

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

PLAS’08 June 8, 2008, Tucson, Arizona, USA.
Copyright © 2008 ACM 978-1-59593-936-4/08/06…$5.00.

A Compiler-Based Infrastructure
for Software-Protection

Clifford Liem

Cloakware Corporation

Clifford.Liem@cloakware.com

Yuan Xiang Gu

Cloakware Corporation.

Yuan.Gu@cloakware.com

Harold Johnson

Cloakware Corporation.

Harold.Johnson@cloakware.com

Abstract

Not long after the introduction of stored-program comput-
ing machines, the first high-level language compilers ap-
peared. The need for automatically and efficiently mapping
abstract concepts from high-level languages onto low-level
assembly languages has been recognized ever since. A
compiler has a unique ability to gather and analyze large
amounts of data in a manner that would be an unwieldy
manual endeavor. It is this property that makes known
compiler techniques and technology ideally suited for the
purposes of software protection against reverse engineering
and tampering attacks. In this paper, we present a code
transformation infrastructure combined with build-time
security techniques that are used to integrate protection into
otherwise vulnerable machine programs. We show the ap-
plicability of known compiler techniques such as alias-
analysis, whole program analysis, data-flow analysis, and
control-flow analysis and how these capabilities provide the
basis for program transformations that provide comprehen-
sive software protection. These methods are incorporated in
an extensible framework allowing efficient development of
new code transformations, as part of a larger suite of secu-
rity tools for the creation of robust applications. We de-
scribe a number of successful applications of these tools.

Categories and Subject Descriptors D.2.0 [General]:
Protection mechanisms.

General Terms Design, Performance, Security.

Keywords Software Protection, Tamper Resistance, Com-
piler-based Techniques, Code Transformation.

1. Introduction

In today’s digital world, the need for software protection is
reaching its height. In application areas such as video or
music, Digital Rights Management (DRM) systems are be-
ing deployed to protect the high-value content. The discov-

ery of root keys in the system can cause a breach of
valuable content; or worse, cause the release of automated
exploits to release any content. In Conditional Access Sys-
tems (CAS), satellite or cable service providers are con-
stantly bombarded by new attacks, which proliferate in our
connected world and destroy a company’s valuable sub-
scription stream. In enterprise systems, the network is
guarded by sets of password systems, often through hard-
coded scripts. Client and server software modules become
at risk to both outsider and insider attacks.

Data in-transit is only part of the security problem. The
more prevalent situation is when software executes in a
hostile environment, where attackers have large amounts of
time and resources to spend. Hardware protection can play
a part, but usually software is still needed for flexibility,
upgrades, and cost effective revisions. In often circum-
stances, software is important for key management, revision
and revocation control. How then can a distributor of soft-
ware be sure that the software is robust and resistant to at-
tack? Frequently, the platform and software are well known
to an attacker with time, resources, tools and all the experts
on the web. This attack landscape is often termed a white-
box environment, where all the content is in plain sight –
the opposite of a black-box environment.

A strong defense for white-box attacks can be achieved
through effective build tools. A compiler has at its disposal
a vast amount of semantic information about the applica-
tion. By gearing transformations to specific security objec-
tives, a compiler-based transformation tool can conceal a
program’s intent from both static and dynamic attacks. This
tool can perform transformations that make common tam-
pering techniques ineffective. Furthermore, when these
compiler techniques are combined and interlocked with
encryption and binary protection techniques, the defenses
become layered and in-depth. Interlocking is a term used to
describe mutual dependencies of techniques, making the
counter-measure of any one technique ineffective.

This paper outlines an extensible compiler infrastructure
and a number of compiler transformation techniques, the
basis of a larger defense-in-depth approach. These tech-
niques make use of known approaches in classic compilers
with different goals in mind. Rather than the usual objec-
tives of optimizing performance and program size, these
techniques address a third objective axis: security. All the
techniques described hereafter have been implemented and
are currently in production in the compiler-based transfor-

33

mation tool known as the CloakwareTM Transcoder. Finally,
we describe the application of the Transcoder on a real-life
DRM (Digital Rights Management) application.

2. Related Work

A number of papers have been introduced to study the the-
ory of obfuscation [2,3,26]. Although there is work that
states that complete obfuscation of an arbitrary program
cannot exist [3], there is also work to indicate that positive
results can be achieved with obfuscation techniques [3].
This paper does not seek to prove or disprove the possibil-
ity, but rather to demonstrate a number of practical tech-
niques that increase the difficulty of attacks, making
reverse-engineering and tampering a daunting and discour-
aging task to any intruder.

Commercial and publicly-available obfuscators [15,16]
have existed for some time; however, they typically perform
simple operations such as identifier renaming, removing
whitespace, reformatting, and removing unused entities.
These measures usually have little effect on the final execu-
table and merely pose a difficulty in readability.

Early work by Colberg and Thomborson [5] suggest
elementary methods for obfuscation and tamper-proofing.
In this paper, we describe advanced transformations built in
an extensible framework aimed to resist static, dynamic and
tampering attacks of the final executable. Additionally, we
describe build-time diversity measures which address the
space and life-cycle of security measures which provide
rapid response to attacks. This includes defenses against
differential attacks, the means for renewability and revoca-
tion, and the ability for meaningful revision updates.

Previous work suggests controlling the information flow
through a program using the type system [25,13,27]. Labels
and sub-typing are one way to denote security classes. A
secure information flow can be tested through static type-
checking. Other work also suggests using type qualifier
language extensions [24] for sub-typing purposes. We pre-
sent a sub-typed, extended qualifier system for C++ and C
used for the purposes of transformed data. This is described
in section 5.1.3.

Some of the techniques that we describe in this paper
build upon previous work popularized by Wang et al. [7,
22], and anticipated in more elaborate form by Chow et al.
[29]. They describe a control-flow transformation which
arrives at a flattened control-flow graph (CFG). This type
of transformation essentially produces a many-to-many ba-
sic block graph which is not easily reversed into a proce-
dural flow-graph. In the first instance of control-flow
flattening, simple integers are used to encode a switch value
indicating the next block in the flow-of-control. Then, in the
second instance, they improve upon this approach by plac-
ing the switch values in an array and addressing the array
through pointers, essentially turning the problem into a data
aliasing problem. While effective, there is still the possibil-
ity of attacks upon the array.

We also use this first instance of control-flow flattening,
but then improve upon it in a much different second tech-
nique. We use encoding and decoding functions to calculate
the switch value in the history of the flow-of-control. The
technique is described in section 5.2.1.

3. Defining Security Objectives

Running software in a hostile environment runs the risk of
having a gamut of professional and public tools being used

to circumvent protections. Furthermore, any number of
automated scripts and tools can be used to continually re-
run software and brute force any security.

An effective approach to providing the needs of security
is to support layers of protection. It considers many differ-
ent facets and angles from which an attack might originate.
For example, it should protect a program from static at-
tacks. Sensitive information such as key data and strings
need to be hidden from direct observation. Furthermore,
any important algorithms should be concealed and obscured
from a view to reverse-engineering.

Programs should also be protected from dynamic at-
tacks. Debuggers and disassemblers are common tools used
to attack a running program. Setting break-points and step-
ping through code is a common approach. In addition to
protecting a program and data from a static attack, it is
equally important to conceal and obscure the dynamic be-
havior of a program and its data in memory during run-
time.

Among other well-known intrusions, jamming and by-
passing branches are common techniques used to dynami-
cally attack programs. Any means that protect deployed
programs from modification and tampering will inhibit an
aggressor. Tamper-resistance techniques are those that
cause a program to behave chaotically in the presence of
modification. Furthermore, the reaction and mitigation to
modification can either have a hard (e.g. cause a crash) or a
soft (i.e. subtle) effect. Often the latter can be more effec-
tive than the former, since it reduces the access to immedi-
ate information.

Quite commonly, programs are mass-produced as thou-
sands and millions of copies of exactly the same binary.
The break-once, break-everywhere exploit is a very real
problem in today’s connected world. An important security
objective is to mitigate the wide-spread impact of a single
attack. The ability to automatically create many diverse
instances of the same program is a considerable advantage.

Furthermore, a related objective is the ability to react to
an attack with a software revision, realizing that a differen-
tial attack is quite likely the follow-on event to a successful
exploit. Making a revised program very different from an
initial version, so-called software renewability is an impor-
tant strategic defense.

4. A Compiler-based Transformation

Framework

Any compelling implementation choices for constructing a
framework for code transformations should take into ac-
count various practical requirements. For example, applica-
bility to a wide set of processor targets implies that the
retargeting process not require years of development. It is
well known that good industrial compilers for languages
like C++ and C take many man-months of initial develop-
ment. Moreover, reliability, robustness, effective optimiza-
tions, and the ability to target a wide set of processors for
commercial use is an evolutionary process that can take
many years of revisions and releases (e.g. GNU GCC). As-
sembly code generation itself can be a sizable task given the
large variation in instructions sets and ABIs (Application
Binary Interfaces) for modern processors.

In an effort to maintain maximum portability, our compi-
lation infrastructure accepts C++/C on input, but also gen-
erates C++/C on output. This property brings with it
enormous advantages allowing the retargeting process to

34

bypass many issues regarding assembly syntax, assembly
directives, ABIs, etc. On the other hand, target-specific
language extensions, intrinsics, options, and pragmas must
still be handled on a case-by-case basis.

With respect to transforming code for protection pur-
poses, the generation of C++/C source code on output (as
opposed to assembly code) results in very few limitations.
In general, security-oriented transformations can be imple-
mented and sufficiently described in generated code in a
high-level form, low-level form, or a combination of both.
The C++ and C languages are rich and descriptive lan-
guages.

There are a few limitations, however. For example, low-
ering C++ code to its equivalent C code implies adhering to
the name mangling of the target compiler ABI to remain
link-compatible with the target compiler. Link compatibility
is an important advantage, meaning that protections can
equally be applied to part of a system rather than necessar-
ily the whole. For example, constraints may mean that the
whole application system is not necessarily available, espe-
cially among companies where libraries are produced by
distinct groups. For this reason, our compiler infrastructure
can equally produce C++ on generation. However, this
poses other challenges. For example, there are a number of
strict ordering rules in C++ which indicate the evaluation of
operations [23]. This has implication on the intermediate
representations that are used.

Figure 1 shows a high-level flow diagram of our com-
piler transformation framework. Individual parts of the flow
are described in subsequent sections.

Figure 1 Compiler-based Infrastructure and Flow

4.1 Generating an Analyzable Language Representation

Our compilation framework employs the C++/C front-end
by Edison Design Group (EDG) [20] from which many of
today’s commercial compilers are derived. From EDG’s
internal tree structure, we produce an intermediate analyz-
able language representation known as Fabric++ (Front
And Back Reduced Intermediate Code for C++/C). One of
the main benefits of introducing Fabric++ is to isolate the
front-end and back-end components from the Transcoder
core, allowing language issues to be separated from trans-
formation engineering.

Fabric++ is a high-level and strongly-typed assembly
language for a generic load/store RISC architecture. It uses

a virtual register set of an infinite number, a generally ca-
pable ALU for all arithmetic, logical, and bitwise opera-
tions, and a number of well-chosen addressing modes. The
addressing modes permit the representation of anything
found in C++ and C, including all pointer dereferences, use
of references, and use of arrays and structures/classes.

Fabric++ has both high-level and low-level control-flow
constructs. Modular parts of the code such as statements,
namespaces, routines, classes, inheritance, and types are all
retained in Fabric++.

Virtual registers may not be addressed. This makes op-
erations using them easily analyzable. The designation of a
special virtual register called an expression register allows
the semantics of C++ expressions to be fully retained. An
expression register is one that is only ever produced and
consumed once. This property makes it ideal for represent-
ing C++ expressions.

Having the properties of an assembly-level language,
even though much richer than a standard assembly lan-
guage, makes the wealth of today’s publicly-available com-
piler knowledge applicable to our transformation
framework. Furthermore, its language properties permit the
easy manipulation of code. Unlike classic compiler tasks
which include translation to low-level assembly code and
optimization, security transformations may require complex
manipulation of code. This includes restructuring of code,
modifying types, injection/removal of code segments, and
full rewriting of the code with whole program analysis.

Additionally, the generic properties of the Fabric++ lan-
guage make it suitable for a Fabric++ to C++/C code gen-
eration on output, retaining the valuable high portability
property. Occasionally there are behavior and syntax items
which are specific to a compiler dialect; however, this is the
exception and not the rule.

4.2 Analysis and Transformations

The ability to transform code from an input source to a se-
mantically equivalent output depends on several factors:

• The ability to capture the full semantics of the lan-
guage in an internal representation.

• The ability to analyze both data and control-flow,
in an internal representation.

• The ability to rewrite (remove, inject, replace) the
code automatically based on properties of the code
and the needs of particular transformations.

These factors necessitate the employment of a rich set of
structures that not only retain semantic information from the
source code, but allow efficient analysis and manipulation
of those structures. We have designed an internal represen-
tation for Fabric++ known as XI (i.e. the Transcoder Inter-
mediate). This internal structure is capable of embodying
Fabric++; and hence, the C++ and C source languages, in
full semantic detail.

The XI representation has two principal parts:

1. The type system

2. The statement and operation representation.

The type system represents all primitive types (and their
associated C++ brands), composed types, template types,
self-referential types, inherited types, and any others that
can be described in the very rich C++ language. Further-

C++

Source

EDG

Front-End

C++/C Front-End

F++

EDG = Edison Design Group
F++ = Fabric++ Intermediate Language
XI = Transcoder Intermediate Representation

Data-

base

Compiler Core

XI

F++2XI

XI2F++

Code

Transform-

ations

Lowering

Analysis

Report

Presentation

HTML

Report

User

Errors

User

Errors
Compiler

Driver

C++

Transformed
F++

F++2C++

C++/C Back-End

XLIB

Libraries

35

more, it also represents extended types for any of the sup-
ported dialects in addition to our own extended types (de-
scribed in section 5.1.3). The statement and operation
structure has two distinct levels of abstraction:

1. A High Level (HL) of abstraction.

2. A Low Level (LL) of abstraction.

The HL abstraction is primarily for C++. It captures the full
language with all the high-level constructs at the statement
level. The complete ordering and expression level of state-
ments and operations is maintained. If nothing else is done
at this level, C++ source can be regenerated which very
closely resembles the original source.

The LL abstraction follows a lowering process applied
to the HL abstraction. The lowering process is defined
through several operations:

• Lowered Bodies: In all executable HL bodies,
high-level control statements such as while/for/do-
while/if-then-else are replaced by using basic-
blocks with conditional and unconditional
branches.

• Local Symbol Table Merging: Local variables of
nested scope are combined through a renaming
process to avoid name clashes.

• Nested Lowering: Some statements and declara-
tions are considered immovable; for example, ob-
jects of complex type, try-catch statements,
setjmp/longjmp statements, etc. In these cases, HL
bodies may be lowered in a ‘nested’ fashion, en-
suring the logic between HL and LL sections is
consistent.

The two levels of abstraction employed by XI permit
various analyses to take place at the level to which each
analysis is best suited. For example, alias analysis takes
place on the High Level and deals with locations in memory
and any operations where references can point to the same
place in memory. Domination and data-flow analysis takes
place on the Low Level and deals with operations on the
abstract assembly level. Different code transformations
require different dependencies, and the results of the analy-
ses feed into various transformation capabilities which are
described in section 5.

4.3 Extensible Infrastructure

A compiler infrastructure geared toward security transfor-
mations is coupled with a strong desire to quickly develop
new code and data transformations to resist different and
new types of attacks as they are manifested. The ability to
inject code snippets into the target code for source patterns
that are identified is best constructed as a generic mecha-
nism.

We have constructed a system whereby code patterns
can be described in C++ / C source and retained in interme-
diate format (i.e. in Fabric++ representation). Also, the
mapping of these target code patterns onto source code is
described in XML files as tables of data. This combination
of code patterns and mapping data form internally used
libraries defining specific transformations. This generic
mechanism has become a great boost to productivity with
respect to efficient compiler transformation development.
Furthermore, code patterns described in C++ / C source

provides the ability for off-line validation of the code pat-
terns.

Figure 2 shows the make-up of internal libraries used by
our compiler infrastructure. We have called the combina-
tion of Fabric++ patterns and mapping information for
transformations an XLIB library.

Figure 2 Internal Compiler Library Mechanism

4.4 Infrastructure Validation

The make-up of our compiler infrastructure has a great ad-
vantage with respect to validation. The infrastructure lets us
validate individual modules independently. This approach
is extremely valuable for the process of problem determina-
tion and reaching high levels of quality.

Figure 3 Compiler Infrastructure Pipes for Validation

Source code can take different paths through the com-

piler pipe, each pipe successively building upon the previ-
ous pipe. The pipes are defined as follows:

1. CFC Pipe
C++ → Fabric++ → C++

2. CXC Pipe
C++ → F++ → XI → F++ → C++

3. CLC Pipe
C++ → F++ → XI + Lowering→ F++ → C++

Full Pipe

CLC Pipe

CXC Pipe

CFC Pipe

C++ EDG

Front-End

Fabric++ F++2C++ C++

XI

Transcoder

Intermediate

Lowering

Transformation Modules

Data Transforms

Control Transforms

C++ C++

C++ C++

C++ C++

C++ / C
code patterns

User

C++ / C
Source

Transcoder

Compiler
Transformations

XLIB Library

Fabric++ Patterns

XML Mapping Info

Generated

C++ / C
Source

Native
Compiler

Off-Line

Validation

36

4. Full Pipe
C++ → F++ → All Transforms → F++ → C++

These compiler pipes are shown in Figure 3. Upon the
original development of the Transcoder, the modules were
developed in parallel; however, the validation was done in a
cascaded manner. Only when a test had passed the CFC
Pipe, would it be tested through the CXC pipe, etc. This
approach accelerated the development of robust compiler
modules.

Following this original development effort and when all
the modules were then considered of high quality, the com-
piler was tested in a reverse cascade manner. A test is first
passed through the Full Pipe. If the test fails, then it is
automatically run through the CLC Pipe, etc. This approach
allows us to accelerate the problem determination process.

The Transcoder is tested against the Perennial C++ and
C Validation Suite [22], the Boost C++ libraries [17], the
Crypto++ library [18], the GNU GCC test suite [14], the
Microsoft standard, MFC, and AFC libraries, and a large
number of internally developed tests. Roughly 40,000 tests
currently comprise the validation suite.

5. Compiler Technology applied to Software

Protection

There are two major tactics to defending software: proac-
tive means and reactive means. Proactive tactics are con-
cerned with the forward-facing information and generally
imply using methods of concealment. Things that are con-
sidered security sensitive and need concealment in working
software can include a great number of items: keys, algo-
rithms, function call APIs, symbols, strings, data, libraries,
control-flow, conditions, etc.

In contrast, reactive tactics are concerned with the be-
havior of software after it has been modified by an attacker.
Tamper-resistance is defined as a method to alter the behav-
ior of software depending on a detected modification.

The techniques that we employ for software protection
include both proactive and reactive means, as they are com-
plementary. We consider concealment for both static and
dynamic attacks and tamper-resistance techniques for soft-
ware that has been altered.

Furthermore, we present the concept of diversity as a re-
sistance to class-attacks and resistance to differential at-
tacks.

5.1 Compiler Techniques for Data-Flow

The heart of program functionality comes down to data in
memory and calculations performed on that data. It is gen-
erally easy for an attacker to recognize known patterns of
behavior, especially when it is a familiar algorithm.

We present in this section compiler transformations of
the data-flow proper. This means that the familiar patterns
of behavior in data-flow have been transformed into differ-
ent arrangements. Furthermore, they have transformed in a
diverse manner, meaning that disparate channels in the
data-flow are transformed by different families of transfor-
mation, including different random characteristics associ-
ated with each family.

5.1.1 Alias Analysis and Data Transformations

Alias analysis [1,32] is a known technique in compiler the-
ory, used to determine if a location in memory may be ac-
cessed by more than one instruction operation. Two

pointers are said to be aliased if they point to the same loca-
tion in memory. Based on alias information, we can deter-
mine all the instructions that operate on data in a common
alias set.

We describe here a method to transform both data values
in memory and operations from their original unencoded
state to an encoded state. Locations and their corresponding
operations are transformed harmoniously, such that the
original data values need not be exposed either statically or
dynamically. Examples of functions used to transform data
values and operations are described in [33].

We can consider the problem of allocating data to vari-
ous data encodings as an analogy to allocating data to mul-
tiple memories. A variable and set of operations can be
consistently mapped to a particular data transformation in
the same way it could be mapped to a specific data mem-
ory. Alias sets are imperative for the correct mapping onto
data transformations. Essentially, each element of an alias
set must be assigned to the same data transformation. Dis-
joint alias sets may be assigned data encodings independ-
ently.

Figure 4 Data Transformation Allocation is

analogous to Multiple Data Memory Allocation

The example shown in Figure 4 depicts four hypothetical

data memories labeled: Red, Green, Yellow, and Blue.
These are the example data transformations. When pre-
sented with a program as in the bottom of Figure 4, the
compiler allocates data elements within the constraints of
the program. Here, the arrays r[], b[], and g[] may be freely
allocated to any memory, for example: Red, Blue, and
Green, respectively. The reach of the pointer, p; however,
has a constraint. It points to the array g[] and is therefore, in
the same alias set of g[]. Hence, it must be allocated in the
Green memory. On the other hand, the pointer, p, itself can
be allocated to another memory, e.g. Red. Finally, the vari-
able, i, can be allocated to any other memory, e.g. Yellow.

While this examples shows a finite set of data transfor-
mations (four), it is important to note that we define trans-
formations by a formula type (i.e. family) and a set of
randomly chosen constants in the formula (i.e. coefficients).
This drastically increases the space to which data entities
can be allocated. We have implemented a sizable number of
data transform families [33], each formula containing a
corresponding number of randomly chosen coefficients.
Moreover, the infrastructure permits any newly conceived
data transform families to be easily integrated into the
Transcoder framework.

The greatest advantage to transforming the encodings of
variables and operations is dynamic concealment. Not only

Red Green Yellow Blue

static int r[10] = { 3,3,3,3,3,3,3,3,3,3 };

static int b[10] = { 1,1,1,1,1,1,1,1,1,1 };

static int g[10] = { 0,0,0,0,0,0,0,0,0,0 };

int main(){

int *p = &g[0];

for(int i = 0;i<10;i++) {

p[i] = r[i] + b[i] + 7;

}

return 0;

}

r[] b[]g[] i

*pp

37

does the program bear a far resemblance from the original
in a static sense, the program also executes much differently
than the original. Successful coverage of all variable refer-
ences and operations in a particular data-flow channel
means that the original values of the program are never ex-
posed in the same channel.

The impact of this result is that an aggressor who might
impose a dynamic attack on a program may never see a data
value that appears in the original program. From the ini-
tialization of a variable, through operations, through func-
tion interfaces and storing back into memory, the original
values of the non-transformed program will never appear.
This is a dynamic concealment technique that transforms all
data into another mathematical space, while the program
continues to maintain functional equivalence and correct-
ness of the original program at all external points of con-
tact. Therefore, only user-visible points of the program
retain the original behavior. All internal points of the pro-
gram are transformed.

5.1.2 Whole Program Analysis and Data Transformations

The effectiveness of transforming data values and opera-
tions is highly dependent on the scope to which the tech-
nique can be applied. If a program is separately compiled as
a large number of disjoint libraries, then there is little op-
portunity for automated approaches of transforming all
relevant data and operations. In a disjoint compilation
setup, data values would be decoded to their original pro-
gram state before crossing link boundaries to other parts of
the program. This would render the dynamic concealment
efforts as ineffective for the security requirement.

It is much more worthwhile to keep data encoded values
in the transformed state as much as possible and over as
large a scope as possible. We introduce a version of whole
program analysis where information is treated globally.
Through the use of a database, the Transcoder analyzes
compilation units separately, and then combines the results
through a global merge process. By default, the Transcoder
will transform as much of the code and data space as possi-
ble through the amount of the program that is globally visi-
ble to the tool.

Adding whole program analysis to the familiar compil-
ing stage of a build process implies a number of issues re-
garding the user model. There must be handling of both
per-compilation unit options and global options. Especially
for language like C which relies on globally linkable sym-
bols, there must be methods of identifying large portions of
code and interfaces as being non-transformed. For this pur-
pose, header files may be identified as belonging to a pre-
served domain, with a sub-characteristic of either
preserving the interface or all the code. Furthermore, in-
cremental compilation is an important consideration. Our
system handles a broad whole-program user model, enabled
through the use of an extendable, generic symbolic informa-
tion database.

5.1.3 Language-based Qualifier Sub-typing and Data
Transformations

In addition to the automatic means that we provide for ap-
plying data transformations to a program, we also provide a
number of sophisticated manual capabilities. We define a
number of C++ and C language extensions for the purposes
of code transformations, including both data-flow and con-
trol-flow transformations.

For data transformations, we define a number of sub-
typing qualifiers [24] and casts which allow programmers
to express:

• Data items that must be transformed.

• Data items that must be transformed to specific
transformation families and set of characteristics.

This rich set of qualifiers allows a user to identify important
assets to protect in a program, as well as apply specific
transformations for specific APIs. Data that is transformed
may be cast at the user’s discretion and essentially be al-
lowed to pass beyond the boundaries of the Transcoder’s
visibility. For example, transformed data can go into a data
file, over a TCP/IP channel, be placed in the field of an
XML file, or through any other data channel that tradition-
ally passes data. By matching specific transformations on
the receiving side of the communicating interface, the trans-
formed API is made compatible. Furthermore, the mapping
and diversity options of the compiler allow even these
specified transformations to be altered at build time to al-
low a varying (though consistent) API to be created.

The C++/C language extension set for code transforma-
tions includes three data type qualifier extensions as fol-
lows:

• _xc_transform Specifies a data transforma-
tion to an unspecified transformation type.

• _xc_transformtype(x) Specifies a data transforma-
tion to a specific logical transformation type, x.

• _xc_preserve Specifies that the data vari-
able is to be preserved in its original form.

These qualifiers may be placed just as C-V (const/volatile)
qualifiers, modifying the type of a data declaration. Each of
the data type qualifiers is mutually exclusive. At most, one
qualifier may be placed on a particular entity.

Foster et al. [24] observe that type qualifiers introduce a
sub-typing relationship. Given a base type,Τ, the above
introduced data type qualifiers form the following sub-
typing relationships:

Τ ≤ _xc_transform Τ ≤ _xc_transformtype(x) Τ

Τ ≤ _xc_preserve Τ

The _xc_transform qualifier on a type Τ forms a sub-type of
the type Τ. Additionally, the _xc_transformtype(x) qualifier
forms a further sub-type of the type _xc_transform Τ. The
sub-typing relationship moves from the most general case,
on the left, to more specific cases on the right.

_xc_preserve Τ is a special sub-type that may not coex-
ist with _xc_transform or _xc_transformtype(). It indicates
that the data type is not to be transformed at all costs.

The sub-typing relationship forms the basis for all of the
possible conversions between the types and qualified types.
A type Τ may be promoted to the type _xc_transform Τ,
but not vice-versa. The same relationship holds for
_xc_transform Τ ≤ _xc_transformtype(x) Τ. This is equally
true for level skipping qualifications: e.g. Τ ≤
_xc_transformtype(x) Τ. In simple terms, this means that a
base type is the most general; the type can become more
specific by being a generally transformed type; finally, the
type can become further specific by being a specific logical
transformed type.

38

When a data entity is assigned to a logical transform
type using _xc_transformtype(x) T, the identifier x is
mapped externally to data transform characteristics. This is
done through a command-line interface or a configuration
file, which allows project-wide options to be specified. The
data transform characteristics are family types and coeffi-
cients, described earlier.

The C++/C language extension set also includes a data
cast operator: _xc_transformcast<T>.

• _xc_transformcast<T> / xc_transformcast(T)

Perform a cast from one transformation type to an-
other transformation type. No conversion of the
type is performed (similar to the C++ reinter-
pret_cast<T>).

There are two forms of the data-cast that are equivalent, one
with angle brackets (i.e. <>) and one with round brackets
(i.e. ()). The round bracket form is for the C language. The
_xc_transformcast<T> operator allows a transformed type
to be cast directly to another transformed type (including a
preserved type). This allows such features as allowing tran-
formed values to go beyond the transformation boundary as
well as allowing testing of data transformation features.

This section, as an example, has described a subset of
the C++/C language extension set that we have defined for
code transformations. There are a number of function level,
class level, and operation-centric extensions that are not
described here.

5.1.4 String Transformations

Strings are a common point of attack for an executable pro-
gram, since they are a convenient anchor point that an in-
truder can easily understand. Whether in ASCII or wide
char form, all the string literals in an executable can easily
be retrieved by programs like the UNIX program strings, or
with a disassembler like IDA Pro [19] or OllyDbg [21].

While strings are just arrays of integer data (e.g. char,
short, int), the attack model is slightly different than that of
regular data. It is important to transform all the strings in a
program with general coverage to obscure any initial points
of attack.

For each string in a program, we define a compiler trans-
formation where the original values are initialized in a con-
cealed state. These are decoded at first use in the program
through a variety of means. Once decoded, a string avail-
able for use in the program.

In addition to the general coverage of string transforma-
tions, data transformations may also be combined with
string transforms where applicable. String transformations
are not intended as a strong concealment, but simply as a
broad coverage which complements other techniques that
hide assets.

5.2 Compiler Techniques for Control-Flow

In general, classic compilers interpreting a high-level lan-
guage turn control-flow constructs including loops,
call/return statements, and conditional statements into a
predetermined set of conditional and unconditional
branches for a given target instruction-set. While there are a
large number of optimizations related to control-flow, the
mapping onto available branch instructions is generally a
deliberate and arranged set of steps with disposition given
only to the impact on final performance and size.

If a program originates from a well-structured high-level
program, reverse engineering the control-flow of an execu-
table is generally a simple matter of disassembling instruc-
tions and repositioning blocks of code. Decompilers and
disassemblers often provide this capability directly.

In a white-box context, providing security is a matter of
both protecting and concealing the intent of the control-
flow. Concealment can be achieved through a number of
code transformation methods. Protection can be achieved
through tamper-resistance methods.

5.2.1 Control-Flow Analysis and Resistance to Reverse
Engineering

Within a function of a program, the control-flow consists
generally of a set of loops, conditional, and unconditional
branches. A classic compiler translates the high level state-
ments of the program into instructions available in the proc-
essor in a predictable manner. As described in [7,8],
control-flow flattening is a process of transforming a well-
structured control-flow into a controlling loop and switch
statement. A switch variable then controls the flow of con-
trol from basic block to basic block. In other words, the
original control-flow is transformed into a data directed
control-flow.

Figure 5 History Chains based on Dominance Property

We use the technique described in [7, 8] as a basis for

new advanced techniques. Starting with the original con-
trol-flow graph (CFG), a dominator tree [1, 28] can be cal-
culated. This graph indicates which basic blocks dominate
other blocks and conversely which basic blocks post-
dominate other blocks. This information can be used to
calculate history chains, where the flow-of-control must
pass in the program. History chains can be characterized by
their length and domination information.

We define a set of functions, H1 … Hn, which calculate
the values for controlling a switch variable, k, for control-
flow flattening. These functions are placed in appropriate
basic blocks of the history chain. The first of these func-
tions is an initialization, while the subsequent functions are
a series of encoding and decoding functions, which eventu-
ally arrive at the target switch variable value needed to di-
rect the flow-of-control. A sample set of steps is as follows:

1. H1: Init (k) initialization of k

2. H2: Enc1 (k) encoding function 1 of k

int function() {

int i;

for(i=0;i<10;i++) {

if(a[i] < b[i]) {

a[i] = b[i] + 7;

}

else {

a[i] = 0;

}

}

a[0] = 6;

}

B1

B2

B3

B7

B8

B4 B5

B6

B0
B1

B2

B3

B7

B8

B4 B5B6

B0

Control-Flow Graph

Dominator Tree
With Sample
History Chains

39

3. H3: Enc2 (k) encoding function 2 of k

4. H4: Dec2 (k) decoding function 2 of k

5. H5: Dec1 (k) decoding function 1 of k

The above example shows a series of five functions: an
initialization and two pair of encoding/decoding functions
which calculate a value for the switch value, k. An unlim-
ited and diverse set of these functions can be created which
vary according to operations, constant coefficients, and
number of functions.

We match a history chain of basic blocks with a set of
functions for calculating the switch value. Each basic block
in the history contains a call to an encoding/decoding func-
tion. For example, a history chain of length 5 will be
matched with a set of 5 functions.

Figure 5 shows a sample C function, its corresponding
Control-Flow Graph (CFG), and the dominator tree that has
been calculated from the CFG. Also depicted are three
sample history chains through the dominator tree of ending
in block B3 (history chain of length 4), block B5 (history
chain of length 3), and block B7 (history chain of length 5).
These history chains can be used to compute the control-
flow flattening switch variables with functions, H1… Hn.
Likewise, the process can be repeated for all basic-blocks,
except for the entry block B0, which has no basic-block
history that precedes it. Other means are used to conceal the
computed switch value for the entry block.

Once the function is transformed into Control-Flow Flat-
tened form, the history chains become much less obvious. It
is not possible to statically retrieve the intended flow-of-
control without understanding of the functions, H1... Hn.

Placing the calculation of switch values in the history of
the CFG effectively conceals information regarding the
flow-of-control itself. An aggressor looking to reverse en-
gineer the control-flow of a program is forced to look be-
yond a static analysis of the program.

Figure 6 Control-Flow Flattening + History Functions

Figure 6 depicts the sample in flattened form. The basic

blocks are no longer in an ordered layout, but effectively
placed along side of each other. The history functions are
interspersed in the blocks, making reverse engineering a
difficult problem for the attacker.

5.2.2 Analysis of Conditionals and Resistance to Branch
Jamming

A common technique of attacking code is to circumvent
conditionals by jamming or bypassing the condition. On the
assembly level, jamming a branch is the simple matter of
replacing a conditional branch with a NOP or an uncondi-
tional branch. The attack then comes down to the identifica-
tion of a suitable conditional branch instruction.

We introduce a tamper-resistance technique known as
Branch Protection. This is a method whereby the compiler
transforms the code relevant to the condition and branch,
such that a jamming attack will have an adverse affect on
the program. The aim of the approach is to insert depend-
encies throughout the program which depend on the truth of
the condition. If the condition is not true, jamming the
branch may cause an undesired set of blocks to execute;
however, operations in those blocks also have dependencies
on the condition and will not execute as the attacker has
expected.

The approach begins with an analysis of the relevant
parts of the program relating to the condition and branch.
The following items are identified:

• Sources of the condition.

• Basic blocks that dominate of the condition.

• Basic blocks that post-dominate both target blocks
of the condition.

We then draw on a set of library functions which have a
number of special properties. We define a condition func-
tion, P, which takes the following as parameters:

1. The condition type.

2. The sources of the condition.

3. A target variable or expression from the program.

In normal operation, the function, P, calculates the same
value for the target variable or expression given in point 3.
In other words, the value is simply passed through the func-
tion. In a case where the condition does not hold, the func-
tion calculates a random large or small value that does not
equal the original target value.

We have defined a diverse set of functions, P, that reside
in a compiler internal library as described in section 4.3.
The functions are used during compilation as a result of a
number of automatic and manual controls. The user may
specify highly sensitive branches with extended keywords,
as shown in Figure 7 (i.e. _xc_protectif), as well as the
number of dependent target variables or expressions, and
also specific target variables or expressions. If the targets
are not specified explicitly, the compiler determines candi-
dates in post-dominating basic blocks through a heuristic.
The target variables or expressions need not be directly in
the blocks to which the conditions are branching, but can be
further away in the dominator tree. The greater distance
from the condition to the dependent targets makes it gener-
ally more difficult for an intruder to determine the relation-
ship.

The Branch Protection feature is continually tested with
a number of automated tests. In addition to the feature it-
self, we have devised an automatic means to simulate a
branch jamming attack. Therefore, a program transformed
with the Branch Protection feature can be tested with and

B5

B0

B3

B8

B6

B2

B7

B4

B1

Switch Controller

Loop

40

without a simulated branch jamming attack. The former is
expected to behave the same as the unaltered program. The
latter should behave adversely. The adverse behavior can
be categorized as either a hard failure (e.g. a segmentation
fault or core dump) or a soft failure (e.g. a value that gets
altered and causes the program to behave differently in a
subtle manner). Both of these behaviors are a valuable de-
fense to software attacks.

Figure 7 Applying Functions for Branch Protection

5.2.3 Inter-procedural Call-Graph Verification

In addition to single function techniques and data transform
techniques across an application; we also introduce tech-
niques to verify the call-graph of an application. This builds
upon the whole program infrastructure described in section
6.

We first compute a set of may-call and must-call graphs
for the full application. This information is arrived at by
combining a flow-sensitive data flow analysis with the static
call-graph. The information is merged in an incremental
fashion, such that changes to any compilation unit will trig-
ger only local updates in the compiler database.

Armed with this call-graph information, a number of
protection behaviors are inserted which create dependencies
along call-graph chains. Although we leave out the details
here, the principle resembles the history functions described
in section 5.2.1. If any functions are snipped out of the ap-
plication, they cannot function in an isolated manner, since
they are dependent on other functions in the call-graph.

5.3 Optimizing Transformed Code

Given that the Transcoder is a source-to-source tool and the
target compiler is always subsequently invoked, it is tempt-
ing to delegate all optimizations to the native compiler.
However, many of the security-oriented transformations
described earlier can inhibit the effectiveness of standard
optimization. For example, the control-flow flattening tech-
nique described in section 5.2.1 will naturally diminish the
effectiveness of a flow-sensitive data-flow analysis needed
for data optimizations. Similarly, a program in the flattened
form cannot be easily analyzed for domination information.
Many optimizations are based on the dominator tree.

In general, the Transcoder performs compiler optimiza-
tions after the initial analyses phases and prior to transfor-
mation like control-flow flattening. We have concentrated
our efforts initially on standard optimizations which would

be effective for code that resides in xlib form and is being
injected into user’s code. However, we expect that many
other standard and aggressive optimizations would be ex-
tremely effective as well [1,6,28,32].

Since the data transformation technique (section 5.1.1)
results in the injection of inlined functions with several con-
stant coefficients, we have implemented constant propaga-
tion, constant folding, and common sub-expression
elimination. Furthermore, given our unique intermediate
representation to retain expressions in C++ (section 4.1),
we have also implemented optimizations for inlining special
property functions into expression trees. We have noticed
that a larger expression tree in generated code results in
faster code when compared to code that uses many tempo-
rary variables.

We envision implementing many standard and new op-
timizations for transformed code in the future [1,6,28,32].
We are not able to rely on target compiler optimizations
given the impact of rewriting the code with security-
oriented transformations.

5.4 Build-Time Diversity, an Enabler

Inevitably, even the strongest, most secure software systems
get compromised. Since this is the premise, a good ap-
proach is to prepare a defense which minimizes the impact
of a breach. A diverse set of programs which offer the same
functionality reduces the impact of a class attack. In addi-
tion, an automated attack which creates an exploit to one
instance of the program does not necessarily affect its di-
verse counterparts.

All of the compiler-based techniques described in this
paper have an additional diversity capability built-in. When
a technique is presented with an equivalent choice, it uses a
function based on a Pseudo-Random Number Generated
(PRNG) to make the choice randomly. Examples of equiva-
lent choices are as follows:

• Choice of encoding / decoding function families
and coefficients in Control-Flow Flattening, Inter-
Procedural Call Verification, Data Transforms and
String Transforms.

• Order and layout of blocks in code generation.

• Choice of constants (e.g. switch values in Control-
Flow Flattening).

• Ordering of function parameters in Global
Transcoding

Making random choices will result in different instances of
an original program with distinctive and unique program
structures. All the transformation capabilities have diversity
built in; however, it is important to note that this is driven
through a seeded PRNG making each instance reproduci-
ble.

Using diversity, it is possible to create a wide range of
differing, yet functionally equivalent binaries for a given
program. This capability can be used to create a large set of
instances which is immune to an automated class attack.
Furthermore, diversity can be used in many scenarios to
achieve a wide range of results. A few simple examples are
described hereafter.

Consider a software system with a revision of software
that was compromised. A new revision of the software with
new functionality can be produced, but furthermore it can

if (x >= y) {
a = ... ;
b = ... ;
x’= a ... b ... x ... y;
z = x’;

}
else {.
e = ... ;
d = .. ;
a’= d ... x ... e ... y;
k = a’ + c;

}

Inlined Functions

produce
Transformed

Code

Insertion of Code

For Functions, J

target’ = P_GTE(x,y,target);

target’ = P_LT(x,y,target);

Property of Function P:

If Condition does not hold,

Target’ is not equal to Target.

_xc_protectif(x >= y) {
z = x;

}
else {
k – a + c;

}

Original

Source

if (x >= y) {
z = x;

}
else {
k = a + c;

}

41

be made diverse from the revision that got compromised.
Any modules that remain from the earlier version would be
altered in structure. This makes a differential attack, one
that relies on comparing the revisions of software, much
less effective.

Consider a software system where a main module (e.g.
executable) communicates through an API to a sub-module
(e.g. DLL/shared library). Suppose we create 2 diverse in-
stances of the sub-module for 2 different customers. With a
careful construction of the API and diversity settings, it is
now possible to revoke 1 customer while retaining com-
patibility for the second customer, simply by an update of
the main module.

These are just two of the ways in which diversity can be
used to achieve software security. There are many more.
Software diversity is an enabler for:

• Resistance to Differential Attacks

• Renewability

• Revocation

• Response to Compromised Software.

A system designed with security in mind should consider
much more than a single revision of software; it should con-
sider the entire deployment space, including the range of
customers, as well as the security life-cycle.

5.5 Build Integration

The addition of security-oriented tools in a pre-compile,
post-compile, or post-link position significantly alters the
steps on building applications for development, test, and
distribution. These tools throw into question the traditional
method of functional debugging and quality assurance.

We recommend breaking the development process into
distinct phases, each with discrete goals:

1. Functional Development and Testing

2. Security Analysis and Application of Protection

3. Security / Performance Tuning

4. Penetration and Resistance Testing

As in any development process, each of these phases is cy-
clic in nature and project requirements can cause jumps
from one phase to another. However, in general, these
phases should be approached in sequence, each with a char-
acteristic objective.

Phase 1 of this development process is concerned with
the functional mechanics of the system. Debugging and
testing the function of the application is the primary objec-
tive. While some aspects of security may naturally fall into
functional development including key flow, the 2nd phase is
the main step for security analysis including modeling
threats and building attack trees. Prioritization of the high-
est value assets are an important part of this 2nd phase. Dur-
ing this step it is also important to build in the ability to
parameterize security provisions according to priority.
These parameters are an important part of the 3rd phase,
where security/performance tuning takes place. Finally, the
last phase is where actual attacks are done on the applica-
tion in an attempt to circumvent the protection.

Regarding the subject of debugging, it is clearly a great
difficulty to debug a program where code transformations

have already been applied. This is the reason we stress the
importance of validation of tools (see section 4.4). Valida-
tion not only includes testing security transformations, but
also testing a large sample of diverse instances for each
transformation (see section 5.4). This is also the reason we
stress the separation of functional verification separately
from the application of protection.

6. Application and Case Study

The compiler techniques in this paper have been imple-
mented in a security tool known as the Transcoder. The
Transcoder is part of security suite of tools which also in-
cludes tools for binary level protection and white-box cryp-
tography capabilities.

Both the Transcoder and the full set of security tools
have been applied to a wide range of applications. These
include several Digital Rights Management (DRM) sys-
tems, Conditional Access (CA) systems, password man-
agement systems, game systems, video systems, home
automation systems, and network management systems.

Figure 8 Security / Performance Tuning Cycle

The application of the tools to a given system begins

with a security analysis step, identifying and prioritizing the
assets and security sensitive areas of the system. The tools
are then applied, with priority given to the security assets.
Typically, the next step is to run through a perform-
ance/security tuning exercise, which trades off time and
space against strength of defense to meet an optimal bal-
ance for the requirements of the application. Finally, when
the product has met security robustness and performance
expectations, the last step is resistance and penetration test-
ing. This last step provides the security assurance needed to
allow the system to go to production. The entire process
time varies with the complexity of the system; however, a
typical process can range from 2 to 10 weeks.

As an example, we outline the application of the security
suite to a DRM system. This is a pre-existing digital rights
management system where licenses for media are passed
over a network in the form of certificates. These certificates
contain keys for media content. The certificates are en-
crypted by a license server and passed to client software.
The client software must securely decrypt the certificates
and determine the system has the rights to play the media.

The details to the system will not be described here;
however, the process to secure it will be outlined. The first
step is a security analysis of the system. The critical assets
are first identified and an attack tree [4] is created. The

Parallel Builds

Dynamic Switching

Run Tests

Measure
Speed

Measure
Size

Evaluate
Security &

Level of
Protection

Suite of

Security
Tools and
Libraries

Build

Application
Executable

Finished

Modify Build OptionsApplication

Source

Modify Binary
Runtime

Parameters

Transcode

Compile+Link
Sign

Protect

42

branches of the attack tree are then protected using tools
and techniques from the security suite. These techniques
include all of the transformation means described in this
paper.

Figure 8 shows the security/performance tuning cycle
taken to produce the final DRM product. At the left of the
diagram is the usual build process, with the addition of se-
curity tools found in the tool-suite. These include the
Transcoder, which contains the source-to-source compiler
transformations described in this paper, plus a number of
binary level tools not described here. The bottom part of the
diagram shows the running of the application tests and
measurements of application run-time and application bi-
nary size alongside an empirical evaluation of the security
achieved by the particular build settings. The cycle on the
right side of the diagram includes modifying runtime pa-
rameters (dynamic switching) as well as duplicating the
build of the application with modified settings (parallel
builds). The latter need not be a sequential process; parallel
builds can be launched with the availability of machines
and disk space. The tuning cycle allows a large number of
application builds to be evaluated for their performance
versus security settings.

Figure 9 Application Size versus Security

Figure 9 shows the evaluation of a number of application

build instances. The Y-axis shows the size of the final bi-
nary as a percentage of the original program without protec-
tion. The X-axis is a scale which is reverse-proportional to
the number of security settings that have been applied. A
lower number means that more security transformations
have been applied to the code base.

Each point of the graph represents a different solution
produced by applying a set of build-time options. The
build-time options are determined through the security
analysis on different assets in the system and the attack tree
analysis. Higher security considerations are given to assets
which can cause larger impacts. For example, in this case, a
device key is considered the root of trust and highest prior-
ity, while other derived keys are considered to have less
impact, since they may guard only specific content. More
transformation option considerations will be placed on code
with a higher impact of an attack.

Typically, a set of parallel builds with various build op-
tions will result in a cloud of solutions on the size versus
security graph. The lower, left-hand edge of the graph, cor-
responding to smallest size and most security, contains the
most interesting solutions. The rest of the solutions are dis-

missed as non-optimal. The ideal solution, which is unat-
tainable, is at the origin of the graph.

Figure 9 shows many possible solutions of which two
were considered acceptable for production. One meets an
acceptance criterion of 150% of the original size of the ap-
plication. This is indicated by the solution labeled 102.5.
The actual in-memory of size of this solution is 1.4 x 102.5
= 143.5, accounting for the compression/decompression
done at loading. The figure also shows a second solution
labeled 137 (i.e. final inflated, in-memory size = 191.8),
indicating recommended security settings covering more
sensitive assets and algorithms with further transformations.

Figure 10 shows the evaluation of the application run-
time versus security. This is a similar analysis to the appli-
cation size versus security analysis. The Y-axis shows the
application run-time as a percentage of the original, unpro-
tected application run-time. The X-axis is a scale which is
reverse-proportional to the number of security settings that
have been applied.

In this case, the solution labeled 140 meets the accep-
tance criteria of less than 150% of the original application
run-time. A second solution with recommended security
settings results in a speed that is 240% of the original appli-
cation.

Figure 10 Application Speed versus Security

While the analysis presented here for the DRM applica-

tion leaves out many of the details regarding security set-
tings, build options, and test set-ups, etc., it does illustrate
the methodology and security/performance tuning process.
In the end, the lesson is that security comes at a cost to per-
formance. In the case of this application, the recommended
security settings come at a size penalty of nearly 2 times
(137% in compressed form), and a speed penalty of nearly
2.5 times the original unprotected form. Given that the
DRM certificate handling happens once for the playing of
media content, this may not be a critical overhead.

7. Conclusion and Future Work

This paper has presented an extensible compiler-based in-
frastructure for code transformations for the goals of soft-
ware protection. We have described our source-to-source
framework, intermediate representation, internal library
structure, and validation methodology. The applicability of
known compiler analysis techniques have been shown in
this framework.

A number of data-flow and control-flow techniques have
been described for software protection in a white-box envi-

Application Run-time vs Security

380

300

240

220

180

140

120

100

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

100 / Number of Security Settings

%
 R

u
n

-t
im

e

Meets

Acceptance

Criteria

Recommended

Higher Security

H
ig

h
e

r
S

p
e
e
d

Application Size vs Security

177.8

147.8

137 134.7
126.7

117.7 115

105.3 104.1 102.5 101.7 100

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14

100 / Number of Security Settings

%
 S

iz
e

Meets

Acceptance

Criteria

Recommended

Higher Security

S
m

a
ll
e

r
S

iz
e

43

ronment. We describe a number of automatic and manual
controls for these transformations in our compiler environ-
ment. We also discuss the uses diversity in the context of
upgrades, revocation, and renewability.

Finally, we describe a case-study using our security suite
for a DRM application. Trade-offs of security versus
size/speed are discussed. The conclusion is that security
does come at a price. It affects both size and performance
of the final solution. On the other hand, protection of the
application is a trait that should not be overlooked. Effec-
tive design engineering will trade off all three aspects
wisely and objectively: size, performance, and security.

This paper has drawn a particular emphasis to existing
source-level transformations. There are a number of new
transformations under development. While we recognize
that these techniques are an important part of software pro-
tection, there are additional security benefits to binary level
techniques such as anti-debugging, integrity verification,
secure loading, and code encryption. These binary tech-
niques complement source-level transformations, working
together to provide a multi-layered defense that provides
much stronger protection than source-level only or binary-
level only code protection. This is especially true when
these methods are interlocked, meaning that an exploit of
one technology is ineffective because of dependencies on
another technology. Future work in this area will include
orchestrating the effectiveness of both source-level and
binary-level technologies, and enhancing our tools to cover
all steps in the build process including compilation, build-
ing libraries, and linking. Additionally, we will continue to
enhance work in the area of white-box cryptography effec-
tively using these source-level and binary-level techniques.

Acknowledgments

The authors acknowledge contributions made by the follow-
ing people: Marco Jacques, Vlad Vieru, Bahman Sistany,
Robert Durand, Jonathan Emmett, Roy Germon, Lin Li,
Andrew Szczeszynski, Phil Eisen, Dan Murdock, Yongxin
Zhou, and Alec Main.

References

[1] A. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, 1988, 796 pp.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.
Vadhan, K. Yang, "On the (Im)possibility of Obfuscating Programs",
CRYPTO 2001, pages 1-18.

[3] B. Lynn, M. Prabhakaran, and A. Sahai. "Positive Results and Tech-
niques for Obfuscation", Proceedings of Eurocrypt, 2004.

[4] B. Schneier, "Attack Trees, Modeling Security Threats", Dr. Dobb's
Journal, Dec, 1999.

[5] C. Collberg, C. Thomborson, "Watermarking, Tamper-Proofing, and
Obfuscation - Tools for Software Protection", IEEE Transactions on
Software Engineering 28:8, 735-746, Aug. 2002

[6] C. Liem, Retargetable Compilers for Embedded Core Processors:
Methods and Experiences in Industrial Applications, Kluwer Aca-
demic Publishers, 1997, 155 pp.

[7] C. Wang, J. Davidson, J. Hill, and J. Knight. "Protection of software-
based survivability mechanisms". In International Conference of De-
pendable Systems and Networks, Goteborg, Sweden, July 2001.

[8] C. Wang. “A Security Architecture for Survivability Mechanisms”.
PhD thesis, Dept. of Computer Science, Univ. of Virginia, Oct 2000.

[9] C. Fischer, R. LeBlanc Jr., Crafting a Compiler with C, The Benja-
min/Cummings Publishing Company, Inc., 1991, 812 pp.

[10] D. Aucsmith. “Tamper resistant software: an implementation. Infor-
mation Hiding”, Lecture Notes in Computer Science, 1174:317{333,
1996.

[11] David W. Price, Algis Rudys, and Dan S. Wallach, "Garbage Collec-
tor Memory Accounting in Language-Based Systems", 2003 IEEE
Symposium on Security and Privacy (Oakland, California), May
2003.

[12] G. Barthe, D. Naumann, and T. Rezk, "Deriving an information flow
checker and certifying compiler for Java", Proceedings of Sympo-
sium of Security and Privacy'06. IEEE Press, 2006.

[13] Heiko Mantel and Alexander Reinhard, "Controlling the What and
Where of Declassification in Language-Based Security", In Euro-
pean Symposium on Programming (ESOP).LNCS, 4421. Springer,
2007.

[14] http://gcc.gnu.org/install/test.html

[15] http://preemptive.com/

[16] http://proguard.sourceforge.net/

[17] http://www.boost.org/

[18] http://www.cryptopp.com

[19] http://www.datarescue.com/

[20] http://www.edg.com

[21] http://www.ollydbg.de/

[22] http://www.peren.com/

[23] International Standard, ISO/IEC 14882:2003(E), "Programming
languages — C++"

[24] J. Foster, M. Fähndrich, and A. Aiken, "A Theory of Type Qualifi-
ers]", ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI'99). Atlanta, Georgia. May 1999.

[25] L. Zheng, A. Myers, "Dynamic Security Labels and Static Informa-
tion Flow Control", International Journal of Information Security,
6(2–3), March 2007. Springer.

[26] M. Dalla Preda and R. Giacobazzi, "Control Code Obfuscation by
Abstract Interpretation", In Proceedings of the 3rd IEEE Interna-
tional Conference on Software Engineering and Formal Methods
(SEFM'05). pages 301-310, IEEE Computer Society Press.

[27] R. Giacobazzi and I. Mastroeni, "Abstract Non-Interference: Parame-
terizing Non-Interference by Abstract Interpretation", In 31st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'04), pages 186-197. ACM press.

[28] Robert Morgan, Building an Optimizing Compiler, Butterworh-
Heinemann, 450 pp.

[29] S. Chow, H. Johnson, Y. Gu, "Tamper Resistant Software – Control
Flow Encoding", US Patent 6,779,114, filed August 19, 1999.

[30] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot. “A White-Box
DES Implementation for DRM Applications”. In Proceedings of 2nd
ACM Workshop on Digital Rights Management, Nov 18 2002.

[31] S. Chow, Y. Gu, H. Johnson, V. Zakharov. “An approach to the
obfuscation of control-flow of sequential computer programs”. In G.
Davida and Y. Frankel, InformationSecurity, ISC 2001, vol 2200 of
Lectures Notes in Computer Science, Springer.Verlag, 2001. 68.

[32] S. Muchnick, Advanced Compiler Design and Implementation,
Elsevier, pp 856.

[33] Y. Zhou, A. Main, Y. Gu, H. Johnson, "Information Hiding in Soft-
ware with Mixed Boolean-Arithmetic Transforms", 8th International
Workshop on Information Security Applications (WISA 2007), pp
61-75, Springer LNCS 4867, 2008

44

