
A TRULY GEI(ERATIVE SEMANTICS-DIRECTED COMPILER GENERATOR

Harald Ganzlnger l, Rober t Giegerlch i

Institut f~r Informatik, Technische Universit~t

D-8000 M~nchen 2, Fed. Rep. of Germany

Ulrich M~ncke +, Reinhard Wilhelm +
Faohbereich 10 Informatik, Universit~t des Saarlandes

D-6600 Saarbracken, Fed. Rep. of Germany

1. I n t r o d u c t i o n 2. A Sketch of MUG2

This paper describes semantic processing in the

compiler generating system MUG2. MUG2 accepts

high-level descriptions of the semantics of a

programming language including full runtime

semantics, data flow analysis, and optimizing

transformations. This distinguishes MUG2 from

systems such as YACC [Joh75], HLP [HLP78], PQCC

[PQC79], or its own former version [GRW77] with

respect to expressive power and convenience. In

this respect, MUG2 comes close to

semantics-directed systems such as [MosT6],

[JoS80], [Set81], [Pau82]. In contrast to these,

MUG2 is not a universal translator system where

program independent semantic properties have to be

evaluated at compilation time. The description

concepts of MUG2 allow a far reaching separation

of language vs. program dependent semantics, thus

constituting a truly generative approach to

semantics-directed compiler generation.

Work par ti~ly supported by Scnderforsebungsbereich 49 - Pro-

÷ Work partially supported by DFG-projeet '94anipulaticn of
Attributed Trees"

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5/82/006/0172 $00.75

In order to provide a little background, this

section gives a rough and rather technical sketch

of the MUG2 compiler generating system. Discussion

of what makes MUG2 semantics-directed and still

truly generative is spared out for later sections.

Readers familiar with earlier versions of MUG2

from [GRW77] or [Gie79] may skip this section.

MUG2 is a system intended to provide automatic

support for all phases in the implementation of

programming languages. Particular emphasis was

placed on mechanisms for an extensive amount of

semantic processing, as is required by complex

source language semantics and by optimization

efforts. The basic design decision for MUG2 was

not to try to supply general, standard solutions

for specific purposes, such as a fixed intermediate

language, symbol table mechanisms, or particular

optimization algorithms, to which a particular

language implementation would then have to be

adjusted. Rather, MUG2 allows to specify these

compilation subtasks and concepts on a rather high

level, by providing an integrated ensemble of com-

piler description tools. Figure I gives a summary

of the tools and concepts used in MUG2.

MUG2-generated compiler front-ends first construct

an abstract parse tree, called program tree, as

the intermediate representation of the program.

Using abstract syntax rather than concrete syntax

yields not only a significant cutdown in tree size,

but also allows the semantic phases to operate on

abstract syntax, as is customary e.g. in

denotational language definitions.

Semantic analysis then proceeds by decorating the

tree with semantic attributes, according to a

description written in the attribute definition

172

P
H
A
S
E

M
0
D
U
L
E

lexical and
syntactic
analysis

scanner and
parser [LL (k)
or LALR (k)] ,

inc lud ing
e r r o r

recove ry

extended
regular

expressions
and context-
-free grammar

construction
of inter-
mediate

representa-
tion

program tree
contructor
(constructs
attribute-

-free
abstract

parse tree)

string-to-
-tree grammar

relating
concrete and

abstract
syntax

semantic
analysis (in

several
passes)

attribute
evaluator
(decorates
abstract

parse tree
with seman-
tic attri-
butes)

attribute
grammar

(written in
ADELE)

optimization

transforma-
tions of the
attributed

program tree

attributed
transforma-

tional
grammars
(written in
OPTRAN)

interprets-
tion

attribute
evaluator
(evaluates
functional
attributes)

attribute de-
finition lang-
uage ADELE

(inter-
mediate) code
generation

intermediate
code gene-

rator
(transforms
the APT into
a sequence of
intermediate

instruc-
tions)

code
templates

Figure I : compiler/interpreter phases, modules, and description tools

language ADELE. ADELE is embedded in PASCAL,

allowing PASCAL data types as attribute domains,

and PASCAL procedures for writing attribute

definition rules.

ADELE restricts attribute dependencies to those

which allow attribute evaluation in a number of

passes over the program tree. "Pass", however,

does not mean a strict left-to-right or

rlght-to-left tree traversal, but more generally

any depth-first tree traversal where the order of

the visits to the subtrees of a given node is fixed

and known at compiler generation time.

"Pass" in [JAW75] "Pass" in MUG2 (e.g.)

2K

Passes of this kind have been called sweeps in

[EnF81]. ADELE attribute grammars are thus of

type "n-sweep", n ~I, where the decomposition into

the single sweeps has to be provided explicitly by

the compiler describer.

Our experience is that this class of attribute

grammars is sufflclently general [EnF81], [Joc81],

yet retalns the applicability of the efficient

pass-orlented evaluation techniques of [JAW75],

[Poz?9] , [R~i79] , [JaP81] . Requir ing an e x p l i c i t
separa t ion i n t o passes helps to keep compi ler

desc r ip t i ons modular and comprehensibleo

MUG2 allows the generation of compilers as well as

interpreters. An interpreter definition may be

written in ADELE directly. This would be the choice

in language design research, or for language im-

plementations where runtlme efficiency is not a

main objective.

Otherwise, more analysis needs to be done in

preparation for intermediate or machine code ge-

neration. Data flow analysis, e.g. constant

propagation or live variable analysls, can also be

described in ADELE. For optimization, the program

tree needs to be transformed. Series of tree

transformations are specified in OPTRAN, a

language based on attributed transformational

grammars [GNW80]. There is a tight coupling

between the attribute evaluatlon and transfor-

mation phases, dlsoussed in section 5.

The MUG2 system c u r r e n t l y running a t the Technical
Un i ve r s i t y o f Huntch implements an o lder vers ion o f
ADELE, already based on the principles to be

discussed in the next sections, but still employing

a different and somewhat el"msy notation for

abstract syntax and attribute rules. Thls system

has been tested on minor language examples, and

has been used to generate a sophisticated

formatter for mathematleal formulas [JoW81]. We

can say that the lmplementatlon has proven our

173

approach to be practical; its adaptation to the

notational level as shown in this paper is under

way. The transformation module is being imple-

mented at Saarbr~oken University.

So far, no generators for machine specific compi-

ler parts have been incorporated in MUG2. However,

a concept for the generation of machine specific

("peephole") optimizers from machine descriptions

has been worked out [Gie82], and an imple-

mentation is under way.

3. The A t t r i b u t e D e f i n i t i o n L a n g u a g e
ADELE

Scott/Strachey-style language definitions as being

input to compiler generating systems described in

[MosT6], [JoS80], [Set81], [Pau82] may be viewed

as attribute grammars where complex functional

semantic obJeets (e.g. state transformations) are

associated with the program constructs as

synthesized attributes (only), and are evaluated

according to trivial bottom-up attribute

dependencies: For each program construct it is

specified how its semantics is determined from the

semantics of its constituents. This structural

induction technique is what denotational stands

for. According to this view, execution of the

program is a call to the state transformation

function associated with the root of the program

tree as a synthesized attribute. In which way the

evaluation of this semantic function corresponds to

a traversal of the program is not immediately

apparent from the denotational definition. Thus,

the structure of the information flow through a

program is hidden from the compiler generators

mentioned above. (It can be made explicit when

deriving compiler definitions from language

definitions by hand, but not all steps of this

transition can be automated [Gan80].) This lack of

information requires the generated interpreters to

be based upon v e r y general symbolic evaluation

mechanisms that a re known to be rather

inefficient.

In contrast to this, realistic language interpre-

ters consist of two parts. A compiler front-end

performs syntactic analysis, semantic analysis, and

the construction of an intermediate repre-

sentation. This first step is independent of the

input data for the program, corresponding to the

static semantics of the program. The actual

program execution is, then, simulated by

performing the elementary operations of the

program during traversing its intermediate repre-

sentation according to the flow of control through

the program.

Generating a reasonably efficient interpreter must

include at least two kinds of optimizations:

I. Separation of static (i.e. compile-time) from

dynamic (i.e. runtime) semantics at interpre-

ter ~eneration time should allow for generating

a compiler front-end for the interpreter.

2. Making explicit the flow of control through the

program should avoid the need for general

symbolic evaluation mechanisms during interpre-

tation.

Attribute grammars in the original sense of

[Knu68] are a tool to meet this latter

requirement. They use "finite" attributes to

describe static (i.e. compile time) semantics,

Finite means that attribute values can be

explicitly calculated while traversing a graph which

represents their dependencies. Under practical

restrictions this graph needs not be constructed

at compile-time. Rather, the program tree is

traversed according to a strategy that can be

completely determined at compiler generation time.

However, using both inherited and synthesized at-

tributes and almost arbitrarily complex attribute

dependencies cannot make up for the restriction to

nonfunctional attributes. It becomes impossible to

describe the dynamic (i.e. runtime) semantics of

programs, or its static approximations relevant

for data flow analysis.

ADELE is an attribute grammar meta-language

which, by providing a specific concept of

functional attributes, combines the positive

aspects of expressiveness and efficiency of both

approaches. It is a tool for describing semantic

analysis, data flow analysis, and dynamic semantics

for a programming language, in a style that has

been termed semantics-directed, and yet allows to

generate efficient compilers and interpreters.

3.1. Overall S t r u c t u r e o f ADELE At t r ibu te
Grammars

Attribute grammars in ADELE are structured into

subgrammars called passes, where each pass is

required to satisfy the l-sweep property [EnF81],

el. above. The following example gives the

structure of the ADELE attribute grammar for a

PASCAL-llke language.

174

Example 1.

syntax

... abstract syntax of the source language ...
pass declaratlonHandllng;

... of. examples 3,4,6
componentlnfo(...) : (...) ;
pass

... eL'. examples 5,7
~pass

pass;

pass typeChecking;
... el. examples 2,8

end pass;

Iterat[ve pass constantPropagation ;

~ ~ess;

unit constantFolding;

... el. example 12
end unit;

iterat[ve pass deadVarlables ;

... of. example 10
e~d pass;

unit deadStatementElimination ;

... of. example 11
unit;

pass interpretation ;

stateTrans(...):(...) ;
pass

... cf. example 9
e~d pass

end pass

end

An ADELE program consist of definitions of

- the abstract syntax of the source language,

- the sequence of attribute sub-grammars (in the

above example for declaration handling, type

checking, constant propagation, dead variables,

interpretation) and intermediate transfor-

mation passes representing the sequence of com-

piler and interpreter phases.

The outer passes may contain inner sub-grammars

(e~IponentInfo, stateTra~s), representing fam~ies of

functional semantic objects, of. 3.3. Attribute

evaluation passes may be interleaved with program

transformation passes (constant folding, dead

varlable elimination) specified as OPTRAN trans-

formation units. Attributes being defined by a

pass may be input to later passes and transfor-

mation units.

3.2. Basin Notation

The following example illustrates

ADELE-notation for attribute rules.

Example 2.

exp[O] -> expel] add exp[2] do
expType of exp[O] :

the

be~if%expType of exp[1]% :intT~)e
mKl ~expType of exp[2]% : intType
then %expType of exp[0]%:= intType
e]~ .,.

end .

The example shows an attribute rule for deriving

the type of an expression in the type checking

pass. The where-clause gives the production of the

abstract syntax to which this rule refers. Here,

multiple occurrences of the same nonterminal

symbol (exp) are distinguished by indexes (e.g.

exp[1]). A synthesized attribute expType is assumed

to have been declared in the declaration part of

the type checking pass. Its domain is the

(PASCAL-) enumeration type typeKinds, of. example

4, including the constant ~tType. By saying

e~pTypeofexp, expType is implicitly declared to be

associated with the nontermlnal exp. The lefthand

side (left of "=") of the ~%tribute rule gives the

attribute occurrence whose evaluation is defined by

the rule. The righthand side is, syntactically, a

PASCAL procedure body, followed by "." as end

marker. Attributes within the PASCAL text have to

be enclosed by ~-signs, otherwise they may be

looked upon as ordinary PASCAL variables. They can

be viewed as the (vat-) parameters for the

procedure body.

3.3. F u n c t i o n a l A t t r i b u t e s

Attributes in ADELE may also take functions as

their values, or as components of their value,

where the value itself is a record. As this falls

outside the PASCAL framework, ADELE provides

mechanisms for the declaration of functional at-

tribute domains, for defining, and for calling

functional attributes. We will introduce each of

these in turn by considering as an example the

handling of complex declaration information.

In denotational language definitions, complex

declaration information is represented by

functions. E.g. record type denotations would be

viewed as functions

eomponentInfoEreeTypes, where

recTypes,= [~enti~ers -> types],

mapping a field identifier of the record into the

type of the corresponding field.

3.3.1. Definition o f a Functional Domain

Example 3.
fuDctype recTypes = (identifiers) : types

175

In order to incorporate functions as components of

more complex PASCAL data structures, a functional

domain can be used in a PASCAL type definition.

Exsml~e ~.
type typeKinds = (intType,recType,errorType) ;

types = record case kind : typeKinds of

recType : (denotation : SrecTypes~)
end;

Technically, ~ecTypes$ denotes the PASCAL repre-

sentation of reeTypes. Nothing is known about it to

the user except that it is possible to assign

variables of this type, Thus, the only meaningful

manipulation of functional data on the

PASCAL-level of an ADELE-program is passing it

on. Note that types is defined recursively, since

types occurs as result type of recTypes.

3.3.2. Defining and Creating a Function

The clue of having functional attributes is the way

in which these functions are defined. Traditionally

two views of what an attribute grammar specifies

are in use. The first considers an attribute

grammar to specify the decoration of parse trees

with the values of the attributes. In this case,

the attribute grammar defines a translation of

parse trees into decorated parse trees.

Alternatively, one might consider the (functional)

attribute dependencles to be the objects of

interest. In particular the dependencies between

inherited and synthesized attributes of a

nonterminal are important when considering the

correspondence between attribute grammars and

classical denotational definitions [ChM77],

[Gan80].

This latter view is as follows. Given an attribute

(sub-) grammar AG and a node X in the parse

tree, AGcf~ (rasp. the evaluator generated for

AG) is a function mapping any tupel I of

arguments to a tupel S of results as follows:

I) ~nitialize the inherited attributes at X with
Z.

2) Evaluate the AG-attributes in the subtree at
X.

3) Deliver the (final) values S of the

synthesized attributes at X as result.

After delivering the result, the attributes that

have been evaluated in course of this call will

vanish. Since the values of the inherited attri-

butes at a node define the value of each attri-

bute in the node's subtree in an unambiguous way,

A G o f X is in fact a function.

The next example defines the above mentioned

functions for fields-subtrees of record type

denotations. It will be

ccmponent~fo ct ~ (i) =

if << i r~mee a fields component of type t >>

then t else <<error>>.

E ~ e 5.
componentInfo (f i e ld Id : identifiers)

: (fieldTFpe : tYPeS);
pass

start fields; {the start symbol of the grammar}
whmre fields -> field do

fieldType of fields =
if ~fieldId of flelds~ = ~id of field~

~fieldType of fields~: = ~sType of field~
else ~fieldType of fields~.kind: = errorType

emJ.

fields[0]-> flelds[1] ; field
... { see next example } ... ;

end p a s s

do

The name of each field of a record is given by

(the previously computed) ~offield. If it is equal

to the argument PleldIdof~elds of oomponentInfo, the

(previously calculated) type information

sTypeoffleld is the result of ecmpcnentInfo in this

case. ecmponentlnfo yields e ~ otherwise.

The above defines, for each fields-node in the

tree, a function ccmpcnentInfo c~flelds, which may be

called to retrieve information from this node's

subtree - and may be passed on as an attribute

value itself. The latter is shown in the next

example.

E~mple 6.

wl~mre recordType -) record fields end do
sType of recordType :
be~sType of recordType~.kind:= recType;

~sType of recordType¢.denotation
:= ~componentlnfo of fields~

cad .

sType may now made to be the symbol table entry

for type identifiers.

3 . 3 . 3 . Evaluation of Functions

The operator eval initiates the evaluation of a

function with given arguments.

eval(f,il,...,in,rl,...,r m)
denotes the assignment

(r I rm):= f(i I I n)

of the value of f at il,...,i n to the result

variables rl,...,r m.

Emile 7.
The other rule of the "body" of

componentlnfo contains a call to itself:
the grammar

176

M~mre fields[O] -> fields[l] ; field do
fieldType of fields[O] =

If ~fieldld of flelds[O]~ = ¢id of field~
tl~en ~fieldType of fields[O]¢:= CsType of fields
else {The fieldld may name a field of the initial

fields-par t }
eval (~componentInfo of fields[I]~,

~fieldId of fields[O]~, {input parameter}
~fieldType of fields[O]~ {result parameter})

end.

The example shows that functions can be defined

reoursively.

The function eomponentInfo may be passed on (via

symbol table attributes) as an attribute value to

each occurrence of a variable of the record type.

This provides complete information about the type

where it is needed. The following example gives the

semantic rule that uses the eomponentlnfo- functions

to perform type checking for selected components.

An attribute varType (with domain types) is

calculated accordingly:

Example 8.
Where selection -> var . fieldld do
varType of selection =

If %varType of var$.kind = recType

tJ~em eva][(%varType of var%.denotation,

%id of fieldId%,
%varType of selection)

else %varType of seleetion%.kind:= errorType;
if%varType of selection$.kind = errorType

them error('seleetor not applicable')
end.

3.~1. Description o f Interpreters

The concept of functional attributes which ADELE

provides is powerful enough to allow descriptions

of interpreters in a natural way, modelling the

runtime behaviour of the source programs. Thus,

language specifications in MUG2 define the

semantics of a language completely (though in an

implementation-oriented way) with respect to both

compile-time and runtime.

Ex~ple 9.
In the absence of 8otos, a state transformation function
describes the semantics of statements.

stateTrana (initial : states) : (final : states);
pass
start stats ;

{ In particular for any statement it is to be
specified how the final state depends on the
initial state. }

t4mve while -> while cond do stats do

initial of cond = initial of while ;
final of while :

war s : states;
begin i f ~bvalue o f cond~

them

oval (~stateTrans of stats~,
$inltial of while~, s);

ewal ($stateTrans of while~,

s, Sflnal o f while~)
end

else ~final of while~: =~initial of whlle~
.

cad pass

If bvalueafcond evaluates to false, the

stats-subtree need not be traversed, since none of

its synthesized attributes is then referenced. On

the other hand, the use of bv~ue ofc(~d makes

necessary a traversal of the eond- subtree in each

iteration through the while-loop.

Since it is possible to store functional objects

such as state transformations into symbol table

attributes, languages with procedures and/or gotos

do not cause difficulties.

3.5. Implementatton of Functional Attributes

Functional attribute values that occur during at-

tribute evaluation always have the form A od'X,

where A is an attribute (sub-) grammar and X

is a node in the parse tree. This is a consequence

of the fact that no other function creating

operations are provided. Thus any such value can

be stored using two integers identifying the

grammar A and the node X, respectively. Space

consumption for functional attribute values is,

therefore, very low. I) For any attribute sub-

grammar such as A, a separate, efficient attri-

bute evaluator is generated. Technically, the

result is a PASCAL-procedure Psb(A) that has one

additional input parameter which supplies the root

of the subtree for which attribute evaluation is to

be evoked upon an oval. (Psb(A) traverses this

subtree depth-flrst, skipping those of the inner

subtrees whose synthesized attributes are not

referenced, and do, therefore, not contribute to

the final result of the call.) Thus, the procedure

call

1) Coding semmtie objects such as eomponentInfo Jnto
non f i c t i ona l data would require space linear ~n the size o f
the record c lef tni t t~ for any occurrence o f the a t t r ibu te .

177

PA(X, i l I n , r I r m)
implements the eva l -ope ra t i on

eva l (A o f X, i I , i n , r I , rm). .
This demonstrates that time and space consuming

techniques such as symbolic evaluation of

expression trees are not required to implement the

functional data in ADELE.

We realize that our requirements concerning the

generation of interpreters are satisfied:

I. The interpreter describer provides the

separation between compile-time and interpre-

tation time by structuring the attribute

grammar into sub-grammars.

2. Describing state transformations as attribute

dependencies makes efficient attribute

eval"ation algorithms available at interpre-

tation time. The attribute flow represents the

flow of control through a program. E.g. the

fact that lists of statements are executed in

textual order would be recognized from the

left-to-right dependencies between the program

state attributes initial and final.

It should be noted that the interpreters in order

to not be too unrealistic require attribute space

optimizations as proposed by [R~i79] or the use of

pointers to represent the values of the state at-

tributes initial and final. The latter solution would

leave the responsibility for safe pointer usage to

the language describer.

3.6. Definition of Iteratlve compilation

algorithms

Strong demands for the efficiency of target

programs require optimizing compilers. In MUG2,

optimizations are described by a kind of transfor-

mational grammars described below. A prerequisite

is the availability of optimization information

obtained by global data flow analysis. In contrast

to the PQCC-project [PQC79] where a complete

parameterized sequence of flow analysis,

optimization, and code generation phases has been

designed according to a series of pragmatic

decisions, for MUG2 the availability of general

description tools for these phases was the major

design criterion. Consequently, the attribute

grammar concept must allow the explicit description

of both high-level and low-level global data flow

analysis. Whereas the high-level problem can nicely

be described by attribute grammars in the classic

sense [Ros77], [Wi179], the low-level case implies

the occurrence of circular attribute dependencies

[BaJ78]. The latter requires to iteratively

recompute attribute values.

In ADELE, attribute evaluation passes can be

specified to employ certain kinds of circular at-

tribute dependencies.

Example 10.

We describe the crucial part of dead variable analysis.

It is assumed that use of cond (with domain set of

identifiers) is the set of variables that occur in a

while~condition or an expression.

i%~ratlwe pass deadVariables ;

{ The keyword Iteratiwe indicates that circular

attribute dependencies are to be specified in this

subgrammar. }

where assignment -> var :: exp do

sDeadVars of assignment :

~iDeadVars of assignment%+~id of var%-~use of exp%;

where while -> while cond do stats do

sDeadVars of while =

%sDeadVars of stats% - %use of cond%;

iDeadVars of stats =

%iDeadVars of while% *

%last sDeadVars of stats ir~t_~=11y [1..maxIdNo]%

- %use of cond%

end pass

The circular dependency of £DeadVars of stats on

sDeadVars of stats is indicated by the prefix last.

The initlally-clause specifies that the full set of

identifiers is the value for sDeadVars of stats the

iteration process starts with.

3.7. Charaeterlstlea of Iteratlve Passes in

ADELE

I) Erasing dependencies prefixed by last must yield

a (nonoircular) attribute subgrammar of l-sweep

type. This implies that if an iterative pass

defines any circularities, at least one loop

connecting edge of any cycle in the dependency

graph is a last-dependency.

2) Attribute evaluation is iteratively repeated. If

in the i-th iteration step an attribute last a

of X is referred to, the value of a of X

after the (i-1)-th step is taken. For i=I, the

Inlt4~11y-elau se applies.

3) Iteration stops, if for all of the last-attri-

butes, the new values are equal to those

obtained in the previous step.

Pass-oriented evaluation strategies traverse the

parse tree depth-first where the subtrees of a

node are visited in a order that depends on the

attribute dependencies at that node. It is

important to note that, because of I), this re-

presents a depth-first traveraal of a spanning

tree of the dependency graph. This order of

178

evaluating data flow attributes has been called

rPostorder in [HeU75] and [AhU77]. Therefore, our

attribute evaluation strategy is optimal among all

iteratlve algorithms [Tar76] and "usually linear"

[KaU76]. For non-structured control constructs,

however, the attribute dependencies are merely an

approximation of the flow graph.

q. T h e O p t i m i z a t i o n Phase

Optimization, llke constant folding, invarlant code

motion, etc., modifies the internal representation

of the program. With MUG2, such modification is

described by an OPTRAN-program [GMW80]. When a

full interpretative language definition is given,

the correctness of the optimizations relative to

thls definition may be shown. In some cases, this

proof can be carried out directly on the notational

level of the compiler description.

~.1. Deear tb ln e optlmtzattons

Different optimizations are formulated as trans-

formation units (T-units). They can be activated

• sequentially as passes over the program tree, or

in a procedure-like fashion for subtrees of the

program. The statements in a T-unit are trans-

formation rules for attributed trees. Execution of

the T-unit means application of its rules to the

given program tree in a bottom-up strategy:

Transformation starts at the leaves of the tree.

Each node is inspected as to whether a rule is

applicable at this node. One of the applicable

rules is selected and the transformation is

performed accordingly. Then, transformation

resumes at a previously unvisited brother or else

at the father of the current node. In this way,

termination of the transformation process is

guaranteed.

A rule is applicable if

- its input template matches some subtree of the

program tree (syntactic match), and

- the enabling condition associated with the input

template is satisfied by the attribute values in

the matched subtree (semantic match).

Tree templates are parse trees for sententlal

forms of the abstract grammar. The roots of left

and right side of a transformation rule must have

the same terminal or nontermlnal label. If a new

terminal node is introduced in the rlghthand

template of a rule, its lexlcal attribute must be

set explicitly. Prefix notation is used for tree

templates.

Example 11.
untt deadStatementEltmlnatlon ;

safe declarations, typeChecklng, deadVarlables ;

bramsf~ <star, <assisnment, var, exp>>

iqto <star, empty>
if~id of varZ In ~iDeadVars of asslgnment~;

bramsform <star, <ifstat, exp, <star, empty>, <star, empty>>>

<star,empty>;

{ semantically always applicable. }
bramsform <star, <ifstat, exp, star, <star, empty>>>

/mto <stat, <ifstat, exp, star>>

,.°

emd urdt

The above example assumes attributes M and

iDeadVars to be evaluated in pass deadVarlables.

Furthermore it is specified (safe-clause) that the

elimination of dead variables does not lead to

inconsistencies (of a klnd to be explained below)

of attribute values that have been calculated in

the declarations, typeChe~, and deadVarlables

passes.

E,ample 12.
u~[t constantFolding

safe declarations, typeCheeking, constantPropagatton;

tzamsform <exp,var> in to <exp,const>
~em~e l ex in f o f eonst=

value(~const_pool o f var$,~id o f varS)
i f ~td o f var$ ie $const__pool o f varY;

. . .

. . °

end u ~ t

It is assumed that the attribute evaluation pass

for constant propagation has left the attribute

oonst_]0ool at appropriate nodes. The rule introduces

a new terminal node o0nst, for which the lexlcal

attribute lex~usf is set to represent the constant

value of the variable.

q.2. Tree A n a l y s l s and Tr a n s fo r ma t i o n

The recognition of input template matches is the

task of the tree analyser generated from an

OPTRAN T-unlt. In MUG2, tree analysis is seen in

the framework of attribute grammars. We call the

attributes in an attribute (sub-) grammar for tree

analysis template reeo~nltlon attributes. They

represent sets of templates and subtemplates that

have been recognized as (partially) matching the

179

_ { ~i'~st~t ~ (Successful

(say) \ , match)

/ "V 'T '~ < ~ Z D > ~ ~ ~ / I A ~ " , ~ / I ~ / I \ \
/ ~ ~ \ ' E" //em~t~7~ (E / empty/
, empty I{ ~'em~ty j \ I \ . . . , ' "

\ E I empty/ i Ej/Tem~oty/ ~ I I ~ ~

The trivial syntactic rules for stat have been omitted.

The matched sub-templates are those above ~-- .

Figure 2 : Attribute Evaluation for Tree Matching

subtree under analysis. Different tree analysis

strategies correspond to different attribute

evaluation strategies. Bottom-up tree analysis

[Kro75] (which MUG2 uses) leads to an S-attri-

buted grammar, using only synthesized attributes.

An alternative algorithm, called LR-tree analTsis

has been developed. It starts at the root and

performs a top-down depth-first tree walk,

calculating the matching information according to

an L-attributed [LRS73] grammar.

One snapshot of LR-tree analysis for the T-unit

dead statement elimination is given in figure 2.

LR-tree analysis provides more information about

the context of a subtree than bottom-up analysis.

This allows an early recognition of those

sub-templates that cannot match at an inner node

of the subtree. As a consequence, the size of the

template matching attributes decreases

considerably.

Obviously, the attribute dependencies needed for

tree analysis are well within the class which ADELE

permits.

Neither the representation for the attributes for

the tree matching, nor the functions manipulating

them need to be known to the compiler designer.

They are automatically generated for each T-unit.

5:. C o - o p e r a t i o n o f A t t r i b u t e E v a l u a t i o n
and T r a n s f o r m a t i o n s

In general, the transformation of an attributed

tree may lead to a tree with attribute incon-

sistencies [DRT81], i.e. attributes of neighbouring

nodes whose values do no longer satisfy the

semantic rules of the original grammar. In a

syntax-directed editor, for example, arbitrary

subtree replacements are possible, hence

incremental attribute evaluation is used

extensively to correct attributes in the modified

program tree. An optimizing compiler is essentially

different: it only performs semantic equivalence

transformations of the program. Where attributes

encode some semantic property of the program that

is not disturbed by a transformation, their values

will not be invalidated either, and no re-evaluation

is required. A typical example for this are attri-

butes containing data flow information: constant

folding does not make any variables non-constant

that were constant before folding. Contrary,

template-matching attributes, which are exclusively

concerned with the syntactic shape of the tree are

very sensitive to tree transformations, and need

to be updated after each transformation.

In the subsequent sections, we first sketch an

algorithm for incremental updating of attributes.

Then we study the situation where no re-evaluation

is needed in more detail. Finally, we indicate the

180

w I

Xl

i

Wxo x;
I f

global situation

Wl w w3[] w.[]

view at node W

---> : projections of global dependencies

possible choices for updating sequences:

i) w I Xl...y I (!) w 2 x2...y 2 y3...x3 w 3 ...

ii) v 4 u 4 ... (!) W I ...

iii) W I W 2 X 1X2...y I Y2 Y3"''X3 W3 V3 V4 U3 U4

Figure 3 : Snapshot of incremental attribute evaluation

pragmatic decisions to which these considerations

have led for.MUG2.

5.1 . A t t r ibu te Re-evaluation

Attribute re-evaluation, which may be called upon

over and over again dur ing program t r a n s -

f o r m a t i o n s , must be designed very c a r e f u l l y in

o rder to avoid unbearable overhead. Given t h a t our

basic data structure is the program tree, and that

attributes are accessed via the nodes of the tree,

a realistic criterion for an optimal incremental

attribute evaluation algorithm mu~t include the

following:

a) An attribute should be re-evaluated at most

once, and only when some attribute it depends

on has changed its value. (Reps' algorithm

[Rep82] satisfies this criterion.)

b) The number of visits to different tree nodes

(i.e. the cost of traversing the tree in order

to access attributes) should be minimized.

c) The (time and space) cost for controlling the

re-evaluation process (e.g. manipulations of

attribute dependency graphs made in order to

meet a) and b)) must also be taken into

account.

With respect to c), one difference of our

algorithm to that of Reps is rather than modelling

the affected section of the global attribute

dependency graph explicitly, it labels attribute

instances in the tree with "p" for "found to be

preserved", "?" for "not regarded yet", or "u" for

"updated".

With respect to b), take a look at figure 3.

There, choices i) and ii) violate criterion b) as

indicated by (!).

In [Mgn82] an incremental attr ibute evaluation

algorithm using the p-?-u labelling is developed,
which tr ies to minimize overall cost by scheduling

attribute re-evaluation according to two

principles:

a) Select, for updating, attributes of the current

tree node as long as possible.

b) When the current node has to be left, select a

visit to the father or a son node which will

yield additional "u"- or "p"-attribute instances

at the current node.

In making the local decision in b) for the current

node, the algorithm uses a "view" of the global

dependencies between the current node's attribute

instances. These views are a parameter to the

algorithm - they may be "characteristic graphs"

[COH79] or approximations of those, "IO-graphs" of

181

sDeadVars:{x}

id= x

iDeadVars:{x,y}

::=>

{
Figure 4 : A permissible attribute inconsistency

{
sDeadVars:{x} ?! { iDeadVars:{x,y}

[KeW76], or the superior/subordinate graphs of

[Rep82]. Depending on the class of attribute

grammars given, part of the graph constructing and

manipulating effort can be removed from attribute

evaluation to compiler generation time.

5.2. Relsxin~ the Attribute Consistency

Requirement

Figure 4 gives a simple example of an attribute

inconsistency resulting from an application of the

first rule of the T-unit dead assignment

elimination to a program.

Clearly, sDeadVarsofempty should be {x,y} and is

therefore inconsistent in the sense of [DRT81].

But note that the value {x} taken over from the

old sDeadVarsofassi~t is semantically not

incorrect at this point - it is merely weaker than

what we would obtain by re-evaluation. In the

standard lattice-theoretic setting of data flow

analysis, we would call the inconsistent value an

approximation [COC79] of the consistent one.

We say that some semantic information, collected

in some attributes, is invariant wrt. a trans-

formation rule R, if after any legal application

of R, the old attribute values are still con-

sistent in the transformed tree.

We say that it is safe wrt. R, if the old values

may become inconsistent, but are an approximation

of some consistent set of attribute values. (These

notions are developed formally in [GMW81].)

For non-flow attributes (e.g. type information),

safeness and invariance falls in one, as the only

meaningful approximation is identity.

In order to prove that deadVars-information is safe

wrt. the rule applied in Fig. 4, we would have to

show that

id of var in iDeadVars of assignment :>

sDeadVars of assignment in sDeadVars of empty

where iDeadVars of empty :

iDeadVars of assignment,

i.e. the enabling condition of this rule

implies that the old attribute values

approximate those that would be obtained by

re-evaluation.

This is easily confirmed from the attribute

evaluation rules for assignment and empty.

Safeness guarantees correct handling of incon-

sistently attributed trees over a series of trans-

formations. So the compiler may be more efficient,

because re-evaluation is not mandatory after each

step. If performed, however, it might disclose

further opportunities for optimization. Where

safeness is violated, the re-evaluation mechanism

must be called upon.

Invariance is an even more preferable property. It

guarantees preservation of consistency a priori,

and as a consequence, transformation phases based

on invariant information are exhaustive.

5.3. C o o r d l n a t l n ~ A t t r i b u t e E v a l u a t i o n and
T r a n s f o r m a t i o n s in MUG2

The above considerations have led to a series of

pragmatic decisions that were taken for MUG2:

I) During the application of a T-unit, template

matching attributes are updated incrementally.

2) New tree nodes introduced by the output

template of a transformation are attributed

according to the rules of the attribute

grammar.

3) Attributes referenced by the current trans-

formation pass must be safe with respect to the

rules of this T-unit, and must be declared to

be so in the safe-clause of the T-unit.

4) Attributes to be referenced in later passes may

also be declared to be safe. Otherwise, they

will be re-evaluated non-incrementally before

their next usage.

182

Upon the user of MUG2, we impose the

responsibility to prove that the attributes listed

to be safe are in fact safe for the given T-unit.

(This could be enforced at compilation time, if

the safeness criterion is identity, or can be

inferred from explicitly given termination

criteria for iterative passes. At the moment, we

are not planning to include this compiler testing

option.)

By these rules, the writer of a compiler

description is advised that attributes that are

sensitive to optimizing transformations, but are

not needed for them, should not be evaluated until

after the transformations (which appears

reasonable anyway). He is required to devise

separate T-units for transformation rules which

could mutually destroy the information they rely

on.

For our example, constant propagation attributes

are invariant with respect to constant folding,

while deadVars-attributes are only safe. Constant

propagation attributes are not safe wrt.
elimination of redundant assignments. This implies

that both T-units do not require intervening

re-evaluation, and that they cannot be combined in

a single T-unit. Also, it would be possible to do

deadVariables prior to eonstantFolding (including

deadVariables in the safe-clause of o0nstantFolding).

Then, however, de~tatementElimination may miss some

chances introduced by eonstantFolding. So, the

arrangement shown in example I is the stronger

one.

6. REFERENCES

[AhU77] Aho, A.V., Ullman, J.D.: Principles of

compiler design. Addison-Wesley, 1977.

[BaJ78] Babieh, W.A., Jazayeri, M.: The method

of attributes for data flow analyis, part I:

Exhaustive analysis. Acta informatica 10

(1978) 245-264.

[Boc76] Bochmann, G.V.: Semantic evaluation from

left to right. CACM 19 (1976).

[COC79] Cousot, P., Cousot, R.: Systematic

design of program analysis frameworks. POPL

6, 1979, 269-282.

[COH79] Cohen, R., Harry, E.: Automatic

generation of near-optimal linear-time

translators for non-circular attribute

grammars. POPL 6, 1979, 121-134.

[ChM77] Chirica, L.M., Martin, D.E.: An

algebraic formulation of Knuthian semantics.

17th IEEE Symp. o n FOCS, 1977, 127-136.

[DRT81] Demers, A., Reps, T., Teitelbaum, T.:

Incremental evaluation for attribute grammars

with application to syntax-directed editors.

POPL 8, 1981, 105-116.

[EnF81] Engelfriet, J., File, G.: Passes,

sweeps, and visits. Lecture Notes in Comp.

Sol. 115, Springer 1981, 193-207.

[Gan80] Ganzinger, H.: Transforming denotational

semantics into practical attribute grammars.

Lecture Notes in Comp. Sol. 94 (1980), 1-64.

[Gie79] Giegerlch, R.: Introduction to the

compiler generation system MUG2. Report

TUM-INFO-7913, Techn. Univ. M0nchen, 1979.

[Gie82] Giegerich, R.: Automatic generation of

machlne-speciflc code optimizers. POPL 9,

1982, 75-81.

[GMW80] Glasner, I., MBncke, U., Wilhelm, R.:

OPTRAN, a language for the specification of

program transformations. Informatik-

Fachberichte 34, Springer, March 1980,

125-142.

[GMW81] Giegerlch, R., M3ncke, U., Wilhelm, R.:

Invariance of approxlmative semantics with

respect to program transformations.

Informatlk- Fachberlchte 50, Springer 1981,

1-10.

[GRW77] Ganzinger, H., Ripken, K., Wilhelm, R.:

Automatic generation of optimizing multipass

compilers. In: Gilchrist, B. (ed.):

Information Processing 77, North-Holland

Publ. Co., Amsterdam, New York, Oxford, 1977,

535-540.

[HeU75] Hecht, M.S., Ullman, J.D.: A simple

algorithm for global data flow analysis

programs. SIAM J. Comp. 4 (1975), 519-532.

[HLP78] R~ih~, K.-J., Saarinen, M., Solsalon-

Soininen, E. Tienari,M.: The compiler writing

system HLP (Helsinkl Language Processor).

Dep't. of Comp. Science, Helsinki Univ.,

Report A-1978-2, 1978.

[JAW75] Jazayeri, M., Walter, K.G.: Alternating

semantic evaluator, Proc. AiM Ann. Conf.,

1975, 230-234.

[JaP81] Jazayeri, M., Pozefsky, D.: Space-

efficient strorage management in an attri-

bute evsluator. AiM TOPLAS 3, 4 (1981),

388-404.

[Joc81] Jochum G.: Automatische Konstruktion und

einheitliche Darstellung yon Attributaus-

wertungsalgorithmen. TUM-I8113, Techn. Univ.

Mflnchen, June 1981.

[Joh75] Johnson, S.C.: YACC: yet another

compiler compiler. Techn. Rep. CSTR32, Bell

Labs, Murray Hill, 1975.

[JoS80] Jones, N.D., Schmidt, D.A.: Compiler

generation from denotational semantics.

183

Lecture Notes in Comp. Sci. 944 (1980), 70-93.
[JoW81] Jochum, G., Willmertinger, W.: A tool

for developing text processing systems:

translator writing systems. Report TUM-I8103,
Techn. Univ. MQnchen, 1981.

[KaU76] Kam, J.B., Ullman, J.D.: Monotone data

flow analysis frameworks. Acta Informatica

(1977), 305-317.
[KeW76] Kennedy, K., Warren, S.K.: Automatic

generation of efficient evaluators for at-

tribute grammars. POPL 3, 1976.
[Kro75] Kron, H.H.: Tree templates and subtree

transformational grammars. PhD-thesis, Univ.

of Cal., Santa Cruz, 1975.
[Knu68] Knuth, D.E.: Semantics of context-free

languages. Math. Systems Theory ~, (1968),

127-145.
[PQC79] Leverett, B.W., Cattel l , R.G.G., Hobbs,

S.C., Newcomer, J.M., Reiner, A.H., Schatz,
B.R., Wulf, W.A.: An overview of the

production quality compiler-compiler project.

Dept. of Comp. Science, Carnegie-Mellon

University, CMU-CS-79-I05, 1979.
[LRS73] Lewis, P.M., Rosenkrantz, D.J., Stearns,

R.E.: Attributed translations. Proc. ACM 5th
Annual Symp. on Theory of Comp., 1973.

[M~n82] M~ncke, U.: Doctorial dissertation,

Univ. Saarbracken, forthcoming.
[MosT6] Mosses, P.: Compiler generation using

denotational semantics. Proc. Symp. on Math.

Found. of Comp. Sci., Lecture Notes in Comp.

Sci., 4..55 (1976), 436-441.
[Mos79] Mosses, P.: SIS - Semantics implemen-

tation system. Reference Manual and user

guide. Report DAIMI MD-30, Univ. Aarhus,

1979.
[Pau81] Paulson, L.: A semantlcs-directed

compiler generator. POPL 9, 1982, 224-233.

[Poz79] Pozefsky, D.P.: Building efficient
pass-orlented attribute grammar evaluators.

Univ. North Carolina at Chapel Hill, UNC TR

79-006, 1979.
[R~i79] R~ihA, K.-J.: Dynamic allocation of

space for attribute instances in multipass

evaluators of attribute grammars. Proe.

SIGPLAN Symp. on Compiler Construction,

Boulder, 1979, 26-38.
[Rep82] Raps, T.: Optimal time incremental

semantic analysis for syntaz-directed

editors. POPL 9, 1982, 169-176.

[Ros77] Rosen, B.K.: High-level data flow

analysis. CACM 20, 10 (1979), 712-724.

[Set81] Sethi, R.: Circular expressions:

elimination of static environments. 8th
ICALP, Lecture Notes in Comp. Sci. 115

(1981), 378-392.
[Tar76] TarJan, R.E.: Iterative algorithms for

global data flow analysis. Report

STAN-CS-76-sq7, Stanford Univ., 1976.
[Wi179] Wilhelm, R.: Computation and use of data

flow information in optimizing compilers.

~cta Informatiea 12 (1979), 209-225.

184

