Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

Joogie: From Java through Jimple to Boogie

Stephan Arlt

United Nations University, [IST
arlt@iist.unu.edu

Abstract

Recently, software verification is being used to prove the presence
of contradictions in source code, and thus detect potential weak-
nesses in the code or provide assistance to the compiler optimiza-
tion. Compared to verification of correctness properties, the trans-
lation from source code to logic can be very simple and thus easy
to solve by automated theorem provers. In this paper, we present a
translation of Java into logic that is suitable for proving the pres-
ence of contradictions in code. We show that the translation, which
is based on the Jimple language, can be used to analyze real-world
programs, and discuss some issues that arise from differences be-
tween Java code and its bytecode.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Assertion checkers, assertion languages, performance

General Terms Algorithms, Performance, Theory, Verification

Keywords Inconsistency, infeasible code, intermediate verifica-
tion languages

1. Introduction

During the software development process, engineers use a variety
of tools to keep code quality high, and error rate low. In the early
stages of coding, when the source code is still in the making, simple
tools can be applied that detect common mistakes like unreachable
code or contradictory control flow, without having full information
about the program environment or the purpose of the code avail-
able. These tools detect what we refer to as infeasible code, by
showing that a piece of code has no feasible execution. Infeasible
code detection comes with the benefit that it can be done on code
fragments where the full context of its execution is not yet known.
That is, a piece of code without any feasible execution within a
given context will still not have a feasible execution in a larger con-
text, as adding additional statements around the fragment can only
reduce the feasible executions of this fragment. Hence, it is possible
to detect these contradictions on incomplete code fragments with-
out running the risk of introducing false alarms. Popular instances
of such tools are, for example, the static analysis in IDE’s such as
Eclipse, Visual Studio, or Xcode that warn the programmer about
unreachable or contradicting control-flow by underlining the code
in question with a squiggly line.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SOAP’13 June 20, 2013, Seattle, Washington, USA
Copyright © 2013 ACM ACM ISBN 978-1-4503-2201-0/13/06. ... $15.00

Philipp Riimmer

Uppsala University
philipp.ruemmer@it.uu.se

Martin Schaf

United Nations University, [IST
schaef@iist.unu.edu

Recently, techniques have been introduced to detect infeasible
code using static verification [1, 11, 20]. From a static verifica-
tion perspective there are several interesting aspects to this prob-
lem. First, proving the presence of infeasible code on program frag-
ments, such as procedures, without considering its context lifts (to
some extent) the notorious scalability problem of static verification.
Second, to detect contradicting control-flow, static verification has
to prove the absence of (feasible) executions of the code fragment
under consideration. This is, in some way, dual to verification and
only a proof guarantees the presence of a contradiction, whereas
a counter-example just witnesses a feasible execution of the code
fragment. Hence, if a tool fails to prove a certain statement to be in-
feasible, it just remains silent and does not bother its user with false
alarms (soundness). And third, abstractions which might be needed
by static verification tools only have to preserve the feasible execu-
tions of the original program in order to detect contradictions. This
is a significant difference to static verification that proves correct-
ness, which has to preserve the infeasible executions. For example,
for detecting contradictions, it is almost always sound to directly
map integer types in Java to unbounded/mathematical integers in
logic (as long as the programmer does not explicitly catch arith-
metic exceptions), whereas this abstraction would be too coarse to
prove correctness, and additional axioms would be required.

Preserving feasible executions is a much simpler task than
preserving infeasible executions. For detecting infeasible code,
a coarse but fast abstraction might cause some false negatives,
whereas a coarse abstraction in static verification might make a
proof of correctness impossible.

‘We show how we use Soot [22] to build a translation from Java
into Boogie [2] that preserves the feasible executions of the Java
program. We report on how this translation, which is integrated
in Joogie [1], a tool to detect infeasible code, can be used to de-
tect problems in real-world software. In Section 2, we formalize
the idea of detecting infeasible code and state our soundness re-
quirement for the translation. In Section 3, we give an overview of
the Boogie language, and show how a simple Burstall-Bornat heap
model [3] can be used as a sound memory model for Java. For the
actual translation from Java to Boogie, we use the Jimple intermedi-
ate representation of Soot. The translation of each Jimple statement
into Boogie is explained in Section 4. Exception handling is dis-
cussed in Section 5. Some problems that arise from using bytecode
or Jimple instead of Java source code are discussed in Section 6.

We evaluate our translation in Section 7 with Joogie [1], a fully-
automated tool to detect infeasible code in Boogie programs. Joo-
gie takes a Boogie program as input, computes a loop-free ab-
straction and then repeatedly queries a SMT solver to identify all
statements that cannot occur on feasible executions. We apply Joo-
gie with our translation to five real-world programs. Since Joogie
works on a per-method basis, it scales almost linearly in the size of
programs; in our experiments, Joogie is able to process programs
with more than 100 kLOC in comparatively short time (less than
one hour), without requiring any code annotations.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

2. Preliminaries

Throughout the paper we consider Jimple programs, which are
a 3-address intermediate representation of Java bytecode. Jimple
provides the usual statements one expects from Java bytecode,
such as assignments, conditional jumps, switch cases, and so on. A
control-flow path 7 of such a program is a sequence of statements
T = So...Sn—1. For the sake of simplicity, we assume that control
altering statements such conditional jumps like if (e) goto L;
are represented by assume statements assume (e) or assume(!e)
on a control-flow paths. The execution of an assume statement
assume (e) either does nothing if e evaluates to true, or blocks
otherwise. For the execution of all other statements, we use the
standard semantics of Java.

We say a path is feasible if it has at least one execution from start
to end. The feasibility of a path can be checked using the weakest-
liberal precondition (wlp): the wip wilp(P, Q) of a program P w.r.t.
a post-condition @) is the set of all states, such that an execution of
P started from such a state either terminates in a state satisfying
or does not terminate at all. Hence, a given path 7 is infeasible if
and only if the formula wip(, false) is valid (for the computation
of wlp, we refer to [6]). In other words, 7 is infeasible if from
any pre-state, the execution of 7 either does not terminate normally
or ends in a post-state satisfying false. Since the latter case cannot
occur, = wlp(mw, false) only holds if 7 has no (normal terminating)
execution.

To show the presence of infeasible code within a given code
fragment, we have to show for some statement s that any complete
path in this fragment that contains s is infeasible. That is, a contra-
diction exists if, for a given statement s in a program P, and the
program P’ which consists of all (possibly infinitely many) paths
that contain s in P, the formula wip(P’, false) is valid. Like other
reachability problems, checking the validity of this formula is not
decidable for the general case. Hence, abstraction is needed: we
are looking for a program P# for which we can check the validity
of wip(P#, false). Further we want that wilp(P#, false) is valid
only if wlp(P’, false) is valid as a soundness criterion. That is, if
we can find a contradiction in P#, we want to be sure that there is
a contradiction in P’ as well, so we do not report a false alarm.

This abstraction consists of two steps. One step abstracts from a
possibly infinite number of control-flow paths in P’ to a finite num-
ber in P# by abstracting looping control-flow. This abstraction is
discussed elsewhere (e.g., [12, 20]). The other part of the abstrac-
tion is how to represent the type system of Java in a logic that can
be understood by an automatic theorem prover.

To meet our soundness criterion, we have to be sure that our ab-
straction over-approximates the set of feasible executions of P’. A
brute-force solution to this would be to approximate P’ by the logic
formula true that describes all possible executions. This is sound
but would not reveal any contradiction. A precise approximation
that can reveal all contradictions might result in a very complex
formula which cannot be solved by automatic theorem provers.

In this paper we present a solution that is not sound in theory,
but produces reasonably efficient formulas and, in our experiments,
does not produce false positives. We first show the sound subset of
our translation, and then discuss the issue of soundness.

3. The Boogie Language

Boogie [16] is an imperative intermediate verification language
(IVL) that has been used to encode and analyse a range of high-
level programming languages. This section gives a high-level
overview of the Boogie language (version 2), concentrating on
the features that will be used to encode Jimple. For a more detailed
definition we refer the interested reader to [16, 18].

A Boogie program is a collection of declarations, each of which
can introduce types, functions, constants, axioms, variables, proce-
dures, or procedure implementations.

Boogie types cover basic built-in data types like bool and int,
as well as (monomorphic and polymorphic) map types. The latter
are mainly used to represent language features such as arrays or
heap (see below for further details). User-defined type constructors
are introduced with the help of the type keyword; in the following
example, ref is declared to be a nullary type constructor, Field
to be a type constructor with one type argument (later used to
represent fields of different types), and IntField is defined as a
type synonym for the compound type Field int:

type ref;
type Field t;
type IntField = Field int;

Functions in Boogie are pure (i.e., total and free of side-effects),
and mainly used to define background theories and language prop-
erties by means of axioms. For instance, a function mapping pairs
of integers to integers can be declared with:

function pow(x: int, y: int) returns (z: int);

Since the semantics of functions is not restricted a priori, functions
are also called uninterpreted.

Constants are functions without any arguments.

Axioms are used to restrict the interpretation of functions and
constants. For instance, the semantics of the function pow can be
specified through the following axiom:

axiom (forall x: int, y: int
pow(x, 0) == 1 &&
pow(x, y+1) == x*xpow(x, y));

The expression language for axioms is the same as used for pro-
cedure implementations (see below), and includes all operations
common in programming languages (such as literals, arithmetic
and Boolean operations, function and map applications, etc.), as
well as first-order quantifiers.

Variables are mutable (can be modified by procedures) and are
used to represent the state and data of encoded programs. Variables
can be declared globally or locally within the scope of a procedure.

Procedures are used to encode the executable parts of a pro-
gram, including functions, methods, constructors, etc. In contrast
to Boogie functions, Boogie procedures can have side-effects and
might be partial, for instance due to indefinite looping. Procedures
can have both input and output parameters, and can also specify
pre-conditions (states in which the procedure can be called), post-
conditions (states in which the procedure can terminate), and mod-
ified global variables:

var x : int;

var H : Heap;

procedure f(this : ref, y : int)
returns (z : int);

modifies x, H;
requires y >= Xx;
ensures z 1= 0;

Procedure implementations describe the behavior of a proce-
dure in an imperative style. Boogie supports both structured and
unstructured code in implementations; in the scope of this paper
we concentrate on the latter. The main statements available for
unstructured programs are goto (to one or multiple target labels,
selected non-deterministically), assignments to variables, assume

4

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

and assert, return from a procedure, as well as call to other
procedures; the semantics of each of the statements is as usual. It
is clear that arbitrary control-flow graphs can be encoded in this
language.

3.1 Modelling Object-Oriented Heap

Most of the basic Java data types can be mapped straightforwardly
to Boogie data types. Classes, objects, and arrays can be modelled
in an elegant way with the help of polymorphic maps, which rep-
resent polymorphic functions that can be updated by assignments.
The heap of a program is modelled as a map from heap locations
to values. A heap location (i.e., instance field) is uniquely specified
by a reference of a class instance and a field of the class. Paramet-
ric polymorphism (in the Boogie model) is used to express that the
type of the value stored at a location depends on the type of the
field. It is common to use the following pattern:

type ref;
type Field t;

const x, ¥y Field int;
axiom (x !'= y);
const p Field ref;

type Heap = <t>[ref, Field tlt;

This code defines a nullary type constructor ref, used for refer-
ences, and a unary type constructor Field for instance fields. With
the latter type constructor, constants x, y can be declared to repre-
sent (distinct) fields of type int, and p a field of type ref.

The type Heap is defined as a map from reference-field pairs
to values, and used to explicitly represent heap by means of the
variable H. The heap map is polymorphic in the type parameter t,
expressing that the value stored at a Field t location has type
t. The value of field x in an object obj is accessed using the
map expression H[obj, x];since x has type Field int, the type
of Hlobj, x] is int. The value of fields is updated using map
update expressions like H[obj, x := 42], returning a new heap
(of type Heap) that coincides with H, with the exception that 42 is
stored at the location (obj, x). Boogie also provides syntactic sugar
to simplify updates as assignments in procedures.

Arrays, which are in Java allocated on the heap, can be modelled
as objects with an implicit field that stores the array contents:

Field ([intlint);
Field ([intlref);

const $intElements
const $refElements

If ar is a reference to an integer array, then an array element can be
accessed using an expression like H[ar,$intElements] [5], and
updated using

H[ar,$intElements := H[ar,$intElements][5 := 42]].

4. Jimple to Boogie

With the memory model from the previous section, we can now
translate most of the expressions and statements in a Jimple pro-
gram in a straight forward manner.

Expressions As Jimple expressions are already simplified, their
translation to Boogie is fairly simple. We translate Integer-typed
constants directly to Boogie integers. As mentioned earlier this is
not sound if the programmer explicitly catches arithmetic excep-
tions. In our experiments, however, this has never been the case.
Integer arithmetic operations are handled by inlined functions. For
the translation of the division operator, we further add an assertion
to the Boogie program that guarantees the denominator is different
from zero.

The prover we currently use in Joogie cannot handle real-values
constants very efficiently. Therefore, we keep a map rmap

double — wvar during the translation that replaces each float or
double constant d by unique constant variable rmap[d] . For arith-
metic operations on values and variable of these types, we use
uninterpreted functions. This is a coarse but sound abstraction. De-
pending on the capabilities of the prover, more precision can be
added.

For strings and characters we also keep a map smap : string —
var from variables to constant values to replace their occur-
rence by constant values. In addition to that, we keep a map
slen : var — int that maps each string variable to its length.
That is, each time a variable is assigned to a string constant str,
we add two statements to the Boogie program. The first statement
assigns the variable to the respective constant variable smap|[str],
and the second one assigns the length of str to the appropriate field
slen[smap[str]]. Any operation on string variables is translated
into a non-deterministic assignment to this variable.

This string handling allows us simple comparisons, if strings
have been assigned to constant values within the same scope. In
fact, this has proved to be sufficient to detect cases where pro-
grammers deliberately render code unreachable in stable releases
of code. Of course, unreachable code is not a heavy target; how-
ever, other analysis methods were not able to detect such cases of
unreachable code in our experiments.

Array and Field Access. Array and Field access is modeled as
described in the previous section. For arrays, we store the size of
the array as the —1st element of the array. Each call to the operator
length is translated into an access of this field. For each array
access, we add an assertion that the index is in the given array
bounds. For field access, we assert that the used object is allocated.
The instanceof operator is also modeled by an uninterpreted
function and returns an unknown Boolean value.

4.1 Statements

Assignments and Invocations With the above memory model
and translation of Jimple expressions, assignments in Jimple can
be directly translated into Boogie assignments. For procedure calls,
we have to add surrounding statements to handle possible excep-
tions thrown by the callee. This is discussed in detail in Section 5.

Enter and Exit Monitor Monitor statements are not handled right
now. This causes unsoundness if we expect the translation to handle
this. We could as well say that this is the job of the static analysis.
In any case, the unsoundness only causes false positives, if code
is only reachable due to interleaving. In our experiments this only
occurred once, where a trivial non-terminating loop was waiting for
a response from the GUL

Conditional Choices Conditional jumps are translated in a straight
forward manner. Switch statements are first translated into nested-
conditional choices and then translated accordingly. In Section 6
we discuss the soundness problems that arise from conditional
choices.

Return and Throw statements Boogie uses specific return vari-
ables for procedures. Hence, we translate return statements to as-
signments of this variable. To model exceptional returning of a pro-
cedure caused by a throw statement, we use additional return vari-
ables that are only set if the procedure returns exceptional. As a
procedure may throw different exceptions, we add one return vari-
able for each type of exception that occurs in an uncaught throw.
Exception handling is described in Section 5 in more detail.

5. Exceptions

The computation of verification condition in the presence of ex-
ceptions has been extensively studied (e.g., [10]). For preserving

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

if (x==null) {

i 1= s
void foo(C x, C y) { 1; x = 2311 gztz 18: if (y==null) {
if (x == null && y == v & ’ goto 1;
null) { goto labell; 3 ¥
} else if (x == null && 19: if (x==null) {
\ if x != null goto 11;
y != null) { it —= null moto 11. if (y'!=null) {
C. y g€ ’ } else {/*unreachable
} 11 */}
} . }
return;

1: return

Figure 1. Code snippet with else if statement, its corresponding Jimple code, and a reconstructed version of it showing
the unreachable branch. Through the none mutual exclusive conditions that are needed to enter each of the cases, unreachable

blocks might be created.

the feasible executions of a program, a worst-case analyze is suf-
ficient. We traverse the call graph from its leaves to its source and
check for each procedure which exception can possibly be thrown.
As our analysis in Joogie cannot detect all infeasible (and hence
unreachable) code, the set of possibly thrown exceptions is an over-
approximation as well. We translate exceptional returns like regular
returns, only that they assign to different return variables. For each
possible exception inside a procedure, we create one additional re-
turn variable of appropriate type to the procedure. To avoid creating
redundant return variables we keep a simple type hierarchy.

Each time we encounter a throw statement, we use the type
hierarchy to check if there exists a catch block that can catch
an exception of this, or any of its super-types. If so, we create a
local variable that we assign to the created exception and create a
control-flow edge to the catch block. For an uncaught exception
in a throw statement, we create a return variable, assign it, and
return from the procedure. Note that this only works because we
can be sure, that the caller will not use the normal return value if an
exceptional return value is set.

For call statements, we make use of the multi-assignments in
Boogie, and translate each procedure call into a Boogie statement
of the form:

ret, exl,..,exN = call foo(argl, argM)

where each ex] stands for a possible exceptional return. Then insert
conditional choice for each exceptional return variable where re-
throw the exception, if the variable is not null.

Finally-clauses are already eliminated by the bytecode trans-
lation. This, however, causes some problems with our translation
which will be discussed in the following section.

We do not collect all possible exceptions. We only collect those
that are created by a throw statement, and those that are in the
throws clause of procedures which are not in the scope of our
analysis (e.g., library procedures). NullPointerExceptions, or array
bounds violations are modeled through assertions. We can model
them as exceptions as well, but for now, we do not see any benefit
in it, besides the neater theory, and it will result in larger Boogie
programs. In theory, using assertions instead of exception is un-
sound, as code might be unreachable if the programmer catches,
e.g., null pointer exceptions. However, this is bad style and did not
occur in our experiments.

6. Translation issues

Infeasible code detected on the bytecode level does not always have
corresponding infeasible code on the Java level. Sometimes, a line
of code is cloned during the translation to bytecode. This may cause
false warnings if one of the clones is infeasible but the other clone is
not. That is, there may be an infeasible instruction in the bytecode,

but the corresponding instruction in the java code also maps to other
bytecode instructions which are feasible. Thus, the bytecode may
be infeasible while the Java code still is feasible.

Conditional branching and conjunctions. Figure 1 shows an
example of infeasible code in a Jimple program that does not
have corresponding infeasible in its Java program. The problem is
introduced by the else if branch of the Java program in the left
column of Figure 1, which is translated to the Jimple program in
the middle column. The right column shows a Java program that is
equivalent to the Jimple program which illustrates the unreachable
code that has been introduced during the translation. This problem
only arises for conditional choices with else if branches and
branch conditions with conjunctions which are not disjunct from
each other. One could explain the infeasible block as follows: If
the then branch is not taken but x is null the else if branch
must be taken in any case, and thus the check for y becomes
useless. However, reporting this in the Java code would be clearly
considered a false warning. A solution would be to rewrite the code
such that first, x is checked to be null, and only if this holds y is
checked in a nested if. However, this has to be done on the Java
side even before the translation to Jimple.

Finally Clauses. An unavoidable source of false warnings that
arises from using bytecode instead of source code are finally-
blocks, see Figure 2. Let us assume that the procedure creator
can throw an exception of type MyException. What happens in
the bytecode and also later on in the Boogie program is that there
is a path from the try block into the £inally block on which we
can assume that the exception was not thrown. And there is a path
from the try through catch into finally where the exception
is thrown. The problem is that the bytecode clones the finally
block, such that the block that is reached from try is different
from the one reached from catch. Hence, in the finally block
reached from catch, obj must be null because creator threw an
exception. Thus, the line labeled with A is unreachable in this copy
of the finally block, but, as it might be reachable in another copy
of the finally block, reporting it may introduce false warnings.

The only way to avoid false warnings in the presence of
finally blocks is to identify copied statements. Unfortunately,
this information is not available in the bytecode. Currently, we use
a heuristic that works well in practice but is no general solution.
First, we use the option of Soot to preserve the original Java source
code line number for each statement in the Jimple program. Note
that one cannot look for cloned statements, because the bytecode
or the Jimple code may introduce or rename local variables, so the
statements in the different clones are not exactly the same.

In the Jimple program with original line numbers, we iterate
over a procedure body and check if we find the same line number
multiple, but non-consecutive times. It is important to consider

6

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

void foo() {
C obj = null;
try {
obj = creator();
} catch (MyException e) {
} finally A{
if (obj!=null) {
A: //unreachable
}
}

Figure 2. Code snippet with finally statement, which causes a
false warning.

only non-consecutive repetitions, as consecutive repetitions can
be introduced, e.g., by multiple initialization. This solution is not
robust against hostile users. If, e.g., the user writes everything into
one line, this approach obviously fails. However, we assume that
Java programmers usually follow established code conventions at
least to some extent.

Once we have identified all non-consecutive repetitions we have
several options: the precise way would be to eliminate all but one
clone, introduce a helper variable that is a assigned to a unique
value at each location that can jump into the finally block, and add
conditional choice over this variable with the corresponding back-
jumps to the end of the finally block. Currently, we use a cheaper
workaround: we keep record of all cloned statements, and only if
all clones of one statement are infeasible, we report it to the user.

For a proper solution to this problem we would need to carry
the information about which statements have been cloned from the
Java code through the bytecode to the Jimple code.

Sources of Unsoundness Beyond the above mentioned sound-
ness issues which arise from the difference between Java code and
bytecode, our translation has other sources of unsoundness which
we introduced on purpose for more efficient infeasible code detec-
tion. As mentioned before, we do not model runtime exceptions.
That is, code that is only reachable if such an exception is thrown
will become unreachable. This did not happen in our experiments.
Further, we do not model aliasing. For a given code fragment (in
our analysis we only consider procedure bodies), if a piece of code
is only reachable if there is an alias between variables in the initial
state, we will wrongly report it as unreachable. This did not happen
either in the experiments.

7. Evaluation

We evaluate our translation and the issues of unsoundness dis-
cussed in the previous section on five benchmark programs: the
CASE tool ArgoUML, the mind-mapping tool FreeMind, the time
tracker Rachota, a tiny word processor called TerpWord, and our
tool, Joogie, that does the translation. The benchmark programs are
picked without any deep consideration of statistic validity, but due
to their size, we believe that they give fairly realistic results. Joogie,
and all AUTS are available online'.

The goal of this evaluation is to measure how many instances
of infeasible code can be found and how many false positives are
being emitted. Note that all the AUTs are stable releases, so it is
unlikely to find much infeasible code, as the applications hopefully
have been tested before.

Table 1 shows that, with our translation, infeasible code detec-
tion takes in average less than a second per method, and we are able
to find infeasible code in each of the analyzed programs. However,
in all programs besides Rachota, we report false positives. Fortu-
nately, all but one false positive arise from one of the two issues

"http://joogie.org

discussed above: code duplication of finally blocks or non-existing
control-flow from conditional choices. Both cases can be handled
by incorporating information about the source code into the Jimple
translation. Only one false positive occurred for another reason in
FreeMind, where a function calls System. exit, but our translation
does not know that this call terminates the program.

In conclusion, we can say that our experiments show that a
very simple translation is sufficient to detect infeasible code, and
that most sources of unsoundness do not cause false warnings in
practice. Further, the two main sources of false warnings can be
eliminated with little engineering effort.

8. Related Work

Various approaches have been presented that use Jimple [21] as a
basis for static analysis of Java (byte) code. For brevity, we refer
to [14] for an overview. In this paper we discuss how we can use
Jimple for infeasible code detection. Infeasible code detection al-
gorithms have, for example, been presented in [1, 7, 8, 13, 20]. The
approaches presented in [8] and [13] use a syntactic pattern match-
ing directly on the source code of C resp. Java programs. In [7]
and [20] algorithms to detect infeasible code in C programs are pre-
sented which are implemented in clang and 11vm, however, these
papers do not discuss the translation from source- to intermediate
code in detail. Joogie [1] detects infeasible code in Jimple (or Java)
code. This paper discusses the translation used in Joogie in detail.

There is a large body of research on intermediate verification
languages (IVLs), and the encoding of real-world programming
languages into IVLs. The two most widely used IVLs are Boo-
gie [16] and Why [9]; for both languages mature implementations
and frameworks are available to parse, type-check, and analyze pro-
grams. We concentrate on Boogie in this paper (an introduction is
given in Section 3), but all results straightforwardly carry over to
Why, or to other IVLs with comparable functionality.

Among others, Boogie has been used to represent programs in
the following programming languages:

The design of Boogie was motivated by the requirements of the
Spec# [2] language, which is a variant of C# (and a verification
system) extended with verification-related features and code anno-
tations. Our work is similar to Spec# in that we process programs
on the level of bytecode (Jimple), not on the level of source code
(Java). Spec# uses a highly sophisticated verification methodology
tailored to functional verification, whereas our method targets de-
tection of infeasible code, and is therefore more lightweight, auto-
matic, and scalable.

A translation of a substantial part of the Java bytecode lan-
guage to Boogie was presented and proven sound in [15]. The trans-
lation was designed for functional verification of Java programs,
but uses a heap model similar to the one defined in Section 3.1. In
our work, the use of the Jimple language enables a simpler trans-
lation than defined in [15], since only a smaller number of instruc-
tions, and no operand stack has to be considered.

There are multiple tools for analyzing C programs by means
of encoding into Boogie, including Havoc [4] and VCC [5]. Both
approaches use detailed and accurate models of the heap in C, to
the extent necessary to analyze low-level code such as operating
systems or drivers. Like Spec#, such tools are tailored to functional
verification, not to the detection of infeasible code, and demand a
substantial amount of user interaction.

Dafny [17] and Chalice [19] are academic languages that sup-
port verification by means of translation to Boogie. Datny is object-
oriented, and its heap model can be represented in Boogie in a sim-
ilar manner as the model defined in Section 3.1. Chalice was de-
signed to explore verification methodologies for concurrent com-
putations. Both Dafny and Chalice are tailored to functional verifi-
cation, and require annotation of programs by the user.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

[Program | LOC [#checked methods | #found [#true pos [# false pos (if-then-else) [# false pos (finally) [Time (min) |
ArgoUML 156,294 9,981 63 28 22 13 51
FreeMind 53,737 5,613 13 10 1 1 16
Joogie 11,401 973 3 0 1 2 8
Rachota 11,037 1,279 1 1 0 0 19
TerpWord 6,842 360 7 3 1 3 3

Table 1. Results of applying Joogie to the test applications.

9. Conclusion

We have presented a translation from Jimple into Boogie that is
tailored for infeasible code detection. The translation is not sound
for technical reasons, still, experimental results show that most of
the sources of unsoundness do not cause false alarms in practice.
However, the experiments also show that some sources of unsound-
ness cannot be ruled out without considering the original Java code.
This happens every time a control location in the Java code is rep-
resented by multiple control locations in the bytecode which are
not on the same path. E.g., a finally block that is copied to the end
of the try block and the end of the catch block, or a conditional
choice with a conjunction in the conditional, where else blocks
exist in the bytecode which do not exist in the Java code. Suppress-
ing these warnings by looking up in the corresponding Java code if
the location is a potential false alarm is one option. However, for
our future work we interested in finding a more general solution to
this problem by pre-processing the Java program.

Beyond these limitations, we have presented a relatively simple
translation that is yet precise enough to reveal infeasible code even
on well tested programs. In the future, we plan to integrate Joogie
into an IDE to evaluate how much more can be found if we can
analyze code while it is written, and how disturbing the above
mentioned false positives really are for the programmer.

Acknowledgements. This work is in part supported by the grants
COLAB and JOOGIE of the Macao Science and Technology De-
velopment Fund, and by Vetenskapsradet (VR).

References

[1] S. Arlt and M. Schif. Joogie: Infeasible code detection for java. In
P. Madhusudan and S. A. Seshia, editors, CAV, volume 7358 of Lecture
Notes in Computer Science, pages 767-773. Springer, 2012. ISBN
978-3-642-31423-0.

M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
FMCO 2005, pages 364-387. Springer, 2006.

R. Bornat. Proving Pointer Programs in Hoare Logic. In Proceedings
of MPC 2000, pages 102-126, London, UK, 2000. Springer. ISBN
3-540-67727-5. URL http://dl.acm.org/citation.cfm?id=
648085.747307.

S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamari¢. A reachabil-
ity predicate for analyzing low-level software. In TACAS 2007, pages
19-33, 2007.

E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. Vcc: A practical system for veri-
fying concurrent c. In S. Berghofer, T. Nipkow, C. Urban, and M. Wen-
zel, editors, TPHOLs, volume 5674 of Lecture Notes in Computer Sci-
ence, pages 23—42. Springer, 2009. ISBN 978-3-642-03358-2.

E. W. Dijkstra. A discipline of programming / Edsger W. Dijkstra.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

I. Dillig, T. Dillig, and A. Aiken. Static error detection using semantic
inconsistency inference. In Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation,
PLDI 07, pages 435—445, New York, NY, USA, 2007. ACM. ISBN

[2

—

[3

=

[4

=

[5

=

[6

=

[7

—

978-1-59593-633-2. doi: 10.1145/1250734.1250784. URL http:
//doi.acm.org/10.1145/1250734.1250784.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: a general approach to inferring errors in systems
code. In Proceedings of the eighteenth ACM symposium on Operating
systems principles, SOSP °01, pages 57-72, New York, NY, USA,
2001. ACM. ISBN 1-58113-389-8. doi: 10.1145/502034.502041.
URL http://doi.acm.org/10.1145/502034.502041.

J.-C. Filliatre and C. Marché. The Why/Krakatoa/Caduceus platform
for deductive program verification. In CAV’07, pages 173-177, 2007.

[10] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: gen-
erating compact verification conditions. In Proceedings of the 28th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL °01, pages 193-205, New York, NY, USA, 2001.
ACM. ISBN 1-58113-336-7. doi: 10.1145/360204.360220. URL
http://doi.acm.org/10.1145/360204.360220.

[11] J. Hoenicke, K. R. Leino, A. Podelski, M. Schif, and T. Wies. It’s
doomed; we can prove it. In FM’09, pages 338-353. Springer, 2009.

[12] J. Hoenicke, K. R. Leino, A. Podelski, M. Schif, and T. Wies. Doomed
program points. Formal Methods in System Design, 2010.

[13] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Com-
panion to OOPSLA 2004, pages 132-136, New York, NY, USA,
2004. ACM. ISBN 1-58113-833-4. doi: http://doi.acm.org/10.
1145/1028664.1028717. URL http://doi.acm.org/10.1145/
1028664 .1028717.

[14] P. Lam, E. Bodden, O. Lhotdk, and L. Hendren. The Soot framework
for Java program analysis: a retrospective. In Cetus Users and Com-
piler Infrastructure Workshop, Galveston Island, TX, October 2011.

[8

=

[9

—

[15] H. Lehner and P. Miiller. Formal translation of bytecode into Boo-
giePL. Electronic Notes in Theoretical Computer Science, 190(1):35—
50, 2007.

[16] K. R. M. Leino. This is Boogie 2, 2008. Manuscript KRML 178.

[17] K. R. M. Leino. Specification and verification of object-oriented
software. In Summer School Marktoberdorf 2008, NATO ASI Series
F. IOS Press, 2009.

[18] K. R. M. Leino and P. Riimmer. A polymorphic intermediate ver-
ification language: Design and logical encoding. In J. Esparza and
R. Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 6015 of LNCS, pages 312-327. Springer,
2010.

[19] K. R. M. Leino, P. Miiller, and J. Smans. Verification of concurrent
programs with Chalice. In FOSAD 2007/2008/2009 Tutorial Lectures,
volume 5705 of LNCS, pages 195-222. Springer, 2009.

[20] A. Tomb and C. Flanagan. Detecting inconsistencies via universal
reachability analysis. In Proceedings of the 2012 International Sympo-
sium on Software Testing and Analysis, ISSTA 2012, pages 287-297,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1454-1. doi:
10.1145/2338965.2336788. URL http://doi.acm.org/10.1145/
2338965.2336788.

[21] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java bytecode
for analyses and transformations, 1998.

[22] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon,
and P. Co. Soot - a Java Optimization Framework. In CAS-
CON 1999, pages 125-135, 1999. URL www.sable.mcgill.ca/
publications.

