
Numerical static analysis with Soot

Gianluca Amato Simone Di Nardo Di Maio Francesca Scozzari
Università di Chieti-Pescara - Italy

{gamato, simone.dinardo, fscozzari}@unich.it

Abstract
Numerical static analysis computes an approximation of all the pos-
sible values that a numeric variable may assume, in any execution
of the program. Many numerical static analyses have been proposed
exploiting the theory of abstract interpretation, which is a general
framework for designing provably correct program analysis. The
two main problems in analyzing numerical properties are: choosing
the right level of abstraction (the abstract domain) and developing
an efficient iteration strategy which computes the analysis result
guaranteeing termination and soundness.

In this paper, we report on our prototype implementation of
a Java bytecode static analyzer for numerical properties. It has
been developed exploiting Soot bytecode abstractions, existing
libraries for numerical abstract domains, and the iteration strategies
commonly used in the abstract interpretation community. We show
pros and cons of using Soot, and discuss the main differences
between our analyzer and the Soot static analysis framework.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis

General Terms Design, implementation, static analysis.

Keywords Abstract interpretation, bytecode, numerical domains.

1. Introduction
Static analysis determines, at compile-time, properties about the
run-time behavior of programs, in order to verify, debug and opti-
mize the code. Abstract interpretation [14, 15] is a general theory
for defining static analyses starting from the property of interest
(the so-called abstract domain), and for formally proving their cor-
rectness.

The basic idea of abstract interpretation is that a static analysis
can be derived from the (concrete) semantics of a program. We as-
sume that the semantics of a program P can be computed as the
least fixed point of a semantic function f : C → C, where C is a
concrete domain. In general, the semantic function is given compo-
sitionally starting from a set of basic operators which depends on
the kind of programming language under analysis. Typical opera-
tors for imperative programs include assignment, test and merge,
which are used in the semantics for treating the basic statements of
variable assignments, conditionals and loops.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SOAP’13 June 20, 2013, Seattle, Washington, USA
Copyright c© 2013 ACM ISBN 978-1-4503-2201-0/13/06. . . $15.00

x = 0

x < 10

x = x+ 1

true 3

1

2

4
false

5

y1 = [0, 0]

y2 = y1 ∨ y4

y3 = y2 ∧ [−∞, 9]

y4 = y3 + [1, 1]

y5 = y2 ∧ [10,∞]

Figure 1. A control flow graph and the corresponding system of
equations in the interval abstract domain.

In the abstract interpretation theory, a static analysis is viewed
as an abstract semantics, which can be directly obtained from
the concrete one by substituting the concrete domain C with an
abstract domain A, representing the program properties we want to
analyze, and all the concrete operators with corresponding abstract
operators.

In practice, at the end of this formalization process, we get
a system of equations not dissimilar from any other data-flow
analysis. Each variable in the equations corresponds to a program
point, and each equation describes the effect of an instruction or
a basic block on the program properties. The least fixpoint of this
equation system is a safe approximation of the concrete semantics
of the program.

In this work we are mainly interested in numerical properties.
A numerical property on a program variable x gives an (over) ap-
proximation of the possible values that the variable x may assume
in a specific program point, during any execution of the program.
Numerical properties are typically expressed by means of geomet-
rical shapes. For instance, in the interval abstract domain [13], each
abstract object maps a program variable to a (possibly unbounded)
interval, such as x ∈ [3, 7]. Consider, for instance, the simple pro-
gram:

x = 0
whi le (x<10)

x = x + 1

whose corresponding control flow graph and system of equations
are depicted in Figure 1. Each variable yi in the system corresponds
to the edge in the graph labeled by i, which in turn is a relevant
program point.

The abstract semantics of the example program is simply ob-
tained as the least solution of the corresponding system of equa-
tions solved over the abstract domain of intervals, where the oper-

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

25

ators ∨ and ∧ represent convex hull and intersection of intervals,
while + is the (pointwise) sum.

Analyses over the abstract domain of intervals are quite simple,
efficient, but not very precise. Other numerical domains, encoding
more expressive properties, are the polyhedra [16], octagon [21]
and parallelotope [2] domains. Of course, more expressive abstract
domains lead to higher complexity from the computational point of
view.

In the polyhedra domain, each abstract object is a polyhedron
described by a system of linear equations l ≤ Ax ≤ u, where x
is the vector of program variables, A is the coefficient matrix and
l, u are vectors. A parallelotope is a polyhedron whose matrix A
is invertible. The octagon domain is very similar to the polyhedra
domain but the coefficient matrix A is fixed; the linear equations are
of the form±x1± x2 ≤ c, where x1 and x2 are program variables
and c is a constant.

All numerical abstract domains should implement a common set
of operations such as assignment, convex hull (which corresponds
to the merge operation in Soot), intersection, projection, and so
on. Usually the equations are solved iteratively, through successive
approximations to determine a fixed point. Since most numerical
abstract domains contain infinite ascending chains, we need to
introduce an approximation to be able to compute a fixed point.

The most common technique is to use a widening [13]. It is
an operator that allows to predict the fixed point by analyzing
the sequence of approximations calculated in previous iterations
of the analysis. It guarantees termination of the analysis, but may
introduce a loss of precision.

In order to partially recover precision, it is almost mandatory to
perform a two-phases analysis: an ascending phase, using widen-
ing, which computes a rough over-approximation, and a descend-
ing phase, where widening is replaced by a new operator called
narrowing, which refines the previous result.

By following the abstract interpretation theory and exploiting
Soot [23], we are implementing analyses of numerical properties
of Java bytecode inside our analyzer Jandom.

2. Jandom

Jandom is an abstract interpretation based static analyzer written in
Scala, derived from our former project Random [3, 6], which imple-
mented template parallelotopes [1, 5, 7, 8]. At the moment, Jandom
supports intra-procedural static analysis of numerical properties for
a simple imperative language with a C-like syntax. It has prelim-
inary support for symbolic transition systems of the kind used in
the FASTer1 model checker [10] and for Java bytecode. Jandom is
freely available online2 on GitHub. In the long run, Jandom aims at
becoming a general framework for the abstract interpretation com-
munity to ease the implementation of new analysis strategies and
the test of new abstract domains.

The support for the analysis of Java bytecode is at a preliminary
stage. We support a small set of instructions which allow to analyze
only very simple methods. Supporting the full bytecode would not
be difficult, but time consuming. Therefore, we prefer to explore
different implementation models and technologies before commit-
ting to a definitive solution.

For manipulating the Java bytecode, we have first tried ASM3,
which is a fast library with pretty good documentation. We also
evaluated the use of BCEL4, but we preferred ASM since it seems to
be better maintained.

1 http://tapas.labri.fr/trac/wiki/FASTer/
2 https://github.com/jandom-devel/Jandom/
3 http://asm.ow2.org/
4 http://commons.apache.org/proper/commons-bcel/

In our experience, Soot is not very common in the abstract in-
terpretation community, so we came to it only later. However, Soot
has a much broader scope than ASM, and it has been extensively
used for the static analysis of Java. Therefore, we expected that
using Soot would give us important benefits and accelerate devel-
opment.

This paper is a report on our experience with the bytecode
analyzer in Jandom, and the use of Soot in its development. We
will try to explain what parts of Soot we used, the ones we did not
use, the ones we plan to use in the future. It is important to note
that our aim is to use Soot as a library for implementing numerical
static analyses. We do not consider here the problem of integrating
these analyses in the Soot framework itself. The interested reader
can find the code described here in the branch soap2013 of the
GitHub repository of Jandom.

2.1 Architecture of Jandom
We have designed Jandom having in mind a strongly layered struc-
ture, as depicted in Figure 2. Some of these layers are not so cleanly
separated in the real code as they are in this description. Nonethe-
less, this is the model to which we are aiming.

2.2 Numerical abstract domains
In the lower layer we find the numerical abstract domains, which
encode properties of numerical variables. Although there are a few
numerical domains natively implemented in Jandom, most of them
are part of the Parma Polyhedra Library (PPL for short) [9]. Another
well known library for numerical domains is APRON [17], which
we plan to integrate in the future. To accommodate the use of na-
tive, PPL and APRON based domains, we have designed a suitable
common interface, called NumericalProperty. All the native do-
mains directly implement this interface, while PPL domains are ap-
propriately wrapped. This interface allowed us to develop a truly
parametric analyzer, which can be easily plugged with new, numer-
ical abstract domains.

We believe that the ability to exploit existing libraries is funda-
mental when designing a new analyzer, so that we carefully studied
the problem of best wrapping PPL abstract domains into our com-
mon interface, which was not an easy task. In fact, while all the PPL
domains have almost identical method signatures, they do not im-
plement any common Java interface, and directly descend from the
Object class. This is the heritage of the fact that PPL is developed
in C++, where templates may be used to achieve generic program-
ming. The Java bindings came later and, unfortunately, did not try
to recover some of the flexibility of templates through inheritance.
This makes it difficult to write a generic wrapper for all the PPL
domains. At the moment, we use three kind of wrappers:

• ad-hoc wrappers for the most common numerical domains;
• a generic wrapper based on reflection;
• a generic wrapper based on Scala macros.

Ad-hoc wrappers are the simplest one, but different wrappers are
required for different domains. The reflection based wrapper is
quite convenient, but suffers from the performance penalty of using
reflection. On the contrary, the wrapper based on macros has the
same speed of the ad-hoc wrappers, but it is generic for all the
domains: the Scala compiler generates a different binary for each
numerical domain at compile time, similarly to C++ templates.

Although the macro based wrapper seems to be the best choice,
its use is annoying in the developing process. Due to the limits in
the Scala compiler and build tools, classes using macros should
belong to different projects than classes defining macros. For this
reason, we use the reflection based wrappers during the daily de-
velopment.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

26

Numerical domains

native PPL APRON

Abstract environments

Basic block analyzer

ASM Soot

Flow graph analyzer

Figure 2. Layered architecture of Jandom

Another possibility we are exploring is to use Soot or ASM
abilities of manipulating bytecode to generate ad-hoc wrappers
at runtime. This would bring all the advantages of macro based
wrappers, together with a reduction of the size of compiled code
and a simplification in the management of the project. On the other
side, the implementation of this dynamic wrapper is more difficult,
especially because the correspondence between source code and
bytecode is not so easy in Scala as it is in Java.

Finally, this layer also contains some domain combinators, i.e.,
methods to get more precise domains from the basic ones. Thanks
to the powerful type system of Scala, the numerical domain API is
completely type safe.

It is worth noting that, at the moment, numerical domains do not
take into consideration overflow and underflow of machine integers
and floats. There are standard methods to handle them [20], which
we plan to integrate in the near future.

2.3 Abstract environments
Numerical domains only handle numerical variables and their rela-
tionships, but the program state in the JVM is much more complex:
for instance, there are objects in the heap and references to objects.
In addition, in the Baf representation we also have a stack to take
into consideration. The Abstract environments layer allows to im-
plement (different) abstractions of the full program state. It is para-
metric w.r.t. a numerical domain, which is used for the abstraction
of numerical variables in the stack, frame and heap.

We have implemented two abstract environments: one is used
for the analysis with Jimple, the other one for the analyses with Baf
and ASM. At the moment, they both ignore the heap and everything
which is not numeric. In the future, we plan to introduce new
domain hierarchies for the analysis of heap and objects, and make
them additional parameters of the abstract program environment.

As an example, consider a generic abstract state for Baf , as
implemented in the class JVMEnvDynFrame. It is a triple 〈f, s, p〉
where p is a numerical property (such as v0 + v1 = 1), f is an
array which maps frame positions to variables in p, and s is a stack
of integers which has the same goal as f but for the stack. For
example, the state 〈[0,−1], 〈1,−1,−1〉, v0 + v1 = 1〉 means that:

• the frame has two positions. The first position corresponds to
the variable v0 in p, while the value −1 means that the second
position is unused or contains a non-numerical value;

• the stack has currently three elements. The top element corre-
sponds to the variable v1 in p, the other two elements contain
non numerical values;

• the first frame position and the top position of the stack are
subject to the condition v0 + v1 = 1.

This choice of tracking frame and stack variables separately
from the numerical property p has many advantages: the dimen-
sion of p (the number of variables in the associated space) varies
dynamically and is generally much lower than the total number of
variables in the heap and stack. Since most numerical domains have
cubic (or worst, even super exponential) complexity on the dimen-
sion of p, we want to keep this value as low as possible.

An alternative choice is to only use p (without the f and s com-
ponents) and a fixed mapping from numeric dimensions to posi-
tions in the stack and frame. For example, the same property above
could be represented as v0 + v4 = 1, where v0 and v1 are the vari-
ables associated to the frame and v2, . . . , v4 those associated to the
stack. With this solution, implemented in the JVMEnvFixedFrame
class, p has dimension n+m where n is the number of locals and
m is the size of the stack. This solution has the advantage to be
simpler than the previous one, but we expect it to be slower for
methods with many non-numerical variables.

The abstract environment for Jimple is much simpler since there
is no stack involved and the correspondence between the local
variables and the variables in the numerical properties is fixed for
the entire method.

2.4 Basic block analyzer
Our definition of basic block is somewhat different from the stan-
dard one: it is a maximal sequence of instructions such that none
but the first one may be target of a jump. Therefore, both single in-
structions and standard basic blocks are instances of our definition,
but we do not force the creation of new blocks after every jump in-
struction. Bigger blocks allow to reduce the number of intermediate
program states we need to record to accomplish the analysis.

It turns out that a basic block may have many outgoing edges:
one fall-through edge, which is followed when the execution reach
the end of the block, and many edges corresponding to the targets
of jumps. The result of the analysis of a block is a sequence of pairs
〈outgoing edge, abstract env〉.

The basic block analyzer is strictly connected to the (abstract)
language we want to analyze. Therefore, we have different basic
block analyzers for ASM, Baf and Jimple.

2.5 Flow graph analyzer
The flow graph analyzer builds a full intra-procedural analysis
from a directed graph of basic blocks. At the moment, it im-
plements a worklist based strategy similar to the one provided
by ForwardBranchedFlowAnalysis, but it directly supports as-
cending and descending phases and some advanced widenings.

A crucial point in abstract interpretation based analysis is the
ability to determine an admissible set of widening points, i.e., a
set of program points where widening should be used instead of
merge to ensure the termination of the analysis. Fundamentally,
a set of widening points is admissible if every cycle in the con-
trol flow graph passes for at least a widening point. Determin-
ing a good set of widening points is easy with Soot. We can use
the (Slow)PseudoTopologicalOrderer, and take as widening
points those program points which are the target of some retreating
edges.

Figure 3 shows the result of the Baf analyzer for the flow graph
in Figure 1.

3. Jandom and Soot

Now that we have outlined the architecture of Jandom, we go into
more depth on the relationship between Jandom and Soot, we

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

27

static void loop()
{

word i0;

/* Frame: <-1> Stack: <> Property: [] */
push 0;
store.i i0;

label0:
/* Frame: <0> Stack: <> Property: [0 <= v0 <= 10] */

load.i i0;
push 10;
ifcmpge.i label1;

inc.i i0 1;
goto label0;

label1:
/* Frame: <0> Stack: <> Property: [v0 = 10] */

return;
}

Figure 3. Result of the Baf analysis for the flow graph in Figure 1.

discuss some of our implementation choices and we outline plans
for future work related to Soot.

3.1 The Soot analysis framework
Before implementing our Flow graph analyzer, we evaluated
whether to use the Soot analysis framework directly, but we de-
cided against it. The main reason is that we are using Soot as a
library for a generic abstract interpretation based analyzer, which
we would like to use to test different iteration strategies for several
target languages, such as imperative, object-oriented and transition
systems. With this in mind, and given the amount of work already
done in Jandom to accomplish this goal, we concluded that using
the Soot framework was not going to give us any real benefit. We
discuss here in detail why this is the case.

First of all, the only viable base class for our analyzer is
ForwardBranchedFlowAnalysis, since we need to keep sep-
arate numerical properties at different branches of a conditional
instruction. This class implements a highly optimized but straight-
forward worklist based analysis. However, an abstract interpre-
tation based static analysis often requires more complex itera-
tion strategies to achieve adequate precision. At least, a couple
of phases are needed: an ascending phase where an over approx-
imation of the required solution is built using widening, and a
descending phase where the result of the first phase is improved.
These phases could have been implemented with two different
ForwardBranchedFlowAnalysis in cascade, but other more
complex iteration strategies (with multiple interleaving phases)
would have not been possible without overriding the doAnalysis
method, which is tantamount to rewrite the analyzer from scratch.
This is the case, for example, of the basic recursive [11] strategy or
the more advanced localized [4] iteration strategies.

We believe that the analysis algorithm in Soot could be gen-
eralized in order to support different iteration strategies. The best
approach would be to design a generic framework to solve fixpoint
equations. In the abstract interpretation community, the best known
tool for this task is the Fixpoint library5, which is written in OCaml
but could be ported to Java.

Since we do not use the Soot analysis framework, we have
no reason to use the FlowSet interface either. This is too limited
to be used for numerical properties, which need a lot of prim-

5 http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/
fixpoint/

itive operations such as assignment of linear expressions, pro-
jection over a subset of variables, and intersection with an half-
plane. In Jandom we use the NumericalProperty abstract class
as the base for all the numerical properties. We could have made
NumericalProperty descend from FlowSet, but at the moment
this is not possible since we have implemented numerical proper-
ties as immutable objects.

3.2 Basic blocks
The Block class in Soot is able to represent large basic blocks.
However, in order to really generate blocks larger than the stan-
dard ones, we had to provide our subclasses of BlockGraph. Al-
though BlockGraph has a method computeLeader which should
be used for such a purpose, overriding it was not enough, since the
buildBlocks method assumes that every jump instruction is the
tail of a block. Therefore, we had to override both methods. We be-
lieve that Soot could be retrofitted with our new implementation of
buildBlocks.

Some operations in Jandom may be simplified by the assump-
tion that when a node (either a Unit or a Block) has more than
one successor, the first one is the fall-through node, if it exists. Al-
though this seems to hold in the current implementation of Soot, it
is not documented anywhere. We think that this is a useful property
that should be made explicit.

Note that representing larger blocks is completely optional and
just for the sake of optimization, since the upper layer of Jandom
also works with block graphs built by the standard Soot libraries.

3.3 Baf vs Jimple vs Grimp
We have investigated both Baf and Jimple intermediate representa-
tions. The common expectation is that Jimple is easier to analyze,
since it is more high-level and has fewer statements. However, we
are not really sure that this makes a big difference for the kind of
analysis we are interested in.

Most of the complexity of the bytecode w.r.t. the 3-address code
used in Jimple is due to the big number of arithmetic and condi-
tional instructions. The standard analyses in Soot do not care about
arithmetic properties. Hence, abstracting all these instructions into
an AssignStmt unit may actually simplify the code. In our case
we need to explicitly handle arithmetic instructions. Using Jim-
ple instead of Baf just means that we need to carefully inspect the
right hand side of assignments. However, expressions (i.e., objects
of class Value) have a more complex structure than bytecode.

Another reason for the big number of instructions in the byte-
code is that some of them have several variants. For example,
the aload instruction has variants aload 0, aload 1, aload 2,
aload 3 and aload. However Baf (and also ASM) abstracts away
from these differences. For example, all the load instructions above
are collapsed in the single LoadInst instruction.

On the other side, Jimple has still some advantages over Baf ,
even for our analyses: it abstracts away from the frame and stack
of the JVM, so we only need to deal with variables (objects imple-
menting Local).

The Grimp intermediate representation is not generally used
for static analysis. It is similar to Jimple but expressions are not
linearized and may be quite complex. However, for the analysis
of numerical properties, this representation may help in improving
precision. It turns out that, in many cases, we may analyze the effect
of a complex assignment with greater precision if it is considered
all at once.

Consider for example the assignment z = z + x + y. Given
the precondition z = w ∧ x+ y = 0, with the octagon abstract do-
main the analyzer infers that, after the assignment, z = w∧x+y =
0 still holds. But if the assignment is decomposed as z = z + x
and z = z + y, after z = z + x any information regarding z is

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

28

lost, since octagon cannot represent the correct invariant which is
w = z − x.

In conclusion, we think that performing analyses on Grimp may
be more precise than on Jimple, and not terribly more difficult.
As observed by one of the referees, for some numerical domains
Grimp could also improve performance, since less abstract oper-
ations are performed, in particular for domains implemented in
APRON or PPL, due to the overhead of calling native methods.

Although we have not yet tried Grimp in Jandom, we plan to
transform the Jimple analyzer into a Grimp analyzer, while keeping
the Baf analyzer.

3.4 The tag system
The result of our analyzer is a map, which we call annotation,
from program points (i.e. Units) to abstract environments. At the
moment, the map is implemented through a Scala HashMap. This
implies the need to access hash maps and compute hash functions
each time we read or write annotations (and we do it continuously
in the analysis engine).

A better solution would be to link annotations directly to the
corresponding program point. To this aim, the Soot tag system
might be used. However, it requires a linear search for the tag
name each time we access a tag, so it is not going to improve
performance very much. It would be convenient to modify the tag
system adding the possibility to access tags in an indexed manner,
using an ArrayList as a backend instead of a List. This should
allow constant access time to an annotation if we know its index.

3.5 Planned use of Soot in the future
Other parts of Soot we plan to explore in the future are:

• Dava: although Dava is presented as a decompiler for Java, we
think that performing a structured analysis on the AST of a Java
program may sometimes be more convenient than analyzing the
unstructured bytecode. See [18] for a discussion on the benefits
of analyzing bytecode vs program source code. However, to the
best of our knowledge it is not possible to generate a Dava AST
directly from the Java source code, and this limits its usefulness
for us. We could use one of the many available Java parsers, but
it would be great to have this integrated in Soot.

• Eclipse plugin: using the Soot tag system, we plan to interface
Jandom with the Eclipse plugin.

3.6 Documentation
Not everything in the experience with Soot was pleasant. One
aspect which can be improved is documentation. One of the main
drawbacks of the current documentation is the lack of a real user
manual. There are many tutorials available online, but nothing with
a thorough treatment. On the contrary, ASM has a very detailed guide
[12] which allows the reader to become very competent with the
API quite easily. It is also true that Soot is much more complex and
powerful than ASM, and therefore it is more difficult to describe.

Also, the Javadoc could be improved. For example, consider
the class PseudoTopologicalOrderer. There is no reference to
what a pseudo topological order is. It turns out that the algorithm
essentially computes a depth-first visit of a graph, and reports the
order of visit. It is the same algorithm suggested by Burdoncle in
[11] to efficiently find a weak topological order. Although this can
be inferred by the source code, the user cannot be sure this is the
intended behavior, and not an artifact of the current implementation
that may change in the future.

4. Related work
Although Soot is not commonly used for the analysis of numerical
properties, [22] describes an analysis to remove bound checks in

Java which is particularly relevant to our aims. Bound check elim-
ination is based on an intra-procedural numerical analysis called
variable constraint analysis (VCA) coupled with auxiliary inter-
procedural analysis to improve precision. VCA is not dissimilar
from a classic abstract interpretation based analysis. Variables con-
straint graphs, which are used to represent linear constraints among
variables, are an alternative representation of an abstract domain
known in the abstract interpretation literature as difference bound
matrices [19], a precursor of the Octagon domain.

It seems that the authors of [22] had to solve some problems
similar to the ones we found in Jandom. For example, they do not
use the standard Soot analysis engine, since they want more control
on the order in which semantic equations are solved. Although their
aim is different from ours and their analysis is optimized for a
particular purpose, some ideas might be implemented in Jandom
since appear to be of general usefulness, for example the strategy
to distinguish between loop body and loop exit.

5. Conclusions
Have we any benefit to using Soot in Jandom instead of a simple
bytecode library such as ASM? The immediate answer to this ques-
tion is: yes, but not as much as we would. The point is that Soot is
a complex framework and to get all the benefits we should embrace
it completely. This is at the moment not possible since Jandom also
supports ASM and languages other than Java bytecode. However,
we should evaluate whether ditching the other targets (or compil-
ing them to bytecode) and making Jandom a pure Java bytecode
analyzer.

We also expect Soot to be much more useful once we imple-
ment inter-procedural analysis in Jandom. For example, the ability
to browse all the classes of the Scene and to compute call graphs
will be of great help.

Nonetheless, there are some improvements to Soot which could
greatly help in spreading the use of this library in the abstract
interpretation community. The most important one is probably, as
we said before, integrating in Soot a more sophisticated data-flow
equation solver such as Fixpoint.

References
[1] G. Amato and F. Scozzari. Observational completeness on abstract

interpretation. Fundamenta Informaticae, 106(2–4):149–173, 2011.
doi: 10.3233/FI-2011-381.

[2] G. Amato and F. Scozzari. The abstract domain of parallelotopes.
In J. Midtgaard and M. Might, editors, Proceedings of the Fourth In-
ternational Workshop on Numerical and Symbolic Abstract Domains,
NSAD 2012, volume 287 of Electronic Notes in Theoretical Computer
Science, pages 17–28. Elsevier, 2012. doi: 10.1016/j.entcs.2012.09.
003.

[3] G. Amato and F. Scozzari. Random: R-based analyzer for numerical
domains. In N. Bjrner and A. Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning, volume 7180 of Lecture
Notes in Computer Science, pages 375–382. Springer, 2012. doi:
10.1007/978-3-642-28717-6 29.

[4] G. Amato and F. Scozzari. Localizing widening and narrowing. In
F. Logozzo and M. Fähndrich, editors, Static Analysis, volume 7935
of Lecture Notes in Computer Science, pages 25–42. Springer, 2013.

[5] G. Amato, J. Lipton, and R. McGrail. On the algebraic structure of
declarative programming languages. Theoretical Computer Science,
410(46):4626–4671, 2009. doi: 10.1016/j.tcs.2009.07.038.

[6] G. Amato, M. Parton, and F. Scozzari. A tool which mines partial
execution traces to improve static analysis. In H. Barringer and et
al., editors, Runtime Verification, volume 6418 of Lecture Notes in
Computer Science, pages 475–479. Springer, 2010. doi: 10.1007/
978-3-642-16612-9 37.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

29

[7] G. Amato, M. Parton, and F. Scozzari. Deriving numerical ab-
stract domains via principal component analysis. In R. Cousot and
M. Martel, editors, Static Analysis, volume 6337 of Lecture Notes
in Computer Science, pages 134–150. Springer, 2010. doi: 10.1007/
978-3-642-15769-1 9.

[8] G. Amato, M. Parton, and F. Scozzari. Discovering invariants via
simple component analysis. Journal of Symbolic Computation, 47
(12):1533–1560, 2012. doi: 10.1016/j.jsc.2011.12.052.

[9] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Li-
brary: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Science of Com-
puter Programming, 72(1–2):3–21, 2008. doi: 10.1016/j.scico.2007.
08.001.

[10] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. Fast: acceler-
ation from theory to practice. International Journal on Software
Tools for Technology Transfer, 10(5):401–424, 2008. doi: 10.1007/
s10009-008-0064-3.

[11] F. Bourdoncle. Efficient chaotic iteration strategies with widenings.
In D. Bjørner, M. Broy, and I. V. Pottosin, editors, Formal Methods in
Programming and Their Applications, volume 735 of Lecture Notes
in Computer Science, pages 128–141. Springer, 1993. doi: 10.1007/
BFb0039704.

[12] E. Bruneton. ASM 4.0 – A Java bytecode engineering library,
2011. URL http://download.forge.objectweb.org/asm/
asm4-guide.pdf. Last accessed 2013/05/18.

[13] P. Cousot and R. Cousot. Static determination of dynamic properties
of programs. In Proceedings of the Second International Symposium
on Programming, pages 106–130, Paris, France, 1976. Dunod.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL ’77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
238–252. ACM Press, 1977. doi: 10.1145/512950.512973.

[15] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In POPL ’79: Proceedings of the 6th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages
269–282. ACM Press, 1979. doi: 10.1145/567752.567778.

[16] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL ’78: Proceedings of the 5th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 84–97. ACM Press, 1978. doi: 10.1145/512760.
512770.

[17] B. Jeannet and A. Miné. APRON: A library of numerical abstract
domains for static analysis. In A. Bouajjani and O. Maler, edi-
tors, Computer Aided Verification, volume 5643 of Lecture Notes in
Computer Science, pages 661–667. Springer, 2009. doi: 10.1007/
978-3-642-02658-4 52.

[18] F. Logozzo and M. Fähndrich. On the relative completeness of
bytecode analysis versus source code analysis. In L. J. Hendren,
editor, Compiler Construction, volume 4959 of Lecture Notes in
Computer Science, pages 197–212. Springer, 2008. doi: 10.1007/
978-3-540-78791-4 14.

[19] A. Miné. A new numerical abstract domain based on difference-bound
matrices. In O. Danvy and A. Filinski, editors, Programs as Data
Objects, volume 2053 of Lecture Notes in Computer Science, pages
155–172. Springer, 2001. doi: 10.1007/3-540-44978-7 10.

[20] A. Miné. Relational abstract domains for the detection of floating-
point run-time errors. In D. Schmidt, editor, Programming Languages
and Systems, volume 2986 of Lecture Notes in Computer Science,
pages 3–17. Springer, 2004. doi: 10.1007/978-3-540-24725-8 2.

[21] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006. doi: 10.1007/s10990-006-8609-1.

[22] F. Qian, L. Hendren, and C. Verbrugge. A comprehensive approach
to array bounds check elimination for Java. In R. N. Horspool,
editor, Compiler Construction, pages 325–341. Springer, 2002. doi:
10.1007/3-540-45937-5 23.

[23] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot - a java bytecode optimization framework. In Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collab-
orative research, CASCON ’99. IBM Press, 1999.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

30

