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Abstract  

Not long after the introduction of stored-program comput-
ing machines, the first high-level language compilers ap-
peared. The need for automatically and efficiently mapping 
abstract concepts from high-level languages onto low-level 
assembly languages has been recognized ever since. A 
compiler has a unique ability to gather and analyze large 
amounts of data in a manner that would be an unwieldy 
manual endeavor. It is this property that makes known 
compiler techniques and technology ideally suited for the 
purposes of software protection against reverse engineering 
and tampering attacks. In this paper, we present a code 
transformation infrastructure combined with build-time 
security techniques that are used to integrate protection into 
otherwise vulnerable machine programs. We show the ap-
plicability of known compiler techniques such as alias-
analysis, whole program analysis, data-flow analysis, and 
control-flow analysis and how these capabilities provide the 
basis for program transformations that provide comprehen-
sive software protection. These methods are incorporated in 
an extensible framework allowing efficient development of 
new code transformations, as part of a larger suite of secu-
rity tools for the creation of robust applications. We de-
scribe a number of successful applications of these tools. 

Categories and Subject Descriptors D.2.0 [General]: 
Protection mechanisms.  

General Terms Design, Performance, Security. 

Keywords Software Protection, Tamper Resistance, Com-
piler-based Techniques, Code Transformation. 

 

1. Introduction 

In today’s digital world, the need for software protection is 
reaching its height. In application areas such as video or 
music, Digital Rights Management (DRM) systems are be-
ing deployed to protect the high-value content. The discov-

ery of root keys in the system can cause a breach of 
valuable content; or worse, cause the release of automated 
exploits to release any content. In Conditional Access Sys-
tems (CAS), satellite or cable service providers are con-
stantly bombarded by new attacks, which proliferate in our 
connected world and destroy a company’s valuable sub-
scription stream. In enterprise systems, the network is 
guarded by sets of password systems, often through hard-
coded scripts.  Client and server software modules become 
at risk to both outsider and insider attacks. 

Data in-transit is only part of the security problem. The 
more prevalent situation is when software executes in a 
hostile environment, where attackers have large amounts of 
time and resources to spend. Hardware protection can play 
a part, but usually software is still needed for flexibility, 
upgrades, and cost effective revisions. In often circum-
stances, software is important for key management, revision 
and revocation control. How then can a distributor of soft-
ware be sure that the software is robust and resistant to at-
tack? Frequently, the platform and software are well known 
to an attacker with time, resources, tools and all the experts 
on the web. This attack landscape is often termed a white-
box environment, where all the content is in plain sight – 
the opposite of a black-box environment. 

A strong defense for white-box attacks can be achieved 
through effective build tools. A compiler has at its disposal 
a vast amount of semantic information about the applica-
tion. By gearing transformations to specific security objec-
tives, a compiler-based transformation tool can conceal a 
program’s intent from both static and dynamic attacks. This 
tool can perform transformations that make common tam-
pering techniques ineffective. Furthermore, when these 
compiler techniques are combined and interlocked with 
encryption and binary protection techniques, the defenses 
become layered and in-depth. Interlocking is a term used to 
describe mutual dependencies of techniques, making the 
counter-measure of any one technique ineffective. 

This paper outlines an extensible compiler infrastructure 
and a number of compiler transformation techniques, the 
basis of a larger defense-in-depth approach. These tech-
niques make use of known approaches in classic compilers 
with different goals in mind. Rather than the usual objec-
tives of optimizing performance and program size, these 
techniques address a third objective axis: security. All the 
techniques described hereafter have been implemented and 
are currently in production in the compiler-based transfor-

33



mation tool known as the CloakwareTM Transcoder. Finally, 
we describe the application of the Transcoder on a real-life 
DRM (Digital Rights Management) application. 

2. Related Work 

A number of papers have been introduced to study the the-
ory of obfuscation [2,3,26]. Although there is work that 
states that complete obfuscation of an arbitrary program 
cannot exist [3], there is also work to indicate that positive 
results can be achieved with obfuscation techniques [3]. 
This paper does not seek to prove or disprove the possibil-
ity, but rather to demonstrate a number of practical tech-
niques that increase the difficulty of attacks, making 
reverse-engineering and tampering a daunting and discour-
aging task to any intruder. 

Commercial and publicly-available obfuscators [15,16] 
have existed for some time; however, they typically perform 
simple operations such as identifier renaming, removing 
whitespace, reformatting, and removing unused entities. 
These measures usually have little effect on the final execu-
table and merely pose a difficulty in readability. 

Early work by Colberg and Thomborson [5] suggest 
elementary methods for obfuscation and tamper-proofing. 
In this paper, we describe advanced transformations built in 
an extensible framework aimed to resist static, dynamic and 
tampering attacks of the final executable. Additionally, we 
describe build-time diversity measures which address the 
space and life-cycle of security measures which provide 
rapid response to attacks. This includes defenses against 
differential attacks, the means for renewability and revoca-
tion, and the ability for meaningful revision updates. 

Previous work suggests controlling the information flow 
through a program using the type system [25,13,27]. Labels 
and sub-typing are one way to denote security classes. A 
secure information flow can be tested through static type-
checking. Other work also suggests using type qualifier 
language extensions [24] for sub-typing purposes. We pre-
sent a sub-typed, extended qualifier system for C++ and C 
used for the purposes of transformed data. This is described 
in section 5.1.3. 

Some of the techniques that we describe in this paper 
build upon previous work popularized by Wang et al. [7, 
22], and anticipated in more elaborate form by Chow et al. 
[29]. They describe a control-flow transformation which 
arrives at a flattened control-flow graph (CFG). This type 
of transformation essentially produces a many-to-many ba-
sic block graph which is not easily reversed into a proce-
dural flow-graph. In the first instance of control-flow 
flattening, simple integers are used to encode a switch value 
indicating the next block in the flow-of-control. Then, in the 
second instance, they improve upon this approach by plac-
ing the switch values in an array and addressing the array 
through pointers, essentially turning the problem into a data 
aliasing problem. While effective, there is still the possibil-
ity of attacks upon the array. 

We also use this first instance of control-flow flattening, 
but then improve upon it in a much different second tech-
nique. We use encoding and decoding functions to calculate 
the switch value in the history of the flow-of-control. The 
technique is described in section 5.2.1. 

3. Defining Security Objectives 

Running software in a hostile environment runs the risk of 
having a gamut of professional and public tools being used 

to circumvent protections. Furthermore, any number of 
automated scripts and tools can be used to continually re-
run software and brute force any security. 

An effective approach to providing the needs of security 
is to support layers of protection. It considers many differ-
ent facets and angles from which an attack might originate. 
For example, it should protect a program from static at-
tacks. Sensitive information such as key data and strings 
need to be hidden from direct observation. Furthermore, 
any important algorithms should be concealed and obscured 
from a view to reverse-engineering. 

Programs should also be protected from dynamic at-
tacks. Debuggers and disassemblers are common tools used 
to attack a running program. Setting break-points and step-
ping through code is a common approach. In addition to 
protecting a program and data from a static attack, it is 
equally important to conceal and obscure the dynamic be-
havior of a program and its data in memory during run-
time.  

Among other well-known intrusions, jamming and by-
passing branches are common techniques used to dynami-
cally attack programs. Any means that protect deployed 
programs from modification and tampering will inhibit an 
aggressor. Tamper-resistance techniques are those that 
cause a program to behave chaotically in the presence of 
modification. Furthermore, the reaction and mitigation to 
modification can either have a hard (e.g. cause a crash) or a 
soft (i.e. subtle) effect. Often the latter can be more effec-
tive than the former, since it reduces the access to immedi-
ate information. 

Quite commonly, programs are mass-produced as thou-
sands and millions of copies of exactly the same binary. 
The break-once, break-everywhere exploit is a very real 
problem in today’s connected world. An important security 
objective is to mitigate the wide-spread impact of a single 
attack. The ability to automatically create many diverse 
instances of the same program is a considerable advantage.  

Furthermore, a related objective is the ability to react to 
an attack with a software revision, realizing that a differen-
tial attack is quite likely the follow-on event to a successful 
exploit. Making a revised program very different from an 
initial version, so-called software renewability is an impor-
tant strategic defense. 

4. A Compiler-based Transformation 

Framework 

Any compelling implementation choices for constructing a 
framework for code transformations should take into ac-
count various practical requirements. For example, applica-
bility to a wide set of processor targets implies that the 
retargeting process not require years of development. It is 
well known that good industrial compilers for languages 
like C++ and C take many man-months of initial develop-
ment. Moreover, reliability, robustness, effective optimiza-
tions, and the ability to target a wide set of processors for 
commercial use is an evolutionary process that can take 
many years of revisions and releases (e.g. GNU GCC). As-
sembly code generation itself can be a sizable task given the 
large variation in instructions sets and ABIs (Application 
Binary Interfaces) for modern processors. 

In an effort to maintain maximum portability, our compi-
lation infrastructure accepts C++/C on input, but also gen-
erates C++/C on output. This property brings with it 
enormous advantages allowing the retargeting process to 
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bypass many issues regarding assembly syntax, assembly 
directives, ABIs, etc. On the other hand, target-specific 
language extensions, intrinsics, options, and pragmas must 
still be handled on a case-by-case basis. 

With respect to transforming code for protection pur-
poses, the generation of C++/C source code on output (as 
opposed to assembly code) results in very few limitations. 
In general, security-oriented transformations can be imple-
mented and sufficiently described in generated code in a 
high-level form, low-level form, or a combination of both. 
The C++ and C languages are rich and descriptive lan-
guages.  

There are a few limitations, however. For example, low-
ering C++ code to its equivalent C code implies adhering to 
the name mangling of the target compiler ABI to remain 
link-compatible with the target compiler. Link compatibility 
is an important advantage, meaning that protections can 
equally be applied to part of a system rather than necessar-
ily the whole. For example, constraints may mean that the 
whole application system is not necessarily available, espe-
cially among companies where libraries are produced by 
distinct groups. For this reason, our compiler infrastructure 
can equally produce C++ on generation. However, this 
poses other challenges. For example, there are a number of 
strict ordering rules in C++ which indicate the evaluation of 
operations [23]. This has implication on the intermediate 
representations that are used. 

Figure 1 shows a high-level flow diagram of our com-
piler transformation framework. Individual parts of the flow 
are described in subsequent sections. 

Figure 1 Compiler-based Infrastructure and Flow 

4.1 Generating an Analyzable Language Representation 

Our compilation framework employs the C++/C front-end 
by Edison Design Group (EDG) [20] from which many of 
today’s commercial compilers are derived. From EDG’s 
internal tree structure, we produce an intermediate analyz-
able language representation known as Fabric++ (Front 
And Back Reduced Intermediate Code for C++/C). One of 
the main benefits of introducing Fabric++ is to isolate the 
front-end and back-end components from the Transcoder 
core, allowing language issues to be separated from trans-
formation engineering. 

Fabric++ is a high-level and strongly-typed assembly 
language for a generic load/store RISC architecture. It uses 

a virtual register set of an infinite number, a generally ca-
pable ALU for all arithmetic, logical, and bitwise opera-
tions, and a number of well-chosen addressing modes. The 
addressing modes permit the representation of anything 
found in C++ and C, including all pointer dereferences, use 
of references, and use of arrays and structures/classes.  

Fabric++ has both high-level and low-level control-flow 
constructs. Modular parts of the code such as statements, 
namespaces, routines, classes, inheritance, and types are all 
retained in Fabric++.  

Virtual registers may not be addressed. This makes op-
erations using them easily analyzable. The designation of a 
special virtual register called an expression register allows 
the semantics of C++ expressions to be fully retained. An 
expression register is one that is only ever produced and 
consumed once. This property makes it ideal for represent-
ing C++ expressions. 

Having the properties of an assembly-level language, 
even though much richer than a standard assembly lan-
guage, makes the wealth of today’s publicly-available com-
piler knowledge applicable to our transformation 
framework. Furthermore, its language properties permit the 
easy manipulation of code. Unlike classic compiler tasks 
which include translation to low-level assembly code and 
optimization, security transformations may require complex 
manipulation of code. This includes restructuring of code, 
modifying types, injection/removal of code segments, and 
full rewriting of the code with whole program analysis. 

Additionally, the generic properties of the Fabric++ lan-
guage make it suitable for a Fabric++ to C++/C code gen-
eration on output, retaining the valuable high portability 
property. Occasionally there are behavior and syntax items 
which are specific to a compiler dialect; however, this is the 
exception and not the rule. 

4.2 Analysis and Transformations 

The ability to transform code from an input source to a se-
mantically equivalent output depends on several factors: 

• The ability to capture the full semantics of the lan-
guage in an internal representation. 

• The ability to analyze both data and control-flow, 
in an internal representation. 

• The ability to rewrite (remove, inject, replace) the 
code automatically based on properties of the code 
and the needs of particular transformations. 

These factors necessitate the employment of a rich set of 
structures that not only retain semantic information from the 
source code, but allow efficient analysis and manipulation 
of those structures. We have designed an internal represen-
tation for Fabric++ known as XI (i.e. the Transcoder Inter-
mediate). This internal structure is capable of embodying 
Fabric++; and hence, the C++ and C source languages, in 
full semantic detail. 

The XI representation has two principal parts: 

1. The type system 

2. The statement and operation representation. 

The type system represents all primitive types (and their 
associated C++ brands), composed types, template types, 
self-referential types, inherited types, and any others that 
can be described in the very rich C++ language. Further-
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more, it also represents extended types for any of the sup-
ported dialects in addition to our own extended types (de-
scribed in section 5.1.3). The statement and operation 
structure has two distinct levels of abstraction: 

1. A High Level (HL) of abstraction. 

2. A Low Level (LL) of abstraction. 

The HL abstraction is primarily for C++. It captures the full 
language with all the high-level constructs at the statement 
level. The complete ordering and expression level of state-
ments and operations is maintained. If nothing else is done 
at this level, C++ source can be regenerated which very 
closely resembles the original source. 

The LL abstraction follows a lowering process applied 
to the HL abstraction. The lowering process is defined 
through several operations: 

• Lowered Bodies: In all executable HL bodies, 
high-level control statements such as while/for/do-
while/if-then-else are replaced by using basic-
blocks with conditional and unconditional 
branches. 

• Local Symbol Table Merging: Local variables of 
nested scope are combined through a renaming 
process to avoid name clashes. 

• Nested Lowering: Some statements and declara-
tions are considered immovable; for example, ob-
jects of complex type, try-catch statements, 
setjmp/longjmp statements, etc. In these cases, HL 
bodies may be lowered in a ‘nested’ fashion, en-
suring the logic between HL and LL sections is 
consistent. 

The two levels of abstraction employed by XI permit 
various analyses to take place at the level to which each 
analysis is best suited. For example, alias analysis takes 
place on the High Level and deals with locations in memory 
and any operations where references can point to the same 
place in memory. Domination and data-flow analysis takes 
place on the Low Level and deals with operations on the 
abstract assembly level. Different code transformations 
require different dependencies, and the results of the analy-
ses feed into various transformation capabilities which are 
described in section 5.   

4.3 Extensible Infrastructure 

A compiler infrastructure geared toward security transfor-
mations is coupled with a strong desire to quickly develop 
new code and data transformations to resist different and 
new types of attacks as they are manifested. The ability to 
inject code snippets into the target code for source patterns 
that are identified is best constructed as a generic mecha-
nism. 

We have constructed a system whereby code patterns 
can be described in C++ / C source and retained in interme-
diate format (i.e. in Fabric++ representation). Also, the 
mapping of these target code patterns onto source code is 
described in XML files as tables of data. This combination 
of code patterns and mapping data form internally used 
libraries defining specific transformations. This generic 
mechanism has become a great boost to productivity with 
respect to efficient compiler transformation development. 
Furthermore, code patterns described in C++ / C source 

provides the ability for off-line validation of the code pat-
terns. 

Figure 2 shows the make-up of internal libraries used by 
our compiler infrastructure. We have called the combina-
tion of Fabric++ patterns and mapping information for 
transformations an XLIB library. 

Figure 2 Internal Compiler Library Mechanism 

4.4 Infrastructure Validation 

The make-up of our compiler infrastructure has a great ad-
vantage with respect to validation. The infrastructure lets us 
validate individual modules independently. This approach 
is extremely valuable for the process of problem determina-
tion and reaching high levels of quality. 

Figure 3 Compiler Infrastructure Pipes for Validation 
 
Source code can take different paths through the com-

piler pipe, each pipe successively building upon the previ-
ous pipe. The pipes are defined as follows: 

1. CFC Pipe 
C++ → Fabric++ → C++  

2. CXC Pipe 
C++ → F++ → XI → F++ → C++ 

3. CLC Pipe 
C++ → F++ → XI + Lowering→ F++ → C++  
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4. Full Pipe 
C++ → F++ → All Transforms → F++ → C++ 

These compiler pipes are shown in Figure 3. Upon the 
original development of the Transcoder, the modules were 
developed in parallel; however, the validation was done in a 
cascaded manner. Only when a test had passed the CFC 
Pipe, would it be tested through the CXC pipe, etc. This 
approach accelerated the development of robust compiler 
modules. 

Following this original development effort and when all 
the modules were then considered of high quality, the com-
piler was tested in a reverse cascade manner. A test is first 
passed through the Full Pipe. If the test fails, then it is 
automatically run through the CLC Pipe, etc. This approach 
allows us to accelerate the problem determination process. 

The Transcoder is tested against the Perennial C++ and 
C Validation Suite [22], the Boost C++ libraries [17], the 
Crypto++ library [18], the GNU GCC test suite [14], the 
Microsoft standard, MFC, and AFC libraries, and a large 
number of internally developed tests. Roughly 40,000 tests 
currently comprise the validation suite.  

5. Compiler Technology applied to Software 

Protection 

There are two major tactics to defending software: proac-
tive means and reactive means. Proactive tactics are con-
cerned with the forward-facing information and generally 
imply using methods of concealment. Things that are con-
sidered security sensitive and need concealment in working 
software can include a great number of items: keys, algo-
rithms, function call APIs, symbols, strings, data, libraries, 
control-flow, conditions, etc.  

In contrast, reactive tactics are concerned with the be-
havior of software after it has been modified by an attacker. 
Tamper-resistance is defined as a method to alter the behav-
ior of software depending on a detected modification. 

The techniques that we employ for software protection 
include both proactive and reactive means, as they are com-
plementary. We consider concealment for both static and 
dynamic attacks and tamper-resistance techniques for soft-
ware that has been altered. 

Furthermore, we present the concept of diversity as a re-
sistance to class-attacks and resistance to differential at-
tacks. 

5.1 Compiler Techniques for Data-Flow 

The heart of program functionality comes down to data in 
memory and calculations performed on that data. It is gen-
erally easy for an attacker to recognize known patterns of 
behavior, especially when it is a familiar algorithm. 

We present in this section compiler transformations of 
the data-flow proper. This means that the familiar patterns 
of behavior in data-flow have been transformed into differ-
ent arrangements. Furthermore, they have transformed in a 
diverse manner, meaning that disparate channels in the 
data-flow are transformed by different families of transfor-
mation, including different random characteristics associ-
ated with each family. 

5.1.1 Alias Analysis and Data Transformations 

Alias analysis [1,32] is a known technique in compiler the-
ory, used to determine if a location in memory may be ac-
cessed by more than one instruction operation. Two 

pointers are said to be aliased if they point to the same loca-
tion in memory. Based on alias information, we can deter-
mine all the instructions that operate on data in a common 
alias set. 

We describe here a method to transform both data values 
in memory and operations from their original unencoded 
state to an encoded state. Locations and their corresponding 
operations are transformed harmoniously, such that the 
original data values need not be exposed either statically or 
dynamically. Examples of functions used to transform data 
values and operations are described in [33].  

We can consider the problem of allocating data to vari-
ous data encodings as an analogy to allocating data to mul-
tiple memories. A variable and set of operations can be 
consistently mapped to a particular data transformation in 
the same way it could be mapped to a specific data mem-
ory. Alias sets are imperative for the correct mapping onto 
data transformations. Essentially, each element of an alias 
set must be assigned to the same data transformation. Dis-
joint alias sets may be assigned data encodings independ-
ently. 

Figure 4 Data Transformation Allocation is  

analogous to Multiple Data Memory Allocation 
 
The example shown in Figure 4 depicts four hypothetical 

data memories labeled: Red, Green, Yellow, and Blue. 
These are the example data transformations. When pre-
sented with a program as in the bottom of Figure 4, the 
compiler allocates data elements within the constraints of 
the program. Here, the arrays r[], b[], and g[] may be freely 
allocated to any memory, for example: Red, Blue, and 
Green, respectively. The reach of the pointer, p; however, 
has a constraint. It points to the array g[] and is therefore, in 
the same alias set of g[]. Hence, it must be allocated in the 
Green memory. On the other hand, the pointer, p, itself can 
be allocated to another memory, e.g. Red. Finally, the vari-
able, i, can be allocated to any other memory, e.g. Yellow. 

While this examples shows a finite set of data transfor-
mations (four), it is important to note that we define trans-
formations by a formula type (i.e. family) and a set of 
randomly chosen constants in the formula (i.e. coefficients). 
This drastically increases the space to which data entities 
can be allocated. We have implemented a sizable number of 
data transform families [33], each formula containing a 
corresponding number of randomly chosen coefficients. 
Moreover, the infrastructure permits any newly conceived 
data transform families to be easily integrated into the 
Transcoder framework. 

The greatest advantage to transforming the encodings of 
variables and operations is dynamic concealment. Not only 

Red Green Yellow Blue

static int r[10] = { 3,3,3,3,3,3,3,3,3,3 };

static int b[10] = { 1,1,1,1,1,1,1,1,1,1 };

static int g[10] = { 0,0,0,0,0,0,0,0,0,0 };

int main(){

int *p = &g[0];

for(int i = 0;i<10;i++) {

p[i] = r[i] + b[i] + 7;

}

return 0;

}

r[] b[]g[] i

*pp
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does the program bear a far resemblance from the original 
in a static sense, the program also executes much differently 
than the original. Successful coverage of all variable refer-
ences and operations in a particular data-flow channel 
means that the original values of the program are never ex-
posed in the same channel. 

The impact of this result is that an aggressor who might 
impose a dynamic attack on a program may never see a data 
value that appears in the original program. From the ini-
tialization of a variable, through operations, through func-
tion interfaces and storing back into memory, the original 
values of the non-transformed program will never appear. 
This is a dynamic concealment technique that transforms all 
data into another mathematical space, while the program 
continues to maintain functional equivalence and correct-
ness of the original program at all external points of con-
tact. Therefore, only user-visible points of the program 
retain the original behavior. All internal points of the pro-
gram are transformed. 

5.1.2 Whole Program Analysis and Data Transformations 

The effectiveness of transforming data values and opera-
tions is highly dependent on the scope to which the tech-
nique can be applied. If a program is separately compiled as 
a large number of disjoint libraries, then there is little op-
portunity for automated approaches of transforming all 
relevant data and operations. In a disjoint compilation 
setup, data values would be decoded to their original pro-
gram state before crossing link boundaries to other parts of 
the program. This would render the dynamic concealment 
efforts as ineffective for the security requirement. 

It is much more worthwhile to keep data encoded values 
in the transformed state as much as possible and over as 
large a scope as possible. We introduce a version of whole 
program analysis where information is treated globally. 
Through the use of a database, the Transcoder analyzes 
compilation units separately, and then combines the results 
through a global merge process. By default, the Transcoder 
will transform as much of the code and data space as possi-
ble through the amount of the program that is globally visi-
ble to the tool. 

Adding whole program analysis to the familiar compil-
ing stage of a build process implies a number of issues re-
garding the user model. There must be handling of both 
per-compilation unit options and global options. Especially 
for language like C which relies on globally linkable sym-
bols, there must be methods of identifying large portions of 
code and interfaces as being non-transformed. For this pur-
pose, header files may be identified as belonging to a pre-
served domain, with a sub-characteristic of either 
preserving the interface or all the code. Furthermore, in-
cremental compilation is an important consideration. Our 
system handles a broad whole-program user model, enabled 
through the use of an extendable, generic symbolic informa-
tion database. 

5.1.3 Language-based Qualifier Sub-typing and Data 
Transformations 

In addition to the automatic means that we provide for ap-
plying data transformations to a program, we also provide a 
number of sophisticated manual capabilities. We define a 
number of C++ and C language extensions for the purposes 
of code transformations, including both data-flow and con-
trol-flow transformations. 

For data transformations, we define a number of sub-
typing qualifiers [24] and casts which allow programmers 
to express: 

• Data items that must be transformed. 

• Data items that must be transformed to specific 
transformation families and set of characteristics. 

This rich set of qualifiers allows a user to identify important 
assets to protect in a program, as well as apply specific 
transformations for specific APIs. Data that is transformed 
may be cast at the user’s discretion and essentially be al-
lowed to pass beyond the boundaries of the Transcoder’s 
visibility. For example, transformed data can go into a data 
file, over a TCP/IP channel, be placed in the field of an 
XML file, or through any other data channel that tradition-
ally passes data. By matching specific transformations on 
the receiving side of the communicating interface, the trans-
formed API is made compatible. Furthermore, the mapping 
and diversity options of the compiler allow even these 
specified transformations to be altered at build time to al-
low a varying (though consistent) API to be created. 

The C++/C language extension set for code transforma-
tions includes three data type qualifier extensions as fol-
lows: 

• _xc_transform         Specifies a data transforma-
tion to an unspecified transformation type. 

• _xc_transformtype(x)  Specifies a data transforma-
tion to a specific logical transformation type, x. 

• _xc_preserve         Specifies that the data vari-
able is to be preserved in its original form. 

These qualifiers may be placed just as C-V (const/volatile) 
qualifiers, modifying the type of a data declaration. Each of 
the data type qualifiers is mutually exclusive. At most, one 
qualifier may be placed on a particular entity. 

Foster et al. [24] observe that type qualifiers introduce a 
sub-typing relationship. Given a base type,Τ, the above 
introduced data type qualifiers form the following sub-
typing relationships: 

 
Τ  ≤ _xc_transform Τ ≤ _xc_transformtype(x) Τ 

Τ  ≤ _xc_preserve Τ 
 
The _xc_transform qualifier on a type Τ forms a sub-type of 
the type Τ. Additionally, the _xc_transformtype(x) qualifier 
forms a further sub-type of the type _xc_transform Τ. The 
sub-typing relationship moves from the most general case, 
on the left, to more specific cases on the right. 

_xc_preserve Τ  is a special sub-type that may not coex-
ist with _xc_transform or _xc_transformtype(). It indicates 
that the data type is not to be transformed at all costs. 

The sub-typing relationship forms the basis for all of the 
possible conversions between the types and qualified types. 
A type Τ  may be promoted to the type _xc_transform Τ, 
but not vice-versa. The same relationship holds for 
_xc_transform Τ ≤ _xc_transformtype(x) Τ. This is equally 
true for level skipping qualifications: e.g. Τ  ≤ 
_xc_transformtype(x) Τ. In simple terms, this means that a 
base type is the most general; the type can become more 
specific by being a generally transformed type; finally, the 
type can become further specific by being a specific logical 
transformed type. 
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When a data entity is assigned to a logical transform 
type using _xc_transformtype(x) T, the identifier x is 
mapped externally to data transform characteristics. This is 
done through a command-line interface or a configuration 
file, which allows project-wide options to be specified. The 
data transform characteristics are family types and coeffi-
cients, described earlier. 

The C++/C language extension set also includes a data 
cast operator: _xc_transformcast<T>. 

• _xc_transformcast<T> / xc_transformcast(T)   

Perform a cast from one transformation type to an-
other transformation type. No conversion of the 
type is performed (similar to the C++ reinter-
pret_cast<T>). 

There are two forms of the data-cast that are equivalent, one 
with angle brackets (i.e. <> ) and one with round brackets 
(i.e. () ). The round bracket form is for the C language. The 
_xc_transformcast<T> operator allows a transformed type 
to be cast directly to another transformed type (including a 
preserved type). This allows such features as allowing tran-
formed values to go beyond the transformation boundary as 
well as allowing testing of data transformation features. 

This section, as an example, has described a subset of 
the C++/C language extension set that we have defined for 
code transformations. There are a number of function level, 
class level, and operation-centric extensions that are not 
described here. 

5.1.4 String Transformations 

Strings are a common point of attack for an executable pro-
gram, since they are a convenient anchor point that an in-
truder can easily understand. Whether in ASCII or wide 
char form, all the string literals in an executable can easily 
be retrieved by programs like the UNIX program strings, or 
with a disassembler like IDA Pro [19] or OllyDbg [21]. 

While strings are just arrays of integer data (e.g. char, 
short, int), the attack model is slightly different than that of 
regular data. It is important to transform all the strings in a 
program with general coverage to obscure any initial points 
of attack. 

For each string in a program, we define a compiler trans-
formation where the original values are initialized in a con-
cealed state. These are decoded at first use in the program 
through a variety of means. Once decoded, a string avail-
able for use in the program. 

In addition to the general coverage of string transforma-
tions, data transformations may also be combined with 
string transforms where applicable. String transformations 
are not intended as a strong concealment, but simply as a 
broad coverage which complements other techniques that 
hide assets. 

5.2 Compiler Techniques for Control-Flow 

In general, classic compilers interpreting a high-level lan-
guage turn control-flow constructs including loops, 
call/return statements, and conditional statements into a 
predetermined set of conditional and unconditional 
branches for a given target instruction-set. While there are a 
large number of optimizations related to control-flow, the 
mapping onto available branch instructions is generally a 
deliberate and arranged set of steps with disposition given 
only to the impact on final performance and size. 

If a program originates from a well-structured high-level 
program, reverse engineering the control-flow of an execu-
table is generally a simple matter of disassembling instruc-
tions and repositioning blocks of code. Decompilers and 
disassemblers often provide this capability directly. 

In a white-box context, providing security is a matter of 
both protecting and concealing the intent of the control-
flow. Concealment can be achieved through a number of 
code transformation methods. Protection can be achieved 
through tamper-resistance methods. 

5.2.1 Control-Flow Analysis and Resistance to Reverse 
Engineering 

Within a function of a program, the control-flow consists 
generally of a set of loops, conditional, and unconditional 
branches. A classic compiler translates the high level state-
ments of the program into instructions available in the proc-
essor in a predictable manner. As described in [7,8], 
control-flow flattening is a process of transforming a well-
structured control-flow into a controlling loop and switch 
statement. A switch variable then controls the flow of con-
trol from basic block to basic block. In other words, the 
original control-flow is transformed into a data directed 
control-flow. 

Figure 5 History Chains based on Dominance Property 
 
We use the technique described in [7, 8] as a basis for 

new advanced techniques. Starting with the original con-
trol-flow graph (CFG), a dominator tree [1, 28] can be cal-
culated. This graph indicates which basic blocks dominate 
other blocks and conversely which basic blocks post-
dominate other blocks. This information can be used to 
calculate history chains, where the flow-of-control must 
pass in the program. History chains can be characterized by 
their length and domination information. 

We define a set of functions, H1 … Hn, which calculate 
the values for controlling a switch variable, k, for control-
flow flattening. These functions are placed in appropriate 
basic blocks of the history chain. The first of these func-
tions is an initialization, while the subsequent functions are 
a series of encoding and decoding functions, which eventu-
ally arrive at the target switch variable value needed to di-
rect the flow-of-control. A sample set of steps is as follows: 

1. H1: Init (k) initialization of k 

2. H2: Enc1 (k) encoding function 1 of k 

int function() {

int i;

for(i=0;i<10;i++) {

if(a[i] < b[i]) {

a[i] = b[i] + 7;

}

else {

a[i] = 0;

}

}

a[0] = 6;

}
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3. H3: Enc2 (k) encoding function 2 of k 

4. H4: Dec2 (k) decoding function 2 of k 

5. H5: Dec1 (k) decoding function 1 of k 

The above example shows a series of five functions: an 
initialization and two pair of encoding/decoding functions 
which calculate a value for the switch value, k. An unlim-
ited and diverse set of these functions can be created which 
vary according to operations, constant coefficients, and 
number of functions. 

We match a history chain of basic blocks with a set of 
functions for calculating the switch value. Each basic block 
in the history contains a call to an encoding/decoding func-
tion. For example, a history chain of length 5 will be 
matched with a set of 5 functions. 

Figure 5 shows a sample C function, its corresponding 
Control-Flow Graph (CFG), and the dominator tree that has 
been calculated from the CFG. Also depicted are three 
sample history chains through the dominator tree of ending 
in block B3 (history chain of length 4), block B5 (history 
chain of length 3), and block B7 (history chain of length 5). 
These history chains can be used to compute the control-
flow flattening switch variables with functions, H1… Hn. 
Likewise, the process can be repeated for all basic-blocks, 
except for the entry block B0, which has no basic-block 
history that precedes it. Other means are used to conceal the 
computed switch value for the entry block. 

Once the function is transformed into Control-Flow Flat-
tened form, the history chains become much less obvious. It 
is not possible to statically retrieve the intended flow-of-
control without understanding of the functions, H1... Hn. 

Placing the calculation of switch values in the history of 
the CFG effectively conceals information regarding the 
flow-of-control itself. An aggressor looking to reverse en-
gineer the control-flow of a program is forced to look be-
yond a static analysis of the program.  

Figure 6 Control-Flow Flattening + History Functions 
 
Figure 6 depicts the sample in flattened form. The basic 

blocks are no longer in an ordered layout, but effectively 
placed along side of each other. The history functions are 
interspersed in the blocks, making reverse engineering a 
difficult problem for the attacker.  

5.2.2 Analysis of Conditionals and Resistance to Branch 
Jamming 

A common technique of attacking code is to circumvent 
conditionals by jamming or bypassing the condition. On the 
assembly level, jamming a branch is the simple matter of 
replacing a conditional branch with a NOP or an uncondi-
tional branch. The attack then comes down to the identifica-
tion of a suitable conditional branch instruction. 

We introduce a tamper-resistance technique known as 
Branch Protection. This is a method whereby the compiler 
transforms the code relevant to the condition and branch, 
such that a jamming attack will have an adverse affect on 
the program. The aim of the approach is to insert depend-
encies throughout the program which depend on the truth of 
the condition. If the condition is not true, jamming the 
branch may cause an undesired set of blocks to execute; 
however, operations in those blocks also have dependencies 
on the condition and will not execute as the attacker has 
expected. 

The approach begins with an analysis of the relevant 
parts of the program relating to the condition and branch. 
The following items are identified: 

• Sources of the condition. 

• Basic blocks that dominate of the condition. 

• Basic blocks that post-dominate both target blocks 
of the condition. 

We then draw on a set of library functions which have a 
number of special properties. We define a condition func-
tion, P, which takes the following as parameters: 

1. The condition type. 

2. The sources of the condition. 

3. A target variable or expression from the program. 

In normal operation, the function, P, calculates the same 
value for the target variable or expression given in point 3. 
In other words, the value is simply passed through the func-
tion. In a case where the condition does not hold, the func-
tion calculates a random large or small value that does not 
equal the original target value. 

We have defined a diverse set of functions, P, that reside 
in a compiler internal library as described in section 4.3. 
The functions are used during compilation as a result of a 
number of automatic and manual controls. The user may 
specify highly sensitive branches with extended keywords, 
as shown in Figure 7 (i.e. _xc_protectif), as well as the 
number of dependent target variables or expressions, and 
also specific target variables or expressions. If the targets 
are not specified explicitly, the compiler determines candi-
dates in post-dominating basic blocks through a heuristic. 
The target variables or expressions need not be directly in 
the blocks to which the conditions are branching, but can be 
further away in the dominator tree. The greater distance 
from the condition to the dependent targets makes it gener-
ally more difficult for an intruder to determine the relation-
ship. 

The Branch Protection feature is continually tested with 
a number of automated tests. In addition to the feature it-
self, we have devised an automatic means to simulate a 
branch jamming attack. Therefore, a program transformed 
with the Branch Protection feature can be tested with and 
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without a simulated branch jamming attack. The former is 
expected to behave the same as the unaltered program. The 
latter should behave adversely. The adverse behavior can 
be categorized as either a hard failure (e.g. a segmentation 
fault or core dump) or a soft failure (e.g. a value that gets 
altered and causes the program to behave differently in a 
subtle manner). Both of these behaviors are a valuable de-
fense to software attacks. 

 

Figure 7 Applying Functions for Branch Protection 

5.2.3 Inter-procedural Call-Graph Verification 

In addition to single function techniques and data transform 
techniques across an application; we also introduce tech-
niques to verify the call-graph of an application. This builds 
upon the whole program infrastructure described in section 
6.  

We first compute a set of may-call and must-call graphs 
for the full application. This information is arrived at by 
combining a flow-sensitive data flow analysis with the static 
call-graph. The information is merged in an incremental 
fashion, such that changes to any compilation unit will trig-
ger only local updates in the compiler database. 

Armed with this call-graph information, a number of 
protection behaviors are inserted which create dependencies 
along call-graph chains. Although we leave out the details 
here, the principle resembles the history functions described 
in section 5.2.1. If any functions are snipped out of the ap-
plication, they cannot function in an isolated manner, since 
they are dependent on other functions in the call-graph. 

5.3 Optimizing Transformed Code 

Given that the Transcoder is a source-to-source tool and the 
target compiler is always subsequently invoked, it is tempt-
ing to delegate all optimizations to the native compiler. 
However, many of the security-oriented transformations 
described earlier can inhibit the effectiveness of standard 
optimization. For example, the control-flow flattening tech-
nique described in section 5.2.1 will naturally diminish the 
effectiveness of a flow-sensitive data-flow analysis needed 
for data optimizations. Similarly, a program in the flattened 
form cannot be easily analyzed for domination information. 
Many optimizations are based on the dominator tree. 

In general, the Transcoder performs compiler optimiza-
tions after the initial analyses phases and prior to transfor-
mation like control-flow flattening. We have concentrated 
our efforts initially on standard optimizations which would 

be effective for code that resides in xlib form and is being 
injected into user’s code. However, we expect that many 
other standard and aggressive optimizations would be ex-
tremely effective as well [1,6,28,32]. 

Since the data transformation technique (section 5.1.1) 
results in the injection of inlined functions with several con-
stant coefficients, we have implemented constant propaga-
tion, constant folding, and common sub-expression 
elimination. Furthermore, given our unique intermediate 
representation to retain expressions in C++ (section 4.1), 
we have also implemented optimizations for inlining special 
property functions into expression trees. We have noticed 
that a larger expression tree in generated code results in 
faster code when compared to code that uses many tempo-
rary variables. 

We envision implementing many standard and new op-
timizations for transformed code in the future [1,6,28,32]. 
We are not able to rely on target compiler optimizations 
given the impact of rewriting the code with security-
oriented transformations. 

5.4 Build-Time Diversity, an Enabler 

Inevitably, even the strongest, most secure software systems 
get compromised. Since this is the premise, a good ap-
proach is to prepare a defense which minimizes the impact 
of a breach. A diverse set of programs which offer the same 
functionality reduces the impact of a class attack. In addi-
tion, an automated attack which creates an exploit to one 
instance of the program does not necessarily affect its di-
verse counterparts. 

All of the compiler-based techniques described in this 
paper have an additional diversity capability built-in. When 
a technique is presented with an equivalent choice, it uses a 
function based on a Pseudo-Random Number Generated 
(PRNG) to make the choice randomly. Examples of equiva-
lent choices are as follows: 

• Choice of encoding / decoding function families 
and coefficients in Control-Flow Flattening, Inter-
Procedural Call Verification, Data Transforms and 
String Transforms. 

• Order and layout of blocks in code generation. 

• Choice of constants (e.g. switch values in Control-
Flow Flattening). 

• Ordering of function parameters in Global 
Transcoding 

Making random choices will result in different instances of 
an original program with distinctive and unique program 
structures. All the transformation capabilities have diversity 
built in; however, it is important to note that this is driven 
through a seeded PRNG making each instance reproduci-
ble. 

Using diversity, it is possible to create a wide range of 
differing, yet functionally equivalent binaries for a given 
program. This capability can be used to create a large set of 
instances which is immune to an automated class attack. 
Furthermore, diversity can be used in many scenarios to 
achieve a wide range of results. A few simple examples are 
described hereafter. 

Consider a software system with a revision of software 
that was compromised. A new revision of the software with 
new functionality can be produced, but furthermore it can 

if (x >= y) {
a = ... ;
b = ... ;
x’= a ... b ... x ... y; 
z = x’;

} 
else {.
e = ... ;
d = .. ;
a’= d ... x ... e ... y;
k = a’ + c;

}

Inlined Functions

produce
Transformed

Code

Insertion of Code

For Functions, J

target’ = P_GTE(x,y,target);

target’ = P_LT(x,y,target);

Property of Function P: 

If Condition does not hold,

Target’ is not equal to Target.

_xc_protectif(x >= y) {
z = x;

} 
else {
k – a + c;

}

Original

Source

if (x >= y) {
z = x;

} 
else {
k = a + c;

}
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be made diverse from the revision that got compromised. 
Any modules that remain from the earlier version would be 
altered in structure. This makes a differential attack, one 
that relies on comparing the revisions of software, much 
less effective. 

Consider a software system where a main module (e.g. 
executable) communicates through an API to a sub-module 
(e.g. DLL/shared library). Suppose we create 2 diverse in-
stances of the sub-module for 2 different customers. With a 
careful construction of the API and diversity settings, it is 
now possible to revoke 1 customer while retaining com-
patibility for the second customer, simply by an update of 
the main module. 

These are just two of the ways in which diversity can be 
used to achieve software security. There are many more. 
Software diversity is an enabler for: 

• Resistance to Differential Attacks 

• Renewability 

• Revocation 

• Response to Compromised Software.  

A system designed with security in mind should consider 
much more than a single revision of software; it should con-
sider the entire deployment space, including the range of 
customers, as well as the security life-cycle. 

5.5 Build Integration 

The addition of security-oriented tools in a pre-compile, 
post-compile, or post-link position significantly alters the 
steps on building applications for development, test, and 
distribution. These tools throw into question the traditional 
method of functional debugging and quality assurance. 

We recommend breaking the development process into 
distinct phases, each with discrete goals: 

1. Functional Development and Testing 

2. Security Analysis and Application of Protection 

3. Security / Performance Tuning 

4. Penetration and Resistance Testing 

As in any development process, each of these phases is cy-
clic in nature and project requirements can cause jumps 
from one phase to another. However, in general, these 
phases should be approached in sequence, each with a char-
acteristic objective. 

Phase 1 of this development process is concerned with 
the functional mechanics of the system. Debugging and 
testing the function of the application is the primary objec-
tive. While some aspects of security may naturally fall into 
functional development including key flow, the 2nd phase is 
the main step for security analysis including modeling 
threats and building attack trees. Prioritization of the high-
est value assets are an important part of this 2nd phase. Dur-
ing this step it is also important to build in the ability to 
parameterize security provisions according to priority. 
These parameters are an important part of the 3rd phase, 
where security/performance tuning takes place. Finally, the 
last phase is where actual attacks are done on the applica-
tion in an attempt to circumvent the protection. 

Regarding the subject of debugging, it is clearly a great 
difficulty to debug a program where code transformations 

have already been applied. This is the reason we stress the 
importance of validation of tools (see section 4.4). Valida-
tion not only includes testing security transformations, but 
also testing a large sample of diverse instances for each 
transformation (see section 5.4). This is also the reason we 
stress the separation of functional verification separately 
from the application of protection. 

6. Application and Case Study 

The compiler techniques in this paper have been imple-
mented in a security tool known as the Transcoder. The 
Transcoder is part of security suite of tools which also in-
cludes tools for binary level protection and white-box cryp-
tography capabilities.  

Both the Transcoder and the full set of security tools 
have been applied to a wide range of applications. These 
include several Digital Rights Management (DRM) sys-
tems, Conditional Access (CA) systems, password man-
agement systems, game systems, video systems, home 
automation systems, and network management systems. 

Figure 8 Security / Performance Tuning Cycle 
 
The application of the tools to a given system begins 

with a security analysis step, identifying and prioritizing the 
assets and security sensitive areas of the system. The tools 
are then applied, with priority given to the security assets. 
Typically, the next step is to run through a perform-
ance/security tuning exercise, which trades off time and 
space against strength of defense to meet an optimal bal-
ance for the requirements of the application. Finally, when 
the product has met security robustness and performance 
expectations, the last step is resistance and penetration test-
ing. This last step provides the security assurance needed to 
allow the system to go to production. The entire process 
time varies with the complexity of the system; however, a 
typical process can range from 2 to 10 weeks. 

As an example, we outline the application of the security 
suite to a DRM system. This is a pre-existing digital rights 
management system where licenses for media are passed 
over a network in the form of certificates. These certificates 
contain keys for media content. The certificates are en-
crypted by a license server and passed to client software. 
The client software must securely decrypt the certificates 
and determine the system has the rights to play the media. 

The details to the system will not be described here; 
however, the process to secure it will be outlined. The first 
step is a security analysis of the system. The critical assets 
are first identified and an attack tree [4] is created. The 
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branches of the attack tree are then protected using tools 
and techniques from the security suite. These techniques 
include all of the transformation means described in this 
paper. 

Figure 8 shows the security/performance tuning cycle 
taken to produce the final DRM product. At the left of the 
diagram is the usual build process, with the addition of se-
curity tools found in the tool-suite. These include the 
Transcoder, which contains the source-to-source compiler 
transformations described in this paper, plus a number of 
binary level tools not described here. The bottom part of the 
diagram shows the running of the application tests and 
measurements of application run-time and application bi-
nary size alongside an empirical evaluation of the security 
achieved by the particular build settings. The cycle on the 
right side of the diagram includes modifying runtime pa-
rameters (dynamic switching) as well as duplicating the 
build of the application with modified settings (parallel 
builds). The latter need not be a sequential process; parallel 
builds can be launched with the availability of machines 
and disk space. The tuning cycle allows a large number of 
application builds to be evaluated for their performance 
versus security settings. 

Figure 9 Application Size versus Security 
 
Figure 9 shows the evaluation of a number of application 

build instances. The Y-axis shows the size of the final bi-
nary as a percentage of the original program without protec-
tion. The X-axis is a scale which is reverse-proportional to 
the number of security settings that have been applied. A 
lower number means that more security transformations 
have been applied to the code base.  

Each point of the graph represents a different solution 
produced by applying a set of build-time options.  The 
build-time options are determined through the security 
analysis on different assets in the system and the attack tree 
analysis. Higher security considerations are given to assets 
which can cause larger impacts. For example, in this case, a 
device key is considered the root of trust and highest prior-
ity, while other derived keys are considered to have less 
impact, since they may guard only specific content. More 
transformation option considerations will be placed on code 
with a higher impact of an attack. 

Typically, a set of parallel builds with various build op-
tions will result in a cloud of solutions on the size versus 
security graph. The lower, left-hand edge of the graph, cor-
responding to smallest size and most security, contains the 
most interesting solutions. The rest of the solutions are dis-

missed as non-optimal. The ideal solution, which is unat-
tainable, is at the origin of the graph.  

Figure 9 shows many possible solutions of which two 
were considered acceptable for production. One meets an 
acceptance criterion of 150% of the original size of the ap-
plication. This is indicated by the solution labeled 102.5. 
The actual in-memory of size of this solution is 1.4 x 102.5 
= 143.5, accounting for the compression/decompression 
done at loading. The figure also shows a second solution 
labeled 137 (i.e. final inflated, in-memory size = 191.8), 
indicating recommended security settings covering more 
sensitive assets and algorithms with further transformations. 

Figure 10 shows the evaluation of the application run-
time versus security. This is a similar analysis to the appli-
cation size versus security analysis. The Y-axis shows the 
application run-time as a percentage of the original, unpro-
tected application run-time. The X-axis is a scale which is 
reverse-proportional to the number of security settings that 
have been applied. 

In this case, the solution labeled 140 meets the accep-
tance criteria of less than 150% of the original application 
run-time. A second solution with recommended security 
settings results in a speed that is 240% of the original appli-
cation. 

Figure 10 Application Speed versus Security 
 
While the analysis presented here for the DRM applica-

tion leaves out many of the details regarding security set-
tings, build options, and test set-ups, etc., it does illustrate 
the methodology and security/performance tuning process. 
In the end, the lesson is that security comes at a cost to per-
formance. In the case of this application, the recommended 
security settings come at a size penalty of nearly 2 times 
(137% in compressed form), and a speed penalty of nearly 
2.5 times the original unprotected form. Given that the 
DRM certificate handling happens once for the playing of 
media content, this may not be a critical overhead. 

7. Conclusion and Future Work 

This paper has presented an extensible compiler-based in-
frastructure for code transformations for the goals of soft-
ware protection. We have described our source-to-source 
framework, intermediate representation, internal library 
structure, and validation methodology. The applicability of 
known compiler analysis techniques have been shown in 
this framework. 

A number of data-flow and control-flow techniques have 
been described for software protection in a white-box envi-
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ronment. We describe a number of automatic and manual 
controls for these transformations in our compiler environ-
ment. We also discuss the uses diversity in the context of 
upgrades, revocation, and renewability. 

Finally, we describe a case-study using our security suite 
for a DRM application. Trade-offs of security versus 
size/speed are discussed. The conclusion is that security 
does come at a price. It affects both size and performance 
of the final solution. On the other hand, protection of the 
application is a trait that should not be overlooked. Effec-
tive design engineering will trade off all three aspects 
wisely and objectively: size, performance, and security. 

This paper has drawn a particular emphasis to existing 
source-level transformations. There are a number of new 
transformations under development. While we recognize 
that these techniques are an important part of software pro-
tection, there are additional security benefits to binary level 
techniques such as anti-debugging, integrity verification, 
secure loading, and code encryption. These binary tech-
niques complement source-level transformations, working 
together to provide a multi-layered defense that provides 
much stronger protection than source-level only or binary-
level only code protection. This is especially true when 
these methods are interlocked, meaning that an exploit of 
one technology is ineffective because of dependencies on 
another technology. Future work in this area will include 
orchestrating the effectiveness of both source-level and 
binary-level technologies, and enhancing our tools to cover 
all steps in the build process including compilation, build-
ing libraries, and linking. Additionally, we will continue to 
enhance work in the area of white-box cryptography effec-
tively using these source-level and binary-level techniques. 
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