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Abstract 

This paper describes the design of a compiling 
system that supports the eff icient compilation of 
very large programs. The system consists of 
f ront  ends for di f ferent languages, a common 
program database to store the intermediate 
code, and various back ends, optimizers, 
debuggers and other development tools. The 
compiling system achieves efficiency of use by 
minimizing the number of system components 
that must be invoked when a small change is 
made in a program. 

A new separate compilation strategy is 
presented that is both easy and natural to use 
and does not require language extensions for 
its use. The database provides the necessary 
contextual information to support separate 
compilation and to facil i tate complete compile- 
time checking. Also, the use of this database 
affords a unique opportuni ty to reduce 
substantially the cost of recompilation and to 
support an eff icient source patching faci l i ty.  

Introduction 

The CHILL Compiling System (CCS) is an 
integrated set of tools designed to support the 
development and maintenance of very large 
programs such as those typical of 
telecommunications applications, i .e . ,  of the 
order of millions of lines of source code. Some 
of the requirements of a large scale 
programming environment that the CCS 
identifies and addresses are: 

• the separate compilation of progam units 
in an indeterminate sequence with 
complete compile time interface 
checking; 
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• an eff icient method for processing small 
changes in very large programs; 

• a system of support tools that makes 
use of the results of analysis performed 
dur ing compilation; 

• a configuration control system implying 
the existence of multiple versions of the 
pro9ram and of its components. 

Implicit in these and all other requirements for  
the system is the overriding requirement that it 
should operate with an economy of time and 
space attuned to the magnitude of the programs 
under development. Furthermore, in order to 
extend the usefulness of the system over the 
broadest possible range of applications, it was 
required to have the f lex ib i l i ty  to support an 
entire family of block structured langua9es , and 
to adapt to a var iety of target and host 
machines. 

The architecture of the CCS is i l lustrated in 
Figure 1. The hub of the system is a program 
database, which stores the intermediate code 
produced by a f ront end and makes it available 
to a series of machine-specific back ends as 
well as to other development tools. The front 
end and intermediate code technology were 
chosen to support the processing of CHILL (the 
standard international high level lan9uage for 
telecommunications operations) (1), several 
dialects of Pascal, and Ada. The CCS 
current ly  supports both CHILL and Pascal and 
there are plans to add Ads in the near future. 
The back ends implemented include code 
generators for  IBM-370, TANDEM, VAX 11/780, 
18086, and the new Intel microprocessor, 1432. 

The central database is the most innovative 
component of the CCS, making possible the 
system's unique approach to separate 
compilation and serving to minimize and manage 
the tasks of all the other interfacing 
components. Of the many functions of the 
database, support for separate compilation was 
selected as the most crit ical, and consequently 
has been most influential in shaping the system 
design. 
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Strategy for  Separate Compilation 

Separate compilation of program parts was 
identified as a key issue and selected as a 
starting point for structuring the database 
design for several reasons: 

• In the environment of large scale 
program development, it is essential to 
formalize the communications between 
humanly managed modules so that 
accurate module interconnections can be 
enforced throughout the development 
process. This task Of maintaining 
inter-module consistency would be the 
responsibil i ty of the database. 

• Not all the languages envisioned would, 
like Ada, have bui l t  into their  syntax a 
means of designating the program units 
destined for separate compilation. It 
was desired to formulate a generalized 
method of permitt ing any block 
structured language to communicate to 
the database in its own syntax the 
structure of a program viewed as a 
collection of separately compilable 
modules. 

• Some of the most critical factors that 
would determine the overall performance 
of the system are linked to separate 
compilation/ in part icular, the system's 
response to a request for recompilation 
of a randomly selected unit. 

The l i terature attests to the fact that a 
satisfactory solution to the problems posed by 
separate compilation is di f f icul t  to f ind. Three 
basically di f ferent approaches emerge from a 
survey of published implementations: 

1. The task is viewed primari ly as a 
responsibil i ty of the l ink editor; this 
view requires tha t  the l ink editor 
undergo promotion to a high level tool 
and perhaps have a module 
interconnection language of its own 
(2,3). Among the disadvantages of this 

approach is the fact that mismatches at 
the interface level 9o unnoticed by the 
compiler and are detected only after the 
cost of generating object code has been 
incurred. For large programs, which 
require considerable time for the code 
generation phase of compilation, this 
approach is unrealistic. 

2. A module interconnection scheme is 
specified that restricts separate 
compilation to modules defined at the 
global level, effectively masking the 
block structuring character of the 
language (4,5,6). There are some 
interesting arguments in support of this 
kind of solution which deserve to be 
weighed as we gain experience in the 
use of the CHILL Compiling System 
(7,8). First, it is argued that the 
packa9ing of data exchanged or shared 
among sibling modules at the global level 
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Figure 1. The CHILL Compiling System 

introduces visibi l i ;w constraints that 
provide benefits roughly equivalent to 
those of block structur ing. Second, 
these authors believe that the monolithic, 
rather than the hierarchical view of a 
program is the more intui t ive one, and 
in a language that offers both 
possibilities (such as Ada or CHILL), 
this view is l ikely to become the 
programmer's choice. The th i rd 
argument defending this approach is one 
which the CHILL Compiling System 
addresses throughout the course of its 
design: in a block structured program, 
the recompilation of top level modules 
can force the recompilation of nested 
modules to an extent that in the worst 
case cancels out the advantages of 
conserving the output of previous 
compilations (8). 

3. The th i rd approach to separate 
compilation is one that both supports 
compile-time interface checking and 
upholds the block structured character 
of the Pascal-like languages. Hpwever, 
when based on modifications of 
tradit ional compilers, published 
implementations of this approach revealed 
undesirable limitations (9). Some 
implementations impose a partial ordering 
upon the compilation schedule, a side- 
effect of an on- the- f ly  v is ib i l i ty  
determination strategy. Some  add so 
many language extensions that they draw 
criticism for the obscurity and extra 
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complexity they introduce into Pascal 
(8). In this respect, it might be 
observed that at least in some cases, the 
obscurity results from attempting to 
press mechanisms for separate 
compilation into support for a ~makeshift 
data abstraction construct. Yet, without 
this packaging capabil ity, block- 
structured languages remain plagued 
wi~h latent obstacles to proper interface 
checking (9). 

In orienting our design, we believed that the 
introduction of a database, as well as the 
presence of data abstraction capabilities in the 
new languages (CHILL, Ada, and the GTE 
Laboratories' (GTEL) dialect of Pascal), would 
overcome the diff icult ies cited in the th i rd 
approach. Thus we decided not to introduce 
any extraneous restrictions or non-standard 
syntax into the subscriber languages. Instead, 
we proposed to allow each language to support 
two "modes" of compilation: the f i rs t ,  called 
STRUCTURE mode, would communicate to the 
database the intended program skeleton, naming 
the separately compilable components and 
defining their  structural relations; the second, 
called PROGRAM mode, would position the 
database key to a selected unit in the skeleton, 
and, after processing the source in the usual 
way, store the output of f ront  end analysis in 
the database in the custody of the selected 
compilation unit key. Compilation in 
STRUCTURE mode could be repeated indefinitely 
during the course of program development; it 
would support program expansion in a manner 
homomorphic to design by stepwise refinement. 

This strategy places no limitations on the order 
of compilation or on the semantics of the chosen 
part i t ioning. While we recognized that the most 
suitable unit of compilation is the data 
abstraction construct (the PACKAGE in Ada, 
the MODULE in CHILL and in the GTEL dialect 
of Pascal), we elected to allow the PROCEDURE 
also to become a unit of compilation, thus 
encouraging algorithmic portions of the program 
to be isolated and introduced into the public 
arena as well. The following is an introduction 
and i l lustration of the method. 

Separate Compilation: An Example 

The user f i rs t  compiles a skeleton of the 
program containing only headings for the 
modules, regions, procedures and processes 
that are expected to become units of 
compilation. This is called a STRUCTURE mode 
compilation; it results in the initialization in the 
database of an undecorated program tree called 
the Structure Directory. To compile any 
program unit, the user must specify a unit 
name that matches the name of a preexist ing 
node of the Structure Directory tree. Figure 
2a illustrates the input to a CHILL compilation 
in STRUCTURE mode, and Figure 2b shows an 
abbreviated listing of the corresponding 
Structure Directory constructed from the input: 
The actual l isting reports the status of each 
compilation unit, ( in i t ia l ly,  "uncompiled"), and 
assigns sequence numbers to the units, which 
can later be used to resolve any ambiguity of 
names. 

/STRUCTURE/ 

program: MODULE 
global procedures: MODULE 
END global procedu res; 
transformations: MODULE 

table builder: MODULE 
END table builder; 
interpreter:  MODULE 
END interpreter;  

END transformations; 
input_analyzer: MODULE 
END input_analyzer; 
main_driver: PROCEDURE 
END main_driver; 

END program. 

Figure 2a. 

/L IST STRUCTURE DIRECTORY/ 

1.0 MODULE program; 
2.0 MODULE 91obal procedure; 
2.1 MODULE transformations; 

3.0 MODULE table bui lder; 
3.1 MODULE interpreter;  

2.2 MODULE inputana lyzer ;  
2.3 PROCEDURE main_driver(); 

Figure 2b. 

Suppose that the f i rs t  unit scheduled for 
development is " in terpreter" ,  which contains 
some key procedures requir ing the use of global 
data. The programmer may wish to begin by 
creating the environment for the target module. 
Therefore, an initial version of 
"91obal_procedu res" in which only data 
declarations appear is added to the program 
database. To accomplish this, an invocation of 
the compiler in PROGRAM mode ( i .e . ,  the 
normal mode of compilation, given the existence 
of a Structure Directory) specifies 
"global procedures" as the unit of compilation. 

Next, the Structure Directory tree is extended 
to incorporate the " in terpreter"  (Figure 3a). A 
partial listing that results from a new 
compilation in STRUCTURE mode is presented in 
Figure 3b. 

It is now possible to select "stack handler" and 
compile the code for it in PROGRAM mode. A 
second pro9rammer can be workin9 
simultaneously on "translate", which perhaps 
requires the use of some procedure to be 
declared in "stack handler". In a9reement with 
CHILL semantics,-the compiler allows code to 
contain references to as yet undeclared 
procedures, assuming the responsibil i ty for 
resolvin9 them as the declarations appear. 
Thus, separate compilation of "translate" can 
proceed, since, via a strategy described in a 
later section, t h e  CCS instructs the database to 
store the information necessary to complete the 
compilation and will issue only a warning at this 
point. 
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/STRUCTURE/ 

interpreter:  MODULE 
output_formatter: MODULE 
END output formatter; 
fi le handlerT MODULE 

get_data : PROCEDURE() 
<> ALIAS get_data_l; 
END get data; 

END file_handler; 
translate: MODULE 

stack handler: MODULE; 
END stack_handler; 
ge tda ta :  PROCEDURE(); 
<> ALIAS get_data-2; 
END ge tda ta ;  

END translate; 
END interpreter;  

Figure 3a. 

/LIST STRUCTURE DIRECTORY/ 

3.1 MODULE interpreter;  
3.2 MODULE output formatter; 
3.3 MODULE fi le_handler; 

4.0 PROCEDURE get_data(); 
ALIAS get_data 1; 

3.4 MODULE translate_ 
4.1 MODULE stack handler; 
4.2 PROCEDURE ge tda ta ( ) ;  

ALIAS get_data 2; 

Figure 3b. 

At some stage in the program development, an 
individual programmer may wish to stabilize his 
pr ivate view of the ensemble while he proceeds 
within his selected environment undisturbed by 
the interactions of other team members. 
Furthermore, the programqler may need a 
temporary version of the program to save the 
output of his compilations until he makes the 
decision to promote it to a permanent version. 
To implement these concepts the compiler 
recognize~ three classes of versions: a 
permanent and offi(;ial version under the control 
of the chief programmer, called the "baseline" 
version; a temporary version, which is the 
default version for output, called the "test" 
version; and a set of programmer-initiated 
versions which represent f i l tered views of the 
program. A separate tool, the Version 
Control ler, is invoked to create versions, and 
to add or delete compilation unit members of a 
version. A password protects the baseline 
version, and may also be applied optionally to 
any programmer-initiated version; in this way, 
only an authorized user can alter a password- 
protected version. In the examples we have 
seen, it would be possible for the developer of 
"global-procedures" to promote to the baseline 
version his compilation unit containing data 
declarations, and subsequently to recompile his 
unit to the "test" version or to a pr ivate 
version after having added procedures that are 
still in the test phase. Thus, changes in the 
status of "global procedures" would not have an 
impact on compilations that need only to see the 
baseline version. 

Database Designed for Efficiency 

The database is a special purpose 
implementation designed expressly to meet the 
needs of the compiler in a natural and direct 
manner. Thus, the Structure Directory forms 
its hub, organizing it as a hierarchy of 
compilation units, each serving as a primary 
key. Nodes of the Structure Directory fan out 
into version nodes,, storing the mapping 
information needed to fetch version-dependent 
entities; queries reach the target node by 
specifying a compilation unit key qualif ied by a 
version. For efficiency of access, the system 
generates a unique surrogate key for each 
compilation unit, reached by a hashing scheme 
that makes use of the source compilation unit 
name and/or the unique user-supplied alias. 

The principal entities stored in the database 
under compilation unit key are a symbol table 
segment for that unit and a set of intermediate 
code trees that represent the procedural 
portions of the unit and denote 0perands by 
referencing the symbol table. Also stored in 
the database independent of compilation unit 
key is an ident i f ier table, which stores all 
names referenced in the symbol table. 

While any system that strives to maintain 
consistent separate compilation must store 
complete symbol table information relevant to 
the context for a given unit, our decision to 
store the intermediate code in addition to 
symbolic information was an innovation. This 
choice was made for the sake of the interfacin 9 
tools, in order to eliminate restrictions on their  
capabilities and to economize the lengthiest 
phase of the processing they must do, i .e . ,  
analysis of the source. Thus, since the 
intermediate code for the entire program is 
available from the database, the data flow 
analyzer can perform meaningful interprocedura& 
flow analysis. Furthermore, a substantial 
advantage is won if the data flow analyzer, 
optimizers, and so on, can operate direct ly on 
the predigested intermediate code, which i s  
9enerated only once and lends itself easily to 
manipulation and modification. The time savings 
is part icu(arly important to the code generation 
phase of compilation, which can be deferred 
under this plan unti l the moment of actual 
need, and is then accomplished in a fraction of 
the time that the source analysis has consumed. 

These 9oals in the time dimension of the 
system's efficiency demanded that a 
proportionate amount of attention be paid to the 
constraints of the compiler's space resources. 
A guideline applied to the design of system- 
based data structures was that their  total size 
should not exceed the size of the source code. 
It is not the intent of this paper to delineate 
the principal data structures; a previous paper 
describes in detail the design of the 
intermediate code ( I0) .  However, some general 
comments might serve to communicate the f lavor 
of this design approach, 
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The intermediate code is modeled on a high 
level data flow graph implemented as a forest of 
spanning trees that capture the program's 
abstract syntax. The database views both the 
intermediate code and the symbol table 
macroscopically as trees whose leaves sometimes 
explode into linked lists. Within the compiler is 
a common faci l i ty for managing linked lists, and 
by extension of this same capabil ity, for 
traversing trees; this faci l i ty is at the service 
of the symbol table, the intermediate code, and 
of the Structure Directory tree of database 
keys. A dist incit ive feature of the compiler's 
list processor is that it is capable of viewing 
the structures it manages not only as collections 
of "atoms," e .g. ,  representations of individual 
symbols or code phrases, but also as 
"molecular" structures, i .e . ,  groups of atoms 
which may be organized in a f ixed var iety of 

shapes and may be manipulated globally at a 
level adapted to the I/O requirements of the 
database. For example, an intermediate code 
tree corresponding to a procedure block can be 
retrieved from the database by a single 
operation. This strategy not only streamlines 
the compiler space requirements by substantially 
reducing the number of pointers that must be 
maintained at the atomic level; it also improves 
the time performance of the database by 
enabling more efficient I/O management. 

To help prevent database I/O from becoming a 
performance bottleneck, the compiler 
implementation language (GTEL Pascal) has been 
equipped with an expl ici t  heap faci l i ty that 
builds linked data structures in a position- 
independent manner and allows the entire 
contents of. a heap to be written to or read 
from the database files as a stream of buffers. 
The manipulation of pointers and heap objects is 
as in standard Pascal with the additional 
requirement that pointers be bound to a user 
defined heap. Current ly under development is 
an additional faci l i ty for "v i r tual  heaps" that 
will support linked structures whose size 
exceeds the addressable region available to the 
compiler. Each compiler module that presides 
over a complex data type has the abi l i ty to 
invoke the heap facilities to handle its I/O in 
an efficient, type-safe manner. 

A critical task of the database is to compose 
from individual segments the entire symbol table 
context for a selected unit, and to construct 
for the segment undergoing compilation the 
links required to insert the segment into the 
context. Thus, symbols are not stored 
redundantly in the database as components of 
the various contexts of individual compilation 
units; instead, the database saves only enough 
information to enable the context of a unit to be 
reconstituted as needed. Support for this 
strategy is provided by a hashing scheme that 
enables the internal symbol table references to 
be independent of the physical position of a 
symbol in its home segment. Such a scheme is 
also helpful in reducing the amount of repair 
work the compiler must do when a unit is 
recompiled, as the next section will point out. 

The compiler exploits in many ways the 
advantages of preserving in the intermediate 
code all the semantic information contained in 
the source, including references to as yet 
undefined procedures, variables, types and 
constants. Thus, the f ront end is able to 
recognize any correspondence between 
previously detected unresolved procedure 
references and new tree decorations appearing 
as a resu l t 'o f  the current compilation. It can 
then make appropriate changes to previously 
generated intermediate code, repairing dangling 
pointers. While this scheme was devised 
primari ly to implement the semantic rule of 
CHILL which allows forward invocation of 
procedures, it is also suitable for supporting 
the special case arising in a separate 
compilation setting where unresolved references 
to variables or procedures are presumed 
resolvable in some as yet uncompiled unit. A 
warning message apprises the user of the 
existence of such a reference; the same service 
is offered with respect to procedure and data 
definitions that are never referenced. 

The security of protected entities is a natural 
responsibil i ty of the database, and is easily 
implemented using standard database 
technology. Thus, database operations require 
authorization for modification of the Structure 
Directory, as well as for changes to the 
baseline version or to any version created with 
a password. In addition, the database mediates 
between contending concurrent requests that 
attempt to access the same version. While 
assembling the program context of a given 
version, the database applies a mutual exclusion 
protocol, deterr ing other users from making 
updates to that version. Conversely, it 
excludes other users from either reading from 
or wri t ing to a version which is in the process 
of being updated. 

Strategies for Efficient Recompilation 

As our l i terature survey attests, the criticism 
of separate compilation implementations that 
pleads for the abandonment of block structure 
cites the proliferation of disorder in a program 
when a single unit is recompiled. Since in 
CHILL, v is ib i l i ty of encapsulated objects can be 
extended not only to nested units, but by the 
GRANT clause to enclosing modules as well, the 
problem becomes even more significant to  the 
CCS. We have introduced a var iety of 
approaches to this problem, while still allowing 
the order of compilations to be independent of 
compiler implementation considerations. The 
system considers the various degrees of impact 
as separate cases, each requir ing a more 
expensive level of intervention than its 
predecessor, and each implying that the lower 
level interventions must automatically ensue. 
These cost levels are as follows: 

1. regeneration of object code for an 
affected unit, with a resulting patch to 
its load module; 

2. reanalysis of the intermediate code for 
an affected unit; 
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3. recompilation of source. 

There are two system tools that detect 
recompilation side effects and t r igger  the 
approprite repair mechanisms: the Change 
Analyzer, which is automatically activated by 
the f ront  end when a unit is recompiled within 
the same version, and the Consistency Checker, 
which the user invokes separately. What 
follows is a description of how these tools 
operate. 

Change Analyzer. As a new symbol table is 
being constructed for the unit requesting 
recompilation, the Change Analyzer automatically 
compares each generated symbol to any existing 
symbol of the same name and v is ib i l i ty .  
Charlges in the meaning of symbols are 
detected, as well as deletions Of symbols from 
the predecessor table; the appropriate action 
for restoring consistency is then selected and 
set in motion. The following case is offered as 
an i l lustrat ive example. Suppose a dominant 
module A is recompiled with a change in the 
definit ion of its type, T1, imported by 
dependent module B. The Change Analyzer 
discovers the change, and, using a pointer to 
the cross reference list for T1, retrieves the 
list of T l 's  dependencies. The affected module 
B is thus identif ied, and a determination is 
made as to whether B must be recompiled from 
source, ( i f ,  for instance, B makes an 
incompatible assignment to an object of the new 
type T1)  or perhaps requires only a 
regeneration of its code (if ,  for instance, the 
modification of T] concerns only an extension of 
its range). In both cases, a message is issued 
to ,the user; the f i rst  action results in a change 
to the database entry for the status of module 
B: from "compiled" to "requires modification"; 
the second action is completed automatically by 
the CCS. It can be observed that the 
recompilation of module A has no impact at all 
on dependent, units that import no symbols 
whose meanin 9 is changed. This is because, as 
mentioned in the previous section, each unit 
references its external symbols in a data- 
independent manner, i .e . ,  independently of the 
symbol's physical location, which is subject to 
change by recompilation. 

Consistency Checker. This is a tool which the 
user must invoke to review the status of the 
whole program. Since the CCS will refuse to 
generate object code for an inconsistent 
program, this tool would normally be invoked in 
the sequence of user commands that seeks to 
activate the compiler back end. It should also 
be invoked before merging versions; e .g . ,  
before merging a private version with the 
baseline version. This tool flushes out 
inconsistencies of all kinds: those that have 
resulted from recompilation, as well as those 
that arise from references to unknown variables 
or procedures. In addition to noti fying the 
user of the inconsistencies that require h i s  
intervention, this tool also effects whatever 
automatic adjustments and patches are 
appropriate. 

Benefits From The Design 

The provision of a total ly supportive database 
that allows separate compilation to take place 
without forcing a monolithic structure or 
requir ing semantic restrictions brings to the 
CCS many extra benefits that come as free or 
low cost bonuses. Some of the benefits are: 

1. Design support. Although the CCS does 
not actually impose a desi9 n 
methodology, the embodiment of the 
program skeleton within the Structure 
Directory forces the design to become 
public and encourages it to grow by 
stepwise refinement. At the same time, 
by permitt ing compilations to germinate 
at any node of the Structure Directory 
tree, the CCS allows bottom-up 
experimentation to take place, either 
within an official "baseline" version, or 
in a less controlled way, in a 
programmer-init iated version. 

2. Good communication. Since the CCS 
tools for program documentation are also 
oriented by the Structure Directory, it 
is a simple matter to project on to its 
l isting additional kinds of information 
that synthesize a type of Module 
Interconnection Language. These may 
include, for example, 

a) Program static structure. 

b) Descriptions of module data 
abstractions together with the 
operations they define. 

c) The uses relation between modules. 

d) The list of modules undergoing side 
effects after the recompilation of a 
dominant module. 

e) The table of symbols visible at any 
selected node of the program tree. 

f) The names and parameter types of 
the undefined procedures invoked in 
each module. 

3. Version control. The database supports 
version control of the intermediate code, 
allowing diverse views of the program 
under development to be defined and 
integrated into any given configuration 
control environment. 

4. Program consistency. Working from the 
database, the Consistency Checker 
automatically ensures that as private 
versions are reinte9 rated into the 
baseline version, any l ingering 
inconsistencies are flushed out. 

. 5. Program. database. Storing the 
intermediate code in the database offers 
countless possibilities for improvement of 
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the services offered by auxi l iary  CCS 
tools. For example, data flow 
information for the use of optimizers is 
most conveniently extracted from 
intermediate code trees and stored in the 
database as parts of the same relation 
(10). 

6. Improved eff iciency. The database- 
anchored architecture frees the back end 
from awkward dependencies on the 
structure of the source, thus enabling 
the code-generators to achieve maximal 
f lex ib i l i t y  (11). Furthermore, by 
invoking separate code space and 
execution time optimizer tools, the user 
can select an optimal level of upgraded 
code, thereby deferr ing some of the 
passes over the intermediate code unti l  
the point of usefulness. 

Conclusion 

The CCS is self-compiling in GTEL Pascal. I t  
has been bootstrapped to run on the IBM 370, 
TANDEM, and Vax 1~1/780; other implemented 
back ends include code generators for the 18086 
and 1432. 

The database containing complete symbolic 
information and intermediate code occupies f i le 
space equivalent to 80~o of the source on the 
IBM 370. A fu r ther  25~ reduction in space is 
expected to be achieved through the use of 
simple data compaction techniques. 

Current ly ,  the f ront  end processes 40,000 lines 
per CPU mLnute on the IBM 3033. Af ter  the 
optimization tools have been completed and put 
to use, this speed is expected to double. The 
CCS back ends typical ly generate code in one- 
half the time consumed by the f ront  end. 
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