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1. I n t r o d u c t i o n  2.  A Sketch of MUG2 

This paper describes semantic processing in the 

compiler generating system MUG2. MUG2 accepts 

high-level descriptions of the semantics of a 

programming language including full runtime 

semantics, data flow analysis, and optimizing 

transformations. This distinguishes MUG2 from 

systems such as YACC [Joh75], HLP [HLP78], PQCC 

[PQC79], or its own former version [GRW77] with 

respect to expressive power and convenience. In 

this respect, MUG2 comes close to 

semantics-directed systems such as [MosT6], 

[JoS80], [Set81], [Pau82]. In contrast to these, 

MUG2 is not a universal translator system where 

program independent semantic properties have to be 

evaluated at compilation time. The description 

concepts of MUG2 allow a far reaching separation 

of language vs. program dependent semantics, thus 

constituting a truly generative approach to 

semantics-directed compiler generation. 
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In order to provide a little background, this 

section gives a rough and rather technical sketch 

of the MUG2 compiler generating system. Discussion 

of what makes MUG2 semantics-directed and still 

truly generative is spared out for later sections. 

Readers familiar with earlier versions of MUG2 

from [GRW77] or [Gie79] may skip this section. 

MUG2 is a system intended to provide automatic 

support for all phases in the implementation of 

programming languages. Particular emphasis was 

placed on mechanisms for an extensive amount of 

semantic processing, as is required by complex 

source language semantics and by optimization 

efforts. The basic design decision for MUG2 was 

not to try to supply general, standard solutions 

for specific purposes, such as a fixed intermediate 

language, symbol table mechanisms, or particular 

optimization algorithms, to which a particular 

language implementation would then have to be 

adjusted. Rather, MUG2 allows to specify these 

compilation subtasks and concepts on a rather high 

level, by providing an integrated ensemble of com- 

piler description tools. Figure I gives a summary 

of the tools and concepts used in MUG2. 

MUG2-generated compiler front-ends first construct 

an abstract parse tree, called program tree, as 

the intermediate representation of the program. 

Using abstract syntax rather than concrete syntax 

yields not only a significant cutdown in tree size, 

but also allows the semantic phases to operate on 

abstract syntax, as is customary e.g. in 

denotational language definitions. 

Semantic analysis then proceeds by decorating the 

tree with semantic attributes, according to a 

description written in the attribute definition 
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Figure I : compiler/interpreter phases, modules, and description tools 

language ADELE. ADELE is embedded in PASCAL, 

allowing PASCAL data types as attribute domains, 

and PASCAL procedures for writing attribute 

definition rules. 

ADELE restricts attribute dependencies to those 

which allow attribute evaluation in a number of 

passes over the program tree. "Pass", however, 

does not mean a strict left-to-right or 

rlght-to-left tree traversal, but more generally 

any depth-first tree traversal where the order of 

the visits to the subtrees of a given node is fixed 

and known at compiler generation time. 

"Pass" in [JAW75] "Pass" in MUG2 (e.g.) 

2K 

Passes of this kind have been called sweeps in 

[EnF81]. ADELE attribute grammars are thus of 

type "n-sweep", n ~I, where the decomposition into 

the single sweeps has to be provided explicitly by 

the compiler describer. 

Our experience is that this class of attribute 

grammars is sufflclently general [EnF81], [Joc81], 

yet retalns the applicability of the efficient 

pass-orlented evaluation techniques of [JAW75], 

[Poz?9] ,  [R~i79] ,  [JaP81] .  Requir ing an e x p l i c i t  
separa t ion  i n t o  passes helps to  keep compi ler  

desc r ip t i ons  modular and comprehensibleo 

MUG2 allows the generation of compilers as well as 

interpreters. An interpreter definition may be 

written in ADELE directly. This would be the choice 

in language design research, or for language im- 

plementations where runtlme efficiency is not a 

main objective. 

Otherwise, more analysis needs to be done in 

preparation for intermediate or machine code ge- 

neration. Data flow analysis, e.g. constant 

propagation or live variable analysls, can also be 

described in ADELE. For optimization, the program 

tree needs to be transformed. Series of tree 

transformations are specified in OPTRAN, a 

language based on attributed transformational 

grammars [GNW80]. There is a tight coupling 

between the attribute evaluatlon and transfor- 

mation phases, dlsoussed in section 5. 

The MUG2 system c u r r e n t l y  running a t  the Technical  
Un i ve r s i t y  o f  Huntch implements an o lder  vers ion  o f  
ADELE, already based on the principles to be 

discussed in the next sections, but still employing 

a different and somewhat el"msy notation for 

abstract syntax and attribute rules. Thls system 

has been tested on minor language examples, and 

has been used to generate a sophisticated 

formatter for mathematleal formulas [JoW81]. We 

can say that the lmplementatlon has proven our 
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approach to be practical; its adaptation to the 

notational level as shown in this paper is under 

way. The transformation module is being imple- 

mented at Saarbr~oken University. 

So far, no generators for machine specific compi- 

ler parts have been incorporated in MUG2. However, 

a concept for the generation of machine specific 

("peephole") optimizers from machine descriptions 

has been worked out [Gie82], and an imple- 

mentation is under way. 

3. The A t t r i b u t e  D e f i n i t i o n  L a n g u a g e  
ADELE 

Scott/Strachey-style language definitions as being 

input to compiler generating systems described in 

[MosT6], [JoS80], [Set81], [Pau82] may be viewed 

as attribute grammars where complex functional 

semantic obJeets (e.g. state transformations) are 

associated with the program constructs as 

synthesized attributes (only), and are evaluated 

according to trivial bottom-up attribute 

dependencies: For each program construct it is 

specified how its semantics is determined from the 

semantics of its constituents. This structural 

induction technique is what denotational stands 

for. According to this view, execution of the 

program is a call to the state transformation 

function associated with the root of the program 

tree as a synthesized attribute. In which way the 

evaluation of this semantic function corresponds to 

a traversal of the program is not immediately 

apparent from the denotational definition. Thus, 

the structure of the information flow through a 

program is hidden from the compiler generators 

mentioned above. (It can be made explicit when 

deriving compiler definitions from language 

definitions by hand, but not all steps of this 

transition can be automated [Gan80].) This lack of 

information requires the generated interpreters to 

be based upon v e r y  general symbolic evaluation 

mechanisms that a re  known to be rather 

inefficient. 

In contrast to this, realistic language interpre- 

ters consist of two parts. A compiler front-end 

performs syntactic analysis, semantic analysis, and 

the construction of an intermediate repre- 

sentation. This first step is independent of the 

input data for the program, corresponding to the 

static semantics of the program. The actual 

program execution is, then, simulated by 

performing the elementary operations of the 

program during traversing its intermediate repre- 

sentation according to the flow of control through 

the program. 

Generating a reasonably efficient interpreter must 

include at least two kinds of optimizations: 

I. Separation of static (i.e. compile-time) from 

dynamic (i.e. runtime) semantics at interpre- 

ter ~eneration time should allow for generating 

a compiler front-end for the interpreter. 

2. Making explicit the flow of control through the 

program should avoid the need for general 

symbolic evaluation mechanisms during interpre- 

tation. 

Attribute grammars in the original sense of 

[Knu68] are a tool to meet this latter 

requirement. They use "finite" attributes to 

describe static (i.e. compile time) semantics, 

Finite means that attribute values can be 

explicitly calculated while traversing a graph which 

represents their dependencies. Under practical 

restrictions this graph needs not be constructed 

at compile-time. Rather, the program tree is 

traversed according to a strategy that can be 

completely determined at compiler generation time. 

However, using both inherited and synthesized at- 

tributes and almost arbitrarily complex attribute 

dependencies cannot make up for the restriction to 

nonfunctional attributes. It becomes impossible to 

describe the dynamic (i.e. runtime) semantics of 

programs, or its static approximations relevant 

for data flow analysis. 

ADELE is an attribute grammar meta-language 

which, by providing a specific concept of 

functional attributes, combines the positive 

aspects of expressiveness and efficiency of both 

approaches. It is a tool for describing semantic 

analysis, data flow analysis, and dynamic semantics 

for a programming language, in a style that has 

been termed semantics-directed, and yet allows to 

generate efficient compilers and interpreters. 

3.1. Overall S t r u c t u r e  o f  ADELE At t r ibu te  
Grammars 

Attribute grammars in ADELE are structured into 

subgrammars called passes, where each pass is 

required to satisfy the l-sweep property [EnF81], 

el. above. The following example gives the 

structure of the ADELE attribute grammar for a 

PASCAL-llke language. 
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Example 1. 

syntax 

... abstract syntax of the source language ... 
pass declaratlonHandllng; 

... of. examples 3,4,6 
componentlnfo(... ) : (...) ; 
pass 

... eL'. examples 5,7 
~pass 

pass; 

pass typeChecking; 
... el. examples 2,8 

end pass; 

Iterat[ve pass constantPropagation ; 

~ ~ess; 

unit constantFolding; 

... el. example 12 
end unit; 

iterat[ve pass deadVarlables ; 

... of. example 10 
e~d pass; 

unit deadStatementElimination ; 

... of. example 11 
unit; 

pass interpretation ; 

stateTrans(...):(...) ; 
pass 

... cf. example 9 
e~d pass 

end pass 

end 

An ADELE program consist of definitions of 

- the abstract syntax of the source language, 

- the sequence of attribute sub-grammars (in the 

above example for declaration handling, type 

checking, constant propagation, dead variables, 

interpretation) and intermediate transfor- 

mation passes representing the sequence of com- 

piler and interpreter phases. 

The outer passes may contain inner sub-grammars 

(e~IponentInfo, stateTra~s), representing fam~ies of 

functional semantic objects, of. 3.3. Attribute 

evaluation passes may be interleaved with program 

transformation passes (constant folding, dead 

varlable elimination) specified as OPTRAN trans- 

formation units. Attributes being defined by a 

pass may be input to later passes and transfor- 

mation units. 

3.2.  Basin Notation 

The following example illustrates 

ADELE-notation for attribute rules. 

Example 2. 

exp[O] -> expel] add exp[2] do 
expType of exp[O] : 

the 

be~if%expType of exp[1]% :intT~)e 
mKl ~expType of exp[2]% : intType 
then %expType of exp[0]%:= intType 
e]~ .,. 

end . 

The example shows an attribute rule for deriving 

the type of an expression in the type checking 

pass. The where-clause gives the production of the 

abstract syntax to which this rule refers. Here, 

multiple occurrences of the same nonterminal 

symbol (exp) are distinguished by indexes (e.g. 

exp[1]). A synthesized attribute expType is assumed 

to have been declared in the declaration part of 

the type checking pass. Its domain is the 

(PASCAL-) enumeration type typeKinds, of. example 

4, including the constant ~tType. By saying 

e~pTypeofexp, expType is implicitly declared to be 

associated with the nontermlnal exp. The lefthand 

side (left of "=") of the ~%tribute rule gives the 

attribute occurrence whose evaluation is defined by 

the rule. The righthand side is, syntactically, a 

PASCAL procedure body, followed by "." as end 

marker. Attributes within the PASCAL text have to 

be enclosed by ~-signs, otherwise they may be 

looked upon as ordinary PASCAL variables. They can 

be viewed as the (vat-) parameters for the 

procedure body. 

3.3. F u n c t i o n a l  A t t r i b u t e s  

Attributes in ADELE may also take functions as 

their values, or as components of their value, 

where the value itself is a record. As this falls 

outside the PASCAL framework, ADELE provides 

mechanisms for the declaration of functional at- 

tribute domains, for defining, and for calling 

functional attributes. We will introduce each of 

these in turn by considering as an example the 

handling of complex declaration information. 

In denotational language definitions, complex 

declaration information is represented by 

functions. E.g. record type denotations would be 

viewed as functions 

eomponentInfoEreeTypes, where 

recTypes,= [~enti~ers -> types], 

mapping a field identifier of the record into the 

type of the corresponding field. 

3.3.1. Definition o f  a Functional Domain 

Example 3. 
fuDctype recTypes = (identifiers) : types 
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In order to incorporate functions as components of 

more complex PASCAL data structures, a functional 

domain can be used in a PASCAL type definition. 

Exsml~e ~. 
type typeKinds = (intType,recType,errorType) ; 

types = record case kind : typeKinds of 

recType : (denotation : SrecTypes~) 
end; 

Technically, ~ecTypes$ denotes the PASCAL repre- 

sentation of reeTypes.  Nothing is known about it to 

the user except that it is possible to assign 

variables of this type, Thus, the only meaningful 

manipulation of functional data on the 

PASCAL-level of an ADELE-program is passing it 

on. Note that types is defined recursively, since 

types occurs as result type of recTypes. 

3.3.2. Defining and Creating a Function 

The clue of having functional attributes is the way 

in which these functions are defined. Traditionally 

two views of what an attribute grammar specifies 

are in use. The first considers an attribute 

grammar to specify the decoration of parse trees 

with the values of the attributes. In this case, 

the attribute grammar defines a translation of 

parse trees into decorated parse trees. 

Alternatively, one might consider the (functional) 

attribute dependencles to be the objects of 

interest. In particular the dependencies between 

inherited and synthesized attributes of a 

nonterminal are important when considering the 

correspondence between attribute grammars and 

classical denotational definitions [ChM77], 

[Gan80].  

This latter view is as follows. Given an attribute 

(sub-) grammar AG and a node X in the parse 

tree, AGcf~ (rasp. the evaluator generated for 

AG) is a function mapping any tupel I of 

arguments to a tupel S of results as follows: 

I) ~nitialize the inherited attributes at X with 
Z. 

2) Evaluate the AG-attributes in the subtree at 
X. 

3) Deliver the (final) values S of the 

synthesized attributes at X as result. 

After delivering the result, the attributes that 

have been evaluated in course of this call will 

vanish. Since the values of the inherited attri- 

butes at a node define the value of each attri- 

bute in the node's subtree in an unambiguous way, 

A G o f X  is in fact a function. 

The next example defines the above mentioned 

functions for fields-subtrees of record type 

denotations. It will be 

ccmponent~fo ct ~ (i) = 

if << i r~mee a fields component of type t >> 

then t else <<error>>. 

E ~ e  5. 
componentInfo ( f i e ld Id  : identifiers ) 

: ( fieldTFpe : tYPeS ); 
pass 

start fields; {the start symbol of the grammar} 
whmre fields -> field do 

fieldType of fields = 
if ~fieldId of flelds~ = ~id of field~ 

~fieldType of fields~: = ~sType of field~ 
else ~fieldType of fields~.kind: = errorType 

emJ. 

fields[0]-> flelds[1] ; field 
... { see next example } ... ; 

end p a s s  

do 

The name of each field of a record is given by 

(the previously computed) ~offield. If it is equal 

to the argument PleldIdof~elds of oomponentInfo, the 

(previously calculated) type information 

sTypeoffleld is the result of ecmpcnentInfo in this 

case. ecmponentlnfo yields e ~  otherwise. 

The above defines, for each fields-node in the 

tree, a function ccmpcnentInfo c~flelds, which may be 

called to retrieve information from this node's 

subtree - and may be passed on as an attribute 

value itself. The latter is shown in the next 

example. 

E~mple 6. 

wl~mre recordType -) record fields end do 
sType of recordType : 
be~sType of recordType~.kind:= recType; 

~sType of recordType¢.denotation 
:= ~componentlnfo of fields~ 

cad . 

sType may now made to be the symbol table entry 

for type identifiers. 

3 . 3 . 3 .  Evaluation of Functions 

The operator eval initiates the evaluation of a 

function with given arguments. 

eval(f,il,...,in,rl,...,r m) 
denotes the assignment 

(r I ..... rm):= f(i I ..... I n ) 

of the value of f at il,...,i n to the result 

variables rl,...,r m. 

Emile 7. 
The other rule of the "body" of 

componentlnfo contains a call to itself: 
the grammar 
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M~mre fields[O] -> fields[l] ; field do 
fieldType of fields[O] = 

If ~fieldld of flelds[O]~ = ¢id of field~ 
tl~en ~fieldType of fields[O]¢:= CsType of fields 
else {The fieldld may name a field of the initial 

fields-par t } 
eval (~componentInfo of fields[ I ]~, 

~fieldId of fields[O]~, {input parameter} 
~fieldType of fields[O]~ {result parameter}) 

end. 

The example shows that functions can be defined 

reoursively. 

The function eomponentInfo may be passed on (via 

symbol table attributes) as an attribute value to 

each occurrence of a variable of the record type. 

This provides complete information about the type 

where it is needed. The following example gives the 

semantic rule that uses the eomponentlnfo- functions 

to perform type checking for selected components. 

An attribute varType (with domain types) is 

calculated accordingly: 

Example 8. 
Where selection -> var . fieldld do 
varType of selection = 

If %varType of var$.kind = recType 

tJ~em eva][ (%varType of var%.denotation, 

%id of fieldId%, 
%varType of selection) 

else %varType of seleetion%.kind:= errorType; 
if%varType of selection$.kind = errorType 

them error('seleetor not applicable') 
end. 

3.~1. Description o f  Interpreters 

The concept of functional attributes which ADELE 

provides is powerful enough to allow descriptions 

of interpreters in a natural way, modelling the 

runtime behaviour of the source programs. Thus, 

language specifications in MUG2 define the 

semantics of a language completely (though in an 

implementation-oriented way) with respect to both 

compile-time and runtime. 

Ex~ple 9. 
In the absence of 8otos, a state transformation function 
describes the semantics of statements. 

stateTrana ( initial : states ) : ( final : states ); 
pass 
start .... stats .... ; 

{ In particular for any statement it is to be 
specified how the final state depends on the 
initial state. } 

t4mve while -> while cond do stats do 

initial of cond = initial of while ; 
final of while : 

war s : states; 
begin i f  ~bvalue o f  cond~ 

them 

oval (~stateTrans of stats~, 
$inltial of while~, s); 

ewal ($stateTrans of while~, 

s, Sflnal o f  while~) 
end 

else ~final of while~: =~initial of whlle~ 
. 

cad pass 

If bvalueafcond evaluates to false, the 

stats-subtree need not be traversed, since none of 

its synthesized attributes is then referenced. On 

the other hand, the use of bv~ue ofc(~d makes 

necessary a traversal of the eond- subtree in each 

iteration through the while-loop. 

Since it is possible to store functional objects 

such as state transformations into symbol table 

attributes, languages with procedures and/or gotos 

do not cause difficulties. 

3.5. Implementatton of Functional Attributes 

Functional attribute values that occur during at- 

tribute evaluation always have the form A od'X, 

where A is an attribute (sub-) grammar and X 

is a node in the parse tree. This is a consequence 

of the fact that no other function creating 

operations are provided. Thus any such value can 

be stored using two integers identifying the 

grammar A and the node X, respectively. Space 

consumption for functional attribute values is, 

therefore, very low. I) For any attribute sub- 

grammar such as A, a separate, efficient attri- 

bute evaluator is generated. Technically, the 

result is a PASCAL-procedure Psb(A) that has one 

additional input parameter which supplies the root 

of the subtree for which attribute evaluation is to 

be evoked upon an oval. (Psb(A) traverses this 

subtree depth-flrst, skipping those of the inner 

subtrees whose synthesized attributes are not 

referenced, and do, therefore, not contribute to 

the final result of the call.) Thus, the procedure 

call 

1) Coding semmtie  objects  such as eomponentInfo Jnto 
non f i c t i ona l  data would require space linear ~n the size o f  
the record c lef tni t t~  for  any occurrence o f  the a t t r ibu te .  
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PA(X, i l  . . . . .  I n , r  I . . . . .  r m) 
implements the eva l -ope ra t i on  

eva l  ( A o f  X, i I . . . .  , i n , r  I . . . .  , rm). .  
This demonstrates that time and space consuming 

techniques such as symbolic evaluation of 

expression trees are not required to implement the 

functional data in ADELE. 

We realize that our requirements concerning the 

generation of interpreters are satisfied: 

I. The interpreter describer provides the 

separation between compile-time and interpre- 

tation time by structuring the attribute 

grammar into sub-grammars. 

2. Describing state transformations as attribute 

dependencies makes efficient attribute 

eval"ation algorithms available at interpre- 

tation time. The attribute flow represents the 

flow of control through a program. E.g. the 

fact that lists of statements are executed in 

textual order would be recognized from the 

left-to-right dependencies between the program 

state attributes initial and final. 

It should be noted that the interpreters in order 

to not be too unrealistic require attribute space 

optimizations as proposed by [R~i79] or the use of 

pointers to represent the values of the state at- 

tributes initial and final. The latter solution would 

leave the responsibility for safe pointer usage to 

the language describer. 

3.6. Definition of Iteratlve compilation 

algorithms 

Strong demands for the efficiency of target 

programs require optimizing compilers. In MUG2, 

optimizations are described by a kind of transfor- 

mational grammars described below. A prerequisite 

is the availability of optimization information 

obtained by global data flow analysis. In contrast 

to the PQCC-project [PQC79] where a complete 

parameterized sequence of flow analysis, 

optimization, and code generation phases has been 

designed according to a series of pragmatic 

decisions, for MUG2 the availability of general 

description tools for these phases was the major 

design criterion. Consequently, the attribute 

grammar concept must allow the explicit description 

of both high-level and low-level global data flow 

analysis. Whereas the high-level problem can nicely 

be described by attribute grammars in the classic 

sense [Ros77], [Wi179], the low-level case implies 

the occurrence of circular attribute dependencies 

[BaJ78]. The latter requires to iteratively 

recompute attribute values. 

In ADELE, attribute evaluation passes can be 

specified to employ certain kinds of circular at- 

tribute dependencies. 

Example 10. 

We describe the crucial part of dead variable analysis. 

It is assumed that use of cond (with domain set of 

identifiers) is the set of variables that occur in a 

while~condition or an expression. 

i%~ratlwe pass deadVariables ; 

{ The keyword Iteratiwe indicates that circular 

attribute dependencies are to be specified in this 

subgrammar. } 

where assignment -> var :: exp do 

sDeadVars of assignment : 

~iDeadVars of assignment%+~id of var%-~use of exp%; 

where while -> while cond do stats do 

sDeadVars of while = 

%sDeadVars of stats% - %use of cond%; 

iDeadVars of stats = 

%iDeadVars of while% * 

%last sDeadVars of stats ir~t_~=11y [1..maxIdNo]% 

- %use of cond% 

end pass 

The circular dependency of £DeadVars of stats on 

sDeadVars of stats is indicated by the prefix last. 

The initlally-clause specifies that the full set of 

identifiers is the value for sDeadVars of stats the 

iteration process starts with. 

3.7. Charaeterlstlea of Iteratlve Passes in 

ADELE 

I) Erasing dependencies prefixed by last must yield 

a (nonoircular) attribute subgrammar of l-sweep 

type. This implies that if an iterative pass 

defines any circularities, at least one loop 

connecting edge of any cycle in the dependency 

graph is a last-dependency. 

2) Attribute evaluation is iteratively repeated. If 

in the i-th iteration step an attribute last a 

of X is referred to, the value of a of X 

after the (i-1)-th step is taken. For i=I, the 

Inlt4~11y-elau se applies. 

3) Iteration stops, if for all of the last-attri- 

butes, the new values are equal to those 

obtained in the previous step. 

Pass-oriented evaluation strategies traverse the 

parse tree depth-first where the subtrees of a 

node are visited in a order that depends on the 

attribute dependencies at that node. It is 

important to note that, because of I), this re- 

presents a depth-first traveraal of a spanning 

tree of the dependency graph. This order of 
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evaluating data flow attributes has been called 

rPostorder in [HeU75] and [AhU77]. Therefore, our 

attribute evaluation strategy is optimal among all 

iteratlve algorithms [Tar76] and "usually linear" 

[KaU76]. For non-structured control constructs, 

however, the attribute dependencies are merely an 

approximation of the flow graph. 

q.  T h e  O p t i m i z a t i o n  Phase 

Optimization, llke constant folding, invarlant code 

motion, etc., modifies the internal representation 

of the program. With MUG2, such modification is 

described by an OPTRAN-program [GMW80]. When a 

full interpretative language definition is given, 

the correctness of the optimizations relative to 

thls definition may be shown. In some cases, this 

proof can be carried out directly on the notational 

level of the compiler description. 

~.1.  Deear tb ln e optlmtzattons 

Different optimizations are formulated as trans- 

formation units (T-units). They can be activated 

• sequentially as passes over the program tree, or 

in a procedure-like fashion for subtrees of the 

program. The statements in a T-unit are trans- 

formation rules for attributed trees. Execution of 

the T-unit means application of its rules to the 

given program tree in a bottom-up strategy: 

Transformation starts at the leaves of the tree. 

Each node is inspected as to whether a rule is 

applicable at this node. One of the applicable 

rules is selected and the transformation is 

performed accordingly. Then, transformation 

resumes at a previously unvisited brother or else 

at the father of the current node. In this way, 

termination of the transformation process is 

guaranteed. 

A rule is applicable if 

- its input template matches some subtree of the 

program tree (syntactic match), and 

- the enabling condition associated with the input 

template is satisfied by the attribute values in 

the matched subtree (semantic match). 

Tree templates are parse trees for sententlal 

forms of the abstract grammar. The roots of left 

and right side of a transformation rule must have 

the same terminal or nontermlnal label. If a new 

terminal node is introduced in the rlghthand 

template of a rule, its lexlcal attribute must be 

set explicitly. Prefix notation is used for tree 

templates. 

Example 11. 
untt deadStatementEltmlnatlon ; 

safe declarations, typeChecklng, deadVarlables ; 

bramsf~ <star, <assisnment, var, exp>> 

iqto <star, empty> 
if~id of varZ In ~iDeadVars of asslgnment~; 

bramsform <star, <ifstat, exp, <star, empty>, <star, empty>>> 

<star,empty>; 

{ semantically always applicable. } 
bramsform <star, <ifstat, exp, star, <star, empty>>> 

/mto <stat, <ifstat, exp, star>> 

,.° 

emd urdt 

The above example assumes attributes M and 

iDeadVars to be evaluated in pass deadVarlables. 

Furthermore it is specified (safe-clause) that the 

elimination of dead variables does not lead to 

inconsistencies (of a klnd to be explained below) 

of attribute values that have been calculated in 

the declarations, typeChe~, and deadVarlables 

passes. 

E,ample 12. 
u~[t  constantFolding 

safe declarations, typeCheeking, constantPropagatton; 

tzamsform <exp,var> in to  <exp,const> 
~em~e l ex in f  o f  eonst= 

value(~const_pool o f  var$,~id o f  varS) 
i f  ~td o f  var$ ie  $const__pool o f  varY; 

. . .  

. . °  

end u ~ t  

It is assumed that the attribute evaluation pass 

for constant propagation has left the attribute 

oonst_]0ool at appropriate nodes. The rule introduces 

a new terminal node o0nst, for which the lexlcal 

attribute lex~usf is set to represent the constant 

value of the variable. 

q.2. Tree  A n a l y s l s  and Tr a n s fo r ma t i o n  

The recognition of input template matches is the 

task of the tree analyser generated from an 

OPTRAN T-unlt. In MUG2, tree analysis is seen in 

the framework of attribute grammars. We call the 

attributes in an attribute (sub-) grammar for tree 

analysis template reeo~nltlon attributes. They 

represent sets of templates and subtemplates that 

have been recognized as (partially) matching the 

179 



_ { ~i'~st~t ~ (Successful 

(say)  \ , match) 
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/ ~ ~  \ ' E" //em~t~7~ ( E / empty/ 
, empty I{ ~'em~ty j \ I \ . . . , '  " 

\ E I empty/ i Ej/Tem~oty/ ~ I I ~ ~  

The trivial syntactic rules for stat have been omitted. 

The matched sub-templates are those above ~-- . 

Figure 2 : Attribute Evaluation for Tree Matching 

subtree under analysis. Different tree analysis 

strategies correspond to different attribute 

evaluation strategies. Bottom-up tree analysis 

[Kro75] (which MUG2 uses) leads to an S-attri- 

buted grammar, using only synthesized attributes. 

An alternative algorithm, called LR-tree analTsis 

has been developed. It starts at the root and 

performs a top-down depth-first tree walk, 

calculating the matching information according to 

an L-attributed [LRS73] grammar. 

One snapshot of LR-tree analysis for the T-unit 

dead statement elimination is given in figure 2. 

LR-tree analysis provides more information about 

the context of a subtree than bottom-up analysis. 

This allows an early recognition of those 

sub-templates that cannot match at an inner node 

of the subtree. As a consequence, the size of the 

template matching attributes decreases 

considerably. 

Obviously, the attribute dependencies needed for 

tree analysis are well within the class which ADELE 

permits. 

Neither the representation for the attributes for 

the tree matching, nor the functions manipulating 

them need to be known to the compiler designer. 

They are automatically generated for each T-unit. 

5:. C o - o p e r a t i o n  o f  A t t r i b u t e  E v a l u a t i o n  
and T r a n s f o r m a t i o n s  

In general, the transformation of an attributed 

tree may lead to a tree with attribute incon- 

sistencies [DRT81], i.e. attributes of neighbouring 

nodes whose values do no longer satisfy the 

semantic rules of the original grammar. In a 

syntax-directed editor, for example, arbitrary 

subtree replacements are possible, hence 

incremental attribute evaluation is used 

extensively to correct attributes in the modified 

program tree. An optimizing compiler is essentially 

different: it only performs semantic equivalence 

transformations of the program. Where attributes 

encode some semantic property of the program that 

is not disturbed by a transformation, their values 

will not be invalidated either, and no re-evaluation 

is required. A typical example for this are attri- 

butes containing data flow information: constant 

folding does not make any variables non-constant 

that were constant before folding. Contrary, 

template-matching attributes, which are exclusively 

concerned with the syntactic shape of the tree are 

very sensitive to tree transformations, and need 

to be updated after each transformation. 

In the subsequent sections, we first sketch an 

algorithm for incremental updating of attributes. 

Then we study the situation where no re-evaluation 

is needed in more detail. Finally, we indicate the 
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Figure 3 : Snapshot of incremental attribute evaluation 

pragmatic decisions to which these considerations 

have led for.MUG2. 

5.1 .  A t t r ibu te  Re-evaluation 

Attribute re-evaluation, which may be called upon 

over and over  again dur ing program t r a n s -  

f o r m a t i o n s ,  must be designed very  c a r e f u l l y  in 

o rder  to  avoid unbearable overhead.  Given t h a t  our 

basic data structure is the program tree, and that 

attributes are accessed via the nodes of the tree, 

a realistic criterion for an optimal incremental 

attribute evaluation algorithm mu~t include the 

following: 

a) An attribute should be re-evaluated at most 

once, and only when some attribute it depends 

on has changed its value. (Reps' algorithm 

[Rep82] satisfies this criterion.) 

b) The number of visits to different tree nodes 

(i.e. the cost of traversing the tree in order 

to access attributes) should be minimized. 

c) The (time and space) cost for controlling the 

re-evaluation process (e.g. manipulations of 

attribute dependency graphs made in order to 

meet a) and b)) must also be taken into 

account. 

With respect to c), one difference of our 

algorithm to that of Reps is rather than modelling 

the affected section of the global attribute 

dependency graph explicitly, it labels attribute 

instances in the tree with "p" for "found to be 

preserved", "?" for "not regarded yet", or "u" for 

"updated". 

With respect to b), take a look at figure 3. 

There, choices i) and ii) violate criterion b) as 

indicated by (!). 

In [Mgn82] an incremental attr ibute evaluation 

algorithm using the p-?-u labelling is developed, 
which tr ies to minimize overall cost by scheduling 

attribute re-evaluation according to two 

principles: 

a) Select, for updating, attributes of the current 

tree node as long as possible. 

b) When the current node has to be left, select a 

visit to the father or a son node which will 

yield additional "u"- or "p"-attribute instances 

at the current node. 

In making the local decision in b) for the current 

node, the algorithm uses a "view" of the global 

dependencies between the current node's attribute 

instances. These views are a parameter to the 

algorithm - they may be "characteristic graphs" 

[COH79] or approximations of those, "IO-graphs" of 
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sDeadVars:{x} 

id= x 

iDeadVars:{x,y} 

::=> 

{ 
Figure 4 : A permissible attribute inconsistency 

{ 
sDeadVars:{x} ?! { iDeadVars:{x,y} 

[KeW76], or the superior/subordinate graphs of 

[Rep82]. Depending on the class of attribute 

grammars given, part of the graph constructing and 

manipulating effort can be removed from attribute 

evaluation to compiler generation time. 

5.2. Relsxin~ the Attribute Consistency 

Requirement 

Figure 4 gives a simple example of an attribute 

inconsistency resulting from an application of the 

first rule of the T-unit dead assignment 

elimination to a program. 

Clearly, sDeadVarsofempty should be {x,y} and is 

therefore inconsistent in the sense of [DRT81]. 

But note that the value {x} taken over from the 

old sDeadVarsofassi~t is semantically not 

incorrect at this point - it is merely weaker than 

what we would obtain by re-evaluation. In the 

standard lattice-theoretic setting of data flow 

analysis, we would call the inconsistent value an 

approximation [COC79] of the consistent one. 

We say that some semantic information, collected 

in some attributes, is invariant wrt. a trans- 

formation rule R, if after any legal application 

of R, the old attribute values are still con- 

sistent in the transformed tree. 

We say that it is safe wrt. R, if the old values 

may become inconsistent, but are an approximation 

of some consistent set of attribute values. (These 

notions are developed formally in [GMW81].) 

For non-flow attributes (e.g. type information), 

safeness and invariance falls in one, as the only 

meaningful approximation is identity. 

In order to prove that deadVars-information is safe 

wrt. the rule applied in Fig. 4, we would have to 

show that 

id of var in iDeadVars of assignment :> 

sDeadVars of assignment in sDeadVars of empty 

where iDeadVars of empty : 

iDeadVars of assignment, 

i.e. the enabling condition of this rule 

implies that the old attribute values 

approximate those that would be obtained by 

re-evaluation. 

This is easily confirmed from the attribute 

evaluation rules for assignment and empty. 

Safeness guarantees correct handling of incon- 

sistently attributed trees over a series of trans- 

formations. So the compiler may be more efficient, 

because re-evaluation is not mandatory after each 

step. If performed, however, it might disclose 

further opportunities for optimization. Where 

safeness is violated, the re-evaluation mechanism 

must be called upon. 

Invariance is an even more preferable property. It 

guarantees preservation of consistency a priori, 

and as a consequence, transformation phases based 

on invariant information are exhaustive. 

5.3. C o o r d l n a t l n ~  A t t r i b u t e  E v a l u a t i o n  and 
T r a n s f o r m a t i o n s  in  MUG2 

The above considerations have led to a series of 

pragmatic decisions that were taken for MUG2: 

I) During the application of a T-unit, template 

matching attributes are updated incrementally. 

2) New tree nodes introduced by the output 

template of a transformation are attributed 

according to the rules of the attribute 

grammar. 

3) Attributes referenced by the current trans- 

formation pass must be safe with respect to the 

rules of this T-unit, and must be declared to 

be so in the safe-clause of the T-unit. 

4) Attributes to be referenced in later passes may 

also be declared to be safe. Otherwise, they 

will be re-evaluated non-incrementally before 

their next usage. 
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Upon the user of MUG2, we impose the 

responsibility to prove that the attributes listed 

to be safe are in fact safe for the given T-unit. 

(This could be enforced at compilation time, if 

the safeness criterion is identity, or can be 

inferred from explicitly given termination 

criteria for iterative passes. At the moment, we 

are not planning to include this compiler testing 

option.) 

By these rules, the writer of a compiler 

description is advised that attributes that are 

sensitive to optimizing transformations, but are 

not needed for them, should not be evaluated until 

after the transformations (which appears 

reasonable anyway). He is required to devise 

separate T-units for transformation rules which 

could mutually destroy the information they rely 

on. 

For our example, constant propagation attributes 

are invariant with respect to constant folding, 

while deadVars-attributes are only safe. Constant 

propagation attributes are not safe wrt. 
elimination of redundant assignments. This implies 

that both T-units do not require intervening 

re-evaluation, and that they cannot be combined in 

a single T-unit. Also, it would be possible to do 

deadVariables prior to eonstantFolding (including 

deadVariables in the safe-clause of o0nstantFolding). 

Then, however, de~tatementElimination may miss some 

chances introduced by eonstantFolding. So, the 

arrangement shown in example I is the stronger 

one. 
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