
Parallelism, Persistence and Meta-Cleanliness in the Symmetric Lis p
Interpreter

David Gelernter

	

Suresh Jagannathan

	

Thomas London
Yale University

	

Massachusetts Institute of Technology

	

AT&T Bell Laboratorie s

Abstract

Symmetric Lisp is a programming language designe d
around first-class environments, where an environ-
ment is a dictionary that associates names with def-
initions or values . In this paper we describe the log-
ical structure 'of the Symmetric Lisp interpreter . In
other interpreted languages, the interpreter is a vir-
tual machine that evaluates user input on the basis
of its own internal state . The Symmetric Lisp in-
terpreter, on the other hand, is a simple finite-stat e
machine with no internal state . Its role is to at-
tach user input to whatever environment the user has
specified ; such environments are transparent object s
created by, maintained by and fully accessible to the
user . The interpreter's semantics are secondary t o
the semantics of environments in Symmetric Lisp : i t
is the environment-object to which an expression i s
attached, not the interpreter, that controls the eval-
uation of expressions .

This arrangement has several consequences . Because
environments in Symmetric Lisp are governed by a
parallel evaluation rule, the Symmetric Lisp inter-
preter is a parallel interpreter . A Symmetric Lisp
environment evaluates to another environment ; a
session with the interpreter therefore yields a well -
defined environment object as its result . Users are
free to write routines that manage these interpreter-
crea ted objects – routines that list the elements of a
namespace, coalesce environments, maintain multipl e
name definitions and so on precisely because environ-
ment objects may be freely inspected and manipu-
lated . Because a named environment may contai n
other named environments as elements, interpreter -

This material is based on work supported in part by th e
National Science Foundation grant number #DCR-800192 0

Permission to copy without . fee all or part of this material i s
granted provided that the copies are not made or distribute d
for direct conunerical advantage, the ACM copyright notic e
and the title of the publication and its dlate appear, and notic e
is given that copying is by permission of the Association fo r
Computing Machinery. To copy otherwise, or to republish ,
requires a fee and/or specific permission .

©1987 ACM 0-89791-235-7/87/0006/0274 	 75tD

created objects may be regarded as hierarchical fil e
systems . Because of the parallel evaluation semantic s
of environments, the interpreter is well-suited as an
interface to a concurrent, language-based computer
system that uses Symmetric Lisp as its base language .
We argue that – in short – a basic semantic simplifi-
cation in Symmetric Lisp promises a correspondingl y
basic increase in power at the user-interpreter inter -
face .

1 Introduction

In most interpreters, the evaluation of user expres-
sions is controlled by the interpreter's internal state .
The user can't see this hidden internal state, an d
can't easily modify or extend (still less completel y
rewrite) the programs to access and manipulate th e
environment image that are provided as part of th e
interpreter package . Extensibility and modularit y
of the interpreter-supplied programming environmen t
are controlled by the system's implementors, not it s
users .

In most interpreters, the explicitly serial READ-EVAL-
PRINT loop militates against the idea of a paral-
lel interpreter . Parallel dialects of Lisp have there -
fore added language constructs to support parallelis m
without touching the interpreter . Languages lik e
Multilisp [14] and Qlambda[8] are Lisps augmente d
with parallelism constructs ; but their interpreter s
(evidently) still follow a serial evaluation rule .

In this paper we present a different interpreter -
building paradigm, one in which the interpreter main-
tains no internal state information. The Symmetri c
Lisp interpreter 's job is simply to attach user inpu t
to a user-specified environment ; it is the environmen t
structure, not the interpreter, that controls the eval-
uation of expressions . Environments are first-class
objects – they may be freely examined, accessed an d
manipulated by the user . Symmetric Lisp's first-clas s
environment serves several purposes :

274

L Like conventional namespaces, they bind a col-
lection of names to values .

2. Like parallel control structures, they allow a col-
lection of elements to be evaluated concurrently .

3. Unlike other control constructs, upon evalua-
tion they yield new environments, in which al l
constituents of the original appear in evaluate d
form .

4. They may be treated as extensible structures t o
which new environment-fields may be attache d
dynamically .

The introduction of first-class environments has far -
reaching ramifications for the construction of a
language-based computer system . Because evaluat-
ing an environment yields another environment, th e
result of an interpreter session is a well-defined, trans -
parent structure . Transparent environments make i t
possible for users to write customized functions tha t
inspect, coalesce, or maintain multiple name spaces .
Because the environment objects constructed by th e
interpreter may be regarded as persistent, hierarchi-
cal file systems, these same routines will work for fil e
systems . Because of the underlying parallel evalua-
tion semantics of environments, the Symmetric Lis p
interpreter is inherently parallel as well .

In the next section, we discuss the design of the Sym-
metric Lisp programming language . Section 4 gives
an outline of the Symmetric Lisp meta-circular in-
terpreter . We then go on to discuss issues of par-
allelism, persistency, and general expressivity in th e
Symmetric Lisp programming environment . The las t
section describes the context of this work and relate d
projects .

2 Environments in Symmetric

Lis p

All programming languages provide users with some
way to create environments, where an environment i s
a dictionary that associates names with their defini-
tions or values . Modern Algol-based languages sup -
ply a global and any number of local naming environ-
ments ; they generally provide record-type objects a s
well, where a record is another kind of local names-
pace . Languages that support functional objects usu-
ally provide closures, which are naming environment s
within which a function body may be evaluated . In-
terpretecl languages support environments that user s
create incrementally .

Symmetric Lisp is a programming language designe d
around first-class environments . First-class environ-
ments make it possible to write not only constants o f
type environment, but expressions that yield environ-
ments as results or accept them as arguments . Lan-
guages that lack first-class environments rely ordinar-
ily on a smorgasborg of different namespace mecha-
nisms — records or structures for grouping data, clo-
sures for encapsulating an execution environment ,
classes or flavors for building objects, modules o r
packages for building libraries, system interfaces fo r
building a persistent file system . We argue that th e
presence of first-class, denotable environments elimi-
nates the need for these weaker mechanisms, and fur-
thermore brings about a fundamental and interestin g
change in the nature of the programming language :
conventional distinctions between data and contro l
structures, modules and processes, expressions an d
declarations disappear .

A Symmetric Lisp environment is constructed fro m
three elements : NAME, PRIVATE and ALPHA forms .
A NAME form binds a name (which must be a sym-
bol) to the result of an expression and makes thi s
binding visible both within and outside of the envi-
ronment in which it executes . PRIVATE is the same
as NAME, except that it defines a binding that is in -
visible outside of the local environment . The ALPH A
form gives meaning to these bindings by tying the m
together . The result of evaluating an ALPHA is an -
other ALPHA in which every expression in the origi-
nal has been fully evaluated . Within a given alpha
all names, whether bound using NAME or PRIVAT E
forms, must be unique .

An ALPHA form is evaluated in three steps . First ,
names are evaluated simultaneously and recorded a s
elements of the environment to be returned by thi s
ALPHA . This environment is now accessible to an y
expression that requires it . Its evaluation is only
complete, however, when all expressions in the ALPH A
have been evaluated . These expressions are evaluated
simultaneously ; if an expression requires the value o f
some binding and that value is still being computed ,
evaluation of the expression blocks until the require d
value becomes available. Evaluation of an ALPH A
yields another ALPHA whose kth element is the re-
sult yielded by the k it' element of the original alpha .
Just as an ALPHA yields an ALPHA, a NAME or PRI-

VATE form yields a corresponding NAME or PRIVAT E

form. (The fact that an ALPHA may be accessed be -
fore all of its elements have been evaluated, togethe r
with its built-in synchronization rule, makes it sim-
ilar to functional data structures implemented usin g
early-completion structures[7] or I-structures[2] .)

275

Thus, evaluating
(ALPH A

(NAME x(+11))
(NAME y (* x 10)))

yields
(ALPH A

(NAME x 2)
(NAME y 20))

An expression may be a constant, which evaluate s
to itself; a name, which yields the value to which i t
is bound ; or an application of a function to argu-
ments which are themselves expressions . Expression s
may refer to names that are not defined within thei r
immediately surrounding ALPI-IA . When they do, we
search for a binding within the innermost ALPHA that
encloses the immediately-surrounding one in the eval-
uation environment ; if we still find no binding, w e
search the next-innermost alpha and so on .

A binding may be altered by a SETA command which
operates in the same way as its Lisp counterpart, ex-
cept that the name being reassigned must have pre-
viously been defined. in a NAME or PRIVATE form .
All side-effecting operations are executed atomically .
Note that, as in other Lisps, PROGN evaluates a list of
forms sequentially and returns the value of the last .

Elements of an ALPHA may be selected through th e
operators ACAR, ACDR, ANTH or ALAST, which are
ALPHA counterparts of the traditional Lisp list selec-
tors . We discuss AGAR and ACDR in greater detail i n
the next section .

Environments, being first-class objects, may b e
bound to names . If an environment is bound to a
name Q — (NAME Q (ALPHA . . .)) — we can evalu-
ate an expression E within Q's namespace by writin g
(WITH Q E) . To evaluate this expression we evalu-
ate E, consulting Q first for the values of any fre e
names we encounter . (Free names not bound within
Q are looked-up within the immediately-enclosing al-
pha and so on, as per the normal evaluation rules .)
The value yielded by E is returned as the value of th e
WITH form . USE is a simpler variant of WITH : eval-
uating (USE A) dumps the NAME forms found withi n
ALPHA A into the current environment . It is an erro r
if any name conflicts arise as a result .

An element of an ALPHA may be any expression: i t
is not the case that only NAME or PRIVATE forms ar e
acceptable as ALPHA elements . In evaluating an arbi-
trary expression, we follow the same rules that apply
to the evaluation of expressions that appear withi n
bindings . Thus

(ALPHA (NAME x 10) (+ x 5))

yields
(ALPHA (NAME x 10) 15)

Environments can be used to implement Pascal-style
records; because names can be be bound to func-
tions, we use them to build modules and libraries ,
too. The PRIVATE form is useful for building abstrac t
data types ; an important consequence of first-clas s
environments is that we can define a function tha t
returns an environment as a value, making it easy t o
build parameterized data types as well .

The implementation of functions in Symmetric Lis p
is intimately tied to its treatment of environments .
LAMBDAS are functional constants that may be ap-
plied ; application of a LAMBDA to an argument yield s
an environment whose last element is the body of th e
LAMBDA expression . The value of the application i s
accessed by using the ALAST selector . As described
in [10], environments can be used to support curried ,
higher-order, lexically-scoped functions despite Sym -
metric Lisp's dynamic binding discipline .

3 Environments as Activ e
Computations

The enviroments we have described thus far are static .
The collection of bindings they define cannot be aug-
mented . Sometimes, however, environments can't b e
defined all at once ; they must be constructed incre-
mentally . Consider an environment that represents a
file system : each directory is a sub-environment, an d
bindings associate file names with file objects . A n
environment that represents a general multi-versio n
data base must also be constructed incrementally, an d
so too must be the environment assembled by the in-
terpreter during an interactive session .

Symmetric Lisp accomodates growing environment s
with the open alpha form. An open ALPHA is an on-
going computation, not a passive object . An open AL -
PHA is under evaluation from the time at which it i s
created, and continues under evaluation indefinitely .
Using the operation ATTACH!, described below, we
can drop new elements one-by-one into an open AL -

PHA ; each new element is evaluated as soon as it i s
attached .

The operation OPEN-ALPHA returns a new open al-
pha; its value at creation is the empty alpha, an alph a
with no elements . Thus

(NAME environl (OPEN-ALPHA))

yield s
(NAME environl (ALPHA *))

276

The symbol *" means " this ALPHA is open, and ne w
elements will appear here . "

The side-effecting functio n
(ATTACH! an-open-alpha an-expr)

evaluates an-open-alpha to yield an open ALPHA and
evaluates all-erpr to yield a Symmetric Lisp constan t
or form. It then attaches this form to the open AL-

PHA . where it will be evaluated in the context of the
growing environment of which it is now part . Specif-
ically, the ATTACH! expression above causes the "* "
within an-open-alpha to be replaced b y

(ALPHA expr-value *)

where e .vpr-value is the result of evaluating an-exp r
in the environment of the caller of the ATTACH! .

Thus, if we start with our newly-created enrironl and
evaluat e

(ATTACH! en t'ironl '(NAME foobar (+ 2 3)))

encironl becomes

ALPHA

(ALPHA (NAME foobar (-!- 2 3

which evaluates t o
(ALPH A

(ALPHA (NAME foobar 5) *))

Open ALPHAS evaluate in exactly the same way as
closed ALPHAS . All that we need to acid is a rul e
for the evaluation of "*" . The rule is as follows : to
evaluate the element "*" . block until the identity of
the name to be defined by this ALPHA ' S first elemen t
(if there is such a name) has been determined ; then
block again until "*" is replaced by a new element F ,
and then evaluate E, using the ordinary alpha scopin g
rules to resolve the meaning of names within E .

Note that we can always fully evaluate the first ele-
ment of an open ALPHA without knowing what form
will ultimately replace the asterisk . This is so because
*" must necessarily be replaced by something of th e

form (ALPHA expr*) : that is, the asterisk will alway s
be replaced by an ALPHA, never by a NAME or a PRI-

VATE form; this being so, the something that replace s
'*" can never alter the naming environment withi n

which the first element evaluates . It follows that, to
resolve the meaning of names encountered while eval-
uating expressions within an open ALPHA, the rule i s
simple : search left ; ignore what lies to the right . I f
a name is multiply-defined within an open alpha, th e
newest (rightmost) definition supercedes earlier ones
— this follows, again, from the normal alpha scopin g
rules .

Thus if, having evaluated the ATTACH! given above .
we proceed to evaluate in successio n

(ATTACH! environ l '(NAME bazball (* 2 foobar)))
(ATTACH! environ.1 'bazball)

ATTACH! enc'ironl '(NAME bazball 137))
ATTACH! environl 'bazball)

we ge t
(ALPHA

(ALPHA (NAME foobar 6) ; already evaluate d
(ALPHA (NAME bazball (* 2 foobar))

(ALPHA bazbal l
(ALPHA (NAME bazball 137)

(ALPHA bazball))))))

which evaluates t o
(ALPH A

(ALPHA (NAME foobar 6)
(ALPHA (NAME bazball 12)

(ALPHA 1 2
(ALPHA (NAME bazball 137)

(ALPHA 137))))))

An open ALPHA shares some resemblance with a
stream [3,22] with two important differences : (1) el-
ements of an open ALPHA are evaluated not by a
stream generating function but by the open ALPHA

itself and (2) unlike conventional streams, open AL-

PIIAS may be appended-to by arbitrarily many pro-
cesses . In this sense, an open ALPHA acts as a multi -
stream or a parallel queue[9], with the ATTACH! op-

erator serving as an atomic append operation . It i s
from the enriched semantics of multi-streams over or-
dinary streams that open ALPHAS derive their expres-
sive power . An open ALPHA can act like a stream —
it need simply be built by a tail recursive function .
It is not possible, however, to use a stream to mode l
the open ALPHA in full generality .

Note that the open ALPHA, like the closed ALPHA ,

is a parallel evaluation form . If we attach to some
open ALPHA n elements in succession, all n will evalu-
ate simultaneously, subject only to the condition tha t
evaluation of element k can ' t begin until the name t o
be defined by element k-1 (if there is one) has bee n
entered in the symbol table .

We can select elements of an open ALPHA using th e
selector functions over ALPHA ' S — AGAR and ACD R

described earlier . If env is the open alpha
(ALPHA

(ALPHA first-ell
(ALPHA other-ells)))

then (AGAR env) returns first-ell, unless first-elt i s
"*" ; if it is, ACAR blocks until "*" is replaced, the n

277

proceeds as before . (ACDR env) returns (ALPHA other-
ells), unless other-efts consists of "*", in which case
it blocks until "*" is replaced .

Open ALPHAS blur the distinction between processe s
and data structures . Since they obey the same scop-
ing rules as normal alphas and can be operated on
by the same operators, we can view them as simply a
more structured version of the basic ALPHA form . Be -
cause open ALPHAS are extensible and their element s
are evaluated in parallel, they can also be viewe d
as dynamic process creators . Their flexibility make s
them an ideal tool for a wide variety of applications ,
among them the Symmetric Lisp Interpreter .

4 The Symmetric Lisp Inter-
prete r

The role of the interpreter is simply to solicit expres-
sions from the user and inject them into an environ-
ment of the user's choosing . One way to express such
a routine is as follows :

(NAME interp
(LAMBDA (user-env)

(NAME input (READ))
(IF (EQUAL input ' exit)

(quit)
(ATTACH! user-env input))

(interp user-env)))

This outline interpreter (which neglects matters o f
printing and formatting) behaves in the followin g
way. Consider what happens when the user type s

(interp env)

The interp function reads expressions from the user ,
compares each against a termination symbol and, i f
the user has not called for termination, attaches a
new element to the open ALPHA env . Each new el-
ement is evaluated, once attached, in the context o f
env . ALPIIA's parallel evaluation rule doesn't compro-
mise the correctness of the interpreter, because AT-

TACH! works atomically – user input will be attached
to env in the correct order even though many inpu t
forms may be undergoing evaluation simultaneously.
The dataflow-style synchronization rule for name ac-
cess guarantees that, when expressions require value s
that are still being computed, they will wait until th e
values are known and then proceed .

The environment constructed by the Symmetric Lis p
interpreter (unlike its counterpart in other interpreta-
tive languages) is transparent and denotable . If curr-
env is the name of an interpreter-constructed open

ALPHA, we can evaluate expr in this environment b y
writing (WITH curr-env expr) . (WITH is sensitive t o
the ALPHA type of its first argument : (WITH some-
open-alpha expr) causes expr to be evaluated as if i t
were substituted for some-open-alpha's "*" .) We can
display curr-env just as we can closed ALPHA'S : th e
expression curr-env yields the value :

(ALPHA (ALPHA . . . *))
Because environments are denotable, it is possible fo r
users to create any number of disjoint (or shared) si-
multaneous interpreter sessions, or even nest session s
within sessions. Because open ALPHAS are transpar-
ent, it is also simple to have disjoint interpreter ses-
sions share information with one another . The in -
vocation (find some-open-alpha env) searches dow n
some-open-alpha for an environment need env :

(NAME find
(LAMBDA (oa env)

(PRIVATE acar-val (ACAR oa))
(if (EQUAL (NAME-OF acar-val)

(NAME-OF env))
acar-va l
(if (END-OF-ALPHA? oa)

ni l
(find (ACDR oa) env)))))

The function NAME-OF returns the name symbol if it s
argument is a NAME or PRIVATE form, nil otherwise .
The predicate END-OF-ALPHA? returns true if ACA R
of the open ALPHA that is its argument is "*" . Using
find, an expression in sessionl can ask for the value
of name x in sessionl thus :

(WITH (find global sessionl) x)

where global is the global environment or world AL -

PHA .

5 Parallelism

The function interp defines a parallel interpreter .
Once an expression has been read, its evaluation ca n
proceed concurrently with expressions input subse-
quently; the ATTACH! operator acts as the proces s
creator . Expressions that refer to names whose val-
ues are not yet known simply block (as usual) until a
value is computed, and then proceed .

What use is parallelism in this context? Users of-
ten need to perform several computations simulta-
neously . Conventional machines use multiprogram-
ming to support concurrency ; parallel machines ca n
support logical concurrency with genuine parallelism .
But how is logical concurrency presented to the user ?

278

Traditional solutions along the lines of a Unix fork
aren't very satisfactory, because they place on the fil e
system the burden of keeping track of results yielded
by background processes . In Lisp-based machines[12] ,
to take another example, users need to wrap expres-
sions that are to be executed concurrently in a com-
plicated process construct (implemented using ex-
pensive coroutines) ; the top-level interpreter remain s
strictly serial .

Symmetric Lisp, on the other hand, allows concur -
rent evaluations to coalece naturally into a share d
naming environment . Suppose, for example, that a
user chooses to run four test cases of some functio n
in parallel . He might type

(NAME first (some-function . some-args))

and then
(NAME second (some-function some-other-args))

and so on ; he might then go off and do some othe r
Symmetric Lisp business . The value returned by th e
first test case will be accessible, as soon as it is com-
plete, under the name first ; to inspect this value, th e
user simply types first to the interpreter . (IIe migh t
jump the gun and type first before the associated
computation is complete . Evaluation of the expres-
sion "first" accordingly blocks – but the interpreter

doesn't block ; it stands ready, as always, to accep t
new input despite the fact that previous expressions ,
in this case including both " (NAME first . . .)" an d
"first", are still under evaluation .) If, after creatin g
the four parallel test-case jobs, the user chooses t o
format the results of the first two and send them t o
the printer, he might enter (print (format first sec-
ond)) . format blocks until values first and second are
available, and then proceeds .

Functionality of this sort is available in variants o f
the Unix shell, and again in the context of moder n
window-based command monitors . But the Symmet-
ric Lisp interpreter operates without the distracting ,
extraneous influence of a file system or a window mon -
itor . It interfaces cleanly to other pieces of an expand-
ing program structure because the environments tha t
it manipulates are directly accessible to the user . The
inherently parallel semantics of environments in Sym-
metric Lisp leads not only to a simple formulation o f
a parallel interpreter, but to improved modularity o f
the user-system interface as well .

An ALPHA form can be also be used to implemen t
cobegin-coend style statements . Consider a paral-
lel algorithm that is structured as a controller and a
series of identical workers . Entering the expressio n

(ALPHA (control) (worker) (worker) (worker))

creates a four-thread parallel computation (becaus e
the ALPHA, like the open ALPHA, has a parallel -
evaluation rule) .

Like functional language programs that are intende d
for parallel evaluation, Symmetric Lisp programs ca n
be explosively parallel : every environment, and ever y
function application as well, allows parallel evalua-
tion to take place . One likely Symmetric Lisp hos t
is a parallel graph reduction machine[21,17] . Envi-
ronments have a natural graph representation, leave s
of the graph being ALPHA expressions and internal
nodes representing NAME forms . There are oppor-
tunties for a compiler to introduce appropriate con-
straints on degree of parallelism during ALPHA o r
open ALPHA evaluation by analysing the structure o f
this graph . The interpreter doesn't have the luxury o f
performing semantic analysis over the program graph ,
and must, therefore, rely on heuristics in determinin g
where to bound parallelism . Our current implemen-
tation of a concurrent interpreter retains a paralle l
evaluation semantics for open ALPHAS and for all AL-

PHA forms typed at the top level of the interpreter
loop . Functions and ALPHAS encountered elsewhere
are evaluated sequentially .

6 Persistence

Persistency refers to a data structure's outliving the
program that created it . Few programming lan-
guages support persistency ; most require instead th e
use of an external storage agent such as a file sys-
tem to manage long-lived data . A notable excep-
tion is PS-Algol[4], in which persistence is embedde d
within the semantics of data types . The vast major-
ity of other languages treat persistency as an extra-
linguistic property, one that can be used in conjunc-
tion with the facilities provided by the language whil e
remaining external to the language .

Environments in Symmetric Lisp, on the other hand ,
are persistent objects – an ALPHA 'S lifetime is inde-
pendent of the expression that creates it . Any ele-
ment attached by the interpreter to an open ALPH A

exists for as long as the open ALPHA does (unless th e
user explicitly removes it) . Such an interpreter-buil t
environment is in turn one element of a global "world
ALPHA", and it too exists indefinitely .

The open ALPHA's persistence allows us to use
interpreter-created environments as file systems .
They have the attributes that are important in mod -
ern file systems: they are named collections of named
elements ; sub-environments may be freely neste d
within them. Thus a file system takes the form

9 7 A

(NAME file-system
(ALPH A

(NAME directory-1 (ALPHA . . .))))

Such a file system has the unusual characteristic o f
having a structure, type and organization that ar e
completely specified by the user . To make a directory
my-dir, for example, it ' s sufficient to type

(NAME my-dir (OPEN-ALPHA))

to the interpreter . Adding a file to my-dir is accom-
plished by ATTACHing to it . Of course, a workable file
system is more than simply a heterogenous collectio n
of elements; there are issues of protection, versio n
management and so on to address . But in Symmetri c
Lisp, these issues are variants of environment man-
agement and access; we consider some of these ques-
tions in thex next section .

6 .1 Meta-Cleanliness

Symmetric Lisp gives users a high degree of con-
trol over their computing and naming environments .
More unusual, it makes system-level routines clea n
and easy to write . Herring and Klint[15] write tha t
two necessary conditions that need to be satisfied i n
designing a language-based computing system are (1)
elimination of any distinction between files and dat a
and (2) absence of any distinction between the nam-
ing and typing of files and variables . We agree, an d
observe that the semantics of ALPHA already contain s
all the ingredients necessary to produce such a unifie d
framework .

Consider the following simple example . Suppose that
we have implemented a file system in which each el-
ement of a directory ALPHA is either (1) another AL -
PHA, in which case it is a nested sub-directory, or (2)
not an ALPHA, in which case it is to be treated as a
file . Thus
(NAME some-directory

(ALPH A
(NAME filet . . . text . . .)
(NAME filet . . . text . . .)
(NAME sub-directory (ALPHA . . .)))

and so on .

The user needs a function is to list the contents of a
directory, tagging each name with either file or dir .
This function is easy to write :

(NAME Is
(LAMBDA (directory)

(AMAP list-one directory)))

AMAP maps a function to the elements of an alpha .
list-one is :

(NAME list-on e
(LAMBDA (elt)

(PROG N
(print (NAME-OF elt))
(if (ALPHA? elt)

(print 'dir)
(print 'file)))))

Writing a is-rec function to print the contents of al l
nested directories is just as simple .

In approaching non-trivial examples, the principle i s
the same: the environment is a simple data structure
that is accessible to and manipulatable by the user .

Parallelism and meta-cleanliness together lead t o
other kinds of expressiveness not available in othe r
interpreter-based programming environments . It' s
easy, for example, to specify and create daemon pro-
cesses that watch streams or environments for ne w
developments .

Consider, for example, the following definition of a
mail daemon :

(NAME monitor-mai l
(LAMBDA (stream)

(NAME mail-message (ACAR stream)
(PROGN

(display-message mail-message)
(monitor-mail (ACDR stream))))))

To use the daemon, a user types (monitor-mail my-
mail-stream) . The evaluation of this function runs in -
definitely – but of course, once again, the interprete r
itself doesn't hang : it's ready to receive new user in -
put despite the fact that the evaluation of a previous
expression, here "(monitor-mail my-mail-stream)" , i s
still ongoing . Whenever a new message is appende d
(using ATTACH I) to my-mail-stream, the daemon dis-
plays the message and then quiesces to await the nex t
one. Users can simultaneously read mail by travers-
ing my-mail-stream using AGAR and ACDR .

Parallelism and meta-cleanliness form an interestin g
and vigorous symbiosis . Because all file-like opera-
tions in Symmetric Lisp are actually operations ove r
ALPHA forms, parallelism is inherent in any file op-
eration . The transparency of ALPHAS coupled wit h
their self-synchronizing parallel semantics makes th e
Symmetric Lisp system interface especially clean an d
simple .

Consider the following situation : the user wants to
run many test cases of a program Q concurrently ; he
wants to analyze the results of each using an analysi s
program analyze ; whenever an analysis turns up a
"best result so far", he wants the results entered i n

280

a best-results directory and a message printed to th e
terminal screen .

One convenient way to go about this is to create a
new environment called lest-runs, and ATTACH! a s
many test runs as are needed :

(NAME test-runs (OPEN-ALPHA))

(ATTACH! test-runs (Q first-set-of-ar'fs))

ATTACH! lest-runs (Q second-set-of-art's))

and so on . . .

All test runs will (of course) evaluate in parallel . We

can now set up the analysis stage by typin g
(A' LAP analyze lest-runs)

and we apply the following function to the result :

(NAME inspec t

(LAMBDA (an--analy .ed-stream best-results)

(PROG N

(check-out (ACAR an-analyzed-stream)
best-results))

(inspec t

ACDR an-analyzed-stream)))))

where check-out looks at an element, decides whethe r
it represents a "best so far" and, if so, prints a mes-
sage and attaches its parameter to an open ALPH A

called best-results .

This is a simple solution to what would be, in mos t
systems, a very complicated problem . (The reader i s
urged to express the same thing in his own favorit e
programming environment, and compare .)

7 Related work .

Symmetric Lisp bears an important resemblanc e
to the sort. of monolingual programming enn v iron-

nnents described generally by Ileering and hlint[15]
and, particularly to systems like Smalltalk[11] an d
lnterlisp[20] or Cedar[l9] . Unlike InterLisp, Symmet-
ric Lisp treats files and data structures in the same

way : it shares many of the goals of Smalltalk, but th e
two designs differ in dramatic and obvious ways . The
work of Dennis[7] in building a general-purpose func-
tional programming system based on dataflow prin-
ciples addresses many of the issues of modularity w e
have raised here, but it is based on a radically differ-
ent programming and execution model . Symmetri c
Lisps resemblance to non-language-based progra m
development, environments like Gandalql3] or Uni x

tools is less pronounced .

Whereas parallelismn in other parallel Lisps like
\lultiLisp[1=4] or Qlambda[8] is introduced explicitly

through control structures (such as PCALL or QLET) .

parallelism in Symmetric Lisp is intrinsic, revolvin g
around parallel data structures . Insofar as parallelism
occurs implicitly through data structures, Symmetri c
Lisp bears some similarity to functional languages im-
plemented on data flow[7] or parallel graph reductio n
architect ures[17] . Unlike these languages, however .
Symmetric Lisp allows side effects and retains a se-
mantics suitable for reasoning about dynamic proces s
invocation . Connection Machine Lisp[18] shares som e
of the goals of Symmetric Lisp but, while CM-Lisp i s
best suited to architectures intended to exploit fine -
grained parallelism[16], Symmetric Lisp is intende d
as a high level language for a general language-base d
parallel workstation, with the Symmetric Lisp inter-
preter serving as the interface between users and th e
multi-machine architecture . Symmetric Lisp contain s
the necessary ingredients to support a parallel object -
oriented programming model as described in [1] bu t
without much of the conceptual overhead that thes e
languages introduce . The treatment. of bindings a s
denotable values in Pebble[3] is similar to the seman-
tics of bindings in ALPHA forms but the use of type s
as values in Pebble as well as the absence of a con -
currency semantics distinguishes it from Symmetri c
Lisp .

8 Conclusions .

Symmetric Lisp is intended to be a host-language for a
language-based parallel workstation . The interpreter
is to serve as the primary interface between user s
and the machine . Expressions typed at the termina l
are translated into an intermediate form suitable fo r
evaluation by the interpreter implementing the oper-
ational semantics of the language . There are a variet y
of abstract execution models that appear well-suite d
to Symmetric Lisp ; among them are parallel grap h
reduction [17,21] (described earlier) and the program-
ming model supported by Linda machines [6] .

Symmetric Lisp is currently implemented as a concur -
rent interpreter written Common Lisp and running o n
the TI Explorer .

References

[1] Gul Agha . Actors : A Model of Concurrent Com-
putation in Distributed Systems . PhD thesis .
1983 .

9S1

[2] Arvind, Rishiyur Nikhil, and Keshav Pingali . I -
Structures : Data Structures for Parallel Com-
puting. In Proceedings of the Workshop o n
Graph Reduction, 1986 .

E.A. Ashcroft and W .W. Wadge . Lucid, a Non -
procedural Language with Iteration . Communi-
cations of the ACM, 20(7) :519-526, July 1977 .

M . Atkinson and R. Morrison. Types, Bindings ,
and Parameters in a Persistent Environment . In
Persistence and Data Types Papers for the Ap-
pin Workshop, University of St . Andrews, Au -
gust 1985 .

Robert Burstall and Butler Lampson . A Kerne l
Language for Modules and Abstract Data Types .

Nick Carriero ; David Gelernter, and Jerry Le-
ichter . Distributed Data Structures in Linda . In
Proceedings of the ACM Symp . on Principles of
Programming Languages . Jan . 1986 .

Jack Dennis, Joseph S toy, and Bhaskar Guharoy.
\A IM: An Experimental Multi-User Computer
System Supporting Functional Programming . In
1984 Conf on High-Level Computer Architec-
ture, 1984 .

[8] R. Gabriel and J . McCarthy . Queue-Base d
Multi-Processing Lisp . In Proceedings of th e
1984 Symp . on Lisp and Functional Program-
ming, pages 25-44, August 1984 .

[9] David Gelernter and Suresh Jagannathan .
A Programming Language Supporting Multi -
Streams .

	

Technical Report, Yale University
Technical Report, 1987 .

[10] David Gelernter, Suresh Jagannathan, an d
Thomas London. Environments as First-Clas s
Objects . In 14' h Principle of Programming Lan-
guages Conf, 1987 .

[11] Adele Goldberg and David Robson . Smalltalk-
80 : The Language and its Implementation .
Addison-Wesley, 1983 .

[12] R. Greenblat, T . Knight, J . Holoway, D . Moon ,
and D. Weinreb . The LISP Machine . In Interac-
tive Programming Environments, pages 326-352,
1lcGraw-IIill .

[13] A.N . IIabermann and D . Notkin . Gandalf: Soft-
ware development environments . IEEE Trans .
Soft,w . Eng ., 1117-1128, Decemeber 1986 .

[14] Robert Halstead . Multilisp: A Language fo r
Concurrent Symbolic Computation . Transac-
tions on Programming Languages and Systems ,
October 1986 .

[15] J . Ileering and P. Klint . Towards Monolingua l
Programming Environments . ACM Transactio n
on Programming Languages, 183-213, July 1985 .

[16] D. Hillis . The Connection Machine . MIT Press ,
1985 .

[17] Robert Keller, Gary Lindstrom, and Suha s
Patil . A Loosely-Coupled Applicative Multi -
Processing System. In AFIPS Conference Pro-
ceedings, pages 613-622, June 1979 .

[18] Guy Steele Jr. and Dan Hillis. Connection
Machine Lisp : Fine-Grained Parallel Symboli c
Computing . In Proceedings of the 1986 Conf o n
Lisp and Functional Programming, pages 279-
298, August 1986 .

[19] W. Teitelman. A Tour Through Cedar . IEEE
Software, January 1984 .

[20] W . Teitelman and L . Masinter . The Interlisp
Programming Environment . Computer, 25-34 ,
April 1981 .

[21] D . A. Turner . A New Implementation Techniqu e
for Applicative Languages . Software - Practic e
and Experience, (9) :31-49, 1979 .

[22] K .-S . Meng. An Abstract Implementation for a
Generalized Data Flow Language . Technical Re-
port .

[3]

[4]

[5]

[6]

[7]

282

