A Dynamic Scheduling Method for Irregular Parallel Programs

Steven Lucco*

Computer Science Division, 571 Evans Hall

UC Berkeley, Berkeley CA, 94720

Abstract

This paper develops a methodology for compiling and
executing irregular parallel programs. Such programs
implement parallel operations whose size and work dis-
tribution depend on input data. We show a funda-
mental relationship between three quantities that char-
acterize an irregular parallel computation: the total
available parallelism, the optimal grain size, and the
statistical variance of execution times for individual
tasks. This relationship yields a dynamic scheduling
algorithm that substantially reduces the overhead of
executing irregular parallel operations.

We incorporated this algorithm into an extended
Fortran compiler. The compiler accepts as input a sub-
set of Fortran D which includes blocked and cyclic de-
compositions and perfect alignment; it outputs Fortran
77 augmented with calls to library routines written in
C. For irregular parallel operations, the compiled code
gathers information about available parallelism and
task execution time variance and uses this informa-
tion to schedule the operation. On distributed memory
architectures, the compiler encodes information about
data access patterns for the runtime scheduling system
so that it can preserve communication locality.

We evaluated these compilation techniques using a
set of application programs including climate model-

*Supported in part by an IBM Fellowship. Email address:
lucco@cs.Berkeley .EDU. Research sponsored in part by the De-
fense Advanced Research Projects Agency (DoD), moni!:ored by
Space and Naval Warfare Systems Command under Contract
NO00039-88-C-0292
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

ACM SIGPLAN '92 PLDI-6/92/CA
© 1992 ACM 0-89791-476-7/92/0006/0200...$1.50

200

ing, circuit simulation, and x-ray tomography, that
contain irregular parallel operations. The results
demonstrate that, for these applications, the dynamic
techniques described here achieve near-optimal effi-
ciency on large numbers of processors. In addi-
tion, they perform significantly better, on these prob-
lems, than any previously proposed static or dynamic
scheduling algorithm.

1 Introduction

The aim of our research is to achieve efficient execu-
tion of parallel programs. Compiler research toward
this goal has focused on four main areas: discovery of
parallelism [2, 3, 25], static scheduling [8, 10, 24], linear
transformation of iteration spaces to improve data lo-
cality or expose parallelism [31, 33, 34], and improved
compiler technology to support the first three activ-
ities [7, 9]. In this paper we focus on a particularly
intractable class of parallel programs for which static
techniques such as these are not sufficient to gener-
ate highly efficient code. This is not a deficiency of
the static techniques, which are often a prerequisite
for efficient execution, but a property of the programs
themselves. Such programs, which we call irregular,
contain parallel operations whose size and work distri-
bution depend on input data. Because of this property,
a static schedule that performs well on one set of in-
put data may perform poorly on others. Further, even
static schedules that use random task assignments to
avoid bias will have only moderate efficiency if the in-
dividual tasks have significant execution time variance.

Many basic computational techniques, such as adap-
tive mesh refinement [5], time-step subdivision [1, 20},
tree traversal [12], and monte-carlo methods[30], yield
irregular parallel programs. 7To execute such pro-

grams efficiently, we generate code that assigns tasks
to processors dynamically. We require that a dynamic
scheduling policy have two properties: adaptivity and
statelessness. The latter property means that current
scheduling decisions do not use information about past
decisions; this implies that the scheduling policy will
function correctly under the addition and subtraction
of processors, and the addition of new tasks to the set
of tasks being scheduled. An adaptive scheduling pol-
icy gathers runtime information about the distribution
of task execution times, and uses this information to
improve the efficiency of the schedule. No previously
proposed dynamic scheduling policies have both these
properties; however, we believe both are necessary for
efficient execution of irregular problems. In this paper,
we develop an adaptive, stateless dynamic scheduling
algorithm and describe how we incorporated the algo-
rithm into a compiler for shared and distributed mem-
ory architectures.

The remainder of the paper is organized as follows.
Section 2 gives some examples of irregular programs
and illustrates how different types of execution time
distributions can arise. Section 3 presents our basic
compilation framework and describes how we modi-
fied it to incorporate dynamic scheduling. Section 4 il-
lustrates some important properties of previously pro-
posed scheduling algorithms. In section 5.1, we prove
a new property of multiprocessor scheduling and use
this property to derive a relationship between opti-
mal grain size, available parallelism and task execution
time variance. In section 5.2, we develop our proba-
bilistic dynamic scheduling algorithm and extend it for
execution on distributed memory machines. Finally,
section 6 presents efficiency results for a set of appli-
cation programs.

2 Irregular Programs

First we give some examples which illustrate how ir-
regular work distributions can arise in programs. We
define a parallel operation as a set of N independent
tasks, such as the iterates of a DOALL loop. In an
irregular parallel operation, task execution times vary
significantly and unpredictably. Consider the irregular
Fortran loop shown in figure 1.

The numbers in brackets indicate execution costs for
sequential sections of the loop. The conditional state-
ment is labeled with the probabilities of the true and
false branches respectively. Even given this informa-
tion it is impossible (except for very large N) to com-
pute a schedule for this loop statically that is efficient
in the average case.

Suppose that we randomly assign tasks to proces-
sors. Since the execution costs of the tasks are them-

201

DOALL 10 I=1,N
IF (¢c{0.9,0.1}) THEN
{200}
ELSE
{60000}
ENDIF

10 CONTINUE

Figure 1: A Sample Irregular Loop

100%
ft:tic

80% - +" Assignment
5 0% | /
£ /
8 sonl) /'

S/
20% 7
(m Il 1 1
10° 10! 10? 10% 10*
Np

Figure 2: Efficiency of Static Assignment

selves random, we can just assign successive contiguous
blocks of N/p tasks to each processor (this is equiva-
lent to using the owner computes rule [14] for a blocked
decomposition). Figure 2 shows the efficiency of this
method for executing our loop example, given different
values of N/p. No static method can beat the average
case behavior of random assignment.

This result is not limited to this example, but ap-
plies to any parallel operation with significant variance
in task execution times. The expected finishing time
of a chunk of N/p tasks is Nu/p, where p is the mean
task cost. However, given no restriction on task cost
distribution, the best bound on the finishing time of p
such chunks is Nu/p+0/N/2 where o is the standard
deviation of task costs [11]. For an important class
of distributions (including normal, uniform, and expo-
nential), Kruskal [16] demonstrates the tighter bound
Nu/p+ o+/2N1np/p. However, either bound leaves
room for substantial inefficiency.

Since the expected inefficiency (the second term in
these expressions) grows as the square root, while the
expected completion time grows linearly, random as-
signment will be efficient for large N/p; however, we
will demonstrate that it is only more efficient than dy-
namic methods when o < p (i.e. the tasks do not dif-
fer much in cost) or the scheduling overhead is much

- 25000
20 _
\:H"r 20000
%0 L { r —\
T e
45000 {ii
\.1%
00
%0
&P
~0
[} : .’.P"
=S £ ,Lyi"’

P

Figure 3: Execution Profile of Psirrfan Loop Nest. Z
axis is microseconds; X and Y axes are iteration num-
bers.

greater than pu.

We abstracted our loop example from one of the
programs in our benchmark set, an x-ray tomogra-
phy application called Psirrfan. Psirrfan implements
a new algorithm for reconstructing an image where to-
mographic data is only available for a limited range of
angles [13]. Some of Psirrfan’s most expensive oper-
ations are executed only when input data is missing.
Figure 3 shows an execution profile for an important
loop nest involved in implementing the image recon-
struction.

In addition, Psirrfan contains another type of irreg-
ular operation. In this type of operation, the body of
one loop computes the bounds for another. In Psir-
rfan, this gives rise to a normal work distribution; we
have also seen instances where computed bounds give
rise to uniform distributions.

Another application program whose measurements
are reported in section 6 is the UCLA General Circu-
lation Model [6]. Variants of this program are used
widely to model trends in climate. We studied a sec-
tion of this program, COMPS3, that represents about
60% of the total execution time and is highly irregular.
In this case, the irregularity arises during the simula-
tion, rather than directly from the original input data.
COMP3 contains several physics modules which are
only invoked when certain atmospheric conditions ex-
ist. For example, in the cumulus clouds over Kenya,
COMP3 models the thermal properties of water vapor;
in the clear skies over the Sahara, it does not. To make
matters worse, weather systems travel large distances
across the Earth’s surface, dragging along their special
atmospheric conditions. As with Psirrfan, these com-
putational irregularities are expresred as function calls
and inner loops protected by conditionals.

The climate model has an additional important
property. It updates its simulation state using a two

202

dimensional 5x5 stencil (over latitude and longitude).
This means that any scheduling algorithm must pre-
serve the program’s communication locality by map-
ping most adjacent grid elements to the same proces-
sor.

3 Context

This section gives a brief overview of our extended For-
tran 77 compiler, and describes how we modified it to
generate efficient code for irregular parallel programs,
using the scheduling methods described in section 5.

The compiler recognizes the following two exten-
sions for explicitly specifying parallelism: DOALL and
PARALLEL SECTION. DOALL denotes that all iter-
ates of a loop can execute simultaneously. PARAL-
LEL SECTION identifies sequences of program state-
ments that can execute independently. In addition, the
compiler recognizes a subset of the Fortran D exten-
sions for specifying data decomposition [14]. It han-
dles BLOCKED and CYCLIC decompositions in one
or two dimensions, and perfect alignment. The target
architectures discussed in this paper are the Ncube-
2 distributed memory multiprocessor (512 processors)
and the Cray Y/MP shared memory vector multipro-
cessor (8 processors).

Compilation proceeds in four pipelined phases. In
phase one, parallel operations are transformed to im-
prove data locality and to reduce synchronization over-
head. The compiler uses transformations including
loop interchange [4] and loop skewing [34] to expose
coarse grained parallelism [32]. In addition, phase one
performs tiling transformations to improve the data
locality of loop nests [31].

When compiling for distributed memory machines,
phase one also generates code to partition arrays
among processors according to programmer-specified
decompositions. Following the convention of the Rice
Fortran D compiler [14], our compiler uses the owner
computes rule to make an initial assignment of loop it-
erations to processors. Under this rule, if an array ele-
ment is the left hand side of an assignment statement,
the processor holding that array element computes the
right hand side of the statement.

Our runtime scheduling system uses the distributed
algorithm described in section 5.2 to transfer owner-
ship of array segments and their associated computa-~
tions. This algorithm operates under the assumption
that data has been laid out to maximize communica-
tion locality. When re-assigning computations, the al-
gorithm avoids excessive data scattering by maintain-
ing a minimum grain size, Knin. Kmin determines
the minimum number of iterations that can be trans-
ferred as a block from one processor to another. This

minimum grain size constrains the scheduler not to ex-
ceed the bandwidth requirements of the machine. On
machines like the Ncube, which have a large message
startup cost, the minimum grain size must also be large
enough to keep the average number of messages per
processor reasonably low.

Phase two of the compiler generates calls to the run-
time communication library. It uses the dataflow algo-
rithms described in [14] to compute send and receive
sets for each paralle] operation, and then uses this in-
formation to generate communication code. To sup-
port transfer of ownership, all messages follow a for-
warding protocol [19] to find their actual destinations.

In phase three, the compiler generates code blocks
for each parallel operation. The code blocks are
parameterized by grain size. Phase four gener-
ates scheduling templates for each parallel operation.
There are four types of scheduling templates: sequen-
tial, static, profile, and sample. The first of these
executes the operation sequentially. The second uses
the owner computes rule on distributed memory ma-
chines, and allocates tasks to processors evenly on
shared memory machines.

The latter two use the dynamic scheduling algo-
rithms described below. They differ in how they gather
information about the distribution of task execution
times. Profile templates use information gathered from
previous runs of the program to estimate execution
time mean and variance [27]. Sample templates begin
with a rough estimate of these two quantities and refine
the estimates through runtime sampling of task execu-
tion times. On the Ncube and Cray Y/MP, the code
performs sampling by reading a memory-mapped mi-
crosecond clock. The scheduling algorithm preserves
the output of sampled tasks, so that no repeated task
execution 1s necessary.

4 Properties of Previous Ap-
proaches

Researchers have proposed many different approaches
to scheduling parallel operations. Regular loops in
scientific programs have been scheduled using delay
insertion [8] or combinatorial exploration of possible
processor assignments [24]. These approaches are not
applicable to irregular parallel operations because they
require loop bounds and loop body execution times to
be known at compile time.

Sarkar and Hennessy have used execution time esti-
mates and a critical path algorithm to partition paral-
lel programs statically [28]. Our algorithm for deter-
mining a minimum grain size is similar to Sarkar’s par-
titioning algorithm in that it balances communication
costs against execution time estimates. Also, we use

203

the algorithm reported in [27] to estimate execution
time variance. Our scheduling algorithm is different in
that it uses runtime information about execution time
variance to determine the grain size at which a parallel
operation is scheduled.

A somewhat different approach to scheduling is load
balancing[26]. Load balancing algorithms run in paral-
lel with a computation; their goal is to re-assign tasks
such that each processor ends up with the same num-
ber of pending tasks. There are two main types of
load balancing algorithms: local and global. Local al-
gorithms attempt to achieve overall balance through
communication among neighboring processors. In
global algorithms, a central manager gathers load in-
dices from each processor and directs the transfer of
tasks.

These algorithms have two features which make
them more applicable to distributed operating systems
than to the scheduling of a single parallel program.
First, they disregard communication relationships be-
tween tasks. Second, the goal of these load balanc-
ing algorithms is to maintain even numbers of pending
tasks on each processor. In contrast, the goal of the al-
gorithms presented here is to have all processors finish
a parallel operation at the same time. Load balancing
algorithms keep throughput high when parallelism is
abundant, but lack the precision necessary to make a
single parallel operation efficient.

Yew and Tang have proposed a dynamic scheduling
method called self-scheduling [29]. Self-scheduling fol-
lows the first availablerule in assigning tasks to proces-
sors. Whenever a processor finishes executing a task,
it becomes available and requests a new task. Self-
scheduling produces even processor finishing times,
even with uneven processor starting times. However,
if the cost of scheduling a task is k2 then the expected
finishing time for N tasks is N(u + h)/p. For p = h,
the contribution of scheduling overhead doubles the
expected finishing time.

Self-scheduling can be generalized so that processors
are given a chunk of K tasks whenever they become
available. Kruskal and Weiss suggest a technique [16]
for determining the optimal value of K, given N, p,
o, and p. However, any method that uses a single
chunk size K has expected unevenness of Kp/2 in its
processor finishing times. If we choose a large value of
K, this unevenness will be significant. If we choose a
small value, we incur a large total scheduling overhead.

We would like to find a strategy that combines the
low runtime overhead of large chunk sizes with the even
finishing times of self-scheduling. In the next section,
we investigate the finishing times of tapering methods,
which use the first available rule but reduce runtime
overhead by scheduling large chunks at the beginning
of a parallel operation and successively smaller chunks

as the computation proceeds. In theory, the smaller
chunks should smooth out uneven finishing times left
by the larger chunks.

Polychronopoulis and Kuck suggest a tapering
method, guided-self-scheduling (GSS) [23], that
chooses chunk size K; = [R;/p] where R; is the num-
ber of tasks remaining after the i — 1°* chunk has been
scheduled (Ry = N). The goal of this tapering rule is
to smooth out uneven processor start times. It is op-
timal when o = 0, but does not address the problem
of variable task execution times.

5 Tapering Methods

In this section, we present our method for selecting a
chunk size K;, given the number of remaining tasks R;,
number of processors p, and distribution(u,0). The
method selects K; using an expression of the form
K; = max (Kmin, f(§, Kmin, £,h)), where Knin is
the minimum chunk size and f is a function we will
derive below. This expression yields GSS as a special
case when o = 0.

The goal of any tapering method is to achieve opti-
mally even finishing times while scheduling the small-
est possible number of chunks. When scheduling the
i** chunk, we would like to pick the largest possible
number of tasks K; such that our expected maximum
finishing time does not increase. Define finish;; to
be the time at which processor j has finished with any
chunks numbered less than or equal to ¢. Let fmax;
max; (finishi;), and lagi = Y ,(fmaz: — finishy ;)
(lago is the initial unevenness in processor start times).
If we schedule n chunks then fmaz, is the finishing
time of the computation, and lag, measures the total
amount of processor idle time (the inefficiency) during
the computation (see figure 4 for an example).

5.1 The Fill Lemma

First, we introduce a lemma that illustrates a key prop-
erty of the first available rule. The goal of this lemma
is to show how lag;+1 depends on lag;. That is, given a
particular unevenness in finishing times after schedul-
ing chunk i, the lemma tells whether the scheduling
of chunk ¢ + 1 will cause smoothing or increase un-
evenness, and by how much. In the following, cost;
denotes the execution time of chunk ¢ (note that the
size of all chunks could be 1, so this lemma applies to
the scheduling of individual tasks).

Lemma 1 If fmaz;11 = fmax; then lagiy; =
lag; — costit1. Otherwise, lagiy1 < (p— 1)costiys.

Proof. Case I: fmaz;y1 = fmaz;:
The condition for this case states that the maximum

204

Processor 1

Processor 2

Processor 3

£iniah(5,2)

fmax (5)

Figure 4: A Scheduling Scenario

finishing time does not increase as a result of the
scheduling of chunk ¢ 4 1. But, if this is true, there is
some processor j such that finish; 1 ; = finish;; +
costiyy and finish;y1; < fmaz;. If chunk 741 is
assigned to processor j then for k # j, finishiy1 =
finish; . Thus,

2kgi(fmaz; — finish; ;)+
fmawx; — (finish; ; + costiyq)
lag; — cost;yq

lag,'+1

= (m}
Case II: fmaz;41 > fmaz;:

When the maximum finishing time, fmaz;;1 does
increase, then there is some processor ¢ such that
finished; ; = min;(finished; ;) and finishediy1,, =
finished; g + cost;y1 = fmaziy,. Since finished;
is the minimum finishing time after chunk ¢ and only
processor ¢’s finish time changes as a result of the
scheduling of chunk i+ 1, 3. (fmaziy1 — finish; ;) <
(p — L)cost; 41 0.

We call Case I the fill-in rule, and Case II the excess
rule. The point of this lemma is that, whenever the
excess rule applies (i.e. fmaz;y1 > fmaz;), we can
bound lag;+1 independent of lag;.

Corollary 1 Let I be the index of the last chunk for
which fmaz; > fmaz;_y. Then we can bound lag,
independent of lag;|;<;. Further,

n
lag, = lag; — Z cost;
j=l+1

Corollary 1 suggests that our analysis need only con-
sider the state of the computation from the last time
the excess rule applies. Corollary 2 gives us a proce-
dure for deciding when a chunk can be the last chunk
for which the excess rule applies.

Corollary 2 If (lagi—3_7_; ,, cost;) < 0 then chunk
i can not be the last chunk for which the excess rule
applies.

5.2 Probabilistic Tapering

We can use the fill lemma as the basis for a probabilis-
tic tapering method. Given execution time variance,
we cannot know the exact time necessary to execute
any task or group of tasks. Therefore, given a bound &
that expresses the maximum allowable inefficiency, we
seek a scheduling method that makes lag, < b with
high probability. We will express the new scheduling
method as a rule for computing a set of chunk sizes
Ky,..., K, such that, if tasks are handed out with
these chunk sizes, lag, < b with high probability.

We denote as fill; the term 377 .., cost; in Corol-
lary 2 and assert a final corollary to Lemma 1. This
corollary is what makes a probabilistic analysis of ta-
pering methods tractable.

Corollary 3 lag,, < max;((p — 1)cost; — fill;)

We can use this expression to limit the effect of
each chunk K; on lag, such that lag, is less than
the given bound & with high probability. Suppose
that at time i, there are R; tasks remaining and that
our tapering method chooses to scliedule a chunk con-
taining K; tasks. Then we can rewrite corollary 3 as
lag, < max;((p — 1)t(K;) —t(Rit1)), where t(K;) and
t(Ri+1) are random variables representing the actual
time taken to execute K; and R;41 tasks, respectively.

Let Z; = (p — Di(K;) — t(Ri41). We would like to
find the largest value of K; such that Pr[Z; > b] < e for
a given bound b and probability ¢. Using Chebychev’s
inequality we find Pr[Z; — £(Z;) > a] < 0} /a?, where
0%, is the variance of Z; and £(Z;) is the expected
value of Z;. If we let a = b — £(Z;), then we have
Pr[Z; > b < 0% /(b— £(Z))%. Let Pr[Z; > b] = .
Substituting £(Z;) = (pK; — Ri)p (using Rip1 = Ri —
K;) and 6% = o%(((p — 1)? — 1)K; + R;) (where o?
and p are the variance and mean of the original task
cost distribution), we have

e < o} (((p— 1) = 1)K; + R:)/(b— (pK; — R)u)? (1)

The partial derivative of (1)’s right hand side with
respect to K; is always positive. Thus, if we set the
right hand side of (1) equal to ¢ and solve for K;, we
will find the largest K; such that ((p—1)cost; — fill;) <
b with probability at least 1 — .

A Practical Algorithm Chebychev’s inequality is
valid for all distributions. In practice, this means that
it yields a needlessly conservative value for K;. Note
that both ¢(X;) and t(R;41) are sums of individual task

205

(p-1)Y(K[i))
t(Rfi+1])

(p—1)UK[1]) t(R{i+1])

variance = | variance=4

Figure 5: Illustration of K; selection.

costs. By the Central Limit Theorem, the sum of K
independent variates approaches a normal distribution
as K increases. For the distributions found in irregular
programs (normal, multinomial, uniform, exponential)
this approach is rapid.

Our current runtime system uses the following
method for choosing K;, based on the assumption that
the distribution of Z; is normal. Using a table we can
find a value a such that Pr[Z; — £(Z;) > aoz,] < € for
a given value of . Put simply, we are guessing that
Z; will not exceed its expected value by more that o
standard deviations. Since we want Pr[Z; > b] < € for
some bound b, we have £(Z;) + a0z, = b. Substituting
for £(Z;) and oz, as before and letting b = 0 we have

(Ri —pKi)p = ao/((p— 1) - DKi+ R (2)
Let T; = R;/p, and v = o /p. Then (2) becomes T;—

K; = va\/?L';gf"—llK; + f}}. Intuitively, K; is less
than T; = R;/p by an amount related to the variance
of the work distribution. If we approximate ((p—1)%—
1)/p? as 1 and R;/p? as 0, then solving for K; yields

2
Ki= [T, + %" — v /2Ti + 03/4] 3)

Figure 5 shows how equation (3) maintains the in-
variant Pr[Z; > 0] < €. Z; is the difference between
two random variables (p — 1)¢(K;) and ¢(Ri41). Ex-
pression (3) sets the distance between the means of
these two variables to be some number of standard de-
viations, specifically . When ¢ = 0 then the expres-
sion sets the means to be the same value: (p — 1)R;/p
(like GSS). As the variance increases (3) increases the
distance between the means to maintain the invariant.

Thus, for a given scheduling event 7, we can ensure
that Pr[Z; > 0] < ¢ for any € by selecting the corre-
sponding number of standard deviations, ¢, from a ta-
ble. However, we would like to derive a single value of

100% -
soof/ji
- 80%
Q
&
g
g 1
60%
40%
) 1 1 1 1 1 I
00 04 08 12 16 20 24
alpha

Figure 6: Effect of o. Lines labeled with N/p.

for the entire parallel operation. To do this we require
an expression that, given ¢, yields Prlmax;(Z;) > b].
It is an open question whether such an expression can
be found; without it, determining the best value for «
is analytically intractable.

In practice, it is possible to discover a sufficiently
accurate value for o empirically. Two parameters, the
scheduling overhead (h) and the ratio of tasks to pro-
cessors (N/p) can affect the optimum value of . Using
a normal distribution, we measured the optimum value
of a over the entire possible range of both parameters,
varying h from 0 to oo and N/p from 1 to co. Figure 6
summarizes the results for some typical values of N/p
and with A = 1. Over all combinations of h and N/p,
we found that the value @ = 1.3 was within 3% of op-
timum. All of the performance results reported in this
paper were obtained using this single value for «.

Figure 6 also indicates that a scheduling method us-
ing (3) can withstand considerable inaccuracy in the
value of £, since vy in (3) is just the scaled coeflicient
of variation aZ. For example, we found that for all
of the benchmark applications discussed in section 6,
simply using (3) and setting v, = 3 yielded better per-
formance than the other scheduling methods tested. In
all cases, runtime measurement of & further improved
performance.

Incorporating Overhead Equation (3) implicitly
addresses overhead by selecting the largest number of
tasks K; that meets the constraint Pr[Z; > 0] < e. If
we explicitly account for overhead, we can improve our
value for K;. We represent overhead through the pa-
rameter K,,;n, the minimum chunk size. To determine
Kinin, we use two additional parameters: Kjpqonq and
Ifsched .

We noted in section 3 that the compiler computes
the minimum chunk size, Kpgng, hecessary to en-

206

. L TAPER
1008 e GS8
A
80% | /° S
Yoy
g pPo— p
5 ya
40% I /- /
4
20% :/
0% 1 1 1
10° 10! 10? 10 104
Nfp
Figure 7: Binomial Distribution Pr[60000]=0.1,
Pr[200]=0.9

sure that communication between processors contain-
ing logically adjacent chunks does not exceed the band-
width requirements of the machine (Kpupnq is zero on
shared memory multiprocessors). The other param-
eter, K cped, 1s smallest chunk size such that the
mean time to execute K,cheq tasks exceeds h, the
overhead of scheduling a chunk. We set K,;, =
min(Kband; Kschea, N/P)

When Kpin = N/p, we can’t improve on a static
schedule for the parallel operation. However, we can
modify equation (3) such that it yields a dynamic
scheduling method that outperforms static scheduling
whenever Kpin < N/p. We know that if all chunks
contain Ky, or more tasks, the average value for lag,
will be will be at least Ku;npp/2. Hence, there is no
reason to require Z; < 0 and therefore b (the bound on
acceptable lag,) = 0 in the derivation above. If we set
b = Knminpp/2, then equation (3) still holds, provided
we set T; = % + Kmin/2. Our final expression for
computing K; becomes

2
K; = max (Kmm, ’VTa + %‘" —vaV/2T; + v§/4-|)
(4)
Combining our techniques for selecting o and K,psp,
with equation (4) we have an algorithm for dynamic
scheduling. We call the algorithm TAPER. Figures
7 through 9 compare the performance of TAPER with
guided self-scheduling (GSS), self-scheduling (SS), and
static assignment (SA) for some synthetic work distri-
butions.

Even Starting Times The derivation and simu-
lation results given above demonstrate that TAPER
yields a near-optimal schedule assuming only lagg < N
(i-e. processors can start at different times) and that
task costs are independent random variables. Further,

1%y S
o ./' " SA
LS
g s / /
g * {7 ~acss
g TAPER / /.
e
4% 1 3 1
10° 10! 102 10 10t
Nfp
Figure 8: Uniform Distribution on [0,10]. Overhead =
0.54.
100% [
°\°
. o TAPER
80% ’- .“'\.____.\:
g; v GSs
g sA
S SN
a0 - ~.
\'SS
20% 1 1 1 1 i
05 00 05 10 15 20 25
Overhead (in Tasks)

Figure 9: Performance on Pr[10] = 0.9, Pr[1] = 0.1 for
different overheads.

TAPER is stateless. Adding tasks only increases fill;;
removing processors only decreases (p — 1)t(K;).

If the scheduling algorithm is given additional infor-
mation about processor starting times, it can do bet-
ter. For example, suppose we know that p processors
will execute the entire parallel operation and that all
processors start at the same time. We can use this in-
formation to choose larger chunk sizes than TAPER.
Let s; be the time at which the i** chunk is assigned.
Let D; = %’— —%i. This is the distance in tasks between
s; and the expected finishing time of the computation.
Taking into account the variance in possible finishing
times yields K; = max(Kmin, [Di — vavV/Di))-

We call this method for selecting K; the DISTANCE
method. The difference botween DISTANCE and TA-
PER is greatest for the first p chunks scheduled. Fur-
ther, it is expensive to maintain globally meaning-
ful values for s;. For these reasons, we use a hybrid

207

method (called EVENSTART) in situations where all
processors begin simultaneously. This method uses
DISTANCE for the first p chunks and TAPER, there-
after. Figure 10 illustrates how EVENSTART main-
tains a small unevenness in chunk finish times through-
out a parallel operation.

80%
-
60% | \gss
-]
TAPER
= 40% -
58
) SA
20% \{'
% -
'\o\.
N :o—\g ».]
'-—'—\33.
0% F Bven Start
i 1 1 J —l 1 1
0 20 40 60 80 100 120 140 160
i

Figure 10: As chunks are scheduled, lag; decreases.

Determining the Distribution When profiling in-
formation is not sufficient to provide values for y and
o, we need to discover these values at runtime. This
is done by having each processor randomly select a
few tasks from its large initial chunk and measure the
execution times for these tasks. This information is
accumulated as processors request later chunks. We
therefore need a method to pick the first p chunk sizes.
One technique is to use K; = N/2p for the first p
chunks, since TAPER will always allocate more than
half the work in the first p chunks. Hummel and Shoen-
berg have proposed a similar scheduling rule based on
a different analysis [15]. This method is excessively
conservative for large N/p. We chose instead to esti-
mate that £ = 3. This ad hoc technique works well
in practice ﬁecause the estimate is quickly updated on
each processor as sampling information accumulates.

Nonindependent Task Costs The above discus-
sion assumes that task execution times are indepen-
dent random variables. If execution times are corre-
lated, then we have two choices. First, we can ran-
domize the iteration space. That is we can randomly
permute the tasks of a parallel operation so that we
can use the independence assumption. This is possible
for some programs like Psirrfan, where there is little
cominunication locality. For the COMP3 benchmark,
communication requirements make this transformation
counterproductive.

Second, we can do additional sampling of the task
costs to build a cost function. A cost function esti-
mates task execution times as a function of iteration
number. When determining K; we begin with the es-
timate K; = [R;/p]. We then use the cost function
to determine the distribution over the particular set
of K; tasks selected. Given the distribution estimate
(1,0), we refine the value for K; and obtain a new dis-
tribution estimate. To find the correct value for K; we
must scale the value we obtain from (4) by s = py/pe.
In this expression, p4 is the global mean and u, is the
mean for the tasks in the current chunk.

We have found the cost function technique to be ex-
tremely effective because most parallel operations have
considerable distribution coherence. That is, succes-
sive executions of the same parallel operation (such as
a parallel inner loop) will have almost the same cost
function. Distribution coherence is a temporal local-
ity property. Just as caches take advantage of mem-
ory access locality, we can take advantage of distribu-
tion coherence by cacheing our assignments of tasks
to processors. On distributed memory machines, this
cacheing takes the form of transferring blocks of array
elements between processors. On shared memory ma-
chines, each processor stores its own task assignments.

Distributed Memory On distributed memory ma-
chines, we can no longer model the effect of scheduling
a chunk of tasks with a fixed overhead h. Each task
may require a certain amount of data for its computa-
tion, so there will be a per-task as well as a per-chunk
transfer cost. Further, we need to preserve communi-
cation locality by maintaining a minimum chunk size,
K nin. We solve this problem by beginning with some
original data decomposition and assigning tasks to pro-
cessors according to the owner computes rule. As we
gain information about the work distribution, we refine
the data decomposition.

In the distributed algorithm the p processors are log-
ically connected as a binary tree with p leaves. Some
of the processors act as both leaves and internal nodes
of the tree. We modify TAPER so that it chooses
chunk sizes in epochs of p chunks. Adding this con-
straint to the derivation above yields the scheduling
rule K; = max(Kmin, [3Tj —va+/3T; + vZ/4]) (where
Kj is the number of tasks in the p chunks of the j**
epoch).

All processors start in epoch 0. When a processor
begins executing a chunk it sends its current epoch
value (called a token) to its parent, which passes the
token to its parent (possibly combining messages from
both children). When the root receives p tokens from
the same epoch, it increments the global epoch value
and broadcasts (through the tree) a message to all pro-
cessors. The message tells the processors to increment

208

1ok
e
R
o
GSS_/ SS-OPT_,
08}t .
— BLOCKED,

L v/ o
7 ——"EYCLIC

Speedup/# Processors

e
o

1 |

i
2000 3000 4000
Number of Cells

04

i
0 1000 5000

Figure 11: AMR on Ncube

their epoch value and may also tell some processors to
transfer a chunk of tasks (and their associated data)
to another processor.

Processors compete for the p chunks of each epoch.
If processor a can get two tokens of value i to the
root before processor b can send one token of value
t, then the root will re-assign processor b’s chunk of
size K; to processor a. Processor b is then forced to
re-interpret the chunk it is currently executing as be-
longing to some later epoch (and thus containing fewer
tasks). If most of the actual task cost is on a few pro-
cessors, this scheme will degenerate into the central-
ized TAPER algorithm. If task costs are independent
then we expect most tasks to remain on the processor
owning them at the beginning of the parallel opera-
tion; thus, the algorithm reduces task transfer costs
and maintains communication locality.

6 Benchmarks

This section gives performance results for several real
applications that contain irregular parallel operations.
For each application we give a brief description of
its computational characteristics. The appendix gives
graphs comparing the performance of GSS, SS, SS with
optimal single chunk size (SS-OPT), static assignment
(SA or BLOCKED and CYCLIC decompositions), and
TAPER on cach application. Efficiencies are reported
against optimized sequential code. Cray results are for
8 processors, Ncube results are for 512 processors. To
be fair to SS and GSS, we modified these methods to
use the distributed algorithm given in section 5.2.
Our first application, AMR, is an adaptive vortex
method for computing fluid flow [5]. The method uses
a finer grid size wherever vortices are present. Its com-
putational structure is similar to our climate example,
but it has more floating point operations per memory

TAPER '
o Gss
o9 ° ,,/:..__——————v
vf' 58
E o8t ¢
& o7t
-3 BLOCKED,
£ o6l
& _— cycug,
osh
S
0.4 1 i 1 1
0 1000 2000 3000 4000 5000
Number of Cells

Figure 12: AMR on Cray Y/MP

1.0

-
y

Speedup/# Processors
=3
o
T
N

0.8 1 1 1 Il
0 2 4 6 8 10

Tteration Number

Figure 13: First few iterations of AMR inner loop on
Ncube.

access. This example illustrates the power of distribu-
tion coherence. For the first few seconds of the short
computation, TAPER builds the cost function. Then
it reaches a point of maximum efficiency where the cost
function needs only incremental improvement (see fig-
ure 13).

We have already introduced the features of COMP3,
a section of the UCLA General Circulation Model [6].
Note that, for small data sizes, no method can exe-
cute COMPS3 efficiently because of the climate model’s
communication requirements. We have also introduced
Psirrfan, an x-ray tomography application. For Psir-
rfan, we include a comparison with a representative
local load balancing algorithm [26].

Our final application, EMU, is a timing simula-
tor that is part of the MULGA circuit design system
[1, 20]. Unlike the applications seen thus far, EMU
has an exponential work distribution. EMU divides a
circuit into regions; elements of a particular region are
connected by pass transistors. For each region, EMU

209

1.0
TAPER _
09} —
) / GSS__-*
] ’0.8 N / g . /SS.O.PT
. "
07k 7 BLOCKED
Q AVSS
i 0.6 |- : d . / EycLc
D/
osi ¥
0.4 L L L
0 5000 10000 15000 20000
Number of Cells
Figure 14: COMP3 on Ncube
1.0 .
0/—.—‘_"—'_'——__
- // 0
TAPER * o—"""55-OPT
08 o
g Gs$ -
g :———' SS
0.6 |
*
!
04 gme—"""GA
A /
yd
02} -~
00 1 1.

1 1. L 1 1
0 100 200 300 400 500 600 700

800
Detector Resolution
Figure 15: Psirrfan on Ncube
10} TAPER
V/'
V/
B
08 |
Load
Balancing o
——
§. 06k
i
04|
0.2 i 1 i 1 1 1 1
0 100 200 300 400 500 600 700 800

Detector Resolution

Figure 16: Psirrfan Load Balancing Comparison

1.0
TAPER _,
0.8 o ,f'
g 0/' f’—":!
E 06 SS-?PT:7’v
u\;‘ SA
g 04 -
% SS
2] /' M
02
0.0) I 1 1 i 1
1] 2000 4000 8000 10000 12000
Circnit Regions

Figure 17: EMU on Ncube

uses a backward Euler integration to update voltage
values. If the numerical method diverges, EMU subdi-
vides the timestep and re-integrates.

7 Summary

In this paper, we introduced a methodology for compil-
ing and executing irregular parallel programs. We de-
veloped a new dynamic scheduling algorithm for such
programs and extended the algorithm to work on dis-
tributed memory machines. We also extended the al-
gorithm to build cost functions for nonindependent
task cost distributions. This modification was espe-
cially successful because of distribution coherence. If
a parallel operation has distribution coherence, suc-
cessive execution instances of the operation will have
nearly identical work distributions. We modeled the
effect of communication locality through a minimum
grain size Kpnin; this method was sufficient for three
real applications involving stencil communication. Fi-
nally, we developed a relationship between total avail-
able parallelism, optimal grain size, and execution time
variance. We applied this relationship to the problem
of choosing grain sizes for parallel operations.

We plan to continue this work by incorporating the
compiler and runtime techniques described above into
the Rice Fortran D compiler [14]. We are currently in-
corporating these techniques into a coordination lan-
guage system [21, 22] and an object-oriented parallel
language [18] that uses runtime techniques to optimize
communication patterns [17]. We are also working on
compilation techniques for statically discovering cost
functions and for proving distribution coherence at
compile-time. Finally, we plan to make available, in
conjunction with the Advanced Computing Research
Facility at Argonne National Labs, a benchmark suite
of irregular programs.

210

References

[1] B. Ackland, S. Lucco, T. London, and E. DeBenedic-
tis. “CEMU: A Parallel Circuit Simulator,”. In Pro-
ceedings of the International Conference on Computer
Design, October 1986.

F. Allen, M. Burke, P. Charles, R. Cytron, and J. Fer-
rante. “An Overview of the PTRAN Analysis System
for Multiprocessing,”. Journal of Parallel and Dis-
tributed Computing, 5:617-640, October 1988.

J. R. Allen, D. Baumgartner, K. Kennedy, and
A. Porterfield. “PTOOL: A Semi-Automatic Paral-
lel Programming Assistant,”. In International Con-
ference on Parallel Processing, pages 164-170, 1986.

J. R. Allen and K. Kennedy. “Automatic Loop Inter-
change,”. In Proceedings of the SIGPLAN Symposium
on Compiler Construction, pages 233-246, June 1984.

A. Almgren. A Fast Adaptive Vortex Method Using
Local Corrections. PhD thesis, Center for Pure and
Applied Mathematics, UC/Berkeley, 1991.

A. Arakawa and V. R. Lamb. “Computational Design
of the Basic Dynamical Processes of the UCLA Gen-
eral Circulation Model,”. Methods in Computational
Physics, 17:173-265, 1977.

D. Callahan, K. Cooper, K. Kennedy, and L. Torczon.
“Interprocedural Constant Propagation,”. In Proceed-
ings of the SIGPLAN Symposium on Compiler Con-
struction, pages 152-161, Palo Alto, 1986.

(3]

(4]

(5]

(6]

[7]

R. Cytron. “Limited Processor Scheduling of Doacross
Loops,”. In Proceedings ICPP, pages 226-234, 1987,

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman,
and K. Zadeck. “An Efficient Method of Computing
Static Single Assignment Form,”. In ACM Conference
on Principles of Programming Languages, pages 25—
35, 1989.

M. Girkar and C. Polychronopoulos. “Partitioning
Programs for Parallel Execution,”. 1988 International
Conference on Supercomputing (ICS), pages 217-229,
July 1988.

E. Gumbel. “The Maxima of the Mean of the Largest
Value of the Range,”. Annals of Mathematics and
Statistics, 25, 1954.

O. Hansson and A. Mayer. “Heuristic Search as Evi-
dential Reasoning,”. In Proceedings of the Fifth Work-
shop on Uncertainty in AI, August 1989.

K. A. Heiskanen. Tomography with Limited Data in
Fan Beam Geometry. PhD thesis, UC/Berkeley, 1990.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. “Com-
piler Support for Machine-Independent Parallel Pro-
gramming in Fortran D,”. Technical Report TR91-
149, Rice University, March 1991.

S. F. Hummel, E. Schonberg, and L. E. Flynn. “Fac-
toring: A Practical and Robust Method for Schedul-
ing Parallel Loops,”. Technical Report 74172, IBM
Research Division, 1991.

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23)

[24]

[25]

[26]

27]

(28]

(29]

C. Kruskal and A, Weiss. “Allocating Independent
Subtasks on Parallel Processors,”. IEEE Transactions
on Software Engineering, SE-11, October 1985,

S. Lucco. “A Heuristic Linda Kernel for Hyper-
cube Multiprocessors,”. In Proceedings of the Second
Conference on Hypercube Multiprocessors, September
1987.

S. Lucco. “Parallel Programming in a Virtual Object
Space,”. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, October
1987.

S. Lucco and D. Anderson. “Tarmac: A Language Sys-
tem Substrate Based on Mobile Memory,”. In Interna-
tional Conference on Distributed Computing Systems,
1990.

S. Lucco and K. Nichols. “A Performance Analysis
of Three Parallel Programming Methodologies in the
Context of MOS Timing Simulation,”. In Digest of
Papers: IEEE Compcon, pages 205210, 1987.

S. Lucco and O. Sharp. “Delirium: An Embedding
Coordination Language,”. In Proceedings of Super-
computing ’90, pages 515-524, November 1990.

S. Lucco and O. Sharp. “Parallel Programming With
Coordination Structures,”. In ACM Conference on the
Principles of Programming Languages, January 1991.

C. Polychronopoulis and D. Kuck. “Guided Self-
Scheduling: A Practical Scheduling Scheme for Par-
allel Supercomputers,”. IEEE Transactions on Com-
puters, C-36(12), December 1987.

C. Polychronopoulos and U. Banerjee. “Speedup
Bounds and Processor Allocation for Parallel Pro-
grams on a Multiprocessor,”. Proceedings of the
1986 International Conference on Parallel Processing,
pages 961-968, August 1986.

C. Polychronopoulos, M. Girkar, M. R. Haghighat,
C. L. Lee, B. Leung, and D. Schouten. “Parafrase-2:
An Environment for Parallelizing, Partitioning, Syn-
chronizing, and Scheduling Programs on Multiproces-
sors,”. In Proceedings of the International Conference
on Parallel Processing, volume II, pages 39-48, 1989.

L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. “A
Simple Load Balancing Scheme for Task Allocation in
Parallel Machines,”. In ACM Symposium on Parallel
Algorithms and Architectures, 1991,

V. Sarkar. “Determining Average Program Execution
Times and their Variance,”. In SIGPLAN Conference
on Programming Language Design and Implementa-
tion, June 1989.

V. Sarkar and J. Hennessey. “Partitioning Parallel
Programs for Macro Dataflow,”. In ACM Conference
on Lisp and Functional Programming, pages 202-211,
Cambridge, Mass., 1986.

P. Tang and P.-C. Yew. “Processor Self-Scheduling for
Multiple Nested Parallel Loops,”. Proceedings of the
1986 International Conference on Parallel Processing,
pages 528-535, August 1986.

211

[30]

[31]

[32]

(53]

[34]

S. Ulam and N. Metropolis. “The Monte Carlo
Method,”. Journal of the American Statistics Asso-
ciation, 44:335ff, 1949.

M. E. Wolf and M. S. Lam. “A Data Locality Op-
timizing Algorithm,”. In SIGPLAN Conference on
Programming Language Design and Implementation,
pages 30—44, June 1991.

M. E. Wolf and M. S. Lam. “A Loop Transformation
Theory and an Algorithm to Maximize Parallelism,”.
IEEE Transactions on Parallel and Distributed Sys-
tems, 2(4):452-471, October 1991.

M. Wolfe. Optimizing Supercompilers for Supercom-
puters. PhD thesis, University of Illinois at Urbana-
Champaign, October 1982.

M. Wolfe. “More Iteration Space Tiling,”. In Proceed-
ings of Supercomputing, pages 655-664, 1989.

