
Compiling Dataflow Analysis of Logic Programs

Jichang Tan I-Peng Lin

Department of Computer Science and Information Engineering
National Taiwan University

Taipei, 10764

Taiwan

jctan@csman.csie. ntu.edu.tw

Abstract

Abstract interpretation is a technique extensively used
for global dataflow analyses of logic programs. Existing
implementations of abstract interpretation are slow due
to interpretive or transforming overhead and the inefR-
ciency in manipulation of global information. Since ab-
stract interpretation mimics standard interpretation, it
is a promising alternative to compile abstract interpre-
tation into the framework of the WAM (Warren Ab-
stract Machine) for better performance. In this paper,
we show how this approach can be effectively imple-
mented in a low-cost manner. To evaluate the possible
benefits of this approach, a prototype dataflow analyzer
has been implemented for inference of mode, type and
variable aliasing information of logic programs. For a
subset of benchmark programs in [15], it significantly
improves the performance by a factor of over 150 on
the average.

1 Introduction

Like many conventional languages, the performance of
the logic programming language Prolog has been sig-
nificantly improved through compilation [21]. In par-
ticular, the WAM (Warren Abstract Machine) [22] is
a virtual machine that has emerged as the de facto
standard for the compilation and implementation of
Prolog. The benefits of the WAM basically rest on
local optimizations through a simple intra-procedural
(clause-level) program analysis. However, substantial
optimizations [12, 13, 15, 18, 23] all depend on inter-
procedural information such as mode (the input and
output direction of procedure arguments), type (the
possible bindings of data-structures for program vari-

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM SIGPLAN ’92 PLD1-6/92/CA
@ 1992 ACM Q.8979J.476-7/921QQQ6 /Q~Q6... $J .5Q

ables), and va~iable aliusing (the co-references of logical
variables). The dataflow information is not only impor-
tant to enable more performance improvement of Pro-
log, it also paves the way for efficient implementation of
different classes of logic programs wtilch support Inde-
pendent And-Parallelism [23, 13], concurrent processes
[2], or constraint satisfaction [10].

Instead of inferring various information about a pro-
gram through different analysis procedures, a technique
called abstract interpretation can be used for global
dataflow analyses of a programming language based on
a unified model [4]. The idea is to execute a program to
be analyzed over a finite abstract domain rather than
the possibly infinite concrete domain over which the
language is defined. This includes the definition of a
mapping from elements and operators of the standard
(i.e., concrete) domain to those of the abstract domain.
Abstract interpretation is then carried out by a fix-
point execution of the abstracted program. The result
of the execution gives information about the original
program over the specified abstract domain. For ab-
stract interpretation of logic programs, there are two
major issues. First, the unification procedure and vari-
able substitutions have to be redefined over the ab-
stract domain. For soundness of the dataflow analysis,
there are certain criteria to be met in their definitions.
Second, termination and completeness of the control
scheme must be ensured. This means a different inter-
pretation strategy is required instead of the top-down
depth-first method used by ordinary Prolog systems.
Due to general interests and applications, both issues
have been extensively studied [1, 2, 3], [5]-[16], [20].

To the best of our knowledge, all global dataflow an~
lyzers for logic programs have been implemented on top
of Prolog. The implementation can be based on a meta-
circular interpreter [6, 17] or a program transformer
[5, 23]. The mer!a-interp~eiing approach directly inter-
prets programs by using the redefined control scheme
and unification procedure over an abstract domain.
Instead of direct interpretation, the transforming ap-

106

EzEl - Query
Answering

Prolog

n

WAM WAM / Compiled Execution

Program — Compiler — Code

‘m -

Dataflow
Information

CompiledDataflow Analysis

Figure 1: Compiled Execution and Compiled Dataflow Analysis

preach first partially evaluates the programs over the
abstract domain, and then runs transformed programs
to do the abstract interpretation. For efficiency, a dif-
ferent control scheme can be incorporated [11, 12, 15].
However, both approaches are slow due to the inter-
pretive or transforming overhead and the inefficiency
in manipulation of global datatlow information. Since
abstract interpretation mimics standard interpretation,
it should be a promising alternative to compile abstract
interpretation into a similar framework like the WAM
for better performance.

Rather than reinventing a new virtual machine and
a dedicated compiler for it, it is much cheaper to Tewe
the framework of the WAM and current compilers to
the maximal extent. This idea turns out to be quite
successful because there is almost no design in the
WAM which is restricted to execution over the con-
crete domain. For a typical abstract domain such as
the one considered in this paper, the instruction set
of the WAM can be easily reinterpreted according to
the redefined control scheme and unification procedure.
The outline of this approach is illustrated in Figure 1.
We will use the term abst?’act WAMfor the rest of thk
paper to refer to this reinterpretation of the WAM for
dataflow analysis, and the term conc7ete or standa7d
WAMfor the original framework of Prolog compilation.
To evaluate the possible benefits of this approach, we
have implemented a prototype datafiow analyzer for
the inference of mode, type and variable aliasing infc~r-
mation of logic programs. For a subset of benchmark
programs in [15], it significantly improves the perfcm-
mance by a factor of over 150 on the average.

The most obvious source of performance improve-
ments is the removal of the overhead of interpretation
and transformation incurred in other approaches. As a
comparison, the technique of compilation improved the
performance of Prolog by a factor of about 30 in War-
ren’s original work [21]. Of course, the WAM code does

not come for free. However, it appears that a transla-
tion to unification primitives like those of the WAM
before dataflow analyses is indispensable for other ap-
proaches as well [15, 17]. Another important source of
performance improvements is the efficiency in manipu-
lation of global dataflow information. The handling of
global information is required in abstract interpretation
while it is discouraged by existing implementations of
Prolog. Therefore, concerns for its efficiency of imple-
mentation have been explicitly addressed in the work
of [23, 15, 17]. For our approach, it does not pose any
problem because we use a conventional language like C
for the implementation.

2 Preliminaries

2.1 Warren Abstract Machine

The basic idea of optimization is to generate special-
ized code for different caaes of source programs. This
works for Prolog as well as other conventional lan-
guages. Consider executing the head of a clause with
two arguments in a Prolog program:

P(% [W)lq) t ,..
If it is directly carried out by an interpreter, a gened

unification procedure will be used for both arguments
‘a’ and’ [f(V) [L]’ when this predicate is invoked. Since
the interpreter cannot take advantage of knowledge of
the source program, the information has to be gener-
ated at run-time. Due to the abstract semantics of
logic programs, this overhead can be considerably ex-
pensive. If the head is compiled into the framework of
the WAM, a sequence of unification primitives will be
generated as the one given in Figure 2. We can see that
there are specialized unification subroutines, i.e., the
WAM instructions, defined for each type of term. For
example, the instructions get .const, get-list, and
get -struct are defined for constants, lists, and struc-
tures that appear in the head of a clause. For a complex

107

get.const a,Al % The first coming-in argument must unify with ‘a’.
getJ.ist A2 % The second argument has to be a list.
unify.var X3 % Keep the first subterm (car) of the list using a temporary register.
unify.var L % Unify its next subterm (cdr) with L.
get-truct ~/1,X3 % The car of the list must be an f/1 term.
unifymxr V % And its subterm unifies with V.

Figure 2: The WAM code instructions for the head of the clause

term such as [f(V) [L], the generated instructions will
proceed in a breadth-jirsi order. For example, the two
unif y_var instructions after the get-list instruction
correspond to the unification of the first level subterms,
and the third rmify-var instruction which is after the
get struct instruction corresponds to the unification
of the second level subterm. Through this sequence of
primitive unification subroutines, much of the overhead
in the general unification procedure is eliminated.

Based on similar ideas, the instruction set of the
WAM can be defined. According to Warren [22], they
are classified into get, ptd, mzify, procedural, and index-
ing instructions. The put instructions are specialized
get instructions which are dedicated to term construc-
tion in the body of a clause. The procedural instruc-
tions are responsible for the control transfer and envi-
ronment allocation associated with procedure calling.
The indezing instructions, the last group of instruc-
tions, control the access to different clauses of a predi-
cate procedure. For other relevant details of the WAM,
appropriate descriptions will be given in the following
sections.

2.2 The Control Scheme for Abstract
Interpretation

Due to the requirement of compile-time completeness
and termination, researchers have proposed several
control schemes for abstract interpretation of logic pro-
grams [1, 3, 8, 9, 16, 20]. In thk paper, we only con-
sider the extension table-based method [8] (a variant
of OLDT Resolution [16]) because it is simple and can
be easily incorporated into the compilation approach
presented.

The basic idea of the extension table-based method
is to employ a dynamic programming technique to pro-
gram interpretation in which intermediate results are
saved and later reused to avoid redundant work and
to prevent the execution from diving into an infinite
loop. The table is simply a memo structure contain-
ing a set of pairs of ‘tcalling pattern)’ (the description

of the call) and its %uccess patternsn (the description
of the successful return) which have been found so far.
Instead of repeated computation, the extension table
is consulted first whenever we try to interpret a call-
ing pattern. If any such solutions are found, they are
returned directly; if the call has been made earlier but
no solution has been recorded, this call is considered
failed. To ensure completeness, the interpretation has
to execute in multiple iterations such that another iter-
ation will be initiated whenever a new success pattern
is found in one iteration. When the interpretation ter-
minates, the table will provide approximate run-time
information for each predicate in the program to be
analyzed.

The outline of an extension table-based abstract in-
terpretation can be described as follows. The inter-
pretation starts from a given top-level calling pattern.
Globally, it executes in the standard top-down depth-
first order. When a clause is successfully executed, the
extension table is updated with the success pattern.
However, the control is then transferred to the next
clause of the predicate procedure by an artificial fail-
ure such that all clauses will be explored. If there are
multiple success patterns found for a calling pattern,
they may be summari~ed into a single pattern by tak-
ing the least upper bound based on the abstract do-
main used. By keeping at most one success pattern
for a calling pattern, it also simplifies the control flow
of the interpretation since any invocation of a predi
cate always results in a deterministic return. Through
iterative deepening, the interpretation will eventually
terminate for a finite abstract domain when least jix-
point of the dataflow analysis is reached.

There are a few analyzers [5, 17, 23] which are baaed
on this control scheme. However, the extension table
is expensive to implement in Prolog because it is an
inherently global data structure.

108

3 An Abstract Domain for Global
Dataflow Analysis

To infer run-time information about a logic program,
we classify all run-time terms into interesting subsets
that form a complete lattice ordered by set inclusion.
Each subset is represented by an abstract type in the
abstract domain. An instance of an abstract type is re-
ferred to as an abst?wct temn of that type. The abstract
domain is briefly defined aa follows.

● any represents the set of all terms, the top element
(T) of the abstract domain.

● nv represents all non-variable terms.

● ground (or g, for short) represents the set of ground
terms.

● const represents the set of constant terms. It is
the union of two subsets whkh are represented by
atom and integer.

● struct(~/rz, ~1, ... %) represents the set of struc-
ture terms which principal functor is j/n and each
argument is oft ype a~ (1 ~ i ~ n) in the abstract
domain. For sake of clarity, the eet of terms will be
written as j’(al, ... aJ when there is no ambiguity.

● a-list represents the set of lists with a type param-
eter a. It is a precise type for the union of con-
stant ‘ D‘ (the empty list) and [ala-list] (the struc-
ture terms struct(’.’/2,cx, cv-list)) while [.l.] in gen-
eral remains to be an ordinary structure term. For
example, glist stands for the set of terms 0, [g], [g,
g], and so forth. Due to the extensive application
of lists in logic programs, list-awareness is usually
very useful.

● var represents the set of all variables.

● empty represents the set of non-existing term, the
bottom element (J-) of the abstract domain.

To make the abstract domain finite, we impose a term-
depth Testtiction for complex abstract terms in the
analysis. Given an artificial limit k, the subterms with
depth h or greater in a complex term will be simpli-
fied to other simple elements in the abstract domain.
Consequently the precision of the analysis for general
recureive datatypes is traded for a guarantee of analysis
termination.

The abstract domain presented here is actually a
slightly simplified version of the one used by Taylor’s
analyzer [17]. The dataflow analysis based on this ab-
stract domain implements an inference of mode, type,
and variable aliasing information in logic programs.

This domain is considerably more complex than the
one used by the Aquarius analyzer [15] whose run-time
performance will be compared to that of our analyzer
in Section 6.

4 Compiling Abstract Unifications

4.1 Representation and Manipulation
of Abstract Terms

Sinceeachabstracttermrepresentsa set of termsin
theconcretedomain,abstract unifications can be char-
acterized by set unification as follows. Let TX and T2
be two sets of terms. Set unification of T1 and T2 can
be defined as:

s.unify(!fl, T2) = {t It= uni~(i!l,tz) :

t1ET1At2ET2]

AbstTact substitution can also be formalized as a set of
concrete substitutions:

{X/T3 = {X/t I t c T}

where X is a variable occurred in T1 or T2, and T is a
set of terms. More theoretical details can be found in
[1, 6]. Here are some examples for the abstract domain
considered:

● s.unify(any,ground) = ground.

● s_unify(any, ~(X, Y)) = ~(any, any) with
an abstract substitution {X/any, Y/any}.

● s.unify(glist,[l?feadITaiq) = [glglist] with
an abstract substitution {Head/g, Tail/glist}.

By these examples, we can see that the instances of
most abstract types, such as any or list, are similar
to logical variables in that they become more specijk
through unifications. It is therefore natural to repre-
sent these abstract terms like variables such that each
of them is encoded in a single word before unification,
and can be instantiated to another type of term or a
complex structure later. They will also be subscripted
hereafter to stand for different instances. Finally, the
definition of abstract substitution should be extended
to include substitutions for these abstract terms in ad-
dition to that for variables. Instances of atom, integer

and specific structure terms such as ~(atom), however,
remain unchanged through unification because there
is no smaller (i.e., more specific) element other than
‘L’ in the abstract domain considered.

Based on the definitions, consider the abstract inter-
pretation of the head of the example clause in Section 2:

P(% vow])+ ...

109

% call p(atom, glistl);
get.const a, Al 96 { (1) Succeeds for a N atom. 1
getlist A2 % glistl +-- [gllglistz]; { (2.1) Get a [.1.]instance of glist. }
unify.var X3 % x3 + gl; { The car of glktl }
unify-var L % L + glistz; { The cdr of glktl }
get-struct ~/1,X3 % X31 - f(g2); { (2.2) Get an ~(.) instance of g. }
unify mar V %v+g2; { The argument of ~/1 }

Figure 3: The WAM Code Reinterpreted

over the abstract domain given a calling pattern
p(atom, glistl). In breadth-first order, the abstract uni-
fication for this particular head can be decomposed into
a sequence of three simple s-unify’s:

(1) s.unify(atom,atom) = atom with
an empty substitution { }.

(2.1) s-unify (glistl, ~[L]) = [g~lglistz] with
a substitution {glistl/[gl lglist2], L/glist2}.

(2.2) s.unify(gl, f(V))= f(gz) with
a substitution {gl/~(g2), V/g2}.

Composing the substitutions, the head of the clause
succeeds with an abstract substitution:

{glistl/[~(gz)lglistQ], L/glistQ, V/gQ}-

4.2 Reinterpretation of the Instruction
Set

To continue the refinement, the three s.unify’s can be
mapped into the sequence of WAM code instructions
described in Section 2 as given in Figure 3. By this
example, it is not difficult to define an appropriate
reinterpretation of these WAM instructions over the
abstract’ domain. For example, the algorithm to rein-
terpret get ~ist is outlined in Figure 4 where the fol-
lowing primitive operations about abstract terms are
required.

. Primary Approximation. Function Abs~pe(T)
is defined to approximate a term l’, either con-
crete or abstract, to an abstract type regardless of
its subterms. For example, A bsType(a) = atom,

AbsType(glkt) = glkt, Abs~pe(f(V)) = ~(T) or
simply denoted by struct(~/1).

e Approximate Unijiabdity. Ignoring the subterms,
two terms T1 and T2 are unifiable, denoted by T1 m

T2, if s.unify(Abs!@pe(T1), Absfipe(Tz)) # 0. For
example, a w atom, glist N [.1.], and g R ~(.)
have been used for the instructions get .const,
get~ist, and getstruct ~/1, respectively, in
abstract interpretation of the call p(atom, glistl).

● Complex-Term Instantiation (ComplexTermInst).
If an abstract term is approximately unifiable with
a complex term, the generation of the unification
result will be necessary for subsequent subterm
unifications. For example, the term [gl lglk.t2]and

~(gQ) are complex-term instantiations of glistl and
gz, generated by the instructions get list and
get .-struct f/1, respectively.

If we represent each run-time object by a tag and a
value encoded in a computer word as in the standard
WAM [22], the primary approximation function Ab-
sType simply returns the tag of a simple object. For
predefine abstract types (e.g. any or g), tabulation
is sufficient to implement approximate unifiability and
complex-term instantiation. For inferred data-types,
such as glist, a type-description database will be neces-
sary.

The instructions get-struct and get .const shown
in the example can be reinterpreted in a similar way,
while the interpretation of instruction unif y.var over
the concrete domain can be completely reused over this
abstract domain.

5 Compiling the Control Scheme

Consider a simple predicate procedure p and its WAM
code as follows.

p(x) + q, 7’(x). % clause p.1
p(a). 96 clause p.2

p.1: get wgs o~p(X)
call q

put a~gs of r(X)
execute r(X)

110

getll,ist Ai s
begin

deref(~); { Sameas standardWAM interpretation}
if concrete(~) then { The for atom, integer, struct, list, and var }

concrete WAM code definition
elsif~ w struct(~.’/2) then { True for ground, nv, any and list}

Ai~+ tag(list,lif); Trail(Ai); { Generate a [,1.] instance of Ai on Heap 3
S i- ComplexTermInst(Ai, II); { Set S pointer to the con-cell for subsequent}
H i- H +2; Mode +- Read; { subterm unifications and proceed in read mode}

else fail
fi

end

Figure 4: The Outline of th~eReinterpreted get-list Instruction

p.2: gei! wgs ofp(a)
proceed

The instruction proceed corresponds to a success-
ful return of a clause, instruction call corresponds
to a predicate procedure invocation and instruction
execute is equivalent to a call immediately followed
by a proceed (the last-call optimization). If we ap-
ply the extension table-based interpretation scheme de-
scribed in Section 2 to the source program, the result
is a set of transformed programs:

p’(X) + abtract(X, X@),
if ezplored(p(X~))then 2ookupET(p(X.,))
else fzssert(ezplored(p(Xa))), p(X=)
fio

p(X) t q’, r’(X), tipo!atel?!Z@(X)), fail.
p(a) + updatel?~p(atom)), fail.
p(lhb) + lookupllqp(lhb)).

where the predicate explored is true if a calling pat-
tern P has been explored in current iteration. The
predicate ZoolmpET(P) and updateET(P) are used to
look up and update the extension table entry for P
respectively. Every invocation of predicate p in the
source program is replaced by an invocation of an
artificially-introduced predicate p’ such that the cal-
culation of the calling pattern (through abstract) and
the consulting of the extension table will be performed
before exploration of p’s clauses. The transformed
predicate p is a deterministic procedure of the origi-
nal code such that it updates the extension table for
p and then fails to the next clause if a clause of p has
been completely executed. When all clauses have been
explored, the summarized success pattern, if any, ‘will
be returned.

This control scheme can be incorporated into the ab-
stract WAM aa follows. Instruction call should be
reinterpreted to execute like the artificially-introduced
predicate by calculating calling patterns, consulting
the extension table, or exploring the clauses. Instruc-
tion proceed should be reinterpreted as the part of
code ‘wpdateET, fail” in the end of each transformed
clause and ‘lookupET” when the original clauses are
exhausted. Instruction execute can simply be reverted
to a call followed by a proceed. The reinterpretation
technique can be better explained by the annotated
WAM code sequence in Figure 5.

In this discussion, we have intentionally omitted
some relevant WAM instructions, including some proce-
dural instructions and all indexing instructions, Their
reinterpretation is almost identical to that of a stan-
dard WAM with few exceptions. For instance, creation
and reclamation of backtracking points would better
be incorporated into instructions call and proceed
rather than instructions try and trust. By such rein-
terpretation, the WAM code compiler and the code it
generates can be reused without any modHication.

6 Implementation and Performance
Evaluation

To evaluate the benefits of the proposed approach, we
have implemented a prototype analy~er. It is writ-
ten in C and ported to several platforms. The input
WAM code programs are generated by the PLM Pro-
log compilerl for a subset of benchmark programs [16].
The analyzer is about 2500 lines of code, includlng lots
of comments, debugging and conditional compilation
statements. In comparison to the size of other analyz-
ers reported (from 1200 lines [16] to over 3000 lines [18]

1The originalcode was from Peter Van Roy [15] and modiiied
by Herve’ Touati for the Aquarius Project at UC Berkeley, 19s9.

111

PI: get args ofp(X)
call g % If eqdo~ed(q) then ... else ... call q fi .
put u?’gs of 7=(x)
call T(X) % ... if esplo~ed(r(Xa)) then ... else ... call ~(Xm) fi .
proceed % a updateliW(p(X)), fail.

p.2: get args ofp(a)
proceed % * updatel?ft’(p(atom)), fail.

% last clause of p + lookupEZ’(p(lhA)).

Figure 5: The Reinterpretation of the Control Instructions

of Prolog code), the implementation cost of this an~
lyzer is relatively low considering the precision of the
analysis.

Important implementation features of the analyzer
are briefly described as follows. For term abstraction
before a predicate invocation, the constant for term-
depth restriction is set to 4, which is also used by
Taylor’s analyzer [17]. Like the analyzer reported in
[23], this analyzer tries to keep complete aliasing in-
formation of variables (and also other abstract terms).
The extension table is implemented as a linear list of
(calling-pattern, success-pattern) pairs. Multiple call-
ing patterns are maintained for a predicate while the
success patterns for each of the calling patterns are
“lubbed” (least-upper-bound is taken) together. This
implementation of the extension table is equivalent to
the aasert database technique described in [23, 17].
However, it is obviously more straightforward and effi-
cient to be implemented in C. It is worth mentioning
that the three-stack scheme used by the standard WAM
(i.e., the Heap, the Stack, and the Trail) and most other
design considerations remain effective for reinterpreta-
tion over the abstract domain considered. Neverthe-
less, it is possible to ignore some of the optimization
techniques designed for the concrete domain. In partic-
ular, the environment trimming technique which strives
for a quick stack reclamation appears to be overkill in
this abstract WAM.

The analysis time is measured on a Sun 3/60 to
compare with the performance of the Aquarius ana-
lyzer [15] which is the only publicly available source
for both benchmark programs and analyzer efficiency.
The Aquarius analyzer’s times are running under Quin-
tus Prolog version 2.0. The run-time performance of
the analyzer is typical among the analyzers reported
(including [23] and [17]). Table 1 gives the results
of the measurements of analysis time of our analyzer
(Our5), the speed-up factors (Speed-Z7p Factor), and
the average of speed-up factors. A rough profile of the
benchmarks is given by the number of argument places

(A~gs) and predicates (P~eds) in each source program.
Additional information includes the static code size
(Size) and the number of (abstract) WAM code exe-
cuted (-llzec) at analysis-time. Neither the times of our
analyzer nor those of the Aquarius analyzer (Aquarius)
include any preprocessing time. Since we use WAM
codes generated from the PLM compiler, the compil~
tion times are also included in the table (.PLlf). How-
ever, the PLM compiler is not especially fast by doing
many optimizations which do not appear justified as
far as our analyzer is concerned.

The result of the improvements in analysis time per-
formance is significant and encouraging. The speed-up
factors range from 14 (zebra) to 575 (tak), and have
an (arithmetic) average of 152. The fluctuation of the
speed-up factors is mainly due to the different abstract
domains and interpretation algorithms used. If the
same abstract domain is used, our conservative esti-
mation is that the speedup would be over 100 for all
benchmarks. As a prototype, the implementation was
meant to be simple. We believe that there is plenty of
room left for more improvements in performance based
on better algorithms for abstract interpretation such
as those described in [3, 20]. For a reference, the mea-
surements of analysis time on several other platforms
are given in Appendix A. This information should be
useful for those who do not have access to a Sun 3/60.

7 Conclusions

Theoretically, the time complexities of most interesting
dataflow analyses have been shown to be exponential
in the worst case [7]. In particular, the precise dataflow
analysis considered in this paper is an example. In the
average case, however, it appears that the analysis time
is proportional to the number of arguments in the pro-
gram and the precision of the abstract domain used.
Thk is shown in the measurement results presented
in this paper and also the results given in [15, 23, 17].
For a practical system, it becomes a design tradeoff be-
tween time and precision of the analysis. More precise

112

Benchmarks

log lo
ops8

times10
dhride10

tak
nreverse
qsort
query
zebra
serialise
queens.8
average

Arg$

3

3

3
3
4
5
7
7
9

16
16

Preds

2
2

2
2
2
3
3
5
5
7
7

3.0

3,0
2.9
2.3
2.2
3.4
4.2
3.5
4.2
6.0

I&!%.)_
4.5

4.5

4.5
4.6
1.2
1.6
2.5
4.3
7.5
3.6
3.1

WAh
s

179

180
186
186

53
99

164
264
271
205
117

code
Exec

749

400
971

1043
110
479
763
626

1262
912
324

Table 1: The Efficiency of Dataflow Analyzers

ours

q

23:3

48.4
50.7

4.0
26.7
44.0
25.8

257.9

53.4
16.5

Speed- Up
Factor

75

129
62
57

575
82
77

163
14
79

364

152

dataflow analysis can be used if the analyzer is more

efficient..

The compilation approach of dataflow analysis pre-
sented in this paper integrates two important ideas:
the efficient compilation framework of the WAM, and
the similarity between abstract and concrete interpre-
tations. It is more efficient than other implementation
approaches for abstract interpretation such as meta-
interpretation or program transformation because the
interpretive or transforming overhead incurred is re-

moved. Moreover, the manipulation of global dataflow
information is straightforward and efficient with thb
approach. Most of all, the approach can be incor-
porated into an existing compilation-based systeml in
a low-cost manner. Our experience in implementing
an abstract WAM and its excellent improvement in
analysis-time performance have demonstrated the sig-

nificance of the approach. It is probable that thb
approach can also be effectively applied to different
classes of dataflow analyses of logic programs or even to
different classes of logic programming languages other
than Prolog.

Acknowledgements

Martha Kosa, Jin-Kun Lin, and Tlng-Wei Hou helped

to proof-read this paper. Jieh Hsiang and Jin-

Kun Lin always help to provid necessary information
promptly. The theoretical work by Saumya K. Delway,
David S. Warren, and Suzanne W. Dietrich helps us
to do this work in a very simple way. We thank Pe-

ter Van Roy for hls helpful comments and the results
from the Aquarius project. The first author was mp-
ported in part by the NSC Taiwan.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

M. Bruynooghe and G. Jenssens, “An Instance
of Abstract Interpretation Integrating Type and
Mode Inferencing,” In Proc. of 5th Id’2 Logic Pro-
gramming Conf.$ 1988.

C. Codognet, P. Codognet, and M.-M. Corsini,

“Abstract Interpretation for Constraint Logic
Languages,” In Proc. of North American Conf. on
Logic Programming, 1990.

B. Le Charlier, K, Musumbu and P. Van Hen-
tenryck, “A Generic Abstract Interpretation Al-

gorithm and its Complexity Analysis,” In Proc. of
8th Int’1 Conf. on Logic Programming, Paris, 1991.

P. Cousot and R. Cousot, “Abstract Interpret&

tiom a Unified Lattice Model for Static Analysis
of Programs by Constructions of Fixed Points,” In
Conf. Rec. of ~th POPL, pp. 78-88, 1977.

S. K. Debray and D. S. Warren, “Automatic Mode
Inference for Prolog Programs,” In Proc. of 3rd
Symp. on Logic Programming, Salt Lake, 1986.

S. K. Debray, “Efficient Data Flow Analysis of
Logic Programs,” In Proc. of the l#h Symp. of
Principles of Programming Languages, San Diego,
1988.

S. K. Debray, “The Mythical Free Lunch (Notes
on the Complexity/Precision Tradeoff in Dataflow
Analysis of Logic Programs),” In Proc. of Int’1 ‘
Logic Programming Symp. 1991.

S. W. Dietrich, “Extension tables: memo rela-
tions in logic programming,” In Proc. of /th IEEE

113

Benchmarks

loglo
ops8
times10
divide lO
tak
nreverse
qsort
query
zebra
serialise
queens.8

Aquarius
3/60

1
1
1
1
1
1
1
1
1
1
1

&

Ours
3/60

75
129

62
57

575
82
77

163
14
79

Mac IIx
TC 4.0

37
63
30
28

288
41
38
84

5.7
39

364 182

+

152 76

1 .50

/4Vux
9100

49
59
37
34

383
56
45
60

9.4
47

200

89

.58

Vax
8530

86
139

71
65

639
108

95
183

16
94

448

177

1.2

DecS
3100

284
469
231
215

2091
297
281
618

55
296

1364

564

3.7

Ssl+

363
612
294
266

3286
333
318
894

63

375
1935

794

5.21

DecS
5000

500
833
400
372

3833
595
548

1167
95

538
2500

1035

6.8

Table2: The Speed Ratios on Various Platforms

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Int’1 Symp. on Logic Programming, San Francisco,
1987.

K. Marriott and H. S@ndergaard, “Bottom-Up Ab-
stract Interpretation of Logic Programs,” In Proc.
of 5th Int’1 Conf. on Logic Programming, 1988.

K. Marriott and H. S#ndergaard, “Analysis of
Constraint Logic Programs,” In Proc. of North
American Conf. on Logic Programming, 1990.

C. S. Mellish, The Automatic Generation of Mode

Declarations for Prolog Programs, DAI Research
Paper No. 163, 1981.

C. S. Mellish, “Some Global Optimizations for a
Prolog Compiler,” In Jour. of Logic Programming,
1985:1:43-66.

K. Muthukumar and M. Hermenegildo, “De-
termination of Variable Dependence Information
Through Abstract Interpretation,” In Proc. of
North America Conf. on Logic Programming,
1989.

R. A. O’Keefe, “Finite Fixed-Point Problems,” In
Proc. of dth Int’1 Conf. on Logic Programming,
1987.

P. Van Roy, “A Prolog Compiler for the PLM”,
Report No. UCB/CSD 84/203, UC Berkeley,
November 1984.

P. Van Roy and A. M. Despain, “The Benefits of
Global Dataflow Analysis for an Optimizing Pro-
log Compiler,” In Proc. of North American Conf.
on Logic Programming, 1990.

SS2

630
1034

500
453

5750
579
540

1556

107
656

3333

1376

9.0

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A

H. Tamaki and T. Sate, ‘OLD Resolution with
Resolution,” In Proc. 3rd Int’1 Logic Programming
Conf., London, 1986. LNCS 255.

A. Taylor, “Removal of Dereferencing and Trailing
in Prolog Compilation,” In Proc. of 6ih Int’1 Conf.
on Logic Programming, Lisbon, June 1989.

A. Taylor, “LIPS on a MIPS: Results form a Pro-
log Compiler for a RISC,” Proc. of 7th Int’1 Conf.
on Logic Programming, Jerusalem, 1990.

A. Wamn, “An Implementation Technique for the
Abstract Interpretation of Prolog,” In Proc. of 5th
Int’1 Conf. on Logic Programming, 1988.

D. H. D. Warren, Applied Logic - its Use and Im-
plementation as a Programming Tool, Ph. D. The-
sis, Univ. Edinburgh, Scotland, 1977.

D. H. D. Warren, An Abstract Prolog Instruction
Set, Tech. Note 309, SRI, October, 1983.

R. Warren, M. Hermenegildo and S. K. Debray,
“On the Practicality of Global Flow Analysis of
Logic Programs,” In Proc. of 5th Int’1 Conf. on
Logic Programming, 1988.

Performance Evaluation on Various
Platforms

Table 2 is supplied to compare the speed ratios for the

Aquarius analyzer [16] running on a Sun 3/60 work-
station (Aqua~iw) and our implementation on eight
different platforms:

114

● Sun 3/60/SunOS 4.1.1 (Ours 3/60).

● Apple Macintosh IIx with THINK C 4.0 (Mac llz,

TC 4.0).

. DEC microVax 3100/VMS 5.4 (p Vaz 3100).

. DEC Vax 8530/Ultrix-32 v3.O (Van 8590).

● DECstation 3100/Ultrix 4.2 (DecS 3100).

● Sun Spare station 1+/SunOS 4.1.1 (SS1-/-).

● DECstation 5000/200 /Ultrix 4.2 (DecS 5000).

● Sun Spare Station 2/SunOS 4.1.1 (SS2).

For simplicity, the figures of the analysis time on each
platform have been omitted. They can be recalculated
based on the figures given in Table 1. All timings of
our analyzer have been measured with a resolution of
0.1 mSec, and represent the average execution times
over 100 to 1000 iterations. For Unix-based versions,
the “cc -0” option on the C compiler is used. The
average speed-indexes of the analyzer/platform config-

urations are given in the last row (hu!ez) of the table.

115

