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1. ABSTRACT 
A Chaitin-style register allocator often blocks 
during its simplification phase because no node 
in the interference graph has a degree that is 
sufficiently small. Typically, this is handled by 
node-splitting, or by optimistically continu- 
ing-and hoping that a legal N-coloring will 
still be found. We observe that the merging of 
two nodes in a graph causes a reduction in the 
degree of any node that had been adjacent to 
both. We have enhanced Chaitin’s coloring 
algorithm so that it attempts node-merging 
during graph simplification; this often allows 
simplification to continue, while still guarantee- 
ing a coloring for the graph. We have tested this 
algorithm using Appel’s database of register- 
coloring graphs, and have compared it with 
Chaitin’s algorithm. The merge-enhanced algo- 
rithm yields a better coloring about 8% of the 
time, and a worse coloring less than 0.1% of the 
time. 

1.1 Keywords 
Register allocation, graph coloring, register coalescing 

2. INTRODUCTION 
Chaitin’s coloring algorithm [6,7] attempts to color .a graph with N 
colors in two stages: 
l Simplify the graph by repeatedly removing nodes from the 

graph whose degree is less than N, until the graph is reduced to 
an empty graph. 

. Color the nodes in reverse-order of removal. 
If the simplification step is successful, an N-coloring is guaranteed, 
because each node-at the time it is colored-is adjacent to at most 
N-l already colored nodes. 

The simplification phase blocks if it reaches a point where all nodes 
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in the graph have degree N or greater. In this case, one of two 
approaches is typically used: 
l Split one or more nodes so that the simplification can continue 

(Chaitin [7]); this causes spill-code to be inserted in the code 
that is ultimately generated. 

l Increase N and continue “optimistically”, as suggested by 
Briggs [S]. If the increase is small, a coloring with the original 
N might still be found, but is not guaranteed. Splitting is done 
(and hence spill-code introduced) during the coloring phase 
whenever a node cannot be colored. 

Optimistic coloring algorithms are based on the observation that 
Chaitin’s algorithm, when applied to a graph using N available col- 
ors, often results in a coloring of less than N. Our experimental 
results support this approach, as about 60% of the graphs we col- 
ored using Chaitin’s algorithm were colored in less than the original 
N (see Section 7). 

Chaitin’s algorithm has two non-deterministic aspects. First, during 
simplification, there are typically occasions where many nodes have 
fewer than N neighbors; an implementation can pick any of these as 
the first to remove. A single graph can therefore induce many differ- 
ent orderings in which the nodes are colored. Second, during color- 
ing, there may be more than one color available with which to color 
a node. 

Thus, two different implementations of Chaitin’s algorithm--or 
different orderings of nodes and arcs in the graph’s representa- 
tion-can give rise to different colorings. These colorings can eas- 
ily differ in the number of colors that are used. 

The non-deterministic aspects of Chaitin’s algorithm might make it 
attractive to apply Chaitin’s algorithm repeatedly to a graph, using a 
pseudorandom number generator whenever a non-deterministic 
choice is available. Our experiments, described in Section 6, would 
also support this approach. 

This paper describes a technique for allowing the simplification 
phase of Chaitin’s algorithm to proceed in situations where it would 
normally block. Spilling/splitting strategies and copy-minimization 
strategies have been previously proposed by Bergner [3], Chow [8], 
George [9], Kurlander [lo], and Leuh [ll]. The work described 
here does not deal with these topics directly. Our underlying color- 
ing techniques, however, can be used with these other strategies. 

Most other node-merging work has focused on coalescing nodes 
that are copy-related (e.g., Briggs [5], George [9], Park [12]). Our 
work considers the merging of non-copy-related nodes. We also 
perform merging within the simplification loop rather than before 
or after. 

3. NODE-MERGING 
During the simplification phase of Chaitin’s algorithm, if the algo- 
rithm blocks, our algorithm introduces a node-merging step prior to 
optimistically increasing N or performing node-splitting. The basic 
idea of node-merging is to merge two unconnected nodes together 
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into a single node. Such merging is effectively a commitment that 
the two nodes have the same color in the final graph. When two 
nodes are merged, one of them is removed from the graph, and its 
arcs are attached to the node that remains; this may introduce 
redundant arcs into the graph, which can be eliminated. 

When two unconnected nodes are merged, it changes the degrees 
of the nodes in the graph as follows: 
l The degree of any node that had been adjacent to both merged 

nodes is reduced by one. 
l The degree of the merged node is the sum of the degrees of the 

original nodes, minus the number of nodes they had in com- 
mon. (If each node had at least one neighbor not common to 
the other, then the degree of the merged node is greater than 
that of either of the original nodes.) 

Consider the graph in Figure 1. The degree of node 1 is 4; the 
degree of node 2 is 6; they share 3 neighbors in common. After 
merging (Figure 2), the degree of each common neighbor (3,5,6) 
is reduced by one; the degree (7) of the merged node is greater than 
the degree of either node 1 or node 2 because each had neighbors 
not shared by the other. 

Figure 1: Graph before merging nodes 1 and 2 

Figure 2: Graph after merging nodes 1 and 2 

Our hope is that with the degree-reduction of these shared nodes, 
the degree of one or more of the nodes drops below N; this would 
allow Chaitin-style simplification to continue. 

Our goal, then, is to select node-pairs for merging that have many 
common neighbors, and very few unique neighbors. If we can find 
such pairs, the degrees of many nodes will be reduced, and the 
degree of the merged node will not increase significantly over that 
of the nodes it has replaced. The ideal case, of course, is to find a 
node whose neighbors are a subset of some other node; here many 
nodes decrease in degree, and none increases. (Appel [2] refers to 
this as “George” merging.) 

4. EXAMPLE 
Consider the problem of three-coloring the graph in Figure 3. The 
simplification phase of Chaitin’s algorithm will block immediately 
because no node has fewer than three neighbors. We can use merg- 

Figure 3: A graph to 3-color 

ing to make progress, however, by noting that: 
l The neighbors of node 3 (0,4,7) are a subset of those of node 

1 (0,2,4,7,8). 
. Nodes 1 and 3 are not connected. 
We can therefore merge node 3 into node 1 (which in this case 
amounts to removing node 3), making a notation that node 3 will 
have the same color as node 1 in the final graph. This results in the 
graph shown in Figure 4. 

Figure 4: Graph with node 3 removed 

This graph still has no node with degree less than three, but now 
the neighbors of node 0 (1, 5, 7) are a subset of the neighbors of 
node 2 (1,5,7,6). Because nodes 0 and 2 are not connected, we 
can merge them by removing node 0. This graph is shown in Fig- 
ure 5. 

Figure 5: Graph with node 0 also removed 
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The resulting graph still has no node with degree less than three. 
However, nodes 2 and 8 have three neighbors in common (1,6,7) 
and only one each not in common (4,5). We therefore merge nodes 
8 into 2 by removing node 8, and adding its extra connection (4) to 
node 2. The resulting graph is shown in Figure 6. 

Figure 6: Graph after merging nodes 2 and 8 

At this point, Chaitin-style simplification can be resumed: nodes 6 
and 7-each having degree 2-tan be removed, followed by nodes 
1,2,4 and 5. 

We can now color the nodes in reverse order of removal (5,4,2, 1, 
7,6): 
l 5,l:red 
l 4,6,7: green 
l 2: blue 
Finally, we color the nodes that had been “removed” by merging, 
giving: 
l 1,3,5:red 
9 4,6,7: green 
l 0,2,8: blue 
In this example, the effect of node-merging was to allow simplifi- 
cation to continue without introducing spilling during the simplifi- 
cation step, and without the need to increase N. 

5. DETAILS OF THE MERGE-ENHANCED 
ALGORITHM 
Our simplification algorithm uses Chaitin’s as a basis; merging- 
as illustrated above-is attempted only when Chaitin’s algorithm 
blocks. In order to select promising nodes for merging, we keep an 
ordered candidate list of node-pairs to merge. Our algorithm 
blocks only when the candidate list becomes empty. Typically, this 
occurs when the graph has become a clique. At this point, one of 
the traditional techniques (e.g., node-splitting) could be employed. 

The candidate list is a priority queue (represented as a heap in our 
implementation). We weight each node-pair with a “pair-score” 
between 0.0 and 1.0 according to the ratio of the number of com- 
mon neighbors to the total number of neighbors in the smaller- 
degree node. Thus, if node 1 is connected to nodes 3,4,5, and 6 
(see Figure 1) and node 2 is connected to nodes 3,5,6,7,8 and 9. 
The “l-2” node-pair would receive a score of 0.75, based on the 
ratio of neighbors of 1 (the smaller-degree node) that are also 
neighbors of 2. A node-pair score of 1.0 indicates that one node’s 
neighbors are a subset of the other’s. 

The algorithm is complicated by the fact that node removals (both 
traditional and merge-based) cause pair-scores to change. When- 
ever a modification is made to the graph that causes a node-pair to 
change its score, the pair is removed from the priority queue and 
reinserted. Though we have developed techniques for “optimizing 
away” some of these insertion/removals, this bookkeeping slows 

down the algorithm significantly, making it quadratic at best. Heu- 
ristics to reduce the overhead by not considering all node-pairs as 
candidates are discussed in Section 8. 

6. EXPERIMENTAL RESULTS 
In order to determine the effectiveness of the merge-enhanced 
algorithm, we used Appel’s database [l] of 27,921 graphs that 
were produced from an actual compiler. We did not perform spill- 
ing because the database did not include the live-track information. 
Rather, we simply determined the best coloring an algorithm could 
give for each graph. (This was done by choosing an initial N based 
on the graph’s node-count; then we repeatedly applied the algo- 
rithm, performing a “binary search” on N, until we converged the 
best result). 

To have a basis for comparison, we also implemented and tested 
two versions of Chaitin’s algorithm. Both were optimistic-that is, 
they were willing to choose an N larger than the target, with the 
hope that the actual coloring would be better than the number cho- 
sen. The difference between the two algorithms was that one col- 
ored the graph once and then stopped. The other performed 100 
repetitions, using a pseudorandom number generator during color 
selection. 

The reasons for using two versions of Chaitin’s algorithm are as 
follows. First, we wanted to compensate for the fact that we made 
no attempt to apply any particular intelligence during the coloring 
phase of the algorithm. Second, we wanted to gain insight as to 
whether injecting randomization/repetition into Chaitin’s algo- 
rithm might be useful. 

The results are summarized in Tables l-3. Of the 27,000+ graphs 
colored, the merge-enhanced algorithm generally did better than 
the others. It gave an improvement over Chaitin’s algorithm 
approximately 8% of the time. The merge-enhanced version did 
slightly better than the algorithm with repetition/randomization, 
yielding improvements 0.6% of the time. 

The size of the graphs in Appel’s database varied widely. 53 were 
empty; many had only a handful of arcs. The column labeled 
“large graphs” in Tables l-3 is an attempt to characterize how the 
algorithms performed on larger graphs-those containing 500 or 
more arcs. The database contains 1,917 such graphs. Our thought 
was that viewing the performance of each algorithm on larger 
graphs might give better intuition about its overall effectiveness. 

Table 1: ChaitWMerge vs. ChaiWSingle 

result all graphs large graphs 

equal 25,738 (92.2%) 1,700 (88.7%) 

Merge better 2,183 (7.8%) 217 (11.3%) 

Single better 0 (0%) 0 (0%) 

Table 2: ChaitinlMerge vs. ChaitWRepeated 

result all graphs 

equal 27,746 (99.4%) 

Merge better 165 (0.6%) 

Repeated better 10 (0.04%) 

large graphs 

1,792 (93.5%) 

123 (6.4%) 

2 (0.1%) 
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Table 3: ChaitinlSingle vs. Chaitiaepeated 

result 

equal 

all graphs 

25,768 (92.3%) 

large graphs 

1,732 (90.3%) 

Single better 59 (0.2%) 1 42 (2.2%) 1 

Repeated better 2,094 (7.5%) 1 143 (7.5%) 1 

When one of the algorithms found a better coloring than another, it 
typically did so by performing the coloring with one less color. 
However, in some cases, the color-count difference was greater 
than one. Table 4 summarizes the situations in which one algo- 
rithm outdid another by more than one color. The merge-enhanced 
algorithm was never outdone by more than one color. It occasion- 
ally outdid the others, however, by two colors, and sometimes by 
three or four. 

Table 4: Coloring-differences greater than one 

better/worse 

merge/single 

#times max. difference 

31 3 

I merge/repeated I 27 I 4 I 

single/repeated 

repeated/single 

7 4 

5 2 
1 I I I 

7. OTHER OBSERVATIONS 
A major reason for doing these experiments was to gain insight 
regarding: 
l How often a “perfect” node-pair-where one node’s neighbors 

are a subset of the other’s-would be found. 
l Whether there is a pair-score (ratio of common neighbors with 

the other node in the pair to total nodes) below which it does 
not make sense, in practice, to do merging. 

The results are summarized in Table 5. For 38.5% of the graphs, 

Table 5: Summary of merges performed 

pair-scores used all graphs large graphs 

(no merging) 10,762 (38.5%) 1,123 (58.4%) 

all = 1 .O (perfect) 16,518 (59.2%) 507 (26.4%) 

all 2 0.8, some < 1.0 362 (1.3%) 112 (5.8%) 

all 2 0.6, some c 0.8 242 (0.9%) 142 (7.4%) 

some < 0.6 37 (0.1%) 33 (1.7%) 

the ultimately-minimal coloring was found without any merging. 
59.2% needed only “perfect” merges. Only 0.1% used any merges 
at all with pair-scores under 0.6. A higher percentage of the larger 
graphs (58.4%) required no merging. However, imperfect merges 
were required for 15% (287 of 1,917) of the large graphs, but for 
only 1.3% (354 of 27,921) of the “small” graphs. 

Table 6 shows the same figures, limited to the graphs in which the 
merge-enhanced algorithm outdid the repetition version of Chaitin. 
These results would suggest that it is sometimes effective to merge 
two nodes when the pair-score is between 0.5 and 0.6. However, in 
our experiments, it was never helpful to perform a merge with a 
pair-score below 0.5 

Table 6: Summary of merges performed: graphs where 
merging improved result over repetition 

pair-scores used all graphs large graphs 

all = 1.0 (perfect) 77 (46.7%) 55 (44.7%) 

A couple of individual colorings illustrate the effectiveness of the 
merge-enhanced algorithm. The first (graph 21231 in Appel’s 
database) contains 1,358 nodes and 15,335 arcs. Both single-exe- 
cution and repetition versions of Chaitin’s algorithm produced a 
21-coloring. The merge-enhanced algorithm gave a 20-coloring. 
During the simplification phase, the algorithm blocked 21 different 
times (because all nodes exceeded N-l); each time a perfect node- 
pair was found that allowed the algorithm to continue. 

Another case of interest was graph 20800, which consists of 215 
nodes and 4,607 arcs. Here, the single-execution algorithm pro- 
duced an 18-coloring, while the repetition-algorithm produced a 
19-coloring. The merge-enhanced algorithm produced a 17-color- 
ing. It required 28 merges (11 perfect, 17 imperfect), with pair- 
scores ranging as low 0.826. 

We also gained insights regarding optimistic versions of Chaitin’s 
algorithm. One might expect that if the simplification were done 
for N colors, the final coloring might be N-l or N-2. We observed 
large differences, however, between the color-count used for sim- 
plification and the actual number of colors in the final coloring. 
When running Chaitin’s traditional algorithm, the final coloring 
was less than N 16,713 times (60%); in one case, N was 167, and 
the final coloring used 13 colors. For Chaitin’s algorithm with rep- 
etition, the final coloring was less than N 17,198 times (62%); the 
largest difference was for a graph that was 24-colored with an N of 
44. For both algorithms, the value of N was at least 4 larger than 
the final color-count about 3% of the time. These numbers support 
the notion that optimistic coloring is useful. 

8. A FASTER ALGORITHM 
The algorithm described above is exhaustive. It considers all possi- 
ble node-pairs as candidates for merging. The resulting (quadratic) 
time-complexity would likely make the it impractical for use in a 
production compiler. We therefore modified the algorithm so that it 
did significantly less bookkeeping. 

Our focus was to reduce neighbor-counts for nodes that are very 
close to the simplification threshold. We therefore restricted our- 
selves to consideration of merge-candidates that are neighbors of 
many small-degree-and hence almost-removable-nodes. 

We chose a fairly simple heuristic for selecting such node-pairs. It 
is parameterized by two constants, M, and K: 
l Select the M smallest-degree nodes in the graph. (This is done 
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in an efficient maturer by maintaining a heap.) 
l For each node in the graph, compute the number of small- 

degree neighbors it has. Select the K nodes with the largest val- 
ues as merge-candidates; these are often not small-degree 
nodes. (In the present implementation, an nlogn sorting algo- 
rithm is used to find the K best candidates. We could clearly do 
better by not including candidates with counts of zero, or by 
using the well-known linear-time algorithm for finding the K 
best candidates [4].) 

l Select the pair of non-adjacent nodes from the merge-candi- 
date pool that has the best pair-score. 

Although this is not a particularly sophisticated heuristic for reduc- 
ing the pair-candidate space, the results were quite encouraging. 
We first chose an M=50 and K=70. Of the 27,921 graphs, the 
exhaustive algorithm outdid the heuristic in only 18 cases; the heu- 
ristic outdid the exhaustive in 6 cases. The two algorithms there- 
fore produced equally good colorings in 99.9% of the cases. 

Given these results, we decreased the size of our candidate pool 
using M=20, K=30. Surprisingly, this gave slightly better colorings 
than M=50, K=70: it found a smaller coloring 9 times; it found a 
larger coloring 5 times. (This would suggest that focusing on the 
near-removable nodes is more effective than finding the best pair- 
score.) When compared with the exhaustive algorithm, M=20, 
K=30 did better in 8 cases, worse in 16. 

This heuristic for selecting merge-candidates significantly sped up 
the algorithm. The heap of node-pairs-and its consequent book- 
keeping-overhead-was eliminated. The number of node-pairs 
being considering was bounded by a constant, so the cost of a 
merge-step was reduced to nlogn. Our experiments indicate that 
the number of merges is typically small (under 10 in 99% of the 
cases); the cost of performing the merges would seem to be nearly 
nlogn in practice. 

Our performance numbers support this. In our tests, the perfor- 
mance the heuristic algorithm with M=SO, K=70 was comparable 
to that of the Chaitin’s algorithm with randomization. (The pri- 
mary intent of the experiments was to discern the quality of the 
graph-coloring, not to gather performance data. External factors 
such as system load-which vary widely on our system-were not 
accounted for.) 

9. SUMMARY 
It appears to us that using merging to enhance Chaitin’s algorithm 
does indeed have merit. Assuming that the graphs in Appel’s data- 
base are a representative sample, it would appear that merging 
improves Chaitin’s algorithm approximately 8% of the time, and 
for large graphs, better than the randomization/repetition algorithm 
about 6% of the time. 

We were encouraged by the number of graphs that could be 
reduced using only “perfect” merges. This suggests the usefulness 
of an algorithm that considers only perfect node-pairs as merge 
candidates, which could simplify pair-selection and its associated 
bookkeeping. 

It also appears that it is not particularly helpful to perform merging 
on candidates with a substantial number of unshared neighbors. 
Our experiments suggest that even if non-perfect merges are per- 

formed, that it would be wise to consider only those with pair- 
scores above 0.5. 

Our first attempt at a simple heuristic for speeding up the algorithm 
resulted in an algorithm that gave colorings that were essentially 
equal to the exhaustive algorithm. We conclude from this that it is 
not very difficult to find good node-pair candidates; better heuris- 
tics almost certainly exist. 

The improvement shown by Chaitin’s algorithm with randomiza- 
tion/repetition over single execution would suggest that this may 
also be a useful technique. These results strongly indicate the 
importance of using an intelligent algorithm during the coloring 
phase. 
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