
A PRACTICAL METHOD FOR SYNTACTIC ERROR DIAGNOSIS AND RECOVERY

by
Michael Burke

Gerald A. Fisher Jr.

Courant Institute
New York University
251 Mercer Street

New York, New York 10012

1.0 GOALS AND FRAMEWORK

Our goal is to develop a practical
syntactic error recovery method applicable
within the general framework of viable
prefix parsing. Our method represents an
attempt to accurately diagnose and report
all syntax errors without reporting errors
that are not actually present. Successful
recovery depends upon accurate diagnosis
of errors together with sensible
"correction" or alteration of the text to
put the parse back on track. The issuing
of accurate and helpful diagnostics is
achieved by indicating the nature of the
recovery made for each error encountered.
The error recovery is prior to and
independent of any semantic analysis of
the program. However, the method does not
exclude the invocation of semantic actions
while parsing or preclude the use of
semantic information for error recovery.

The method assumes a framework in
which an LR or LL parser, driven by the
tables produced by a parser generator,
maintains an input symbol buffer, state or
prediction stack, and parse stack. The
input symbol buffer contains part or all
of the sequence of remaining input tokens,
including the current token. The LR state
stack is analogous to the LL prediction
stack; except when restricting our
attention to the LL case, prediction stack
shall serve as a generic term indicating
the LR state or LL prediction stack. The
parse stack contains the symbols of the
right hand sides that have not yet been
reduced.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 A C M 0 - 8 9 7 9 1 - 0 7 4 - 5 / 8 2 / 0 0 6 / 0 0 6 7 $ 0 0 . 7 5

In most applications a similar stack is
required for semantic analysis or for
constructing an abstract syntax tree. The
parse stack may be combined with such a
"semantic" stack with negllglble
additional cost. When a right hand side
has been completed on the parse stack and
the next input token can legally be
shifted, the right hand side symbols are
replaced by the left hand side symbol of
the rule being reduced. At the same time
a "semantic action" routine may be
invoked.

2.0 THE METHOD

2.1 Overiew

The error routine is invoked when no
legal parsing action is possible. In such
a circumstance the current token is
referred to as the error token. The error
routine adjusts the input symbol buffer
and prediction and parse stacks in such a
way that parsing can continue beyond the
error token. On entry the parse and
prediction stacks are required to be in
the configuration that obtained when the
token preceding the error token was
shifted onto the parse stack. If LR(1)
parsing is used without default
reductions, this condition will always be
satisfied. In an LL, LALR, or SLR
implementation, or in the presence of
default reductions, however, reductions
may occur when the next token is not
shiftable. Given the possibility of such
premature reductions, it is necessary
during the parse to delay reductions until
the next token is to be shifted. In LL(1)
and LALR(1) implementations, we have
developed techniques for deferring
reductions without noticable overhead.
These techniques are discussed in detail
in section 5.1.

The first concern of our method is to
determine whether an error is simpler
i.e. correctable by a single token

g7

insertion, deletion, or substitution. If
so, the correction is made; otherwise a
portion of the program text is to be
deleted, new text is to be inserted, or
both. The discarded text may precede,
follow, or surround the error token. The
new text inserted, if any, consists of a
sequence of tokens inserted to close one
or more open scopes. Scopes are
syntactically nested constructs such as
procedures, blocks, control structures and
parenthesized expressions. We refer to
this form of recovery as scope recovery.
The analysis is divided into two phases
called primary recovery and secondary
recovery.

2.2 Primary Recovery Phase

The primary recovery phase attempts
to make a simple correction or a scope
recovery. Its first task is to locate the
actual point of error. Starting at the
error token, it uses the parse stack to
"back up" over the symbols of the
uncompleted right hand sides in an effort
to identify one of them as the locus of
the error. Here backing up over a symbol
means removing it from the parse stack and
appending it, whether a terminal or
nonterminal, to the front of the input
symbol buffer. The first symbol on the
input buffer is called the current token.

We refer to an attempt in primary
recovery to perform a repair at a given
point as a trial. The repairs for a
trial, in the order attempted, are: token
merging, insertion, substitution, scope
recovery, and deletion. Token merging is
attempted only on the first trial and
consists of joining the previous token
with the current token or the current
token with the next token. Insertion
refers to the insertion of a terminal
symbol before the current token.
Substitution refers to the substution of a
terminal symbol for the current token.
Substution is quite restricted in that a
reserved word is not generally substutited
for another reserved word is not
substituted for an identifier unless the
latter is a "misspelling" of it. Scope
recovery is discussed in section 2.4~ It
is essentially a form of multiple token
insertion. Deletion refers to the
deletion of the current token. Only
terminal symbols are deleted.

In a trial first the set of tokens
that will serve as candidates for
insertion and substitution is generated by
including all tokens that appear to be
legal in the current configuration. Each
candidate determines a possible repair.
The criterion for a successful repair is
that it "parse checks": a repair is

tested by determining how far it enables
the parse to progress into the forward
context (up to twenty-five tokens in our
implemenation). For token merging and
deletion some minimum distance must be
achieved. For insertion, substitution,
and scope recovery all possible candidate
repairs must be considered. When trying a
set of candidates, for insertion, say, it
may happen that some candidates parse
check the full distance. All such
candidates are considered valid
corrections and are reported as such. For
the recovery, however, one is chosen
arbitrarily from the set. But it may
happen that no candidate parse checks the
full distance. If there is exactly one
candidate that parse checks the farthest,
then that candidate is chosen for the
recovery, provided some minimum distance
is exceeded. We call this the unique
selection criterion. The threshold value
is determined by the context in which the
check is made, but is at least some
implementation-defined minimum value
MIN_CHECK (three in our implementation).
The minimum amount that must check cannot
be too small or spurious corrections may
be allowed, and it must at least guarantee
that the parser advances after recovery.
Because errors may be in close proximity
it cannot be too large: choosing the
right threshold value is a matter of
tuning. To keep it as small as possible,
special language specific maps are used to
control insertions and substitutions by
prohibiting them in certain contexts.

If no correction succeeds at the
current token, one or more elements are
peeled from the parse stack and appended
to the input symbol buffer. The
prediction stack is adjusted accordingly.
Again attempts at simple correction and
scope recovery are made. If this trial
also fails, the process repeats, and
continues until either a successful
correction is made or the backward move
down the parse stack arrives at a scope
opener. The presence of a scope opener
such as "BEGIN" marks the beginning of a
grammatical unit that has proven to be
flawed. The text is to be repaired within
this unit, and so it is unnecessary and
undesirable to back up the parse beyond
its scope.

2.3 Secondary Recovery Phase

If primary recovery fails, secondary
recovery is invoked. The secondary
recovery mechanism discards some already
parsed and/or future tokens in an attempt
to resume the parse. This mechanism may
also involve the closing of open scopes.
First the parse and predict stacks are
restored to the configuration obtaining

68

upon invocation of the error routine.
Starting with the error token~ it is
checked whether parsing can resume by
simply discarding a portion of the parse
stack (appropriately adjusting the
prediction stack) along with possibly
inserting one or more scope closer
sequences. A backward move takes place as
in primary recovery, but here the parse
stack symbols are not returned to the
input buffer. We continue backing down
the parse stack until either successfully
resuming the parse or backing down below
the topmost scope opener: as with primary
recovery, the presence of a scope opener
limits the extent of the backup over left
context. We do, however, continue to
attempt scope recovery all the way down
the parse stack. The length of the parse
check performed to test whether parsing
can resume is once again dependent upon
context, but is at least MIN_CHECK + 2.
If the parse cannot be resumed at the
current token, it is ignored and the next
one obtained and the backup down the parse
stack is repeated. Either there is a
point at which the parse can continue or
the end of file token is reached. In the
latter case special action is taken if
necessary to ensure recovery.

2.4 Scope Recovery

Primary and secondary recovery
include scope completion efforts: i.e.
the closing of one or more open syntactic
scopes by means of the insertion of
appropriate closer token sequences.
Typical examples of closer token sequences
are the right parenthesis, ")" and
"END;". In Ada "END IF;" and "END
RECORD;" are further examples of such
sequences. This important class of
correction stands apart from the others
tried during primary recovery in that the
closer typically consists of multiple
tokens. Nonterminals are not used in
closers. The choice of scope openers and
closer sequences depends on the language,
but is for the most part straightforward.
Of course, this mode of recovery may be
entirely omitted.

Closing multiple scopes is achieved
in the following way. On entry to the
parse error procedure the locations of
scope openers on the parse stack are
determined. Only for these scopes is
scope recovery attempted. The set of
possible scope closers for a given opener
is first determined. Language dependent
maps may be used to narrow the
possibilities and to prevent premature
closing. Each candidate closer sequence
is parse checked. If the parse cannot
advance through the candidate sequence,
the candidate is rejected. If parse

advances through the candidate and beyond
the threshold distance, the candidate is
accepted as the recovery and appended to
the input symbol buffer. If the parse
advances only through the candidate, then
the scope recovery procedure is invoked
recursively with the parse stack updated
by the parsed candidate to close the next
opener. In this way the candidate
sequence is extended with additional
closer sequences to match other openers.
If no sequence of closers is found, the
candidate is rejected; otherwise the
entire sequence is appended to the input
symbol buffer.

3.0 LR PARSING

3.1 The LR Parser

An LR parser, in addition to the
token buffer and parse stack, maintains a
state stack. Input tokens are shifted
onto the parse stack until the handle has
been obtained. This determines a rule to
be reduced, and its left hand side
replaces the handle on the parse stack.
The parse stack thus contains the shifted
terminal symbols and the reduced
nonterminal symbols. An entry for a
nonterminal symbol may contain additional
information (e.g., a parse derivation
subtree, partial abstract syntax tree, or
semantic attributes).

3.2 LR Error Recovery

In a primary recovery trial, the set
of candidate tokens consists of those that
appear to be legal in the current state
(we say "appear" because of the
possibility that a premature reduction is
defined for a given token). Backing up
from one trial to the next is simply a
matter of peeling the top state and top
parse stack element TP from the state and
parse stacks, respectively. TP is
appended to the token buffer and becomes
the current token. Similarly secondary
recovery is attempted at a token by
peeling one item off the state and parse
stacks at a time, at each point checking
whether parsing can resume. If the parse
cannot be resumed at a token, it is
skipped and the next one obtained and the
iteration down the state and parse stacks
is repeated. Once a state and input are
found for which the parse can continue,
the state and parse stacks are cut back to
this point, and control is returned to the
parser.

69

4,0 LL PARSING

4.1 The LL Parser

LR shift and reduce actions both have
LL counterparts. When a terminal symbol
on top of the prediction stack matches the
next input symbol, it is popped from the
stack and the input cursor is advanced.
In this case, the terminal is pushed onto
the parse stack (the analogue to
shifting). A nonterminal on top of the
prediction stack is replaced by the RHS of
the appropriate rule R as determined by
the next input symbol (in our
implementation we also push on a rule
marker to mark the end of the RHS of a
rule). The rule number R is then pushed
onto a stack of pending nonterminals: it
represents a nonterminal that has been
predicted but not yet completed, and so
has no LR analogue. As in the LR case,
the parse stack consists only of shifted
terminals and nonterminals for completed
rules. When the right hand side of a rule
has been successfully predicted, and the
next input symbol can be shifted, then the
right hand side symbols are removed from
the parse stack and replaced by the left
hand side symbol, and the rule number is
removed from the pending stack. As in the
LR case the parse stack consists of a
sequence of symbols representing
incomplete right hand sides. In fact the
parse stack may be viewed as a sequence of
partial right hand sides of the pending
rules.

4.2 LL Error Recovery

The set of correction candidates
relevant at a given point in primary
recovery is determined by the top symbol
on the prediction stack. If it is a
terminal symbol, then it is the lone
candidate; if it is a nonterminal, then
the candidate set consists of all
terminals for which the given nonterminal
can predict a rule. With this set of
correction candidtes, simple recoveries
are attempted exactly as in the LR case.

If the recoveries fail, then backing
up for the next trial is accomplished in
straightforward fashion. The topmost
pending rules are to be "undone" - i.e.
their LHS nonterminals returned to the
predict stack - one at a time down through
the topmost rule that has some portion of
its RHS on the parse stack. The distance
betweenthe top of the predict stack and
its topmost rule marker indicates how much
of the RHS of the topmost pending rule R
remains on the predict stack (the rest
must be present on the parse stack). The
portion of the predict stack above and
including the topmost rule is replaced by

the left hand side of R. If the entire
RHS is on the predict stack, then the new
topmost pending rule is processed.
Otherwise some of the RHS is on the parse
stack; these symbols are removed and
appended to the front of the input symbol
buffer. In this new configuration the
next trial takes place.

From the perspective of the parse
stack the LL backup move may be viewed as
essentially the same as the LR backup, but
with an extra element of constraint
introduced. This constraint derives from
the superstructure of pending nodes
present in the LL derivation tree. Once
again backing up entails removing elements
from the parse stack and returning them to
the input symbol buffer, and continues
down the parse stack through the topmost
unclosed opener. In this way an entire
RHS prefix is removed, not just one symbol
of one. In the LR case, all parse stack
entries are considered; in the LL case,
an entry is only considered as the locus
of a trial if it is the left child of its
predicted parent. We have found (see
section 7.1) that this constraint does not
hamper LL recovery. In fact, we are
investigating ways to impose efficiently a
similar constraint on the LR backup.
Errors within a predicted RHS appear very
unlikely. In the LR case there is no
definite division of the parse stack into
a sequence of incomplete right hand sides.

The movement down the parse stack in
secondary recovery is performed in the
same manner as in the sequence of primary
recovery trials. Other than the
differences entailed by this, secondary
recovery here has the same form as in the
LR setting.

5.0 IMPLEMENTATION CONSIDERATIONS

5.1 Deferring Reductions

One quickly discovers that
condensation of the left context often
results in poor recoveries. Such
condensation can result from the use of
default reductions or a parsing method
weaker than LR. For this reason our
recovery algorithm assumes that, upon
entry to the error routine, the parse and
prediction stacks are in the configuration
that obtained when the token preceding the
error point was shifted onto the parse
stack. Thus premature reductions are not
allowed, and so the parser must defer
reductions until it is verified that the
next token is shiftable. We have
implemented an LALR(1) parser that uses
default reductions and an LL(1) parser,
and in both cases discovered low-cost
techniques for accomplishing this.

70

In our LALR implementation we let the
state stack, which (along with the input
buffer) determines the parsing actions to
be taken, immediately reflect the
application of a reduce action when one is
defined. However, we do not yet apply the
reduction to the parse stack, and instead
place the reduce rule number along with
the current height of the state stack in a
REDUCTIONS queue. When a shift Or reduce
action is defined, the REDUCTIONS queue is
emptied and its deferred reductions
applied to the parse stack prior to
performing the action. When no action is
defined, indicating the presence of an
error, the state stack must reassume the
configuration that obtained just after the
shifting of the previous token. The state
stack, then, is to be made to correspond
to the current configuration of the parse
stack. The minimum-valued element in the
list of stack heights indicates the
smallest size N assumed by the state stack
since the shifting of the previous token.
The portion of the state stack below that
point already corresponds to the parse
stack; the state stack is cut back to
this point, and its upper portion is
restored by using the parse stack.

In our LL implementation, the
presence of a rule marker on top of the
predict stack indicates that the topmost
pending rule has been completed. Once
again, the rule is added to a REDUCTIONS
queue in order to defer applying it to the
parse stack until it is verified that the
next token is shiftable. An index keeps
track of the position that the rule most
recently completed occupied on the pending
stack. In the presence of an error, this
index indicates the position at which the
non-empty rules in REDUCTIONS are to be
returned to the pending stack. Their
associated rule markers and the empty
rules in REDUCTIONS are returned to the
prediction stack, and no other adjustment
is required in order to restore the parse
to its desired configuration.

5.2 Language Specific Maps

Our method is language-independent,
but it does allow for tuning with respect
to particular languages and
implementations through the setting of
language specific maps. Some of these
specify the scope opener and closer
constructs of the language; others
provide the means for controlling primary
and secondary recovery actions for certain
common or troublesome errors. The
recovery algorithm does not depend on the
presence of such language specific maps
and an implementation may ignore them
completely. However, the quality of error
diagnosis can be considerably enhanced by

careful parameterization, especially in
the case of the scope completion maps.

Two maps that prohibit certain
primary recovery actions in order to make
possible a preferred recovery action are
NEVER_INSERT_BETWEEN and NEVER_SUBST_FOR.
The map NEVER_INSERT_BETWEEN gives for a
token pair (x,y) the set of tokens that
should not be inserted between x and y.
Thus a possible candidate for insertion is
not considered if it is in
NEVER_INSERT_BETWEEN(prevtok, curtok),
where prevtok is the most recent token on
the parse stack and curtok is the first
token in the token queue. The map
NEVER_SUBST_FOR gives for a token x the
set of tokens that it should not be
substituted for. For example, [':=',
'BEGIN'] belongs to this set in our Ada
implementation; in the case of a missing
semicolon before BEGIN this substitution
might parse check, but is not desirable.

Scope recovery uses the maps
CLOSER_TOKENS and ONLY_CLOSE_BEFORE. The
CLOSER_TOKENS map gives for each opener,
e.g. 'IF'& the set of associated closer
tokens, e.g., 'END IF;' The map
ONLY_CLOSE_BEFORE specifies the right
context necessary in order for a given
closer to be tried as a candidate.

5.3 Diagnostics

Careful attention has been paid the
reporting of error recoveries. The
diagnostic issued essentially states the
repair that effects the recovery. The
messages are completely synthesized from
the recovery mode and the tokens at the
locus of the error. Symbols on the parse
stack carry along their token spans
expressed in terms of line and column
numbers. Examples in the APPENDIX show
the messages produced. For secondary
recovery, it is often possible to
determine that a construct appearing in a
list is malformed. For example, if, at
the point of recovery, 'statement_list' is
the symbol on the parse stack (LR method)
or the predict stack (LL method), then the
deleted input can be viewed as a malformed
statement (most of the time), and so the
diagnostic message 'Bad statement' can be
issued. When no such message is
available, the bad input is simply termed
'Unexpected'.

6.0 COMPARISON WITH OTHER METHODS

Our method builds upon the earlier
work of Graham-Haley-Joy [GHJ],
Feyock-Lazurus [FL], and Poonen [P]. The
recovery methods of [GHJ] and [FL] employ

71

two levels of recovery in similar fashion
to ours: the first attempts a single
token repair and the second a deletion of
the flawed portion of text based upon
identification of an ill-formed program
component. Both methods test single token
correction candidates by performing a
separate forward move for each, but they
depart from ours in utilizing semantic
information when evaluating a candidate.
[GHJ] also assign a deletion and insertion
cost to each terminal symbol; the "basic
cost" of a repair - "the sum of the costs
of the tokens involved" - is another
factor considered in the evaluation of a
candidate. We have found that our unique
selection criterion (section 2.2) and
language dependent maps (section 5.2)
preclude the need for weighted cost
analysis.

Whereas [GHJ] regard any unparsing of
left context nonterminals as in violation
of the principle that error recovery not
incur overhead on correct programs, [FL]
back up the parse token by token in an
attempt to find the actual error point.
The backup halts at the beginning of what
is taken to be the relevant program
component (the "substructure"), and so the
beginning of this unit plays a role
similar to that of an opener in our
scheme. If the substructure contains more
than one error, it is deleted: unlike us,
they make no effort to correct errors in
close proximity. We do not believe that
unparsing nonterminals in the left context
incurs overhead on correct programs.
Whith our method this option may be used
if the parse stack entries for
nonterminals contain the derivation tree
spanned by that symbol. Is is, of course,
very time consuming to unparse the left
context. And it complicates the
integration of the semantic and parsing
phases of a compiler. We have found,
however, that unparsing produces no better
results, and indeed sometimes produces
unwanted secondary recoveries. We find
that unparsing is not necessary so long as
the grammatical rules defining the syntax
of the language are structured so as to
prevent the premature condensation of
certain symbols before the error point.
In the first example in the APPENDIX, the
use of FUNCTION instead of PROCEDURE is
not discovereduntil the end of the formal
argument part. It is easy to write the
grammar rules so that such key terminals
stay on the parse stack and are not
condensed until the phrase in which they
occur has been completed. In our
experience such tuning of the grammar adds
little or not at all to its parse tables.

Poonen and Johnson [J] base their
recovery algorithms upon a stack
resynchronization technique that is
similar in spirit to our secondary

recovery phase. But their methods depend
upon the augmentation of the grammar by
error productions. Poonen bases
resynchronization with forward context
upon a single occurrence of one of a set
of tokens, rather than upon a sequence of
advance tokens. [GHJ] combine Poonen's
approach (including the use of error
productions) with traditional panic mode
in their own secondary recovery. We do
not use error productions. They have the
advantage of speeding up secondary
recovery. But they complicate the grammar
and in most cases provide a diagnostic
that could just as well be derived
automatically from the parse or prediction
stack. Also, [GHJ] require that the
parser generator "know" about error
productions and avoid default reductions
when they are used. We place no
restrictions on the parser generator and
freely use default reductions in the LR
case.

The recovery scheme of Penello and
DeRemer [PDeR] condenses the right context
of the error in a preliminary forward
move. This forward move begins by
considering all states that may be reached
by shifting the token immmediately
following the error token. The forward
move then parses ahead "in parallel" until
sufficient right context has been
accumulated. If the forward move does not
advance some predetermined amount into the
right context, then it is repeatedly
applied, starting in each case at the
symbol at which it left off, until this
amount of forward context is gathered.
The correction phase then evaluates single
token correction candidates by determining
how much of this condensed context can be
"consumed" by each repair. When repairs
attempted at the detection point fail,
each symbol on the parse stack is regarded
in turn as the possible erroneous symbol.
There is no "unparsing" of nonterminals on
the parse stack. If no repair advances
the parse even one token, then the first
symbol in the forward context is deleted
and the entire process repeated.

The preliminary forward move lessens
the degree of repetition involved in parse
checking individual candidates. However,
this approach demands considerable
overhead in terms of additional tables
required of the paser generator [PDeR].
We find that our implementations spend
little time parse checking in primary
recovery, where the check is allowed to be
long if necessary. Typically, few
candidates of a given trial require a
check of more than two tokens.

The preliminary forward move also
lacks a systematic method for dealing with
the presence of errors in the forward
context. While the possibility of an

72

error in the forward context requires us
to resort to the heuristic parse distance
choice discussed in section 2.2, we have
had good success at handling errors in
close proximity. Without a systematic
method for correcting multiple errors,
multiple symbol deletions are of
particular importance, and our secondary
recovery is designed especially to handle
these cases. In [PDeR] a multiple symbol
deletion involving a mutilated forward
context is accomplished only by means of a
costly process that attempts the full
gamut of repairs at every symbol before
deleting it. Outside of those accounted
for by our inclusion of scope recovery
within secondary recovery efforts, we have
not discovered any cases in which a
multiple symbol deletion is appropriately
accompanied by a single token insertion.
This kind of correction becomes more
relevant when nonterminals are allowed as
candidates for insertion and substitution.
We do not regard the insertion of a
nonterminal as desirable, as it would
invalidate a semantic action stack or
abstract syntax tree. More importantly,
it is generally difficult to issue clear
and helpful diagnostics accompanying such
a correction.

We have found that our scope recovery
mechanism, at little cost, significantly
enhances many of both our primary and
secondary recoveries (see APPENDIX). We
are unaware of the incorporation of this
form of recovery in any other method.

7.0 EVALUATION OF PERFORMANCE

7.1 Resuts: Pascal And Ada

We have tested our method on the
database of erroneous student Pascal
programs studied by Ripley and
Druseikis[RD]. The same sample data set
has been used by [GHJ] and others. Both
our LL and LR Pascal implementations
diagnose more than 90 percent of the
syntax errors in this sample accurately;
in no case does either one issue an
incorrect or cascaded message. Of the
more than 170 recoveries made by each
version, in both instances 75% take place
in the primary recovery phase. The result
of a run of our LL version on more than 75
lines of this sample is included in the
Appendix (the LR version yields the same
results on these examples). Also included
is the result of running the LL version on
the same Pascal sample used in [GR],
[GHJ], and [PDeR] (again the LR results
are identical).

Only in two cases in the [RD] sample
do the LL and LR recoveries differ. Both
involve secondary recoveries; the

difference in both cases pertains to the
effect of the structuring of the syntactic
rules on the timing of the absorption of
terminals into nonterminals on the parse
stack. Consider the following one of the
two cases:

1 PROGRAM P(INPUT,OUTPUT);
2 BEGIN
3 WRITELN(' ',T,' ',LIST[T]);
4 END;
5 END.

The error token is the semicolon on line
4, and so the first trial in both versions
takes place there. The LR version backs
up to the 'END' preceding it for trial
two, where deletion of 'END' parse checks
and is taken as the correction. In the LL
version, trial two takes place at the
'BEGIN' in line two, where the insertion
of another 'BEGIN' prior to it is the
chosen correction. In this case the LL
recovery action is more appropriate, but
in another circumstance backing up over so
much input at once may result in the loss
of an opportunity to make a suitable
correction. The relevant rule in the LL
grammar is:

stmt_part ::= BEGIN compound_stmt END

If a backup to 'END' is regarded as
desirable in the context of this rule, one
may introduce the nonterminal 'end' that
derives the terminal 'END', and include it
instead on the RHS. This change is not
sufficient, however, because the correct
parsing of the END token has forced the
reduction to compound_stmt.

We have also tested our method on
erroneous Ada programs. One particular
test program of slightly more than 100
lines includes 50 syntax errors; the two
versions perform identically, accurately
identifying all errors. Part of this
sample is included in the APPENDIX.

7.2 Efficiency

We implemented the LL and LR parsers
as separate parse modules attachable to a
translator writing system, all written in
the very high level language SETL. The
programs were executed on a VAX 11/780.
The LL parser processes the 725 line
Pascal sample in 35 minutes and 22 seconds
of CPU time. The LR version spends 28
minutes and 20 seconds on the same sample.
The same program, with errors corrected,
can be parsed in 15 minutes and 36 seconds
using the LL parser and 7 minutes 35
seconds using the LR parser. Subtracting
the parsing time from the total time and
dividing by the number of errors gives an
average time per error of 7 seconds for

73

both methods. The very large execution
times stem from the use of SETL. Our
experience with recoding SETL programs
into a lower level language, such as PL/I,
suggests that a speed up factor of 30 or
more is readily achieved. Thus the
average time to recover from an error
would be about 0.25 seconds. We were
surprised to find that LL parsing is more
than twice as slow as LR parsing: this
may be an artifact of using SETL. We did
observe that with LL error recovery the
candidate sets are appreciably smaller and
there are fewer trials than with LR
recovery. However, the average time spent
parse checking a candidate is
significantly greater.

8.0 SHORTCOMINGS AND FUTURE WORK

A fundamental limitation of our
method lies in the choice of the first
correction candidate that successfully
parse checks as the suitable correction.
This approach is obviously advantageous
with respect to time efficiency, and makes
it unnecessary to record and compare parse
check outcomes. But the order in which
the types of simple correction are
attempted is then relevant. Through
experimentation we have discovered an
order in which the most suitable
correction is seldom precluded by a less
desirable one that happens to be tried
earlier. But of course there is no order
that universally prevents shch an
occurrence, and many of the entries in
NEVER_SUBST_FOR and NEVER_INSERT_BETWEEN
(see section 5.2) are included to suppress
a correction that would otherwise take
place before a preferred correction is
tried.

Taking the first candidate that
checks implies a bias not only within but
also across trials. If in the first trial
a candidate succeeds, then a second trial
is never attempted. Since trial one
attempts correction at the at the error
token and each succeeding trial takes
place to the left of the previous one, our
corrective actions have a builtin left to
right bias. One may opt for a method that
checks all candidates over a single trial
or over all trials before deciding which
(if any) applies, and we are experimenting
with this approach.

Another shortcoming of our method
concerns the advance token parse check
itself. An implicit assumption of our
technique is that although the left
context of the error detection point has
proven to contain an error, the right
context is sufficiently error free to
guide the error recovery process. In
judging correction candidates in terms of

their agreement with the forward context,
the method has little safeguard against
the possibility that an additional error
occurs near the one already detected. We
make the parse check as small as possible
to allow for the separate diagnosis and
correction of errors in close proximity,
but the possibility remains that the
errors are too close to allow a successful
parse check by any candidate for
correction of the first error. The result
in this case is that the portion of the
text containing both errors is deleted in
secondary recovery.

A solution to the problem of
arbitrarily dense error occurrences is to
invoke recursively the error recovery
routine when a parse check blocks, and
associate with each correction candidate
the number of errors that its choice would
imply correcting in the forward context.
Such an approach would reduce the
importance of those language specific maps
whose role is to reduce the likelihood of
a spurious correction. This method is
under investigation.

9.0 REFERENCES

[FL] Feyock, S., Lazurus, P.,
"Syntax-directed Correction of
Syntax Errors", Software Practice
and Experience, Vol. 6, 1976.

[GHJ] Graham, S.L., Haley, C.B., Joy,
W.N., "Practical LR Error Recovery",
SIGPLAN Notices, August 1979.

[GR] Graham, S.L., Rhodes, S.P.,
"Practical Syntactic Error Recovery",
CACM, November 1975.

[J] Johnson, S.C., YACC - Yet
Another Compiler Compiler. Bell
Laboratories, Murray Hill, 1977.

[P] Poonen, G., "Error Recovery
For LR(k) Parsers', Information
Processing, August 1977.

[PDeR] Pennello, T.J. and DeRemer,
F.A., "A Forward Move for LR Error
Recovery", Conf. Record ACM
Symposium on Principles of Prog.
Lang., January 1978.

[RD] Ripley, G.D., Druseikis,
F.C., "A Statistical Analysis of
Syntax Errors", Journal of Computer
Languages, Vol. 3, 1978.

Acknowledgement
This work was supported by Army Contract
DAAK80-81-K-0071, Fort Monmouth, NJ.

74

APPENDIX

{ A SAMPLE FROM THE [RD] COLLECTION OF ERRONEOUS PASCAL PROGRAMS }

1 PROGRAM P(INPUT,OUTPUT);
2 FUNCTION TOPSORT(VAR X : ORDER~ VARY : SORTED£ X:INTEGER);

*** Syntax Error: ";" expected instead of ","
*** Syntax Error: "~" expected instead of ","

*** Syntax Error: "PROCEDURE" expected instead of "FUNCTION"
3 BEGIN
4 END;
5 BEGIN
6 X:=I
7 END.
8
9 PROGRAM P(INPUT, OUTPUT);

i0 BEGIN
ii IF X: = 0 THEN X:=I

A

*** Syntax Error: "=" expected instead of ":="
12 END.
13
14 PROGRAM P(INPUT,OUTPUT);
15 VAR I:REAL;

< >

*** Syntax Error: Unexpected input
16 TYPE ORDER = ARRAY[I..MAXRELATIONS,I..2] OF INTEGER ;
17 VAR Q:INTEGER;
18 BEGIN
19 END.
20
21 PROGRAM P(INPUT,OUTPUT);
22 VAR L,N: REAL;
23 VAR X,NONPRIME,PRIME: INTEGER;

*** Syntax Error: Unexpected "VAR" ignored
24 BEGIN
25 END.
26
27 PROGRAM P(INPUT,OUTPUT);
28 BEGIN
29 WRITELN(' '~9,'X'~I0,'M'~9,'X]'~9,'APPROX X]'~I91

*** Syntax Error: "," expected instead of ";"
*** Syntax Error: "," expected instead of ";"
*** Syntax Error: "," expected instead of ";"
*** Syntax Error: "," expected instead of ";"
*** Syntax Error: "," expected instead of ";"
*** Syntax Error: ")" expected instead of ","

30 END.
31
32 PROGRAM P(INPUT,OUTPUT);
33 BEGIN
34 FOR I := i STEP 1 UNTIL LISTSIZE - 1 DO

< AA^^__ -- >

*** Syntax Error: Bad statement
35 X:=I
36 END.
37
38 PROGRAM P(INPUT, OUTPUT);
39 LABEL i~999;
40 i: BEGIN

^

*** Syntax Error: "BEGIN" expected before this token
41 READ (N) ;
42 END.

^

*** Syntax Error: "END" expected after this token
43

75

44 PROGRAM P(INPUT,OUTPUT);
45 FUNCTION FOO(VAR X: ARRAY[I..MAX] OF INTEGER): INTEGER;

< >

*** Syntax Error: Unexpected input
46 VAR Q:INTEGER~

*** Syntax Error: statement part missing for PROCEDURE or FUNCTION on line 45
47 BEGIN
48 END.
49
50 PROGRAM P(INPUT,OUTPUT);
51 BEGIN
52 IF NON PUSH(I) THEN X:=I

^

*** Syntax Error: Reserved word "NOT" misspelled
53 END.
54
55 PROGRAM P(INPUT, OUTPUT);
56 BEGIN
57 IF COUNT[LISTDATA[SUB] := 0 THEN

<-->
*** Syntax Error: Unexpected input -- "]" expected after this token on line 57

58 BEGIN
59 F := LISTDATA[SUB];
60 END;
61 END.
62
63 PROGRAM P(INPUT,OUTPUT);
64 FUNCTION FACTORIAL(VAR~ X: INTEGER): INTEGER !

*** Syntax Error: Unexpected ":" ignored
*** Syntax Error: ";" expected instead of "]"

65 VAR Q:INTEGER;
66 BEGIN
67 END;
68 BEGIN
69 END.
70
71 PROGRAM P(INPUT,OUTPUT);
72 BEGIN
73 REPEAT
74 WRITELN(' ');
75 UNTILL EOF(INPUT);

^

*** Syntax Error: Reserved word "UNTIL" misspelled
76 X:=I
77 END.
78

22 parse errors detected
Parsing time: 167 seconds

7~

{ PASCAL EXAMPLE THAT APPEARS IN [GR], [PDeR], AND [GHJ]

1 program cacm(input,output);
2 label 1,2,3;
3 var a,b: array[l..5 i..i0] of integer;

*** Syntax Error: "," expected after this token
4 i,j,k: integer;
5 begin
6 3~ i + j > k + 1"4 then go 1 else k is 2;

*** Syntax E~ror: "IF" expected after this token
*** Syntax Error: Reserved word "GOTO" misspelled
*** Syntax Error: ":=" expected instead of "IS"

7 ~ I, ~ := hi3 * (i + ~, j*/k~^

*** Syntax Error: "[" expected after this token
*** Syntax Error: "]" expected after this token
*** Syntax Error: ")" expected after this token
*** Syntax Error: "IDENTIFIER" expected after this token
*** Syntax Error: ";" expected after this token

8 if i=l then then goto 3;
^

*** Syntax Error: Unexpected "THEN" ignored
9 2: end.

i0 parse errors detected
Parsing time: 46 seconds

-- Ada EXAMPLE. INCLUDES SCOPE RECOVERY AND SECONDARY RECOVERY

1 program etests is

*** Syntax Error: "PROCEDURE" expected instead of "PROGRAM"
2
3 j, k, i~ : integer;

*** Syntax Error: Unexpected "," ignored
4
5 a: array (INTEGER range I..i0) is integer;

*** Syntax Error: "OF" expected instead of "IS"
6
7 type b is INTEGER range 1..30;

^

*** Syntax Error: Unexpected "INTEGER" ignored
8
9 proc count is

*** Syntax Error: Reserved word "PROCEDURE" abbreviated
10 x: integer;
ii GET(x);

*** Syntax Error: "BEGIN" expected before this token
12 PUT(x !

*** Syntax Error: ";" expected after this token
13 end count;
14
15 procedure q is seperate;

*** Syntax Error: Reserved word "SEPARATE" misspelled
16

77

17 function DAYS_IN_MONTH(M: MONTH IS_LEAP: BOOLEAN) return DAY is
A

*** Syntax Error: ";" expected after this token
18 begin
19 case M of

*** Syntax Error: "IS" expected instead of "OF"
20 when SEP I APR I JUN ! I NOV => return 30;

*** Syntax Error: Unexpected "I" ignored
21 FEB => return 28;

*** Syntax Error: "WHEN" expected before this token
22 whan APR => return 30;

^

*** Syntax Error: Reserved word "WHEN" misspelled
23 others => return 31;

*** Syntax Error: "WHEN" expected before this token
24 end case;
25
26 z(y - 5*j + k rein 7) then

*** Syntax Error: "IF" expected before this token
27 x := x + I;
28 go to label;

<--->

*** Syntax Error: "GOTO" expected instead of "GO" "TO"
29 end if;
30
31 loop
32 if x > 0 then y := 2;
33 if y < 0 then z := 3~

*** Syntax Error: "END IF;" inserted to match "IF" on line 33
^

*** Syntax Error: "END IF;" inserted to match "IF" on line 32

*** Syntax Error: "END LOOP;" inserted to match "LOOP" on line 31
A

*** Syntax Error: "END;" inserted to match "BEGIN" on line 18
A

*** Syntax Error: statement part missing for unit starting on line 17

21 parse errors detected
Parsing time: 120 seconds

78

