Parallelism, Persistence and Meta-Cleanliness in the Symmetric Lisp
Interpreter

David Gelernter
Yale University

Abstract

Symmetric Lisp is a programming language designed
around first-class environments, where an environ-
ment is a dictionary that associates names with def-
initions or values. In this paper we describe the log-
lcal structure ‘of the Symmetric Lisp interpreter. In
other interpreted languages, the interpreter is a vir-
tual machine that evaluates user input on the basis
of its own internal state. The Symmetric Lisp in-
terpreter, on the other hand, is a simple finite-state
machine with no internal state. Its role is to at-
tach user input to whatever environment the user has
specified; such environments are transparent objects
created by, maintained by and fully accessible 1o the
user. The interpreter’s semantics are secondary to
the semantics of environments in Symimetric Lisp: 1t
is the environment-object to which an expression is
attached, not the interpreter, that controls the eval-
nation of expressions.

This arrangement has several consequences. Because
environments in Symmetric Lisp are governed by a
parallel evaluation rule, the Symmetric Lisp inter-
preter is a parallel interpreter. A Symmetric Lisp
environment evaluates to another environment; a
session with the interpreter therefore yields a well-
defined environment object as its result. Users are
free to write routines that manage these interpreter-
created objects — routines that list the elements of a
namespace, coalesce environments, maintain multiple
name definitions and so on precisely because environ-
ment objects may be freely inspected and manipu-
lated. Because a named environment may contain
other named environments as elements, interpreter-

This material is based on work supported in part by the
National Science Foundation grant number #DCR-8601920

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct comumerical advantage, the ACN copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

©1987 ACM 0-89791-235-7/87/0006/0274

Suresh Jagannathan
Massachusetts Institute of Technology

75¢

274

Thomas London

AT&T Bell Laboratories

created objects may be regarded as hierarchical file
systems. Because of the parallel evaluation semantics
of environments, the interpreter is well-suited as an
interface to a concurrent, language-based computer
system that uses Symmetric Lisp as its base language.
We argue that — in short — a basic semantic simplifi-
cation in Symmetric Lisp promises a correspondingly
basic increase in power at the user-interpreter inter-
face.

1 Introduction

In most interpreters, the evaluation of user expres-
sions is controlled by the interpreter’s internal state.
The user can’t see this hidden internal state, and
can’t easily modify or extend (still less completely
rewrite) the programs to access and manipulate the
environment image that are provided as part of the
interpreter package. Ixtensibility and modularity
of the interpreter-supplied programming environment
are controlled by the system’s implementors, not its
users.

In most interpreters, the explicitly serial READ-EVAL-
PRINT loop militates against the idea of a paral-
lel interpreter. Parallel dialects of Lisp have there-
fore added language constructs to support parallelism
without touching the interpreter. Languages like
Multilisp [14] and Qlambda[8] are Lisps augmented
with parallelism constructs; but their interpreters
(evidently) still follow a serial evaluation rule.

In this paper we present a different interpreter-
building paradigm, one in which the interpreter main-
tains no internal state information. The Symmetric
Lisp interpreter’s job is simply to attach user input
to a user-specified environment; it is the environment
structure, not the interpreter, that controls the eval-
uation of expressions. Environments are first-class
objects — they may be freely examined, accessed and
manipulated by the user. Symmetric Lisp’s first-class
environment serves several purposes:

1. Like conventional namespaces, they bind a col-
lection of names to valucs.

2. Like parallel control structures, they allow a col-
lection of elements to be evaluated concurrently.

3. Unlike other control constructs, upon evalua-
tion they yield new environments, in which all
constituents of the original appear in evaluated
form.

They may be treated as extensible structures to
which new environment-fields may be attached
dynamically.

The introduction of first-class environments has far-
reaching ramifications for the construction of a
language-based computer system. DBecause cvaluat-
ing an environment yields another environment, the
result of an interpreter session is a well-defined, trans-
parent structure. Transparent environments make it
possible for users to write customized functions that
nspect, coalesce, or maintain multiple name spaces.
Because the environment objects constructed by the
interpreter may be regarded as persistent, hierarchi-
cal file systems, these same routines will work for file
systems. Because of the underlying parallel evalua-
tion semantics of environments, the Symmetric Lisp
interpreter is inherently parallel as well.

In the next section, we discuss the design of the Sym-
metric Lisp programming language. Section 4 gives
an outline of the Symmetric Lisp meta-circular in-
terpreter. We then go on to discuss issues of par-
allelism, persistency, and general expressivity in the
Symmetric Lisp programming environment. The last
section describes the context of this work and related
projects.

2 Environments in Symmetric
Lisp

All programming languages provide users with some
way to create environments, where an environment is
a dictionary that associates names with their defini-
tions or values. Modern Algol-based languages sup-
ply a global and any number of local naming environ-
ments; they generally provide record-type objects as
well, where a record i1s another kind of Jocal names-
pace. Languages that support functional objects usu-
ally provide closures, which are naming environments
within which a function body may be evaluated. In-
terpreted languages support environments that users
create Incrementally.

275

Symmetric Lisp is a programming language designed
around first-class environments. [irst-class environ-
ments make it possible to write not only constants of
type environment, but expressions that yield environ-
ments as results or accept them as arguments. Lan-
guages that lack first-class environments rely ordinar-
ily on a smorgashorg of different namespace mecha-
nisms — records or structures for grouping data, clo-
sures for encapsulating an execution environment,
classes or flavors for building objects, modules or
packages for building libraries, system interfaces for
building a persistent file systemn. We argue that the
presence of first-class, denotable environments elimi-
nates the need for these weaker mechanisms, and fur-
thermore brings about a fundamental and interesting
change in the nature of the programming language:
conventional distinctions between data and control
structures, modules and processes, expressions and
declarations disappear.

A Symmetric Lisp environment is constructed from
three elements: NAME, PRIVATE and ALPHA f{orms.
A NAME form binds a name (which must be a sym-
bol) to the result of an expression and makes this
binding visible both within and outside of the envi-
ronment in which it executes. PRIVATE is the same
as NAME, except that it defines a binding that is in-
visible outside of the local environment. The ALPHA
form gives meaning to these bindings by tying them
together. The result of evaluating an ALPHA is an-
other ALPHA in which every expression in the origi-
nal has been fully evaluated. Within a given alpha
all names, whether bound using NAME or PRIVATE
forms, must be unique.

An arriia form is evaluated in three steps. I'irst,
names are evaluated simultaneously and recorded as
elements of the environment to be returned by this
ALPIIA. This cnvironment is now accessible to any
expression that requires it. Its evaluation is only
complete, however, when all expressions in the ALPHA
have been evaluated. These expressions are evaluated
simultaneously; if an expression requires the value of
some binding and that value is still being computed,
evaluation of the expression blocks until the required
value becomes available. Evaluation of an ALPHA
yields another aLPita whose k" element is the re-
sult yielded by the " element of the original alpha.
Just as an ALPHA yields an ALPIIA, a NAME or PRI-
VATE form yields a corresponding NAME or PRIVATE
form. {The fact that an ALPHA may be accessed be-
fore all of its elements have been evaluated, together
with its built-in synchronization rule, makes it sim-
ilar to functional data structures implemented using
early-completion structures7] or I-structures[2].)

Thus, evaluating
(ALPHA
(NAME 2z (+11})
(NAME y (* 2 10)))

vields
{ ALPITA
(NAME 2 2)
(NAME y 20))

An expression may be a constant, which evaluates
to itself; a name, which yields the value to which it
1s bound; or an application of a function to argu-
ments which are themselves expressions. Lxpressions
may refer to names that are not defined within their
immediately surrounding ALPHA. When they do, we
search for a binding within the innermost ALPHA that
encloses the immediately-surrounding one in the eval-
uation environment; if we still find no binding, we
search the next-innermost alpha and so on.

A binding may be altered by a $£TQ command which
operates in the same way as its Lisp counterpart, ez-
cepl that the name being reassigned must have pre-
viously been defined in a NAME or PRIVATE form.
All side-eflecting operations are exccuted atomically.
Note that, as in other Lisps, PROGN evaluates a list of
forms sequentially and returns the value of the last.

Elements of an ALPHA may be selected through the
operators ACAR, ACDR, ANTH or ALAST, which are
ALPHA counterparts of the traditional Lisp list selec-
tors. We discuss ACAR and ACDR in greater detail in
the next section.

Environments, being first-class objects, may be
bound to names. If an environment is bound to a
name @ — (NAME @ (ALPHA ...)) - we can evalu-
ate an expression F within @’s namespace by writing
(wiTr @ E). To evaluate this expression we evalu-
ate F, consulting @ first for the values of any free
names we encounter. (Free names not bound within
Q are looked-up within the immediately-enclosing al-
pha and so on, as per the normal evaluation rules.)
The value yielded by F is returned as the value of the
WITH form. USE is a simpler variant of WITH: eval-
uating (USE A) dumps the NAME forms found within
ALPHA A into the current environment. It is an error
if any name conflicts arise as a result.

An element of an ALPHA may be any expression: it
is not the case that only NAME or PRIVATE forms are
acceptable as ALPHA elements. In evaluating an arbi-
trary expression, we follow the same rules that apply
to the evaluation of expressions that appear within
bindings. Thus

(ALPHA (NAME z 10) (+ z 5))

276

yields
(ALPHA (NAME z 10) 15)

Environments can be used to implement Pascal-style
records; because names can be be bound to func-
tions, we use them to build modules and libraries,
too. The PRIVATE form is useful for building abstract
data types; an important consequence of first-class
environments is that we can define a function that
returns an environment as a value, making it easy to
build parameterized data types as well.

The implementation of functions in Symmetric Lisp
is intimately tied to its treatment of environments.
LAMBDAs are functional constants that may be ap-
plied; application of a LAMBDA to an argument yields
an environment whose last element is the body of the
LAMBDA expression. The value of the application is
accessed by using the ALAST selector. As described
in [10], environments can be used to support curried,
higher-order, lexically-scoped functions despite Sym-
metric Lisp’s dynamic binding discipline.

3 Environments Active

Computations

as

The enviroments we have described thus far are static.
The collection of bindings they define cannot be aug-
mented. Sometimes, however, environments can’t be
defined all at once; they must be constructed incre-
mentally. Consider an environment that represents a
file system: each directory is a sub-environment, and
bindings associate file names with file objects. An
environment that represents a general multi-version
data base must also be constructed incrementally, and
so too must be the environment assembled by the in-
terpreter during an interactive session.

Symmetric Lisp accomodates growing environments
with the open alpha form. An open ALPHA is an on-
going computation, not a passive object. An open AL-
PHA is under evaluation from the time at which it is
created, and continues under evaluation indefinitely.
Using the operation ATTACH!, described below, we
can drop new elements one-by-one into an open AL-
PHA; each new element is evaluated as soon as it is
attached.

The operation OPEN-ALPHA returns a new open al-
pha; its value at creation is the empty alpha, an alpha
with no elements. Thus

(NAME environ! (OPEN-ALPHA})

yields
(NAME environ! (ALPHA *))

The symbol “*” means “this ALPHA is open, and new

elements will appear here.”

The side-eftecting function
{ aTracul an-open-alpha an-expr)

evaluates an-open-alpha to yield an open ALPITA and
evaluates an-crpr to vield a Symmetric Lisp constant
or form. It then attaches this form to the open AL-
PHA. where it will be evaluated in the context of the
growing environment of which it is now part. Specif-
ically, the ATTacu! expression above causes the “*”
within an-open-alpha to be replaced by

(ALPHA expr-value *)

where erpr-value is the result of evaluating an-expr
in the environment of the caller of the aTTACH!.

Thus, if we start with our newly-created environ! and
evaluate
(arTacu! environl '(NAME foobar (+ 2

3))

environ! becomes

(ALPHA
(aLPltA (NAME foobar (+ 2 3) =)

which evaluates to
(ALPHA
{ ALPHA (NAME foobar 5) «))

Open ALPHAs evaluate in exactly the same way as
closed aLpHas. All that we need to add 1s a rule
for the evaluation of **”,
evaluate the elernent . block until the identity of
the name to be defined by this ALPHA’s first element

(if there is such a name) has been determined; then
ks

The rule is as follows: to
Sk

block again until is replaced by a new element k|
and then evaluate £, using the ordinary alpha scoping

rules to resolve the meaning of names within .

Note that we can always fully evaluate the first ele-
ment of an open ALPHA without knowing what form
will ultimately replace the asterisk. This is so because
“*" must necessarily be replaced by something of the
form (ALPHA expr*): that is, the asterisk will always
be replaced by an ALPHA, never by a NAME or a PRI-
vaATE form; this being so, the something that replaces
“*¥" can never alter the naming environment within
which the first element evaluates. It follows that, to
resolve the meaning of names encountered while eval-
uating expressions within an open ALPHA, the rule is
simple: search left; ignore what lies to the right. If
a name is multiplv-defined within an open alpha, the
newest (rightmost) definition supercedes earlier ones
— this follows, again, from the normal alpha scoping
rules.

277

Thus if, having evaluated the aTTACH! given above.
we proceed to evaluate in succession

{ aTTaACH! environ! '(NAME bazball (% 2 foobar)))
{ arraci! environl "bazball)

(aTracH! environ! /(| NAME bazball 137))

{ ATTACH! environ! 'bazball)

we get
(ALPHA
(aLPiis (NAME foobar 6) ; already evalualed
(ALPHA (NAME bazbdll (x 2 foobar))
(aLpna bazball
(ALPHA (NAME bazball 137)
(ALPHA bazball))))))

which evaluates to
(ALPHA
(ALPHA { NAME foobar G)
(ALPHA (NAME bazball 12)
(ALpHa 12
(ALPHA (NAME bazball 137)
(aLpna 1371)0)))

An open ALPHA shares some resemblance with a
stream [3,22] with two important differences: (1) el-
ements of an open ALPHA are evaluated not by a
stream generating function but by the open ALPHA
itself and (2) unlike conventional streams, open AL-
PIIAS may be appended-to by arbitrarily many pro-
cesses. In this sense, an open ALPHA acts as a multi-
strcam or a parallel queue[9], with the ATTacH! op-
erator serving as an atomic append operation. [t is
from the enriched semantics of multi-streams over or-
dinary streams that open ALPHAS derive their expres-
sive power. An open ALPHA can act like a stream -
it need simply be built by a tail recursive function.
It is not possible, however, to use a stream to model
the open ALPHA in full generality.

Note that the open aLpPia, like the closed ALPHA,
1s a parallel evaluation form. If we attach to some
open ALPHA n elements in succession, all » will evalu-
ale simultaneously, subject only to the condition that
evaluation of clement k can’t begin until the name to
be deflined by element k-7 (if there is one) has been
entered in the symbol table.

We can select elements of an open ALPHA using the
selector functions over ALPHA’s — ACAR and ACDR
described carlier. If env is the open alpha
(ALPHA
(ALPHA first-elt
(ALPHA olher-ells)))

then (ACAR env) returns firsi-ell, unless first-elt is

“#0f it is, ACAR blocks until “*” is replaced, then

proceeds as before. (ACDR env) returns (ALPHA other-
elts), unless olher-elts consists of “*”, in which case
it blocks until “*” is replaced.

Open ALPHAS blur the distinction between processes
and data structures. Since they obey the same scop-
ing rules as normal alphas and can be operated on
by the same operators, we can view them as simply a
more structured version of the hasic aLpHA form. Be-
cause open ALPHAS are extensible and their elements
are evaluated in parallel, they can also be viewed
as dynamic process creators. Their flexibility makes
them an ideal tool for a wide variety of applications,
among them the Symmetric Lisp Interpreter.

4 The Symmetric Lisp Inter-
preter

The role of the interpreter is simply to solicit expres-
sions from the user and inject them into an environ-
ment of the user’s choosing. One way to express such
a routine is as follows:

(NAME inferp
(LAMBDA (user-env)
(NAME input (READ))
(1F (EQUAL input ‘exil)
(quit)
(ATTACH! user-env inpuf))
(interp user-env)))

This outline interpreter (which neglects matters of

printing and formatting) behaves in the following

way. Consider what happens when the user types
(interp env)

The interp function reads expressions from the user,
compares each against a termination symbol and, if
the user has not called for termination, attaches a
new element to the open ALPHA env. Each new el-
ement s evaluated, once attached, in the context of
env. ALPHA’s parallel evaluation rule doesn’t compro-
mise the correctness of the interpreter, because AT-
TAacH! works atomically — user input will be attached
to env in the correct order even though many input
forms may be undergoing evaluation simultaneously.
The dataflow-style synchronization rule for name ac-
cess guarantees that, when expressions require values
that are still being computed, they will wait until the
values are known and then proceed.

The environment constructed by the Symmetric Lisp
interpreter (unlike its counterpart in other interpreta-
tive languages) is transparent and denotable. If curr-
env is the name of an interpreter-constructed open

278

ALPHA, we can evaluate ezpr in this environment by
writing (WITH curr-env expr). (WITH is sensitive to
the ALPIIA type of its first argument: (WITH some-
open-alpha expr) causes ezpr to be evaluated as if it
were substituted for some-open-alpha’s “*”.) We can
display curr-env just as we can closed ALPHA’s: the
expression curr-env yields the value:
(ALPHA { ALPHA ... *))

Because environments are denotable, it is possible for
users to create any number of disjoint (or shared) si-
multaneous interpreter sessions, or even nest sessions
within sessions. Because open ALPHAS are transpar-
ent, it is also simple to have disjoint interpreter ses-
sions share information with one ancther. The in-
vocation (find some-open-alpha env) searches down
some-open-alpha for an environment need env:
(NAME find
{ LAMBDA (o0a env)
(PRIVATE acar-val (ACAR o0a))
(if (EQUAL (NAME-OF acar-val)
(NAME-OF env))
acar-val
(if (END-OF-ALPHA? 04)
nil

(find (ACDR 0q) env)))))

The function NAME-OF returns the name symbol if its
argument is a NAME or PRIVATE form, nil/ otherwise.
The predicate END-OF-ALPHA? returns true if ACAR
of the open ALPHA that is its argument is “*”. Using
find, an expression in sessionl! can ask for the value
of name z in session2 thus:

(WITH (find global session?) z)

where global 1s the global environment or world aL-
PHA.

5 Parallelism

The function interp defines a parallel interpreter.
Once an expression has been read, its evaluation can
proceed concurrently with expressions input subse-
quently; the ATTACH! operator acts as the process
creator. Expressions that refer to names whose val-
ues are not yet known simply block (as usual) until a
value is computed, and then proceed.

What use is parallelism in this context? Users of-
ten need to perform several computations simulta-
neously. Conventional machines use multiprogram-
ming to support concurrency; parallel machines can
support logical concurrency with genuine parallelism.
But how is logical concurrency presented to the user?

Traditional solutions along the lines of a Unix fork
aren’t very satisfactory, because they place on the file
system the burden of keeping track of results yielded
by background processes. In Lisp-based machines[12],
to take another example, users need to wrap expres-
sions that are to be executed concurrently in a com-
plicated process construct {(implemented using ex-
pensive coroutines); the top-level interpreter remains
strictly serial.

Symmetric Lisp, on the other hand, allows concur-
rent evaluations to coalece naturally into a shared
naming environment. Suppose, for example, that a
user chooses to run four test cases of some function
in parallel. He might type

(NAME first (some-function some-args))

and then
(NAME second (some-function some-olher-args))

and so on; he might then go off and do some other
Symmetric Lisp business. The value returned by the
first test case will be accessible, as soon as it is com-
plete, under the name first; to inspect this value, the
user simply types first to the interpreter. (He might
jump the gun and type first before the associated
computation is complete. Evaluation of the expres-
sion “first” accordingly blocks — but the interpreter
doesn’t block; it stands ready, as always, to accept
new input despite the fact that previous expressions,
in this case including both “(NAME first ...)” and
“first”, ave still under evaluation.) If, after creating
the four parallel test-case jobs, the user chooses to
format the results of the first two and send them to
the printer, he might enter (print (format first sec-
ond)). format blocks until values first and second are
available, and then proceeds.

Functionality of this sort is available in variants of
the Unix shell, and again in the context of modern
window-based command monitors. But the Symmet-
ric Lisp interpreter operates without the distracting,
extraneous influence of a file system or a window mon-
itor. It interfaces cleanly to other pieces of an expand-
ing program structure because the environments that
1t manipulates are directly accessible to the user. The
inherently parallel semantics of environments in Sym-
metric Lisp leads not only to a simple formulation of
a parallel interpreter, but to improved modularity of
the user-system interface as well.

An ALPHA form can be also be used to implement
cobegin-coend style statements. Consider a paral-
lel algorithm that is structured as a controller and a
series of identical workers. Entering the expression

(ALPHA (control) (worker) (worker) (worker))

279

creates a four-thread parallel computation (because
the aLPHA, like the open ALPHA, has a parallel-
evaluation rule).

Like functional language programs that are intended
for parallel evaluation, Symmetric Lisp programs can
be explosively parallel: every environment, and every
function application as well, allows parallel evalua-
tion to take place. One likely Symmetric Lisp host
is a parallel graph reduction machine[21,17]. Envi-
ronments have a natural graph representation, leaves
of the graph being ALPIA expressions and internal
nodes representing NAME forms. There are oppor-
tunties for a compiler to introduce appropriate con-
straints on degree of parallelism during ALPHA or
open ALPHA evaluation by analysing the structure of
this graph. The interpreter doesn’t have the luxury of
performing semantic analysis over the program graph,
and must, therefore, rely on heuristics in determining
where to bound parallelism. Our current implemen-
tation of a concurrent interpreter retains a parallel
evaluation semantics for open ALPHAs and for all AL-
PHA forms typed at the top level of the interpreter
loop. Tunctions and ALPHAs encountered elsewhere
are evaluated sequentially.

6 Persistence

Persistency refers to a data structure’s outliving the
program that created it. Few programming lan-
guages support persistency; most require instead the
use of an external storage agent such as a file sys-
tem to manage long-lived data. A notable excep-
tion is PS-Algol[4], in which persistence is embedded
within the semantics of data types. The vast major-
ity of other languages treat persistency as an extra-
linguistic property, one that can be used in conjunc-
tion with the facilities provided by the language while
remaining external to the language.

Environments in Symmetric Lisp, on the other hand,
are persistent cbjects — an ALPHA’s lifetime is inde-
pendent of the expression that creates it. Any ele-
ment attached by the interpreter to an open ALPHA
exists for as long as the open ALPHA does (unless the
user explicitly removes it). Such an interpreter-built
environment is in turn one element of a global “world
ALPHA”, and it too exists indefinitely.

The open ALPHA’s persistence allows us to use
interpreter-created environments as file systems.
They have the attributes that are important in mod-
ern file systems: they are named collections of named
elements; sub-environments may be freely nested
within them. Thus a file system takes the form

(NAME file-sysiem
(ALPHA
(NAME directory-1 (ALPHA ...))))

Such a file system has the unusual characteristic of
having a structure, type and organization that are
completely specified by the user. To make a directory
my-dir, for example, it’s sufficient to type

(NAME my-dir (OPEN-ALPHA))

to the interpreter. Adding a file to my-dir is accom-
plished by ATTACHIng to it. Of course, a workable file
system is more than simply a heterogenous collection
of elements; there are issues of protection, version
management and so on to address. But in Symmetric
Lisp, these issues are variants of environment man-
agement and access; we consider some of these ques-
tions in thex next section.

6.1 Meta-Cleanliness

Symmetric Lisp gives users a high degree of con-
trol over their computing and naming environments.
More unusual, it makes system-level routines clean
and easy to write. Herring and Klint[15] write that
two necessary conditions that need to be satisfied in
designing a language-based computing system are (1)
elimination of any distinction between files and data
and (2) absence of any distinction between the nam-
ing and typing of files and variables. We agree, and
observe that the semantics of ALPHA already contains
all the ingredients necessary to produce such a unified
framework.

Consider the following simple example. Suppose that
we have implemented a file system in which each el-
ement of a directory ALPHA is either (1) another AL-
PHA, in which case it is a nested sub-directory, or (2)
not an ALPHA, in which case it is to be treated as a
file. Thus
(NAME some-direciory
(ALPHA

(NAME filel ... fext...)

(NAME file2 ... text...)

(NAME sub-directory (ALPHA ...)))

and so on.

The user needs a function /s to list the contents of a
directory, tagging each name with either file or dir.
This function is easy to write:
(NAME Is
(LAMBDA (directory)
(AMAP list-one directory)))

AMAP maps a function to the elements of an alpha.
list-one is:

(NAME list-one
(LAMBDA (elt)
(PROGN
(print (NAME-OF elt))
(¢f (ALPHA? eli)
(print *dir)
(print *file)))))

Writing a Is-rec function to print the contents of all
nested directories is just as simple.

In approaching non-trivial examples, the principle is
the same: the environment is a simple data structure
that is accessible to and manipulatable by the user.

Parallelism and meta-cleanliness together lead to
other kinds of expressiveness not available in other
interpreter-based programming environments. [t’s
easy, for example, to specify and create daemon pro-
cesses that watch streams or environments for new
developments.

Consider, for example, the following definition of a
mail daemon:
(NAME monitor-mail
(LAMBDA {stream)
(NAME mail-message (ACAR slream)
(PROGN
(display-message mail-message)
(monitor-mail (ACDR stream))))))

To use the daemon, a user types (monitor-mail my-
mail-stream). The evaluation of this function runs in-
definitely — but of course, once again, the interpreter
itself doesn’t hang: it’s ready to receive new user in-
put despite the fact that the evaluation of a previous
expression, here “(monitor-mail my-mail-stream)”, is
still ongoing. Whenever a new message is appended
(using ATTACH!) to my-mail-stream, the daemon dis-
plays the message and then quiesces to await the next
one. Users can simultaneously read mail by travers-
ing my-matil-stream using ACAR and ACDR.

Parallelism and meta-cleanliness form an interesting
and vigorous symbiosis. Because all file-like opera-
tions in Symmetric Lisp are actually operations over
ALPHA forms, parallelism is inherent in any file op-
eration. The transparency of ALPHAs coupled with
their self-synchronizing parallel semantics makes the
Symmetric Lisp system interface especially clean and
simple.

Consider the following situation: the user wants to
run many test cases of a program @ concurrently; he
wants to analyze the results of each using an analysis
program analyze; whenever an analysis turns up a
“best result so far”, he wants the results entered in

a besl-results directory and a message printed to the
terminal screen.

One convenient way to go about this is to create a
new environment called fesi-runs, and ATTACH! as
many test runs as are necded:

(NAME fest-runs (OPEN-ALPHA))

(ATTACH! lest-runs (Q first-set-of-args))

(ATTacH! lest-runs (@ second-sci-of-args))

and so on...

All test runs will (of course) evaluate in parallel. \We
can now set up the analysis stage by typing
{ AnAP analyze test-runs)

and we apply the following function to the result:
(NAME inspecl
(LAMBDA {an-analyzed-stream best-resulls)
(PROGN
(check-oul (ACAR an-analyzed-stream)
besl-resulls))
(inspecl

(ACDR an-analyzed-stream)))))

where check-out looks at an element, decides whether
it represents a “best so far” and, if so, prints a mes-
sage and attaches its parameter to an open ALPLA
called best-results.

This is a simple solution to what would be, in most
systems, a very complicated problem. (The reader is
urged to express the same thing in his own favorite
programming environment, and compare.)

7 Related work.

Symmetric Lisp bears an important resemblance
to the sort of monolingual programming environ-
ments described generally by Heering and Klint[15]
and, particularly to systems like Smalltalk[11] and
Interlisp[20] or Cedar{19]. Unlike InterLisp, Symmet-
ric Lisp treats files and data structures in the same
way: it shares many of the goals of Smalltalk, but the
two designs differ in dramatic and obvious ways. The
work of Dennis[7] in building a general-purpose func-
tional programming system based on dataflow prin-
ciples addresses many of the issues of modularity we
have raised here, but it is based on a radically differ-
ent programming and execution model. Symmetric
Lisp's resemblance to non-language-based program
development environments like Gandalf[13] or Unix
tools is less pronounced.

Whereas parallelism in other parallel Lisps like
AMultiLisp(14]) or Qlambda[g] i1s introduced explicitly

281

through control structures (such as PCALL or QLET),
parallelism in Symmetric Lisp is intrinsic, revolving
around parallel data structures. Insofar as parallelism
occurs implicitly through data structures, Symumetric
Lisp bears some similarity to functional languages im-
plemented on data flow[7] or parallel graph reduction
architectures{17]. Unlike these languages, however,
Symmetric Lisp allows side effects and retains a se-
mantics suitable for reasoning about dvnamic process
invocation. Connection Machine Lisp[18] shares some
of the goals of Symumetric Lisp but, while CM-Lisp is
best sulted to architectures intended to exploit fine-
grained parallelism[16], Symmetric Lisp is intended
as a high level language for a general language-based
parallel workstation, with the Symmetric Lisp inter-
preter serving as the interface between users and the
multi-machine architecture. Symmetrie Lisp contains
the necessary ingredients to support a parallel object-
oriented programming model as described in 1] but
without much of the conceptual overhead that these
languages introduce. The treatment of bindings as
denotable values in Pebble[3] is similatr to the seman-
tics of bindings in ALpda forms but the use of types
as values in Pebble as well as the absence of a con-
currency semantics distinguishes it from Symmetric
Lisp.

8 Conclusions.

Symmetric Lisp is intended to be a host-language for a
language-based parallel workstation. The interpreter
is to serve as the primary interface between users
and the machine. Expressions typed at the terminal
are translated into an intermediate form suitable for
evaluation by the interpreter implementing the oper-
ational semantics of the langnage. There are a varietly
of abstract execution models that appear well-suited
to Symmetric Lisp; among them are parallel graph
reduction [17,21] (described earlier) and the program-
ming model supported by Linda machines [6].

Symmetric Lisp is currently implemented as a concur-
rent interpreter written Common Lisp and running on
the TT Explorer.

References

(1] Gul Agha. Actors: A Medel of Concurrent Com-
putation in Distributed Systems. PhD thesis,
1985.

[2]

(10)

[11]

(12]

Arvind, Rishiyur Nikhil, and Keshav Pingali. I-
Structures: Data Structures for Parallel Com-
puting. In Proceedings of the Workshop on
Graph Reduciion, 1986.

E.A. Ashcroft and W.W. Wadge. Lucid, a Non-
procedural Language with Tteration. Communi-
cations of the AGM, 20(7):519-526, July 1977.

M. Atkinson and R. Morrison. Types, Bindings,
and Parameters in a Persistent Environment. In
Persistence and Dala Types Papers for the Ap-
pin Workshop, University of St. Andrews, Au-
gust 1985,

Robert Burstall and Butler Lampson. A Kernel
Language for Modules and Abstract Data Types.

Nick Carriero; David Gelernter, and Jerry Le-
ichter. Distributed Data Structures in Linda. In
Proceedings of the ACM Symp. on Principles of
Programming Languages, Jan. 1986.

Jack Dennis, Joseph Stoy, and Bhaskar Guharoy.
VIM: An Experimental Multi-User Computer
System Supporting Functional Programming. In
1984 Conf. on High-Level Computer Archilec-
ture, 1084,

R. Gabriel and J. McCarthy., Queue-Based
Multi-Processing Lisp. In Proceedings of the
1984 Symp. on Lisp and Functional Program-
ming, pages 25-44, August 1984.

David Gelernter and Suresh Jagannathan.
A Programming Language Supporting Mulli-
Streams. Technical Report, Yale University
Technical Report, 1987.

David Gelernter, Suresh Jagannathan, and
Thomas London. Environments as First-Class
Objects. In 14™ Principle of Programming Lan-
guages Conf., 1987.

Adele Goldberg and David Robson. Smalltalk-
80: The Language and ils Implementation.
Addison-Wesley, 1983.

R. Greenblat, T. Knight, J. Holoway, D. Moon,
and D. Weinreb. The LISP Machine. In Interac-
tive Programming Environments, pages 326-352,
MceGraw-Hill,

A.N. Ilabermann and D. Notkin. Gandalf; Soft-
ware development environments. JEEE Trans.
Softw. Eng., 1117-1128, Decemeber 1986.

282

[14]

(15]

(16}

(17]

(18]

Robert Halstead. Multilisp: A TLanguage for
Concurrent Symbolic Computation. Transac-
tions on Programming Languages and Sysiems,
October 1986.

J. Heering and P. Klint. Towards Monolingual
Programming Environments. ACM Transaction
on Programming Languages, 183-213, July 1985.

D. Hillis. The Connection Machine. MIT Press,
1985.

Robert Keller, Gary Lindstrom, and Suhas
Patil. A Loosely-Coupled Applicative Multi-
Processing System. In AFIPS Conference Pro-
ceedings, pages 613-622, June 1979.

Guy Steele Jr. and Dan Hillis, Connection
Machine Lisp: Fine-Grained Parallel Symbolic
Computing. In Proceedings of the 1986 Conf. on
Lisp and Functional Programming, pages 279~
298, August 1986.

W. Teitelman. A Tour Through Cedar. IEFE
Software, January 1984,

W. Teitelman and L. Masinter. The Interlisp
Programming Environment. Computer, 25-34,
April 1981,

D. A. Turner. A New Implementation Technique
for Applicative Languages. Software - Practice
and Ezperience, (9):31-49, 1979.

K.-S. Weng. An Abstract Implementation for a
Generalized Data Flow Language. Technical Re-
port.

