replaced by the left 
hand side symbol, and the rule number is 
removed from the pending stack. As in the 
LR case the parse stack consists of a 
sequence of symbols representing 
incomplete right hand sides. In fact the 
parse stack may be viewed as a sequence of 
partial right hand sides of the pending 
rules. 

4.2 LL Error Recovery 

The set of correction candidates 
relevant at a given point in primary 
recovery is determined by the top symbol 
on the prediction stack. If it is a 
terminal symbol, then it is the lone 
candidate; if it is a nonterminal, then 
the candidate set consists of all 
terminals for which the given nonterminal 
can predict a rule. With this set of 
correction candidtes, simple recoveries 
are attempted exactly as in the LR case. 

If the recoveries fail, then backing 
up for the next trial is accomplished in 
straightforward fashion. The topmost 
pending rules are to be "undone" - i.e. 
their LHS nonterminals returned to the 
predict stack - one at a time down through 
the topmost rule that has some portion of 
its RHS on the parse stack. The distance 
betweenthe top of the predict stack and 
its topmost rule marker indicates how much 
of the RHS of the topmost pending rule R 
remains on the predict stack (the rest 
must be present on the parse stack). The 
portion of the predict stack above and 
including the topmost rule is replaced by 

the left hand side of R. If the entire 
RHS is on the predict stack, then the new 
topmost pending rule is processed. 
Otherwise some of the RHS is on the parse 
stack; these symbols are removed and 
appended to the front of the input symbol 
buffer. In this new configuration the 
next trial takes place. 

From the perspective of the parse 
stack the LL backup move may be viewed as 
essentially the same as the LR backup, but 
with an extra element of constraint 
introduced. This constraint derives from 
the superstructure of pending nodes 
present in the LL derivation tree. Once 
again backing up entails removing elements 
from the parse stack and returning them to 
the input symbol buffer, and continues 
down the parse stack through the topmost 
unclosed opener. In this way an entire 
RHS prefix is removed, not just one symbol 
of one. In the LR case, all parse stack 
entries are considered; in the LL case, 
an entry is only considered as the locus 
of a trial if it is the left child of its 
predicted parent. We have found (see 
section 7.1) that this constraint does not 
hamper LL recovery. In fact, we are 
investigating ways to impose efficiently a 
similar constraint on the LR backup. 
Errors within a predicted RHS appear very 
unlikely. In the LR case there is no 
definite division of the parse stack into 
a sequence of incomplete right hand sides. 

The movement down the parse stack in 
secondary recovery is performed in the 
same manner as in the sequence of primary 
recovery trials. Other than the 
differences entailed by this, secondary 
recovery here has the same form as in the 
LR setting. 

5.0 IMPLEMENTATION CONSIDERATIONS 

5.1 Deferring Reductions 

One quickly discovers that 
condensation of the left context often 
results in poor recoveries. Such 
condensation can result from the use of 
default reductions or a parsing method 
weaker than LR. For this reason our 
recovery algorithm assumes that, upon 
entry to the error routine, the parse and 
prediction stacks are in the configuration 
that obtained when the token preceding the 
error point was shifted onto the parse 
stack. Thus premature reductions are not 
allowed, and so the parser must defer 
reductions until it is verified that the 
next token is shiftable. We have 
implemented an LALR(1) parser that uses 
default reductions and an LL(1) parser, 
and in both cases discovered low-cost 
techniques for accomplishing this. 
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In our LALR implementation we let the 
state stack, which (along with the input 
buffer) determines the parsing actions to 
be taken, immediately reflect the 
application of a reduce action when one is 
defined. However, we do not yet apply the 
reduction to the parse stack, and instead 
place the reduce rule number along with 
the current height of the state stack in a 
REDUCTIONS queue. When a shift Or reduce 
action is defined, the REDUCTIONS queue is 
emptied and its deferred reductions 
applied to the parse stack prior to 
performing the action. When no action is 
defined, indicating the presence of an 
error, the state stack must reassume the 
configuration that obtained just after the 
shifting of the previous token. The state 
stack, then, is to be made to correspond 
to the current configuration of the parse 
stack. The minimum-valued element in the 
list of stack heights indicates the 
smallest size N assumed by the state stack 
since the shifting of the previous token. 
The portion of the state stack below that 
point already corresponds to the parse 
stack; the state stack is cut back to 
this point, and its upper portion is 
restored by using the parse stack. 

In our LL implementation, the 
presence of a rule marker on top of the 
predict stack indicates that the topmost 
pending rule has been completed. Once 
again, the rule is added to a REDUCTIONS 
queue in order to defer applying it to the 
parse stack until it is verified that the 
next token is shiftable. An index keeps 
track of the position that the rule most 
recently completed occupied on the pending 
stack. In the presence of an error, this 
index indicates the position at which the 
non-empty rules in REDUCTIONS are to be 
returned to the pending stack. Their 
associated rule markers and the empty 
rules in REDUCTIONS are returned to the 
prediction stack, and no other adjustment 
is required in order to restore the parse 
to its desired configuration. 

5.2 Language Specific Maps 

Our method is language-independent, 
but it does allow for tuning with respect 
to particular languages and 
implementations through the setting of 
language specific maps. Some of these 
specify the scope opener and closer 
constructs of the language; others 
provide the means for controlling primary 
and secondary recovery actions for certain 
common or troublesome errors. The 
recovery algorithm does not depend on the 
presence of such language specific maps 
and an implementation may ignore them 
completely. However, the quality of error 
diagnosis can be considerably enhanced by 

careful parameterization, especially in 
the case of the scope completion maps. 

Two maps that prohibit certain 
primary recovery actions in order to make 
possible a preferred recovery action are 
NEVER_INSERT_BETWEEN and NEVER_SUBST_FOR. 
The map NEVER_INSERT_BETWEEN gives for a 
token pair (x,y) the set of tokens that 
should not be inserted between x and y. 
Thus a possible candidate for insertion is 
not considered if it is in 
NEVER_INSERT_BETWEEN(prevtok, curtok), 
where prevtok is the most recent token on 
the parse stack and curtok is the first 
token in the token queue. The map 
NEVER_SUBST_FOR gives for a token x the 
set of tokens that it should not be 
substituted for. For example, [':=', 
'BEGIN'] belongs to this set in our Ada 
implementation; in the case of a missing 
semicolon before BEGIN this substitution 
might parse check, but is not desirable. 

Scope recovery uses the maps 
CLOSER_TOKENS and ONLY_CLOSE_BEFORE. The 
CLOSER_TOKENS map gives for each opener, 
e.g. 'IF'& the set of associated closer 
tokens, e.g., 'END IF;' The map 
ONLY_CLOSE_BEFORE specifies the right 
context necessary in order for a given 
closer to be tried as a candidate. 

5.3 Diagnostics 

Careful attention has been paid the 
reporting of error recoveries. The 
diagnostic issued essentially states the 
repair that effects the recovery. The 
messages are completely synthesized from 
the recovery mode and the tokens at the 
locus of the error. Symbols on the parse 
stack carry along their token spans 
expressed in terms of line and column 
numbers. Examples in the APPENDIX show 
the messages produced. For secondary 
recovery, it is often possible to 
determine that a construct appearing in a 
list is malformed. For example, if, at 
the point of recovery, 'statement_list' is 
the symbol on the parse stack (LR method) 
or the predict stack (LL method), then the 
deleted input can be viewed as a malformed 
statement (most of the time), and so the 
diagnostic message 'Bad statement' can be 
issued. When no such message is 
available, the bad input is simply termed 
'Unexpected'. 

6.0 COMPARISON WITH OTHER METHODS 

Our method builds upon the earlier 
work of Graham-Haley-Joy [GHJ], 
Feyock-Lazurus [FL], and Poonen [P]. The 
recovery methods of [GHJ] and [FL] employ 

71 



two levels of recovery in similar fashion 
to ours: the first attempts a single 
token repair and the second a deletion of 
the flawed portion of text based upon 
identification of an ill-formed program 
component. Both methods test single token 
correction candidates by performing a 
separate forward move for each, but they 
depart from ours in utilizing semantic 
information when evaluating a candidate. 
[GHJ] also assign a deletion and insertion 
cost to each terminal symbol; the "basic 
cost" of a repair - "the sum of the costs 
of the tokens involved" - is another 
factor considered in the evaluation of a 
candidate. We have found that our unique 
selection criterion (section 2.2) and 
language dependent maps (section 5.2) 
preclude the need for weighted cost 
analysis. 

Whereas [GHJ] regard any unparsing of 
left context nonterminals as in violation 
of the principle that error recovery not 
incur overhead on correct programs, [FL] 
back up the parse token by token in an 
attempt to find the actual error point. 
The backup halts at the beginning of what 
is taken to be the relevant program 
component (the "substructure"), and so the 
beginning of this unit plays a role 
similar to that of an opener in our 
scheme. If the substructure contains more 
than one error, it is deleted: unlike us, 
they make no effort to correct errors in 
close proximity. We do not believe that 
unparsing nonterminals in the left context 
incurs overhead on correct programs. 
Whith our method this option may be used 
if the parse stack entries for 
nonterminals contain the derivation tree 
spanned by that symbol. Is is, of course, 
very time consuming to unparse the left 
context. And it complicates the 
integration of the semantic and parsing 
phases of a compiler. We have found, 
however, that unparsing produces no better 
results, and indeed sometimes produces 
unwanted secondary recoveries. We find 
that unparsing is not necessary so long as 
the grammatical rules defining the syntax 
of the language are structured so as to 
prevent the premature condensation of 
certain symbols before the error point. 
In the first example in the APPENDIX, the 
use of FUNCTION instead of PROCEDURE is 
not discovereduntil the end of the formal 
argument part. It is easy to write the 
grammar rules so that such key terminals 
stay on the parse stack and are not 
condensed until the phrase in which they 
occur has been completed. In our 
experience such tuning of the grammar adds 
little or not at all to its parse tables. 

Poonen and Johnson [J] base their 
recovery algorithms upon a stack 
resynchronization technique that is 
similar in spirit to our secondary 

recovery phase. But their methods depend 
upon the augmentation of the grammar by 
error productions. Poonen bases 
resynchronization with forward context 
upon a single occurrence of one of a set 
of tokens, rather than upon a sequence of 
advance tokens. [GHJ] combine Poonen's 
approach (including the use of error 
productions) with traditional panic mode 
in their own secondary recovery. We do 
not use error productions. They have the 
advantage of speeding up secondary 
recovery. But they complicate the grammar 
and in most cases provide a diagnostic 
that could just as well be derived 
automatically from the parse or prediction 
stack. Also, [GHJ] require that the 
parser generator "know" about error 
productions and avoid default reductions 
when they are used. We place no 
restrictions on the parser generator and 
freely use default reductions in the LR 
case. 

The recovery scheme of Penello and 
DeRemer [PDeR] condenses the right context 
of the error in a preliminary forward 
move. This forward move begins by 
considering all states that may be reached 
by shifting the token immmediately 
following the error token. The forward 
move then parses ahead "in parallel" until 
sufficient right context has been 
accumulated. If the forward move does not 
advance some predetermined amount into the 
right context, then it is repeatedly 
applied, starting in each case at the 
symbol at which it left off, until this 
amount of forward context is gathered. 
The correction phase then evaluates single 
token correction candidates by determining 
how much of this condensed context can be 
"consumed" by each repair. When repairs 
attempted at the detection point fail, 
each symbol on the parse stack is regarded 
in turn as the possible erroneous symbol. 
There is no "unparsing" of nonterminals on 
the parse stack. If no repair advances 
the parse even one token, then the first 
symbol in the forward context is deleted 
and the entire process repeated. 

The preliminary forward move lessens 
the degree of repetition involved in parse 
checking individual candidates. However, 
this approach demands considerable 
overhead in terms of additional tables 
required of the paser generator [PDeR]. 
We find that our implementations spend 
little time parse checking in primary 
recovery, where the check is allowed to be 
long if necessary. Typically, few 
candidates of a given trial require a 
check of more than two tokens. 

The preliminary forward move also 
lacks a systematic method for dealing with 
the presence of errors in the forward 
context. While the possibility of an 

72 



error in the forward context requires us 
to resort to the heuristic parse distance 
choice discussed in section 2.2, we have 
had good success at handling errors in 
close proximity. Without a systematic 
method for correcting multiple errors, 
multiple symbol deletions are of 
particular importance, and our secondary 
recovery is designed especially to handle 
these cases. In [PDeR] a multiple symbol 
deletion involving a mutilated forward 
context is accomplished only by means of a 
costly process that attempts the full 
gamut of repairs at every symbol before 
deleting it. Outside of those accounted 
for by our inclusion of scope recovery 
within secondary recovery efforts, we have 
not discovered any cases in which a 
multiple symbol deletion is appropriately 
accompanied by a single token insertion. 
This kind of correction becomes more 
relevant when nonterminals are allowed as 
candidates for insertion and substitution. 
We do not regard the insertion of a 
nonterminal as desirable, as it would 
invalidate a semantic action stack or 
abstract syntax tree. More importantly, 
it is generally difficult to issue clear 
and helpful diagnostics accompanying such 
a correction. 

We have found that our scope recovery 
mechanism, at little cost, significantly 
enhances many of both our primary and 
secondary recoveries (see APPENDIX). We 
are unaware of the incorporation of this 
form of recovery in any other method. 

7.0 EVALUATION OF PERFORMANCE 

7.1 Resuts: Pascal And Ada 

We have tested our method on the 
database of erroneous student Pascal 
programs studied by Ripley and 
Druseikis[RD]. The same sample data set 
has been used by [GHJ] and others. Both 
our LL and LR Pascal implementations 
diagnose more than 90 percent of the 
syntax errors in this sample accurately; 
in no case does either one issue an 
incorrect or cascaded message. Of the 
more than 170 recoveries made by each 
version, in both instances 75% take place 
in the primary recovery phase. The result 
of a run of our LL version on more than 75 
lines of this sample is included in the 
Appendix (the LR version yields the same 
results on these examples). Also included 
is the result of running the LL version on 
the same Pascal sample used in [GR], 
[GHJ], and [PDeR] (again the LR results 
are identical). 

Only in two cases in the [RD] sample 
do the LL and LR recoveries differ. Both 
involve secondary recoveries; the 

difference in both cases pertains to the 
effect of the structuring of the syntactic 
rules on the timing of the absorption of 
terminals into nonterminals on the parse 
stack. Consider the following one of the 
two cases: 

1 PROGRAM P(INPUT,OUTPUT); 
2 BEGIN 
3 WRITELN(' ',T,' ',LIST[T]); 
4 END; 
5 END. 

The error token is the semicolon on line 
4, and so the first trial in both versions 
takes place there. The LR version backs 
up to the 'END' preceding it for trial 
two, where deletion of 'END' parse checks 
and is taken as the correction. In the LL 
version, trial two takes place at the 
'BEGIN' in line two, where the insertion 
of another 'BEGIN' prior to it is the 
chosen correction. In this case the LL 
recovery action is more appropriate, but 
in another circumstance backing up over so 
much input at once may result in the loss 
of an opportunity to make a suitable 
correction. The relevant rule in the LL 
grammar is: 

stmt_part ::= BEGIN compound_stmt END 

If a backup to 'END' is regarded as 
desirable in the context of this rule, one 
may introduce the nonterminal 'end' that 
derives the terminal 'END', and include it 
instead on the RHS. This change is not 
sufficient, however, because the correct 
parsing of the END token has forced the 
reduction to compound_stmt. 

We have also tested our method on 
erroneous Ada programs. One particular 
test program of slightly more than 100 
lines includes 50 syntax errors; the two 
versions perform identically, accurately 
identifying all errors. Part of this 
sample is included in the APPENDIX. 

7.2 Efficiency 

We implemented the LL and LR parsers 
as separate parse modules attachable to a 
translator writing system, all written in 
the very high level language SETL. The 
programs were executed on a VAX 11/780. 
The LL parser processes the 725 line 
Pascal sample in 35 minutes and 22 seconds 
of CPU time. The LR version spends 28 
minutes and 20 seconds on the same sample. 
The same program, with errors corrected, 
can be parsed in 15 minutes and 36 seconds 
using the LL parser and 7 minutes 35 
seconds using the LR parser. Subtracting 
the parsing time from the total time and 
dividing by the number of errors gives an 
average time per error of 7 seconds for 
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both methods. The very large execution 
times stem from the use of SETL. Our 
experience with recoding SETL programs 
into a lower level language, such as PL/I, 
suggests that a speed up factor of 30 or 
more is readily achieved. Thus the 
average time to recover from an error 
would be about 0.25 seconds. We were 
surprised to find that LL parsing is more 
than twice as slow as LR parsing: this 
may be an artifact of using SETL. We did 
observe that with LL error recovery the 
candidate sets are appreciably smaller and 
there are fewer trials than with LR 
recovery. However, the average time spent 
parse checking a candidate is 
significantly greater. 

8.0 SHORTCOMINGS AND FUTURE WORK 

A fundamental limitation of our 
method lies in the choice of the first 
correction candidate that successfully 
parse checks as the suitable correction. 
This approach is obviously advantageous 
with respect to time efficiency, and makes 
it unnecessary to record and compare parse 
check outcomes. But the order in which 
the types of simple correction are 
attempted is then relevant. Through 
experimentation we have discovered an 
order in which the most suitable 
correction is seldom precluded by a less 
desirable one that happens to be tried 
earlier. But of course there is no order 
that universally prevents shch an 
occurrence, and many of the entries in 
NEVER_SUBST_FOR and NEVER_INSERT_BETWEEN 
(see section 5.2) are included to suppress 
a correction that would otherwise take 
place before a preferred correction is 
tried. 

Taking the first candidate that 
checks implies a bias not only within but 
also across trials. If in the first trial 
a candidate succeeds, then a second trial 
is never attempted. Since trial one 
attempts correction at the at the error 
token and each succeeding trial takes 
place to the left of the previous one, our 
corrective actions have a builtin left to 
right bias. One may opt for a method that 
checks all candidates over a single trial 
or over all trials before deciding which 
(if any) applies, and we are experimenting 
with this approach. 

Another shortcoming of our method 
concerns the advance token parse check 
itself. An implicit assumption of our 
technique is that although the left 
context of the error detection point has 
proven to contain an error, the right 
context is sufficiently error free to 
guide the error recovery process. In 
judging correction candidates in terms of 

their agreement with the forward context, 
the method has little safeguard against 
the possibility that an additional error 
occurs near the one already detected. We 
make the parse check as small as possible 
to allow for the separate diagnosis and 
correction of errors in close proximity, 
but the possibility remains that the 
errors are too close to allow a successful 
parse check by any candidate for 
correction of the first error. The result 
in this case is that the portion of the 
text containing both errors is deleted in 
secondary recovery. 

A solution to the problem of 
arbitrarily dense error occurrences is to 
invoke recursively the error recovery 
routine when a parse check blocks, and 
associate with each correction candidate 
the number of errors that its choice would 
imply correcting in the forward context. 
Such an approach would reduce the 
importance of those language specific maps 
whose role is to reduce the likelihood of 
a spurious correction. This method is 
under investigation. 
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APPENDIX 

{ A SAMPLE FROM THE [RD] COLLECTION OF ERRONEOUS PASCAL PROGRAMS } 

1 PROGRAM P(INPUT,OUTPUT); 
2 FUNCTION TOPSORT(VAR X : ORDER~ VARY : SORTED£ X:INTEGER); 

*** Syntax Error: ";" expected instead of "," 
*** Syntax Error: "~" expected instead of "," 

*** Syntax Error: "PROCEDURE" expected instead of "FUNCTION" 
3 BEGIN 
4 END; 
5 BEGIN 
6 X:=I 
7 END. 
8 
9 PROGRAM P(INPUT, OUTPUT); 

i0 BEGIN 
ii IF X: = 0 THEN X:=I 

A 

*** Syntax Error: "=" expected instead of ":=" 
12 END. 
13 
14 PROGRAM P(INPUT,OUTPUT); 
15 VAR I:REAL; 

< ......... > 

*** Syntax Error: Unexpected input 
16 TYPE ORDER = ARRAY[I..MAXRELATIONS,I..2] OF INTEGER ; 
17 VAR Q:INTEGER; 
18 BEGIN 
19 END. 
20 
21 PROGRAM P(INPUT,OUTPUT); 
22 VAR L,N: REAL; 
23 VAR X,NONPRIME,PRIME: INTEGER; 

*** Syntax Error: Unexpected "VAR" ignored 
24 BEGIN 
25 END. 
26 
27 PROGRAM P(INPUT,OUTPUT); 
28 BEGIN 
29 WRITELN(' '~9,'X'~I0,'M'~9,'X]'~9,'APPROX X]'~I91 

*** Syntax Error: "," expected instead of ";" 
*** Syntax Error: "," expected instead of ";" 
*** Syntax Error: "," expected instead of ";" 
*** Syntax Error: "," expected instead of ";" 
*** Syntax Error: "," expected instead of ";" 
*** Syntax Error: ")" expected instead of "," 

30 END. 
31 
32 PROGRAM P(INPUT,OUTPUT); 
33 BEGIN 
34 FOR I := i STEP 1 UNTIL LISTSIZE - 1 DO 

< .......... AA^^__ .... -- .................. > 

*** Syntax Error: Bad statement 
35 X:=I 
36 END. 
37 
38 PROGRAM P(INPUT, OUTPUT); 
39 LABEL i~999; 
40 i: BEGIN 

^ 

*** Syntax Error: "BEGIN" expected before this token 
41 READ (N) ; 
42 END. 

^ 

*** Syntax Error: "END" expected after this token 
43 
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44 PROGRAM P(INPUT,OUTPUT); 
45 FUNCTION FOO(VAR X: ARRAY[I..MAX] OF INTEGER): INTEGER; 

< .............. > 

*** Syntax Error: Unexpected input 
46 VAR Q:INTEGER~ 

*** Syntax Error: statement part missing for PROCEDURE or FUNCTION on line 45 
47 BEGIN 
48 END. 
49 
50 PROGRAM P(INPUT,OUTPUT); 
51 BEGIN 
52 IF NON PUSH(I) THEN X:=I 

^ 

*** Syntax Error: Reserved word "NOT" misspelled 
53 END. 
54 
55 PROGRAM P(INPUT, OUTPUT); 
56 BEGIN 
57 IF COUNT[LISTDATA[SUB] := 0 THEN 

<--> 
*** Syntax Error: Unexpected input -- "]" expected after this token on line 57 

58 BEGIN 
59 F := LISTDATA[SUB]; 
60 END; 
61 END. 
62 
63 PROGRAM P(INPUT,OUTPUT); 
64 FUNCTION FACTORIAL( VAR~ X: INTEGER): INTEGER ! 

*** Syntax Error: Unexpected ":" ignored 
*** Syntax Error: ";" expected instead of "]" 

65 VAR Q:INTEGER; 
66 BEGIN 
67 END; 
68 BEGIN 
69 END. 
70 
71 PROGRAM P(INPUT,OUTPUT); 
72 BEGIN 
73 REPEAT 
74 WRITELN(' '); 
75 UNTILL EOF(INPUT); 

^ 

*** Syntax Error: Reserved word "UNTIL" misspelled 
76 X:=I 
77 END. 
78 

22 parse errors detected 
Parsing time: 167 seconds 

7~ 



{ PASCAL EXAMPLE THAT APPEARS IN [GR], [PDeR], AND [GHJ] 

1 program cacm(input,output); 
2 label 1,2,3; 
3 var a,b: array[l..5 i..i0] of integer; 

*** Syntax Error: "," expected after this token 
4 i,j,k: integer; 
5 begin 
6 3~ i + j > k + 1"4 then go 1 else k is 2; 

*** Syntax E~ror: "IF" expected after this token 
*** Syntax Error: Reserved word "GOTO" misspelled 
*** Syntax Error: ":=" expected instead of "IS" 

7 ~ I, ~ := hi3 * ( i + ~, j*/k~^ 

*** Syntax Error: "[" expected after this token 
*** Syntax Error: "]" expected after this token 
*** Syntax Error: ")" expected after this token 
*** Syntax Error: "IDENTIFIER" expected after this token 
*** Syntax Error: ";" expected after this token 

8 if i=l then then goto 3; 
^ 

*** Syntax Error: Unexpected "THEN" ignored 
9 2: end. 

i0 parse errors detected 
Parsing time: 46 seconds 

-- Ada EXAMPLE. INCLUDES SCOPE RECOVERY AND SECONDARY RECOVERY 

1 program etests is 

*** Syntax Error: "PROCEDURE" expected instead of "PROGRAM" 
2 
3 j, k, i~ : integer; 

*** Syntax Error: Unexpected "," ignored 
4 
5 a: array (INTEGER range I..i0) is integer; 

*** Syntax Error: "OF" expected instead of "IS" 
6 
7 type b is INTEGER range 1..30; 

^ 

*** Syntax Error: Unexpected "INTEGER" ignored 
8 
9 proc count is 

*** Syntax Error: Reserved word "PROCEDURE" abbreviated 
10 x: integer; 
ii GET(x); 

*** Syntax Error: "BEGIN" expected before this token 
12 PUT(x ! 

*** Syntax Error: ";" expected after this token 
13 end count; 
14 
15 procedure q is seperate; 

*** Syntax Error: Reserved word "SEPARATE" misspelled 
16 
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17 function DAYS_IN_MONTH(M: MONTH IS_LEAP: BOOLEAN) return DAY is 
A 

*** Syntax Error: ";" expected after this token 
18 begin 
19 case M of 

*** Syntax Error: "IS" expected instead of "OF" 
20 when SEP I APR I JUN ! I NOV => return 30; 

*** Syntax Error: Unexpected "I" ignored 
21 FEB => return 28; 

*** Syntax Error: "WHEN" expected before this token 
22 whan APR => return 30; 

^ 

*** Syntax Error: Reserved word "WHEN" misspelled 
23 others => return 31; 

*** Syntax Error: "WHEN" expected before this token 
24 end case; 
25 
26 z(y - 5*j + k rein 7) then 

*** Syntax Error: "IF" expected before this token 
27 x := x + I; 
28 go to label; 

<---> 

*** Syntax Error: "GOTO" expected instead of "GO" "TO" 
29 end if; 
30 
31 loop 
32 if x > 0 then y := 2; 
33 if y < 0 then z := 3~ 

*** Syntax Error: "END IF;" inserted to match "IF" on line 33 
^ 

*** Syntax Error: "END IF;" inserted to match "IF" on line 32 

*** Syntax Error: "END LOOP;" inserted to match "LOOP" on line 31 
A 

*** Syntax Error: "END;" inserted to match "BEGIN" on line 18 
A 

*** Syntax Error: statement part missing for unit starting on line 17 

21 parse errors detected 
Parsing time: 120 seconds 
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