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Abstract
Stream programming languages employ FIFO (first-in, first-out)
semantics to model data channels between producers and con-
sumers. A FIFO data channel stores tokens in a buffer that is ac-
cessed indirectly via read- and write-pointers. This indirect token-
access decouples a producer’s write-operations from the read-
operations of the consumer, thereby making dataflow implicit. For a
compiler, indirect token-access obscures data-dependencies, which
renders standard optimizations ineffective and impacts stream pro-
gram performance negatively.

In this paper we propose a transformation for structured stream
programming languages such as StreamIt that shifts FIFO buffer
management from run-time to compile-time and eliminates split-
ters and joiners, whose task is to distribute and merge streams. To
show the effectiveness of our lowering transformation, we have
implemented a StreamIt to C compilation framework. We have
developed our own intermediate representation (IR) called Lami-
narIR, which facilitates the transformation. We report on the en-
abling effect of the LaminarIR on LLVM’s optimizations, which
required the conversion of several standard StreamIt benchmarks
from static to randomized input, to prevent computation of par-
tial results at compile-time. We conducted our experimental eval-
uation on the Intel i7-2600K, AMD Opteron 6378, Intel Xeon
Phi 3120A and ARM Cortex-A15 platforms. Our LaminarIR re-
duces data-communication on average by 35.9% and achieves
platform-specific speedups between 3.73x and 4.98x over StreamIt.
We reduce memory accesses by more than 60% and achieve energy
savings of up to 93.6% on the Intel i7-2600K.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Languages, Algorithms, Performance

Keywords stream programming, synchronous data flow, program
transformation, performance analysis, compiler optimization

1. Introduction
Streaming applications contain an abundance of parallelism due
to independent actors that communicate via data channels. Hence,
the traditional focus of stream programming compilers has been to
leverage the available parallelism during compilation, auto-tuning
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and run-time adaptation by exploiting the underlying stream graph
structure with the objective to maximize data throughput [9, 13, 15,
16]. However, the optimization opportunities with the actual data
transfers between communicating actors have been neglected. Such
optimization opportunities are particularly imminent in structured
stream programs that re-distribute data via split-join constructs.

Actor communication is based on the notion of FIFO queues
that isolate the producer from the consumer. Although the FIFO
queue is an elegant conceptual model for communication, it is
nevertheless obscuring the access of information between producer
and consumer. Hence, optimizing compilers cannot automatically
discover the information flow due to indirect memory accesses, and
standard compiler optimizations including register allocation and
constant propagation become ineffective across actor boundaries.
I.e., FIFO queues perforate each data channel by an indirect token
store operation on the producer side, plus an indirect token load
operation on the consumer side. Queues as data channels are thus
a dead-end performance-wise, and a valid question is whether the
problem of FIFO queues could be ignored by scaling to a larger
number of cores instead. Unfortunately, stateful actors, which are
actors that pass state information from one invocation to the next,
limit the available parallelism as reported in the literature [13, 16].
Also, high performance applications that require peak performance
will not seek a compromise.

The goal of the presented work is to remedy the current situation
by shifting FIFO queue-management from run-time to compile-
time. A key observation is that the abstraction level of stream
program representations is too high for compilers to map stream
programs effectively onto von Neumann architectures.

We propose a lowering transformation that converts a stream
program to LaminarIR, our stream program IR. Lowering proceeds
in two steps: first, a local direct access transformation explicates
the token-flow within actors if a programming language employs
a push/pop semantic (as with StreamIt [24]). The second step per-
forms a global direct access transformation for inter-actor com-
munication across the whole stream graph. In LaminarIR, actor
declarations must name the tokens on each incoming and outgo-
ing data channel. Work functions explicitly refer to named tokens
rather than relying on FIFO queue operations for data communica-
tion.

The paper makes the following contributions:

1. We identify FIFO queues as the dominating roadblock for
achieving high performance with stream programming lan-
guages. This roadblock hampers the implementation of struc-
tured stream programs on von-Neumann architectures.

2. We establish the program transformation and its underlying
theory to replace FIFO queues by the LaminarIR format, which
manages buffers already at compile-time.

3. We evaluate the proposed transformation across four hardware
platforms in terms of performance and energy consumption.
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1 void->void pipeline Prog{
2 add A();
3 add float->float splitjoin
4 {
5 split duplicate;
6 add B();
7 add C();
8 join roundrobin;
9 }

10 add D();
11 }
12 void->float filter A(){
13 work push 1
14 {push(my.frand());}
15 }
16 float->float filter B(){
17 work push 1 pop 2{
18 push(pop()+pop()/2);}
19 }
20 float->float filter C() {
21 work push 1 pop 2{
22 push(sqrt(pop()*pop()));}
23 }
24 float->void filter D(){
25 work pop 2{
26 println(pop());
27 println(pop());}
28 }
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_ ∗ _

printf(_) printf(_)

(c)

1 sdf Prog {
2 float A ->S(1);
3 float S(1)->B;
4 float S(1)->C;
5 float B ->J(1);
6 float C ->J(1);
7 float J(2)->D;
8 actor A{
9 firing:{y=frand();}

10 output: S: y;
11 }
12 actor B{
13 input : S: x1,x2;
14 firing:{y=(x1+x2)/2;}
15 output: J: y;
16 }
17 actor C {
18 input : S: x1,x2;
19 firing:{y=sqrt(x1*x2);}
20 output: J: y;
21 }
22 actor D {
23 input : J: x1,x2;
24 firing:{println(x1);
25 println(x2);}
26 }
27 }

(d)

1 void Prog(){
2 float x1;
3 float x2;
4 float x3;
5 float x4;
6

7 for(;;){
8 // actor A
9 x1=frand();

10 x2=frand();
11

12 // actor B
13 x3=(x1+x2)/2;
14

15 // actor C
16 x4=sqrt(x1*x2);
17

18 // actor D
19 printf("%f\n",x3);
20 printf("%f\n",x4);
21 }
22 }

(e)
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Figure 1: (a) StreamIt source-code, (b) streamgraph, (c) dataflow-graph for schedule 2A, 2S,B,C, J,D, (d) LaminarIR, (e) generated C
code, (f) implementation based on FIFO queues, and (g) implementation employing direct variable access through indirections

Our evaluation is based on a representative set of StreamIt
benchmarks.

The remainder of this paper is organized as follows. In Section 2
we present a motivating example for our framework. In Section 3
we describe the LaminarIR, the local direct access transformation
with StreamIt as a case-study, and the LaminarIR code generator.
Section 4 describes our global direct access transformation. Sec-
tion 5 contains the experimental evaluation. We survey related work
in Section 6 and draw our conclusions in Section 7.

2. Motivating Example
Let us consider the example in Fig. 1a. This example uses StreamIt,
but our proposed technique applies to any stream programming
model that employs static data rates. Our example computes the
arithmetic and geometric means from pairs of numbers produced by
the source actor A. Actor A lifts input data into the stream-graph by
calling a native function my.frand(), which is a floating-point
random number generator that employs glibc’s rand() function
under the hood. Each invocation of the source actor produces one
random number that is then passed to the splitter S, which dupli-
cates its input stream for actors B and C to compute the arithmetic
and the geometric mean, respectively. The output streams of ac-
tors B and C are joined for actor D to output the results. The stream
graph of this example is depicted in Figure 1b; the numbers stated
with each stream-graph edge denote the number of data-items (to-
kens) produced and consumed by one invocation of the respective

edge’s producer and consumer actors. During code generation, a
stream compiler will use these production and consumption rates
to dimension the buffer capacity required on each stream-graph
edge. These capacities will depend on the chosen actor execution
schedule; To keep the example simple, we assume the sequential
schedule 2A, 2S,B,C, J,D, where actor A executes twice, fol-
lowed by two executions of the splitter S, and then single invoca-
tions of actors B, C, J and D. An implementation for this sched-
ule is depicted in Figure 1f. Therein each push() statement has
been mapped to an enq operation that places a token in the corre-
sponding actor’s output queue. deq operations read tokens from an
actor’s input queue. On a shared-memory CPU, these queues will
be implemented as buffers that are accessed indirectly via read- and
write-pointers. Every enq and deq operation entails the overhead
of maintaining the read- and write-pointers, plus the cost of indirect
token-access itself.

We can specialize our program by connecting producer-side
operands to the operations in the consumer that process them. For
example, from the above schedule we can easily infer that the
tokens produced by two invocations of actor A become the input
for the arithmetic and the geometric mean computations of actors B
and C in lines 18 and 22 of Figure 1a. Instead of routing these
tokens through the duplicating splitter S and its associated queues,
we explicate the token-flow through the stream graph as depicted
by the data dependence graph in Figure 1c. There, each operation
from a consumer actor (e.g., (_ + _) ∗ 1

2
and
√

_ ∗ _) directly
accesses its operands from the producer actor. Direct token-access
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eliminates splitters, joiners and FIFO queues altogether. Created by
a compiler, the direct access format effectively shifts FIFO buffer
management from run-time to compile-time.

This transformation cannot be established solely from an actor’s
source-code, because the amount of tokens that occur on a data
channel at any given point in time is determined by the actor
execution schedule. E.g., although it is true that the push statement
in line 14 of actor A always enqueues a token at the back of the
queue, the memory address of the accessed queue position depends
on the state of the queue, i.e., the number of elements already in the
queue. Thus, in the schedule 2A, 2S,B,C, J,D the first invocation
of actor A will write to a different memory address than the second
invocation.

As an example transformation, consider actor C in Figure 1d,
which is the result of the local direct access conversion of our mo-
tivating example. The input section of actor C states two named
tokens x1 and x2, which are written in this order by splitter S.
The actor stores its output in token y; the geometric mean com-
putation in the firing section is defined in terms of the named
tokens x1, x2 and y. We refer to named tokens as indirections,
because they divert a token access inside of an actor to an abstract
storage location, where it can be aliased with the corresponding to-
ken access at the opposite endpoint of the respective data channel
during the second step of our lowering transformation. This second
step is a global graph transformation that employs the stream graph
topology to pair producer- and consumer-side indirections. The re-
sult of this transformation on our motivating example is depicted
in Figure 1g. Boxes ( ) denote abstract token storage locations
between actors. Tokens are passed explicitly by a write-operation
of the producer on an indirection which is aliased by an indirec-
tion in the consumer. E.g., the first invocation of actor A, i.e., A1,
writes its output to indirection A1.y, which is aliased by indirec-
tions C.x1 and B.x1 of actors C and B respectively. Splitters and
joiners are eliminated during the global indirect access transfor-
mation. The LaminarIR format is on a sufficiently low abstraction
level for LLVM to promote all token variables to SSA form. The
dataflow graph in Figure 1c depicts the dependencies that LLVM
generated from the LaminarIR of our motivating example.

For the sake of readability we have restricted the size of the
motivating example. Note however that the proposed technique ap-
plies to synchronous data flow (SDF) graphs in general. Our ex-
perimental evaluation in Section 5 applies this technique to en-
tire StreamIt applications. Our proposed technique is applicable to
static-rate sub-graphs of hybrid approaches like the one from Soulé
et al. [21]. With such a hybrid approach, edges with dynamic data
rates are kept as FIFO queues, whereas edges with static data rates
are transformed to the LaminarIR format. Conversely, the Lami-
narIR does not inhibit parallelization. Rather, our technique can be
applied to any stream sub-graph with static data-rates. Although
outside the scope of this paper, such sub-graphs can be produced
by state-of-the-art multicore parallelization techniques. Our opti-
mization is thus orthogonal to stream parallelization techniques to
enhance performance.

3. LaminarIR
The LaminarIR is a domain-specific program representation for
stream programming languages that employ static data rates.
Unlike StreamIt, which represents programs as hierarchies of
pipelines, loops and split-join compound statements, LaminarIR
employs a flat, directed graph structure which is not restricted to
structured stream graphs. LaminarIR provides an actor with direct
access to the tokens of its incoming and outgoing data channels.
The LaminarIR is thus on a lower abstraction level than StreamIt,
which abstracts away direct token access adapting a queue model
with the push, pop, and peek statements.

program ::= sdf id { edge node }
edge ::= type id .idx? (((rate)))? -> id .idx? (((rate)))?

delay ::= = { val }
node ::= actor id { StateDef ? NodeDef }

StateDef ::= state: code init: code
NodeDef ::= input? firing output?

input ::= input: channel
firing ::= firing: code

output ::= output: channel
channel ::= id : indirections

indirections ::= id ,id

Figure 2: Abstract Syntax of the LaminarIR. For brevity, constructs
not relevant for buffer management have been omitted.

LaminarIR’s abstract syntax is summarized in Figure 2. Each
program starts with a sequence of edge declarations that define the
topology of the program’s stream graph. Here, edge denotes a list
of edge components; we use similar notation for other lists in the
LaminarIR grammar. Lines 2–7 from Figure 1d constitute the edge
section of our motivating example’s stream graph. An edge declara-
tion consists of the token-type and the producer and consumer actor
of the edge. With splitters and joiners, we additionally require the
specification of input and output data-rates from which LaminarIR
can deduce whether the actor is either a splitters or joiner. If an
actor is not a splitter/joiner, the actor requires an explicit node dec-
laration that includes data-rates for consumption and production.
As an example, splitter S referred in line 2 of Figure 1d will con-
sume one token on the edge A->S on each invocation. An actor
can have several instances, for which the LaminarIR provides op-
tional indexes (idx). The indexes are appended to the produced/con-
sumer declarations of an edge declarations. Throughout this paper
we distinguish actor instances by subscripts.

Actors other than splitters and joiners are declared in the node
section of the LaminarIR. A node declaration defines incoming
channels and channel indirections in the node’s input section, and
outgoing channels and their indirections in the output section. The
order of stated indirections (left-to-right) corresponds to their po-
sitions (front-to-back) in the associated queue. Actor computations
are defined in the firing section of an actor declaration. Indirec-
tions are referenced like regular variables, except that input indi-
rection are restricted to read-accesses, and output indirections to
write-accesses, respectively. No constraints are imposed on the or-
der of indirection accesses within an actor’s firing section. An actor
is stateful if an optional state section is defined. State variables de-
clared in the state section are initialized in the init section, which is
run once before execution of the program’s steady-state.

The code generator of the LaminarIR framework, as shown
in Figure 3, uses actor functions as code templates, computes a
schedule and produces a single block to execute a finite periodic
schedule. Hence, tokens become local and the dataflow between
actor invocations for the compiler is fully exposed.

3.1 Local Direct Access Transformation
StreamIt provides a queue semantics to access input and output
tokens of an actor, whereas LaminarIR has named tokens only.
To lower queue operations for accessing input and output tokens,
LaminarIR requires a mapping from StreamIt’s push statements
to named output tokens and from StreamIt’s pop and peek oper-
ations to named input tokens. This mapping must be static, i.e., for
all possible program paths in the control-flow of the actor, the con-
version must be semantically correct. However, the queue opera-
tions may be dependent on data-dependent control-flow constructs.
Hence, an automatic conversion may fail. To overcome this issue,
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we have devised a translation scheme that performs constant prop-
agation and loop-unrolling, which covers almost all practical cases
to convert push and pop operations of StreamIt to named tokens.
Our local conversion covers all but 3 actors of the StreamIt bench-
marks with static data-rates from [23].

If the translation fails, we introduce dynamic read/write coun-
ters for the queue position that are incremented when push/pop
statements are executed. Depending on the counters, the appropri-
ate named token is accessed via a switch/case statement. This is
possible, because the number of named tokens for each channel is
a constant. However, the dynamic conversion from push and pop
statements imposes a run-time overhead as discussed in the experi-
mental evaluation in Section 5.

Our StreamIt-to-C source to source transformation framework
is depicted in Figure 3. Parsed StreamIt programs are lowered
to LaminarIR by the local and global direct access transforma-
tions, to be followed by C code generation. The StreamIt com-
piler applies its own set of graph transformations, e.g., by com-
bining multiple actors into a single aggregate actor (fusion) or by
instantiating an actor multiple times (fission) and wrapping the in-
stances by a round-robin split-join combination to achieve data par-
allelism [14]. To isolate the effects of the LaminarIR as the inde-
pendent variable in our experimental evaluation, we have imple-
mented our own FIFO queue backend. Unlike StreamIt, our FIFO
queue backend does not change the underlying stream graph struc-
ture. (Our experimental evaluation in Section 5 compares Lami-
narIR to both StreamIt and our own FIFO queue backend.) The
LaminarIR framework and the benchmarks that we used with the
experimental evaluation are available online [1].

4. Global Direct Access Transformation
We give two types of semantics for the SDF programming model.
The first semantics may be considered as a concrete semantics for
SDF. The state of the data channels in the concrete semantics are
modeled via an array of lists. A list in the array represents state of a
data channel between two actor firings. Actors are fired according
to a sequential schedule. An actor firing (1) dequeues tokens from
its incoming data channels, (2) the dequeued tokens are applied
to the firing function of the actor, and (3) the produced tokens of
the firing function are enqueued on its outgoing data channels. The
second semantics is an auxiliary semantics, which stores tokens by
indirections. Instead of having data channels storing tokens, sym-
bols with an environment are used to represent the state between
actor firings. The auxiliary semantics results in a non-constructive
imperative program of infinite length with infinite number of pro-
gram variables. We finitize the imperative program using the finite
admissible periodic schedule of the SDF program.

4.1 Background and Notation
An SDF program is a dataflow graph which statically specifies the
number of data tokens produced or consumed by each actor on
each invocation a priori [6]. An SDF program is expressed as a
directed graph with a set of actors V = {1, . . . , n} and a set of data
channels E = {1, . . . ,m} that connect actors. When an actor i
is fired, the consumption of tokens on the incoming channels is

represented by function c : V → (E → N). For example c3(1)
denotes the consumption rate of actor 3 on data channel 1. If data
channel 1 is not an incoming edge of actor 3, then the consumption
is set to zero. Similarly, the production of tokens is modeled by
function p : V → (E → N). An SDF program has a delay, which
represents the initial tokens in the data channel before firing actors
in a schedule 〈u1, u2, . . .〉. It is assumed that an SDF program has
a finite admissible periodic schedule 〈u1, u2, . . . , uk〉 that consists
of a finite sequence of actor invocations [17]; the periodic finite
schedule is computed at compile time, invokes each actor of the
SDF graph at least once, and produces no net change in the system
state, i.e., the number of tokens on each edge is the same before and
after executing the schedule. Thus, a periodic finite schedule can be
executed ad-infinitum without exhausting memory, and we refer to
the state before and after the execution of a periodic finite schedule
as the steady-state.

For representing the state of a data channel, we resort to simple
lists for which we introduce two functions. Function headk : (t1,
. . . , tk−1, tk, tk+1, . . . , tl) 7→ (t1, . . . , tk) extracts the first k el-
ements from the list and function tailk : (t1, . . . , tk−1, tk, tk+1,
. . . , tl) 7→ (tk+1, . . . , tl) extracts the elements from tk+1 on-
wards. The concatenation of two lists l1 and l2 is denoted by
l1 · l2. We extend the functions for lists to array of lists, e.g.,
head(k1,...,km)(l1, . . . , lm) = (headk1(l1), . . . , (headkm(lm)) to
represent the state of an SDF program.

4.2 Concrete SDF Semantics
We express the concrete semantics of an SDF program by means
of a simple recurrence relation between two subsequent states,
because there is only a single possible transition from one actor
firing to another actor firing for a given infinite schedule.

Definition 1. For a given schedule 〈u1, . . .〉, the states 〈s0, . . .〉 of
the concrete semantics are given as,

s0 = delay
si = taili(si−1) · fi(headi(si−1)) for i > 0

where the initial state s0 is referred to as delay.

A state si (for all i ≥ 0) is an array of lists representing
the snapshot of data tokens stored in the data channels between
two actor firings. A channel is represented by a list and the lists
of all channels are collated to an array. The size of the array is
determined by the number of edges in the SDF program1 whereby
the list lengths are determined by the number of tokens stored in
the data channels that may change if an actor either consumes from
or produces tokens for the channel. An actor firing of actor ui is
expressed by the actor firing function fi that takes the tokens to
be consumed as an input and produces the tokens on the outgoing
channels. The input/output behaviour of an actor function is also
represented by a function whose domain and co-domain are arrays
of lists. The corresponding lists of an outgoing channel contain the
produced tokens whereas channels that are not outgoing channels

1 The underlying assumption here is that the SDF graph is stable throughout
the execution and the number of edges do not change.
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will be empty. The input is represented by lists of input tokens for
all channels. If a list is an incoming edge, the number of elements
in the list is determined by the consumption rate; otherwise the list
is empty.

To extract the input tokens for the current actor firing fi, we
employ the function headi(si−1) that accesses the input tokens
of the actor firing, i.e., head(cui

(1),cui
(2),...,cui

(m))(si−1) where
cui(j) denotes the consumption rate of actor ui on channel j. For
instance, for a channel k, cui(k) tokens are retrieved and applied
to actor firing function fi of actor ui. The new tokens that are pro-
duced by the actor function are concatenated with taili(si−1) =
tail(cui

(1),cui
(2),...,cui

(m))(si−1), i.e., the state of the data chan-
nels after consuming the input tokens. Note that the states 〈s0, . . .〉
are only defined if, for all actor firings i, there are enough tokens
enqueued in state si−1 for firing semantic function fi. This prop-
erty holds if the schedule is a finite admissible periodic schedule,
for example.

An implementation of the concrete semantics is shown in List-
ing 1. We assume that the schedule is a finite periodic schedule
stored in schedule of length K. The state is an array of token
lists that stores the tokens of each channel from 1 tom. The state
is initialized with tokens in delay and updated by subsequent ac-
tor firings. The variable state outside the loop represents s0 of
the concrete semantics. For each firing of actor u, the input for u
is stored in variable input that receives its value by extracting
the input tokens from the current state si−1 represented by variable
state using function head. In the next step, the semantic function
for u is executed with the computed input and the output is pro-
duced. The output of the firing function is concatenated with the
state after removing the input tokens using the tail function. After
updating the state variable state, the variable represents state si.

1 var schedule:array[1..K] of nodes;
2 var consumption_rate:array[1..N]:array[1..M] of

integer;
3 var delay,state,input,output:array[1..M] of list;
4 ...
5 state:=delay;
6 i:=1
7 loop
8 u:=schedule[i];
9 i:=(i mod K)+1;

10 for j in {1..M} do
11 input[j]:=head(state[j],consumption_rate[u,j])
12 output:=fire(u,input);
13 for j in {1..M} do
14 state[j]:= tail(state[j],consumption_rate[u,j]) ‖
15 output[j];

Listing 1: Implementation of Concrete Semantics

4.3 Auxiliary Semantics
We introduce an auxiliary semantics that produces a sequential
program whose variables represent tokens in the data channel. The
produced sequential program does not require the notion of FIFO
queues. To construct the auxiliary semantics, the data channels
are represented symbolically, i.e., the data channels store symbols
for which there exists an environment that maps symbols back to
tokens. To ensure the correctness of the auxiliary semantics, the
domain of tokens is disjoint from the domain of symbols.

The auxiliary semantics stores tokens in data channels by in-
direction: a list of tokens 〈t1, . . . , tk〉 in the concrete semantics
is represented by a sequence of symbols 〈v1, . . . , vk〉 for which
there is an environment e : {v1 7→ t1, v2 7→ t2, . . . , vk 7→ tk}.
With the environment the symbol lists 〈v1, . . . , vk〉 are mapped
back to the list of tokens 〈t1, . . . , tk〉. We denote the mapping
by 〈t1, . . . , tk〉 = e(〈v1, . . . , vk〉) for environment e. We intro-
duce a helper function (〈v1, . . . , vk〉, e′) = fold(〈t1, . . . , tk〉, e)

where e′ is the extended environment adding the mappings {v1 7→
t1, v2 7→ t2, . . . , vk 7→ tk} to e. The newly introduced variables
{v1, . . . , vk} are disjoint from the existing variables in environ-
ment e.

Lemma 1. For all token lists 〈t1, . . . , tk〉 and an arbitrary envi-
ronment e, the following holds:

〈t1, . . . , tk〉 =
(
λ
(
l′, e′

)
.e′(l′)

)
fold(〈t1, . . . , tk〉, e).

The above lemma is a correspondence lemma, i.e., the fold func-
tion converts a token sequence with an environment e to a pair con-
sisting of a symbol sequence and an environment that can be con-
verted back to the token sequence. This is expressed by a lambda
function, that binds the symbol sequence l′ and environment e′

from the result of the fold function. When the environment e′ is ap-
plied to the symbol sequence we obtain the token sequence. Hence,
the translation of any token list to a symbol list is reversible under
the environment e provided by the fold operation, because only new
symbols are introduced for each token in 〈t1, . . . , tk〉. To operate
on symbolic states, we extend the definitions of the environment
application e(〈v1, . . . , vk〉) and folding operation to arrays of sym-
bol lists v for ease of readability.

Definition 2. For a given schedule 〈u1, . . .〉 the symbolic states
with their environments 〈(v0, e0), . . .〉 in the auxiliary semantics
are defined as

(v0, e0) = fold(delay, ∅)
(vi, ei) = (λ

(
l′, e′

)
.(taili(vi−1) · l′, e′))

fold(fi(ei−1(headi(vi−1))), ei−1), for i > 0,

where vi is an array of symbol sequences and ei is its variable
environment of the i-th step.

The definition of the auxiliary semantics goes in-line with the
concrete semantics of SDF. Instead of token lists, symbol lists
and their environments are used to describe the state of the data
channels. Before applying the actor firing function, the symbol lists
of the input are converted to concrete token lists by environment
ei−1. This is necessary because the semantic function fi is not
computable symbolically in general. The result of the actor firing
function is mapped back to symbol lists by the fold function. Since
the fold function converts the output of the actor firing to a pair
(l′, e′), we use a λ-function to construct the new symbolic state
by concatenating the state after consuming the tokens from the
incoming edges with the output of the actor firing function.

Lemma 2. Semantic equivalence: For a schedule 〈u1, . . .〉 the
evaluated symbolic states of the auxiliary semantics coincide with
the states of the concrete semantics, i.e., for all i ≥ 0, ei(vi) = si.

The equivalence of the concrete semantics and the auxiliary
semantics can be shown by structural induction in a straightforward
fashion.

Instead of using a functional notion to express the computa-
tions, the auxiliary semantics guides the translation to an imper-
ative program. The symbols of the environments become program
variables and the actor firings become function calls. The underly-
ing assumption is that the program and the program variables are
unbounded. The imperative program of the auxiliary semantics is
given by

v0 ← delay
new1 ← f1(head1(v0))

new2 ← f2(head2(v1))

. . . ,

where newi are the newly produced symbols in the i-th step by
the actor firing, i.e., vi = taili(vi−1) · newi. Here, the array of
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Table 1: Benchmark specification

Benchmarks Parameters and values
DCT window size (8×8), coarse
DES number of rounds (16)
FFT window size (16)
MatrixMult matrix dims (10×10, 10×10)
AutoCor vector length (32), series length (128)
Lattice number of Stages (10)

Serpent number of rounds (32),
length of text (128)

JPEG window size (64), fine, loops

BeamFormer beams (4), channels (12), coarse
filter tabs (64), fine filter tabs (64)

Comp. Count. number of values to sort (16)
RadixSort number of values to sort (16)

symbolic sequences become block assignments of program vari-
ables and blocked argument passing to the function calls. Unfor-
tunately, the resulting imperative program is non-constructive and
we seek a program that is bounded. To finitize the imperative pro-
gram, we use the existence of the finite admissible2 periodic sched-
ule 〈u1, . . . , uk〉, which have neither net-gains nor net-losses of
tokens after execution. The imperative program is rewritten using
an infinite loop as follows.

v0 ← delay
loop : new1 ← f1(head1(v0))

new2 ← f2(head2(v1))

. . .

newk ← fk(headk(vk−1))

v0 ← vk

goto loop

In the loop the first k actors of the finite periodic schedule are
fired and the symbolic state vk to v0 is copied at the end of the
loop body. The steady-state property guarantees that both symbolic
states have the same cardinality. Note that this program is semanti-
cally correct only if all symbolic tokens of v0 have been consumed
at the end of the periodic schedule. In case that the delay is too
large and there exist symbols of v0 in vk, the periodic schedule
〈u1, . . . , uk, u1, . . . , uk, . . . , u1, . . . , uk〉 is expanded by several
iterations of the periodic finite schedule until no symbols of the de-
lay remain in the final state of the expanded periodic schedule. The
expansion is necessary since a symbol can only carry a single token
and not a multitude.

Note that for splitters and joiners the actor firing function re-
distributes the tokens and can be directly executed at a symbolic
level. Hence, splitters and joiners are dissolved in the generated
program, and only actor functions that do actual computational
work are performed.

5. Experimental Results
We conducted our experimental evaluation on the Intel i7-2600K,
AMD Opteron 6378, Intel Xeon Phi 3120A and ARM Cortex-A15
platforms. Characteristic features of the tested platforms are sum-
marized in Table 2. Our evaluation comprised the LaminarIR di-
rect access format and FIFO queues (C code), and the C++ code

2 The SDF program has steady-state, i.e., the number of tokens before and
after the execution of the finite periodic schedule is the same on all data
channels.

generated by StreamIt 2.1.1. All source code was compiled by In-
tel’s ICC compiler for the Intel Xeon Phi 3120A, and the LLVM
compiler infrastructure for the other processors. LLVM’s optimiz-
ing middle-end provides fine-grained control over the selection of
optimization passes and their application order. We employed this
facility for an in-depth analysis of the profitability of each opti-
mization on the evaluated formats.

Our experimental evaluation focuses on single thread per-
formance only, to dissect the effect of our optimization on the
full range of low-level compiler optimizations. Focusing on sin-
gle thread performance avoids the experiment to be perturbed
from synchronization and inter-processor communication over-
head, which are orthogonal to our optimization. StreamIt’s backend
was thus used with the default setting that compiles for a uniproces-
sor. Measurement data was collected from hardware performance
counters using PAPI [10]. Except with the Intel Xeon Phi 3120A
that does not support CPU frequency scaling, we employed scaling
governors on all platforms to lock the clock frequency to the values
stated in Table 2. As a result, the coefficient of variation of each
measurements is close to 0%.

Our list of representative benchmarks from the StreamIt bench-
mark suite [23] is stated in Table 1. Five benchmarks are from the
StreamIt Core Benchmark Suite proposed by the MIT-StreamIt-
group [14]. The StreamIt Core Benchmark Suite contains 12 bench-
marks, and Serpent and DES are the largest benchmarks. Radix-
Sort (single-pipeline), AutoCor (split/joins) and JPEG (two loops)
were included for their distinct stream-graph features. Comparison-
Counting and MatrixMult were chosen as adversary test cases for
LaminarIR. ComparisonCounting features input data-dependent
push/pop statements that limit direct token access, and MatrixMult
is aggressively fused by StreamIt, which incurred a penalty on the
LaminarIR. BeamFormer, one of the 12 StreamIt Core benchmarks,
contains 28 stateful actors. Most StreamIt benchmarks use static
input data; with the LaminarIR direct access format, static input
enabled LLVM to compute partial results already at compile-time.
We thus manually converted the benchmarks to use randomized
input instead (similar to our motivating example in Figure 1a). All
evaluations shown in this paper are based on randomized input. We
report on the enabling effect of the LaminarIR by comparing the
performance achieved with static and randomized input, in com-
parison to the FIFO queues and StreamIt code.

5.1 Performance
Figure 4 shows the speedups achieved by the LaminarIR direct
access format over FIFO queues and StreamIt. LaminarIR’s di-
rect access format achieves average speedups of 7.25x over FIFO
queues and 3.73x over StreamIt on the Intel i7-2600K, 7.43x and
4.13x on the AMD Opteron 6378, 6.75x and 4.98x on the Intel
Xeon Phi 3120A and 6.74x and 4.84x on the ARM Cortex-A15.

In general, more complex benchmarks have a tendency to con-
tain more split-joins, which are eliminated altogether with the Lam-
inarIR direct access format, leading to larger performance improve-
ments. The corresponding reduction of communication costs is
covered in Section 5.2. DES, which shows the best performance im-
provement amongst all benchmarks, achieves a 36.2x speedup with
the LaminarIR direct access format over FIFO queues, and a 19.2x
speedup over StreamIt on the Intel i7-2600K. The DES encryption
algorithm uses static keys. With direct token access, computations
on static data can be partially computed already at compile time,
which reduces code-size and instruction cache misses, leading to
very competitive performance compared to the FIFO queues and
StreamIt representations.

Two benchmarks, ComparisonCounting and JPEG, showed a
speed-down on the Intel Xeon Phi 3120A. ComparisonCounting
contains a temporary array variable in the StreamIt source code,
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Table 2: Hardware configuration

CPU Intel i7-2600K AMD Opteron 6378 ARM Cortex-A15 Intel Xeon Phi 3120A

Clock Freq. 3.4GHz 2.4GHz 1.7GHz 1.1GHz

Inst. Cache 32kB 64kB, shared by 2 cores 32kB 32kB, unified for
L1 Data Cache 32kB 16kB 32kB both instruction and data

OS (Kernel ver.) Ubuntu 12.04.4 (3.2.0) CentOS 6.5 (2.6.32) Linaro 13.08 (3.11.0) Centos 6.5 (2.6.32)
C Compiler LLVM/Clang 3.5.0 ICC 14.0.3

Average

RadixSort

Comp. Count.

BeamFormer

JPEG

Serpent

Lattice

AutoCor

MatrixMult

FFT2

DES

DCT

1 1.5 2 5 10 15 20 25 30 35

Speedup
.71 .89 1 1.5 2 5 10 15 20 25 30 35

Speedup

Architecture

Xeon Phi
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ARM

i7

(a) vs. FIFO queues (b) vs. StreamIt

Figure 4: Speedup of LaminarIR (a) vs. FIFO queues and (b) vs. StreamIt

which our optimization does not target. We attribute the speed-
down to the effect of the Intel Xeon Phi’s 512bit wide SIMD regis-
ters in conjunction with this array. The JPEG benchmark contains
similar programmer-provided arrays.

Table 4 compares the LaminarIR direct access format to FIFO
queues and StreamIt in terms of the total number of instructions ex-
ecuted (columns 2 and 6), the number of memory loads (columns 3
and 7) and stores (columns 4 and 8), and the energy consump-
tion of the CPU (columns 5 and 9). All data was collected from
hardware performance counters on the Intel i7-2600K processor.
Stated percentages denote LaminarIR direct access over FIFO, and
LaminarIR direct access over StreamIt. E.g., LaminarIR direct ac-
cess executes on average only 43.66% of instructions compared to
StreamIt, and it consumes only 55.8% of the energy. The Lami-
narIR direct access format uses only around 40% of memory ac-
cesses on average compared to FIFO queues and StreamIt. SDF
programs are data centered in general and about 40% of the total
instructions executed are loads and stores on average with FIFO
queues.

Figure 5 shows the effectiveness of the LaminarIR with com-
piler optimizations. Static input data enables compilers to compute
partial results already at compile time, showing a 5.53x average
speedup over randomized input when using the LaminarIR direct
access format. This effect is observed to a much lesser degree with
FIFO queues (1.56x average speedup) and StreamIt (1.34x aver-
age speedup). We found the amount of computations shifted to
compile-time startling with some benchmarks, e.g., only 2% of in-
structions are left when using static input data in conjunction with
the LaminarIR with the Comparison Counting benchmark. Another
scenario for large improvements with the LaminarIR direct access
format are programs which fit into the L1 data and instruction
caches after compiler optimizations on static input have been con-
ducted (e.g., with DES). The reduced code sizes and data accesses

Table 3: Communication reduction from the elimination of splitters
and joiners with the LaminarIR direct access format

Benchmark Reduction
Abs. (byte) Ratio to total

DCT 0 0.00%
DES 66,048 60.48%
FFT 1,024 20.00%
MatrixMult 60,800 69.72%
AutoCor 17,536 50.00%
Lattice 14,308 43.76%
Serpent 101,640 33.33%
JPEG 6,208 41.59%
BeamFormer 1,280 30.08%
Comp. Count. 1,664 52.00%
RadixSort 0 0.00%
Average 36.45%

are beneficial especially on processors which provide smaller in-
struction and L1 data caches, such as the Intel Xeon Phi 3120A.

5.2 Communication Elimination
Table 3 shows the absolute numbers of bytes that the size of data
channels decreased with the LaminarIR direct access format (col-
umn “Abs. (byte)”). Column “Ratio to total” shows the proportion
to the total number of bytes transferred during one steady state it-
eration of a benchmark. Such communication reductions are due to
the elimination of splitters and joiners. No improvement is possi-
ble with the DCT and RadixSort benchmarks, because they do not
contain splitters or joiners. However, the LaminarIR direct access
format shows better performance than FIFO queues and StreamIt
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Figure 5: Effectiveness of the LaminarIR with compiler optimizations: static input data enables compilers to compute partial results already
at compile-time, showing a 5.53x average speedup over dynamic input when using LaminarIR. This effect is observed to a much lesser degree
with our FIFO queue implementation (1.56x average speedup) and StreamIt (1.34x average speedup).

Table 4: Improvements of the LaminarIR direct access format over FIFO queues and StreamIt on the Intel i7-2600K

Benchmarks
LaminarIR over FIFO queues LaminarIR over StreamIt

Inst. Mem. Acc. Energy Inst. Mem. Acc. Energy
Loads Stores Cons. Loads Stores Cons.

DCT 88.29% 95.78% 99.14% 107.65% 65.11% 58.77% 97.87% 95.54%
DES 7.00% 11.85% 4.08% 3.51% 12.98% 14.09% 5.72% 6.44%
FFT 60.71% 50.25% 43.26% 73.47% 62.09% 55.49% 46.58% 72.53%
MatrixMult 14.55% 14.99% 6.34% 11.50% 29.59% 23.77% 12.13% 47.80%
AutoCor 22.26% 25.16% 9.01% 27.47% 40.30% 40.00% 26.31% 35.91%
Lattice 11.12% 12.00% 9.64% 14.26% 20.16% 15.88% 15.68% 47.38%
Serpent 22.87% 34.60% 33.37% 20.39% 45.88% 41.34% 42.94% 55.25%
JPEG 6.04% 4.85% 5.03% 8.21% 8.53% 6.30% 7.00% 16.34%
BeamFormer 59.14% 59.28% 43.73% 58.15% 59.44% 58.85% 44.22% 72.01%
Comp. Count. 47.82% 34.92% 17.15% 46.49% 57.24% 44.78% 35.08% 60.16%
RadixSort 81.91% 61.04% 79.21% 98.64% 78.95% 85.65% 77.81% 104.43%
Average 38.34% 36.79% 31.81% 42.70% 43.66% 40.45% 37.40% 55.80%

with those two benchmarks (see Figure 4 and Table 4), which im-
plies that it is more efficient even with the same amount of data
communication.

5.3 LLVM Optimization Statistics
Table 5 shows the absolute number of variables promoted to SSA
form with the LaminarIR direct access format (column “Abs.”)
and its proportion over the number of SSA values with FIFO
queues (column “vs. FIFO”) and StreamIt (column “vs. StreamIt”).
Because FIFO-based token access and the presence of splitters and
joiners obscure the dataflow in a program, it is less likely that
LLVM can connect the definition- and the use-sites of tokens in the
program source-code. This problem is avoided with the LaminarIR
direct access format, which uses indirections to make the token-
flow between producer and consumer actors transparent. Higher
numbers of promoted SSA variables indicate an improved SSA for-
mation, which improves compiler optimizations [3]. Lower num-
bers of promoted SSA variables with the FIFO queues and StreamIt
representations indicate the presence of array accesses which are
modeled as memory accesses and thus perforate the SSA-based
definition-use information that can be computed for the token-flow
across a streamgraph.

Direct Access FIFO StreamIt

−10

0

25

50

75

100

D
C

T
D

E
S

F
F
T
2

M
a
tr
ix

M
u
lt

A
u
to

C
o
r

L
a
tt
ic

e
S

e
rp

e
n
t

JP
E

G

B
e
a
m

F
o
rm

e
r

C
o
m

p.
 C

o
u
n
t.

R
a
d
ix

S
o
rt

D
C

T
D

E
S

F
F
T
2

M
a
tr
ix

M
u
lt

A
u
to

C
o
r

L
a
tt
ic

e
S

e
rp

e
n
t

JP
E

G

B
e
a
m

F
o
rm

e
r

C
o
m

p.
 C

o
u
n
t.

R
a
d
ix

S
o
rt

D
C

T
D

E
S

F
F
T
2

M
a
tr
ix

M
u
lt

A
u
to

C
o
r

L
a
tt
ic

e
S

e
rp

e
n
t

JP
E

G

B
e
a
m

F
o
rm

e
r

C
o
m

p.
 C

o
u
n
t.

R
a
d
ix

S
o
rt

Im
p
ro

ve
m

e
n
t 
R

a
te

 (
%

)

LLVM Passes

dse         early−cse   gvn         indvars     inline      inline−cost instcombine ipsccp      

licm        loop−delete loop−idiom  loop−rotate loop−unroll other       simplifycfg sroa        
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Table 5: Enhanced SSA promotion

Benchmarks Direct Access
Abs. vs. FIFO vs. StreamIt

DCT 138 575.00% 460.00%
DES 7,526 250.03% 302.01%
FFT2 1,240 212.33% 529.91%
MatrixMult 2,603 518.53% 2991.95%
AutoCor 418 40.50% 35.73%
Lattice 3,330 234.51% 1640.39%
Serpent 36,802 229.63% 1594.54%
JPEG 1,363 236.63% 580.00%
BeamFormer 770 168.12% 154.00%
Comp. Count. 402 219.67% 209.38%
RadixSort 250 357.14% 219.30%
Average 276.55% 792.47%

Figure 6 shows the contribution of individual LLVM optimiza-
tion passes over the total performance improvement on the Intel i7-
2600K. Unlike FIFO queues and StreamIt, the LaminarIR direct
access format gains most by SROA (Scalar Replacement of Ag-
gregates), which is part of LLVM’s SSA formation. FIFO queues
and StreamIt on the contrary gain much less from the SROA pass.
Instead, they profit most from inlining of functions for buffer man-
agement.

6. Related Work
There exists a large body of work on stream programming lan-
guages and related compilation techniques, including StreamIt [24],
Baker [12], Brook [11], Cg [18], CQL [4], Lime [5] and Stream-
Flex [22]. All except Cg implement data channels based on queues.
Systems based on the streaming model such as Borealis [2], Flex-
tream [15] and DANBI [19] employ FIFO queues for their data
channels.

Because the performance overhead of FIFO queue operations
is non-negligible, there has already been significant research effort
to reduce the communication overhead of stream programs. Bhat-
tacharyya et al. [7] investigated how to enhance register utilization
for data transfers by tuning actor invocation schedules rather than
tackling the data transfer method itself. Bier et al. [8] introduced
Gabriel, a design environment for digital signal processing, which
employs symbolic names for tokens across actors. Gabriel does not
model global dataflow, and data is flushed to memory after each ac-
tor invocation. Sermulins et al. [20] applied scalar replacement to
convert arrays into scalar variables for buffers that reside between
fused actors. However, unlike LaminarIR, scalar replacement is
not applied on buffers which contain delay tokens, because two
adjacent actors are never fused if the downstream actor performs
any peeking. This constraint implies that scalar replacement cannot
be performed on stream graph cycles such as StreamIt’s feedback
loops. Split-joins are only fused but not eliminated. Soulé et al. [21]
and Bosboom et al. [9] describe actor fusion techniques to remove
inter-buffering overhead. In particular, Bosboom et al. [9] concep-
tually combine downstream queues of a splitter to the upstream
queue of the splitter and vice versa for a joiner, but they do not
remove queues as such as the communication mechanism between
actors.

7. Conclusion
We introduced LaminarIR which is a low-level intermediate rep-
resentation for stream programming. The LaminarIR framework
enables a new compiler transformation that shifts the FIFO buffer

management from run-time to compile-time. We demonstrated the
effectiveness of our approach by improving the performance of
StreamIt benchmarks between 3.73x and 4.98x over the original
StreamIt compiler. The performance is improved between 6.64x
and 7.43x for our own FIFO queue implementation. We conducted
experiments on the Intel i7-2600K, AMD Opteron 6378, Intel Xeon
Phi 3120A, and ARM Cortex-A15 platforms. Our approach elim-
inates 35.9% data-communication resulting in 60% less memory
accesses on the Intel i7-2600K.
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