
Using Node Merging to Enhance Graph Coloring
Steven R. Vegdahl
University of Portland

5000 N. Willamette Blvd.
Portland, OR 97203

(503) 943-7215
vegdahl@ up.edu

1. ABSTRACT
A Chaitin-style register allocator often blocks
during its simplification phase because no node
in the interference graph has a degree that is
sufficiently small. Typically, this is handled by
node-splitting, or by optimistically continu-
ing-and hoping that a legal N-coloring will
still be found. We observe that the merging of
two nodes in a graph causes a reduction in the
degree of any node that had been adjacent to
both. We have enhanced Chaitin’s coloring
algorithm so that it attempts node-merging
during graph simplification; this often allows
simplification to continue, while still guarantee-
ing a coloring for the graph. We have tested this
algorithm using Appel’s database of register-
coloring graphs, and have compared it with
Chaitin’s algorithm. The merge-enhanced algo-
rithm yields a better coloring about 8% of the
time, and a worse coloring less than 0.1% of the
time.

1.1 Keywords
Register allocation, graph coloring, register coalescing

2. INTRODUCTION
Chaitin’s coloring algorithm [6,7] attempts to color .a graph with N
colors in two stages:
l Simplify the graph by repeatedly removing nodes from the

graph whose degree is less than N, until the graph is reduced to
an empty graph.

. Color the nodes in reverse-order of removal.
If the simplification step is successful, an N-coloring is guaranteed,
because each node-at the time it is colored-is adjacent to at most
N-l already colored nodes.

The simplification phase blocks if it reaches a point where all nodes

Permission to make digital or hard copies of all or part Cf this wCrk for
Personal Or CkSsrOOm ustl is granted without fee provided that
CCPies are not made Or distributed for profit or CCmmercial advan-
tage and that copies bear this notice and the full citation on the first page.
To COPY otherwise. to republish. to post on servers or tC
redistribute to lists. requires prior specific permission and/or a fee.
SGPLAN ‘99 (PLDI) 5/99 Atlanta, GA, USA
@ 1999 ACM l-581 13-083sX/99/0004...$5.00

in the graph have degree N or greater. In this case, one of two
approaches is typically used:
l Split one or more nodes so that the simplification can continue

(Chaitin [7]); this causes spill-code to be inserted in the code
that is ultimately generated.

l Increase N and continue “optimistically”, as suggested by
Briggs [S]. If the increase is small, a coloring with the original
N might still be found, but is not guaranteed. Splitting is done
(and hence spill-code introduced) during the coloring phase
whenever a node cannot be colored.

Optimistic coloring algorithms are based on the observation that
Chaitin’s algorithm, when applied to a graph using N available col-
ors, often results in a coloring of less than N. Our experimental
results support this approach, as about 60% of the graphs we col-
ored using Chaitin’s algorithm were colored in less than the original
N (see Section 7).

Chaitin’s algorithm has two non-deterministic aspects. First, during
simplification, there are typically occasions where many nodes have
fewer than N neighbors; an implementation can pick any of these as
the first to remove. A single graph can therefore induce many differ-
ent orderings in which the nodes are colored. Second, during color-
ing, there may be more than one color available with which to color
a node.

Thus, two different implementations of Chaitin’s algorithm--or
different orderings of nodes and arcs in the graph’s representa-
tion-can give rise to different colorings. These colorings can eas-
ily differ in the number of colors that are used.

The non-deterministic aspects of Chaitin’s algorithm might make it
attractive to apply Chaitin’s algorithm repeatedly to a graph, using a
pseudorandom number generator whenever a non-deterministic
choice is available. Our experiments, described in Section 6, would
also support this approach.

This paper describes a technique for allowing the simplification
phase of Chaitin’s algorithm to proceed in situations where it would
normally block. Spilling/splitting strategies and copy-minimization
strategies have been previously proposed by Bergner [3], Chow [8],
George [9], Kurlander [lo], and Leuh [ll]. The work described
here does not deal with these topics directly. Our underlying color-
ing techniques, however, can be used with these other strategies.

Most other node-merging work has focused on coalescing nodes
that are copy-related (e.g., Briggs [5], George [9], Park [12]). Our
work considers the merging of non-copy-related nodes. We also
perform merging within the simplification loop rather than before
or after.

3. NODE-MERGING
During the simplification phase of Chaitin’s algorithm, if the algo-
rithm blocks, our algorithm introduces a node-merging step prior to
optimistically increasing N or performing node-splitting. The basic
idea of node-merging is to merge two unconnected nodes together

150

into a single node. Such merging is effectively a commitment that
the two nodes have the same color in the final graph. When two
nodes are merged, one of them is removed from the graph, and its
arcs are attached to the node that remains; this may introduce
redundant arcs into the graph, which can be eliminated.

When two unconnected nodes are merged, it changes the degrees
of the nodes in the graph as follows:
l The degree of any node that had been adjacent to both merged

nodes is reduced by one.
l The degree of the merged node is the sum of the degrees of the

original nodes, minus the number of nodes they had in com-
mon. (If each node had at least one neighbor not common to
the other, then the degree of the merged node is greater than
that of either of the original nodes.)

Consider the graph in Figure 1. The degree of node 1 is 4; the
degree of node 2 is 6; they share 3 neighbors in common. After
merging (Figure 2), the degree of each common neighbor (3,5,6)
is reduced by one; the degree (7) of the merged node is greater than
the degree of either node 1 or node 2 because each had neighbors
not shared by the other.

Figure 1: Graph before merging nodes 1 and 2

Figure 2: Graph after merging nodes 1 and 2

Our hope is that with the degree-reduction of these shared nodes,
the degree of one or more of the nodes drops below N; this would
allow Chaitin-style simplification to continue.

Our goal, then, is to select node-pairs for merging that have many
common neighbors, and very few unique neighbors. If we can find
such pairs, the degrees of many nodes will be reduced, and the
degree of the merged node will not increase significantly over that
of the nodes it has replaced. The ideal case, of course, is to find a
node whose neighbors are a subset of some other node; here many
nodes decrease in degree, and none increases. (Appel [2] refers to
this as “George” merging.)

4. EXAMPLE
Consider the problem of three-coloring the graph in Figure 3. The
simplification phase of Chaitin’s algorithm will block immediately
because no node has fewer than three neighbors. We can use merg-

Figure 3: A graph to 3-color

ing to make progress, however, by noting that:
l The neighbors of node 3 (0,4,7) are a subset of those of node

1 (0,2,4,7,8).
. Nodes 1 and 3 are not connected.
We can therefore merge node 3 into node 1 (which in this case
amounts to removing node 3), making a notation that node 3 will
have the same color as node 1 in the final graph. This results in the
graph shown in Figure 4.

Figure 4: Graph with node 3 removed

This graph still has no node with degree less than three, but now
the neighbors of node 0 (1, 5, 7) are a subset of the neighbors of
node 2 (1,5,7,6). Because nodes 0 and 2 are not connected, we
can merge them by removing node 0. This graph is shown in Fig-
ure 5.

Figure 5: Graph with node 0 also removed

151

The resulting graph still has no node with degree less than three.
However, nodes 2 and 8 have three neighbors in common (1,6,7)
and only one each not in common (4,5). We therefore merge nodes
8 into 2 by removing node 8, and adding its extra connection (4) to
node 2. The resulting graph is shown in Figure 6.

Figure 6: Graph after merging nodes 2 and 8

At this point, Chaitin-style simplification can be resumed: nodes 6
and 7-each having degree 2-tan be removed, followed by nodes
1,2,4 and 5.

We can now color the nodes in reverse order of removal (5,4,2, 1,
7,6):
l 5,l:red
l 4,6,7: green
l 2: blue
Finally, we color the nodes that had been “removed” by merging,
giving:
l 1,3,5:red
9 4,6,7: green
l 0,2,8: blue
In this example, the effect of node-merging was to allow simplifi-
cation to continue without introducing spilling during the simplifi-
cation step, and without the need to increase N.

5. DETAILS OF THE MERGE-ENHANCED
ALGORITHM
Our simplification algorithm uses Chaitin’s as a basis; merging-
as illustrated above-is attempted only when Chaitin’s algorithm
blocks. In order to select promising nodes for merging, we keep an
ordered candidate list of node-pairs to merge. Our algorithm
blocks only when the candidate list becomes empty. Typically, this
occurs when the graph has become a clique. At this point, one of
the traditional techniques (e.g., node-splitting) could be employed.

The candidate list is a priority queue (represented as a heap in our
implementation). We weight each node-pair with a “pair-score”
between 0.0 and 1.0 according to the ratio of the number of com-
mon neighbors to the total number of neighbors in the smaller-
degree node. Thus, if node 1 is connected to nodes 3,4,5, and 6
(see Figure 1) and node 2 is connected to nodes 3,5,6,7,8 and 9.
The “l-2” node-pair would receive a score of 0.75, based on the
ratio of neighbors of 1 (the smaller-degree node) that are also
neighbors of 2. A node-pair score of 1.0 indicates that one node’s
neighbors are a subset of the other’s.

The algorithm is complicated by the fact that node removals (both
traditional and merge-based) cause pair-scores to change. When-
ever a modification is made to the graph that causes a node-pair to
change its score, the pair is removed from the priority queue and
reinserted. Though we have developed techniques for “optimizing
away” some of these insertion/removals, this bookkeeping slows

down the algorithm significantly, making it quadratic at best. Heu-
ristics to reduce the overhead by not considering all node-pairs as
candidates are discussed in Section 8.

6. EXPERIMENTAL RESULTS
In order to determine the effectiveness of the merge-enhanced
algorithm, we used Appel’s database [l] of 27,921 graphs that
were produced from an actual compiler. We did not perform spill-
ing because the database did not include the live-track information.
Rather, we simply determined the best coloring an algorithm could
give for each graph. (This was done by choosing an initial N based
on the graph’s node-count; then we repeatedly applied the algo-
rithm, performing a “binary search” on N, until we converged the
best result).

To have a basis for comparison, we also implemented and tested
two versions of Chaitin’s algorithm. Both were optimistic-that is,
they were willing to choose an N larger than the target, with the
hope that the actual coloring would be better than the number cho-
sen. The difference between the two algorithms was that one col-
ored the graph once and then stopped. The other performed 100
repetitions, using a pseudorandom number generator during color
selection.

The reasons for using two versions of Chaitin’s algorithm are as
follows. First, we wanted to compensate for the fact that we made
no attempt to apply any particular intelligence during the coloring
phase of the algorithm. Second, we wanted to gain insight as to
whether injecting randomization/repetition into Chaitin’s algo-
rithm might be useful.

The results are summarized in Tables l-3. Of the 27,000+ graphs
colored, the merge-enhanced algorithm generally did better than
the others. It gave an improvement over Chaitin’s algorithm
approximately 8% of the time. The merge-enhanced version did
slightly better than the algorithm with repetition/randomization,
yielding improvements 0.6% of the time.

The size of the graphs in Appel’s database varied widely. 53 were
empty; many had only a handful of arcs. The column labeled
“large graphs” in Tables l-3 is an attempt to characterize how the
algorithms performed on larger graphs-those containing 500 or
more arcs. The database contains 1,917 such graphs. Our thought
was that viewing the performance of each algorithm on larger
graphs might give better intuition about its overall effectiveness.

Table 1: ChaitWMerge vs. ChaiWSingle

result all graphs large graphs

equal 25,738 (92.2%) 1,700 (88.7%)

Merge better 2,183 (7.8%) 217 (11.3%)

Single better 0 (0%) 0 (0%)

Table 2: ChaitinlMerge vs. ChaitWRepeated

result all graphs

equal 27,746 (99.4%)

Merge better 165 (0.6%)

Repeated better 10 (0.04%)

large graphs

1,792 (93.5%)

123 (6.4%)

2 (0.1%)

152

Table 3: ChaitinlSingle vs. Chaitiaepeated

result

equal

all graphs

25,768 (92.3%)

large graphs

1,732 (90.3%)

Single better 59 (0.2%) 1 42 (2.2%) 1

Repeated better 2,094 (7.5%) 1 143 (7.5%) 1

When one of the algorithms found a better coloring than another, it
typically did so by performing the coloring with one less color.
However, in some cases, the color-count difference was greater
than one. Table 4 summarizes the situations in which one algo-
rithm outdid another by more than one color. The merge-enhanced
algorithm was never outdone by more than one color. It occasion-
ally outdid the others, however, by two colors, and sometimes by
three or four.

Table 4: Coloring-differences greater than one

better/worse

merge/single

#times max. difference

31 3

I merge/repeated I 27 I 4 I

single/repeated

repeated/single

7 4

5 2
1 I I I

7. OTHER OBSERVATIONS
A major reason for doing these experiments was to gain insight
regarding:
l How often a “perfect” node-pair-where one node’s neighbors

are a subset of the other’s-would be found.
l Whether there is a pair-score (ratio of common neighbors with

the other node in the pair to total nodes) below which it does
not make sense, in practice, to do merging.

The results are summarized in Table 5. For 38.5% of the graphs,

Table 5: Summary of merges performed

pair-scores used all graphs large graphs

(no merging) 10,762 (38.5%) 1,123 (58.4%)

all = 1 .O (perfect) 16,518 (59.2%) 507 (26.4%)

all 2 0.8, some < 1.0 362 (1.3%) 112 (5.8%)

all 2 0.6, some c 0.8 242 (0.9%) 142 (7.4%)

some < 0.6 37 (0.1%) 33 (1.7%)

the ultimately-minimal coloring was found without any merging.
59.2% needed only “perfect” merges. Only 0.1% used any merges
at all with pair-scores under 0.6. A higher percentage of the larger
graphs (58.4%) required no merging. However, imperfect merges
were required for 15% (287 of 1,917) of the large graphs, but for
only 1.3% (354 of 27,921) of the “small” graphs.

Table 6 shows the same figures, limited to the graphs in which the
merge-enhanced algorithm outdid the repetition version of Chaitin.
These results would suggest that it is sometimes effective to merge
two nodes when the pair-score is between 0.5 and 0.6. However, in
our experiments, it was never helpful to perform a merge with a
pair-score below 0.5

Table 6: Summary of merges performed: graphs where
merging improved result over repetition

pair-scores used all graphs large graphs

all = 1.0 (perfect) 77 (46.7%) 55 (44.7%)

A couple of individual colorings illustrate the effectiveness of the
merge-enhanced algorithm. The first (graph 21231 in Appel’s
database) contains 1,358 nodes and 15,335 arcs. Both single-exe-
cution and repetition versions of Chaitin’s algorithm produced a
21-coloring. The merge-enhanced algorithm gave a 20-coloring.
During the simplification phase, the algorithm blocked 21 different
times (because all nodes exceeded N-l); each time a perfect node-
pair was found that allowed the algorithm to continue.

Another case of interest was graph 20800, which consists of 215
nodes and 4,607 arcs. Here, the single-execution algorithm pro-
duced an 18-coloring, while the repetition-algorithm produced a
19-coloring. The merge-enhanced algorithm produced a 17-color-
ing. It required 28 merges (11 perfect, 17 imperfect), with pair-
scores ranging as low 0.826.

We also gained insights regarding optimistic versions of Chaitin’s
algorithm. One might expect that if the simplification were done
for N colors, the final coloring might be N-l or N-2. We observed
large differences, however, between the color-count used for sim-
plification and the actual number of colors in the final coloring.
When running Chaitin’s traditional algorithm, the final coloring
was less than N 16,713 times (60%); in one case, N was 167, and
the final coloring used 13 colors. For Chaitin’s algorithm with rep-
etition, the final coloring was less than N 17,198 times (62%); the
largest difference was for a graph that was 24-colored with an N of
44. For both algorithms, the value of N was at least 4 larger than
the final color-count about 3% of the time. These numbers support
the notion that optimistic coloring is useful.

8. A FASTER ALGORITHM
The algorithm described above is exhaustive. It considers all possi-
ble node-pairs as candidates for merging. The resulting (quadratic)
time-complexity would likely make the it impractical for use in a
production compiler. We therefore modified the algorithm so that it
did significantly less bookkeeping.

Our focus was to reduce neighbor-counts for nodes that are very
close to the simplification threshold. We therefore restricted our-
selves to consideration of merge-candidates that are neighbors of
many small-degree-and hence almost-removable-nodes.

We chose a fairly simple heuristic for selecting such node-pairs. It
is parameterized by two constants, M, and K:
l Select the M smallest-degree nodes in the graph. (This is done

153

in an efficient maturer by maintaining a heap.)
l For each node in the graph, compute the number of small-

degree neighbors it has. Select the K nodes with the largest val-
ues as merge-candidates; these are often not small-degree
nodes. (In the present implementation, an nlogn sorting algo-
rithm is used to find the K best candidates. We could clearly do
better by not including candidates with counts of zero, or by
using the well-known linear-time algorithm for finding the K
best candidates [4].)

l Select the pair of non-adjacent nodes from the merge-candi-
date pool that has the best pair-score.

Although this is not a particularly sophisticated heuristic for reduc-
ing the pair-candidate space, the results were quite encouraging.
We first chose an M=50 and K=70. Of the 27,921 graphs, the
exhaustive algorithm outdid the heuristic in only 18 cases; the heu-
ristic outdid the exhaustive in 6 cases. The two algorithms there-
fore produced equally good colorings in 99.9% of the cases.

Given these results, we decreased the size of our candidate pool
using M=20, K=30. Surprisingly, this gave slightly better colorings
than M=50, K=70: it found a smaller coloring 9 times; it found a
larger coloring 5 times. (This would suggest that focusing on the
near-removable nodes is more effective than finding the best pair-
score.) When compared with the exhaustive algorithm, M=20,
K=30 did better in 8 cases, worse in 16.

This heuristic for selecting merge-candidates significantly sped up
the algorithm. The heap of node-pairs-and its consequent book-
keeping-overhead-was eliminated. The number of node-pairs
being considering was bounded by a constant, so the cost of a
merge-step was reduced to nlogn. Our experiments indicate that
the number of merges is typically small (under 10 in 99% of the
cases); the cost of performing the merges would seem to be nearly
nlogn in practice.

Our performance numbers support this. In our tests, the perfor-
mance the heuristic algorithm with M=SO, K=70 was comparable
to that of the Chaitin’s algorithm with randomization. (The pri-
mary intent of the experiments was to discern the quality of the
graph-coloring, not to gather performance data. External factors
such as system load-which vary widely on our system-were not
accounted for.)

9. SUMMARY
It appears to us that using merging to enhance Chaitin’s algorithm
does indeed have merit. Assuming that the graphs in Appel’s data-
base are a representative sample, it would appear that merging
improves Chaitin’s algorithm approximately 8% of the time, and
for large graphs, better than the randomization/repetition algorithm
about 6% of the time.

We were encouraged by the number of graphs that could be
reduced using only “perfect” merges. This suggests the usefulness
of an algorithm that considers only perfect node-pairs as merge
candidates, which could simplify pair-selection and its associated
bookkeeping.

It also appears that it is not particularly helpful to perform merging
on candidates with a substantial number of unshared neighbors.
Our experiments suggest that even if non-perfect merges are per-

formed, that it would be wise to consider only those with pair-
scores above 0.5.

Our first attempt at a simple heuristic for speeding up the algorithm
resulted in an algorithm that gave colorings that were essentially
equal to the exhaustive algorithm. We conclude from this that it is
not very difficult to find good node-pair candidates; better heuris-
tics almost certainly exist.

The improvement shown by Chaitin’s algorithm with randomiza-
tion/repetition over single execution would suggest that this may
also be a useful technique. These results strongly indicate the
importance of using an intelligent algorithm during the coloring
phase.

10. ACKNOWLEDGEMENTS
I am grateful to Gord Vreugdenhil and Max Hailperin for their
comments on earlier drafts of this paper, and to Andrew Appel for
making available his graph-coloring database [1 J.

11. REFERENCES
r11

PI

[31

[41

PI

El

[71

WI

PI

Appel, A. Sample Graph Coloring Problems. URL: httD:l/
www.cs.minceton.edu/fac/aupel/zraphdata (1996).
Appel, A. Modern Compiler Implementation in Java. Cam-
bridge University Press (1998).
Bergner, P., Dahl, P, Engebretsen, D. and O’Keefe, M. Spill
Code Minimization via Interference Rezion Soilline. SZG-
PUN Notices 32,5 (May 1997), 287-55. PI&. A?M SIG-
PLAN ‘97 Conference on Programming Language Design
and Implementation.
Blum, M., Floyd, R., Pratt, V., Rivest, R. and Tarjan, R. Time
Bounds for Selection. Journal of Computer and System Sci-
ences, 7,4 (1972), 448-461.
Briggs, P., Cooper, D. and Torczon, L. Improvements to
Granh Color& Resister Allocation. ACM Trans Proaram-
mini Languagk ~‘h Systems, 12,4 (Oct. 1990), 501-536.
Chaitin, G., Auslander, M., Chandra, A.,Cocke, J. Hopkins,
M. and Markstein, P. Register Allocation via Coloring. Com-
puter Languages 6(198 l), 47-57.
Chaitin, G. Register Allocation and Spilling via Graph Color-
ing. SIGPLAN Notices 17, 6 (June 1992), 257-265. Proc.
ACM SIGPUN ‘82 Symposium on Compiler Construction.
Chow, E and Hennessy, J. The Priority-Based Coloring
Approach to Register Allocation. ACM Trans Programming
Languages and Systems, 12,4 (Oct. 1990), 501-536.
George, L. and Appel, A. Iterated register coalescing. ACM
Trans. on Programming Languages and Systems, l&3 (May
1996), 300-324.

[lo] Kurlander, S. and Fischer, C. Zero-Cost Range Splitting. SIG-
PLAN Notices 29, 6 (June 1994), 257-265. Proc. ACM SIG-
PLAN ‘94 Conference on Programming Language Design
and Implementation.

[1 l] Lueh, G. and Gross, T. Call-Cost Directed Register Alloca-
tion. SIGPLAN Notices 32,5 (May 1997), 296307. Proc.
ACM SIGPLAN ‘97 Conference on Programming Language
Design and Implementation.

[121 Park, J. and Moon, S. Optimistic Register Coalescing. Proc.
1998 International Conference on Parallel Architectures and
Compilation Techniques (1998), 196204.

154

