
An Efficient Separate Compilation Strategy for
Very Large Programs

Andres Rudmik
Barbara G. Moore

GTE Laboratories
40 Sylvan Road

Waltham, Massachusetts 02254

Abstract

This paper describes the design of a compiling
system that supports the eff icient compilation of
very large programs. The system consists of
f ront ends for di f ferent languages, a common
program database to store the intermediate
code, and various back ends, optimizers,
debuggers and other development tools. The
compiling system achieves efficiency of use by
minimizing the number of system components
that must be invoked when a small change is
made in a program.

A new separate compilation strategy is
presented that is both easy and natural to use
and does not require language extensions for
its use. The database provides the necessary
contextual information to support separate
compilation and to facil i tate complete compile-
time checking. Also, the use of this database
affords a unique opportuni ty to reduce
substantially the cost of recompilation and to
support an eff icient source patching faci l i ty.

Introduction

The CHILL Compiling System (CCS) is an
integrated set of tools designed to support the
development and maintenance of very large
programs such as those typical of
telecommunications applications, i .e . , of the
order of millions of lines of source code. Some
of the requirements of a large scale
programming environment that the CCS
identifies and addresses are:

• the separate compilation of progam units
in an indeterminate sequence with
complete compile time interface
checking;

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fce and/or specific permission.

© 1982 A C M 0-89791-074-5/82/006/0301 $ 0 0 . 7 5

• an eff icient method for processing small
changes in very large programs;

• a system of support tools that makes
use of the results of analysis performed
dur ing compilation;

• a configuration control system implying
the existence of multiple versions of the
pro9ram and of its components.

Implicit in these and all other requirements for
the system is the overriding requirement that it
should operate with an economy of time and
space attuned to the magnitude of the programs
under development. Furthermore, in order to
extend the usefulness of the system over the
broadest possible range of applications, it was
required to have the f lex ib i l i ty to support an
entire family of block structured langua9es , and
to adapt to a var iety of target and host
machines.

The architecture of the CCS is i l lustrated in
Figure 1. The hub of the system is a program
database, which stores the intermediate code
produced by a f ront end and makes it available
to a series of machine-specific back ends as
well as to other development tools. The front
end and intermediate code technology were
chosen to support the processing of CHILL (the
standard international high level lan9uage for
telecommunications operations) (1), several
dialects of Pascal, and Ada. The CCS
current ly supports both CHILL and Pascal and
there are plans to add Ads in the near future.
The back ends implemented include code
generators for IBM-370, TANDEM, VAX 11/780,
18086, and the new Intel microprocessor, 1432.

The central database is the most innovative
component of the CCS, making possible the
system's unique approach to separate
compilation and serving to minimize and manage
the tasks of all the other interfacing
components. Of the many functions of the
database, support for separate compilation was
selected as the most crit ical, and consequently
has been most influential in shaping the system
design.

301

Strategy for Separate Compilation

Separate compilation of program parts was
identified as a key issue and selected as a
starting point for structuring the database
design for several reasons:

• In the environment of large scale
program development, it is essential to
formalize the communications between
humanly managed modules so that
accurate module interconnections can be
enforced throughout the development
process. This task Of maintaining
inter-module consistency would be the
responsibil i ty of the database.

• Not all the languages envisioned would,
like Ada, have bui l t into their syntax a
means of designating the program units
destined for separate compilation. It
was desired to formulate a generalized
method of permitt ing any block
structured language to communicate to
the database in its own syntax the
structure of a program viewed as a
collection of separately compilable
modules.

• Some of the most critical factors that
would determine the overall performance
of the system are linked to separate
compilation/ in part icular, the system's
response to a request for recompilation
of a randomly selected unit.

The l i terature attests to the fact that a
satisfactory solution to the problems posed by
separate compilation is di f f icul t to f ind. Three
basically di f ferent approaches emerge from a
survey of published implementations:

1. The task is viewed primari ly as a
responsibil i ty of the l ink editor; this
view requires tha t the l ink editor
undergo promotion to a high level tool
and perhaps have a module
interconnection language of its own
(2,3). Among the disadvantages of this

approach is the fact that mismatches at
the interface level 9o unnoticed by the
compiler and are detected only after the
cost of generating object code has been
incurred. For large programs, which
require considerable time for the code
generation phase of compilation, this
approach is unrealistic.

2. A module interconnection scheme is
specified that restricts separate
compilation to modules defined at the
global level, effectively masking the
block structuring character of the
language (4,5,6). There are some
interesting arguments in support of this
kind of solution which deserve to be
weighed as we gain experience in the
use of the CHILL Compiling System
(7,8). First, it is argued that the
packa9ing of data exchanged or shared
among sibling modules at the global level

. . . . t i ' '
I SEMANTIC ANALYZER I

1

INSTRUMENT-
ATION

c

GENERATO, R

Figure 1. The CHILL Compiling System

introduces visibi l i ;w constraints that
provide benefits roughly equivalent to
those of block structur ing. Second,
these authors believe that the monolithic,
rather than the hierarchical view of a
program is the more intui t ive one, and
in a language that offers both
possibilities (such as Ada or CHILL),
this view is l ikely to become the
programmer's choice. The th i rd
argument defending this approach is one
which the CHILL Compiling System
addresses throughout the course of its
design: in a block structured program,
the recompilation of top level modules
can force the recompilation of nested
modules to an extent that in the worst
case cancels out the advantages of
conserving the output of previous
compilations (8).

3. The th i rd approach to separate
compilation is one that both supports
compile-time interface checking and
upholds the block structured character
of the Pascal-like languages. Hpwever,
when based on modifications of
tradit ional compilers, published
implementations of this approach revealed
undesirable limitations (9). Some
implementations impose a partial ordering
upon the compilation schedule, a side-
effect of an on- the- f ly v is ib i l i ty
determination strategy. Some add so
many language extensions that they draw
criticism for the obscurity and extra

302

complexity they introduce into Pascal
(8). In this respect, it might be
observed that at least in some cases, the
obscurity results from attempting to
press mechanisms for separate
compilation into support for a ~makeshift
data abstraction construct. Yet, without
this packaging capabil ity, block-
structured languages remain plagued
wi~h latent obstacles to proper interface
checking (9).

In orienting our design, we believed that the
introduction of a database, as well as the
presence of data abstraction capabilities in the
new languages (CHILL, Ada, and the GTE
Laboratories' (GTEL) dialect of Pascal), would
overcome the diff icult ies cited in the th i rd
approach. Thus we decided not to introduce
any extraneous restrictions or non-standard
syntax into the subscriber languages. Instead,
we proposed to allow each language to support
two "modes" of compilation: the f i rs t , called
STRUCTURE mode, would communicate to the
database the intended program skeleton, naming
the separately compilable components and
defining their structural relations; the second,
called PROGRAM mode, would position the
database key to a selected unit in the skeleton,
and, after processing the source in the usual
way, store the output of f ront end analysis in
the database in the custody of the selected
compilation unit key. Compilation in
STRUCTURE mode could be repeated indefinitely
during the course of program development; it
would support program expansion in a manner
homomorphic to design by stepwise refinement.

This strategy places no limitations on the order
of compilation or on the semantics of the chosen
part i t ioning. While we recognized that the most
suitable unit of compilation is the data
abstraction construct (the PACKAGE in Ada,
the MODULE in CHILL and in the GTEL dialect
of Pascal), we elected to allow the PROCEDURE
also to become a unit of compilation, thus
encouraging algorithmic portions of the program
to be isolated and introduced into the public
arena as well. The following is an introduction
and i l lustration of the method.

Separate Compilation: An Example

The user f i rs t compiles a skeleton of the
program containing only headings for the
modules, regions, procedures and processes
that are expected to become units of
compilation. This is called a STRUCTURE mode
compilation; it results in the initialization in the
database of an undecorated program tree called
the Structure Directory. To compile any
program unit, the user must specify a unit
name that matches the name of a preexist ing
node of the Structure Directory tree. Figure
2a illustrates the input to a CHILL compilation
in STRUCTURE mode, and Figure 2b shows an
abbreviated listing of the corresponding
Structure Directory constructed from the input:
The actual l isting reports the status of each
compilation unit, (in i t ia l ly, "uncompiled"), and
assigns sequence numbers to the units, which
can later be used to resolve any ambiguity of
names.

/STRUCTURE/

program: MODULE
global procedures: MODULE
END global procedu res;
transformations: MODULE

table builder: MODULE
END table builder;
interpreter: MODULE
END interpreter;

END transformations;
input_analyzer: MODULE
END input_analyzer;
main_driver: PROCEDURE
END main_driver;

END program.

Figure 2a.

/L IST STRUCTURE DIRECTORY/

1.0 MODULE program;
2.0 MODULE 91obal procedure;
2.1 MODULE transformations;

3.0 MODULE table bui lder;
3.1 MODULE interpreter;

2.2 MODULE inputana lyzer ;
2.3 PROCEDURE main_driver();

Figure 2b.

Suppose that the f i rs t unit scheduled for
development is " in terpreter" , which contains
some key procedures requir ing the use of global
data. The programmer may wish to begin by
creating the environment for the target module.
Therefore, an initial version of
"91obal_procedu res" in which only data
declarations appear is added to the program
database. To accomplish this, an invocation of
the compiler in PROGRAM mode (i .e . , the
normal mode of compilation, given the existence
of a Structure Directory) specifies
"global procedures" as the unit of compilation.

Next, the Structure Directory tree is extended
to incorporate the " in terpreter" (Figure 3a). A
partial listing that results from a new
compilation in STRUCTURE mode is presented in
Figure 3b.

It is now possible to select "stack handler" and
compile the code for it in PROGRAM mode. A
second pro9rammer can be workin9
simultaneously on "translate", which perhaps
requires the use of some procedure to be
declared in "stack handler". In a9reement with
CHILL semantics,-the compiler allows code to
contain references to as yet undeclared
procedures, assuming the responsibil i ty for
resolvin9 them as the declarations appear.
Thus, separate compilation of "translate" can
proceed, since, via a strategy described in a
later section, t h e CCS instructs the database to
store the information necessary to complete the
compilation and will issue only a warning at this
point.

303

/STRUCTURE/

interpreter: MODULE
output_formatter: MODULE
END output formatter;
fi le handlerT MODULE

get_data : PROCEDURE()
<> ALIAS get_data_l;
END get data;

END file_handler;
translate: MODULE

stack handler: MODULE;
END stack_handler;
ge tda ta : PROCEDURE();
<> ALIAS get_data-2;
END ge tda ta ;

END translate;
END interpreter;

Figure 3a.

/LIST STRUCTURE DIRECTORY/

3.1 MODULE interpreter;
3.2 MODULE output formatter;
3.3 MODULE fi le_handler;

4.0 PROCEDURE get_data();
ALIAS get_data 1;

3.4 MODULE translate_
4.1 MODULE stack handler;
4.2 PROCEDURE ge tda ta () ;

ALIAS get_data 2;

Figure 3b.

At some stage in the program development, an
individual programmer may wish to stabilize his
pr ivate view of the ensemble while he proceeds
within his selected environment undisturbed by
the interactions of other team members.
Furthermore, the programqler may need a
temporary version of the program to save the
output of his compilations until he makes the
decision to promote it to a permanent version.
To implement these concepts the compiler
recognize~ three classes of versions: a
permanent and offi(;ial version under the control
of the chief programmer, called the "baseline"
version; a temporary version, which is the
default version for output, called the "test"
version; and a set of programmer-initiated
versions which represent f i l tered views of the
program. A separate tool, the Version
Control ler, is invoked to create versions, and
to add or delete compilation unit members of a
version. A password protects the baseline
version, and may also be applied optionally to
any programmer-initiated version; in this way,
only an authorized user can alter a password-
protected version. In the examples we have
seen, it would be possible for the developer of
"global-procedures" to promote to the baseline
version his compilation unit containing data
declarations, and subsequently to recompile his
unit to the "test" version or to a pr ivate
version after having added procedures that are
still in the test phase. Thus, changes in the
status of "global procedures" would not have an
impact on compilations that need only to see the
baseline version.

Database Designed for Efficiency

The database is a special purpose
implementation designed expressly to meet the
needs of the compiler in a natural and direct
manner. Thus, the Structure Directory forms
its hub, organizing it as a hierarchy of
compilation units, each serving as a primary
key. Nodes of the Structure Directory fan out
into version nodes,, storing the mapping
information needed to fetch version-dependent
entities; queries reach the target node by
specifying a compilation unit key qualif ied by a
version. For efficiency of access, the system
generates a unique surrogate key for each
compilation unit, reached by a hashing scheme
that makes use of the source compilation unit
name and/or the unique user-supplied alias.

The principal entities stored in the database
under compilation unit key are a symbol table
segment for that unit and a set of intermediate
code trees that represent the procedural
portions of the unit and denote 0perands by
referencing the symbol table. Also stored in
the database independent of compilation unit
key is an ident i f ier table, which stores all
names referenced in the symbol table.

While any system that strives to maintain
consistent separate compilation must store
complete symbol table information relevant to
the context for a given unit, our decision to
store the intermediate code in addition to
symbolic information was an innovation. This
choice was made for the sake of the interfacin 9
tools, in order to eliminate restrictions on their
capabilities and to economize the lengthiest
phase of the processing they must do, i .e . ,
analysis of the source. Thus, since the
intermediate code for the entire program is
available from the database, the data flow
analyzer can perform meaningful interprocedura&
flow analysis. Furthermore, a substantial
advantage is won if the data flow analyzer,
optimizers, and so on, can operate direct ly on
the predigested intermediate code, which i s
9enerated only once and lends itself easily to
manipulation and modification. The time savings
is part icu(arly important to the code generation
phase of compilation, which can be deferred
under this plan unti l the moment of actual
need, and is then accomplished in a fraction of
the time that the source analysis has consumed.

These 9oals in the time dimension of the
system's efficiency demanded that a
proportionate amount of attention be paid to the
constraints of the compiler's space resources.
A guideline applied to the design of system-
based data structures was that their total size
should not exceed the size of the source code.
It is not the intent of this paper to delineate
the principal data structures; a previous paper
describes in detail the design of the
intermediate code (I0) . However, some general
comments might serve to communicate the f lavor
of this design approach,

304

The intermediate code is modeled on a high
level data flow graph implemented as a forest of
spanning trees that capture the program's
abstract syntax. The database views both the
intermediate code and the symbol table
macroscopically as trees whose leaves sometimes
explode into linked lists. Within the compiler is
a common faci l i ty for managing linked lists, and
by extension of this same capabil ity, for
traversing trees; this faci l i ty is at the service
of the symbol table, the intermediate code, and
of the Structure Directory tree of database
keys. A dist incit ive feature of the compiler's
list processor is that it is capable of viewing
the structures it manages not only as collections
of "atoms," e .g. , representations of individual
symbols or code phrases, but also as
"molecular" structures, i .e . , groups of atoms
which may be organized in a f ixed var iety of

shapes and may be manipulated globally at a
level adapted to the I/O requirements of the
database. For example, an intermediate code
tree corresponding to a procedure block can be
retrieved from the database by a single
operation. This strategy not only streamlines
the compiler space requirements by substantially
reducing the number of pointers that must be
maintained at the atomic level; it also improves
the time performance of the database by
enabling more efficient I/O management.

To help prevent database I/O from becoming a
performance bottleneck, the compiler
implementation language (GTEL Pascal) has been
equipped with an expl ici t heap faci l i ty that
builds linked data structures in a position-
independent manner and allows the entire
contents of. a heap to be written to or read
from the database files as a stream of buffers.
The manipulation of pointers and heap objects is
as in standard Pascal with the additional
requirement that pointers be bound to a user
defined heap. Current ly under development is
an additional faci l i ty for "v i r tual heaps" that
will support linked structures whose size
exceeds the addressable region available to the
compiler. Each compiler module that presides
over a complex data type has the abi l i ty to
invoke the heap facilities to handle its I/O in
an efficient, type-safe manner.

A critical task of the database is to compose
from individual segments the entire symbol table
context for a selected unit, and to construct
for the segment undergoing compilation the
links required to insert the segment into the
context. Thus, symbols are not stored
redundantly in the database as components of
the various contexts of individual compilation
units; instead, the database saves only enough
information to enable the context of a unit to be
reconstituted as needed. Support for this
strategy is provided by a hashing scheme that
enables the internal symbol table references to
be independent of the physical position of a
symbol in its home segment. Such a scheme is
also helpful in reducing the amount of repair
work the compiler must do when a unit is
recompiled, as the next section will point out.

The compiler exploits in many ways the
advantages of preserving in the intermediate
code all the semantic information contained in
the source, including references to as yet
undefined procedures, variables, types and
constants. Thus, the f ront end is able to
recognize any correspondence between
previously detected unresolved procedure
references and new tree decorations appearing
as a resu l t 'o f the current compilation. It can
then make appropriate changes to previously
generated intermediate code, repairing dangling
pointers. While this scheme was devised
primari ly to implement the semantic rule of
CHILL which allows forward invocation of
procedures, it is also suitable for supporting
the special case arising in a separate
compilation setting where unresolved references
to variables or procedures are presumed
resolvable in some as yet uncompiled unit. A
warning message apprises the user of the
existence of such a reference; the same service
is offered with respect to procedure and data
definitions that are never referenced.

The security of protected entities is a natural
responsibil i ty of the database, and is easily
implemented using standard database
technology. Thus, database operations require
authorization for modification of the Structure
Directory, as well as for changes to the
baseline version or to any version created with
a password. In addition, the database mediates
between contending concurrent requests that
attempt to access the same version. While
assembling the program context of a given
version, the database applies a mutual exclusion
protocol, deterr ing other users from making
updates to that version. Conversely, it
excludes other users from either reading from
or wri t ing to a version which is in the process
of being updated.

Strategies for Efficient Recompilation

As our l i terature survey attests, the criticism
of separate compilation implementations that
pleads for the abandonment of block structure
cites the proliferation of disorder in a program
when a single unit is recompiled. Since in
CHILL, v is ib i l i ty of encapsulated objects can be
extended not only to nested units, but by the
GRANT clause to enclosing modules as well, the
problem becomes even more significant to the
CCS. We have introduced a var iety of
approaches to this problem, while still allowing
the order of compilations to be independent of
compiler implementation considerations. The
system considers the various degrees of impact
as separate cases, each requir ing a more
expensive level of intervention than its
predecessor, and each implying that the lower
level interventions must automatically ensue.
These cost levels are as follows:

1. regeneration of object code for an
affected unit, with a resulting patch to
its load module;

2. reanalysis of the intermediate code for
an affected unit;

305

3. recompilation of source.

There are two system tools that detect
recompilation side effects and t r igger the
approprite repair mechanisms: the Change
Analyzer, which is automatically activated by
the f ront end when a unit is recompiled within
the same version, and the Consistency Checker,
which the user invokes separately. What
follows is a description of how these tools
operate.

Change Analyzer. As a new symbol table is
being constructed for the unit requesting
recompilation, the Change Analyzer automatically
compares each generated symbol to any existing
symbol of the same name and v is ib i l i ty .
Charlges in the meaning of symbols are
detected, as well as deletions Of symbols from
the predecessor table; the appropriate action
for restoring consistency is then selected and
set in motion. The following case is offered as
an i l lustrat ive example. Suppose a dominant
module A is recompiled with a change in the
definit ion of its type, T1, imported by
dependent module B. The Change Analyzer
discovers the change, and, using a pointer to
the cross reference list for T1, retrieves the
list of T l 's dependencies. The affected module
B is thus identif ied, and a determination is
made as to whether B must be recompiled from
source, (i f , for instance, B makes an
incompatible assignment to an object of the new
type T1) or perhaps requires only a
regeneration of its code (if , for instance, the
modification of T] concerns only an extension of
its range). In both cases, a message is issued
to ,the user; the f i rst action results in a change
to the database entry for the status of module
B: from "compiled" to "requires modification";
the second action is completed automatically by
the CCS. It can be observed that the
recompilation of module A has no impact at all
on dependent, units that import no symbols
whose meanin 9 is changed. This is because, as
mentioned in the previous section, each unit
references its external symbols in a data-
independent manner, i .e . , independently of the
symbol's physical location, which is subject to
change by recompilation.

Consistency Checker. This is a tool which the
user must invoke to review the status of the
whole program. Since the CCS will refuse to
generate object code for an inconsistent
program, this tool would normally be invoked in
the sequence of user commands that seeks to
activate the compiler back end. It should also
be invoked before merging versions; e .g . ,
before merging a private version with the
baseline version. This tool flushes out
inconsistencies of all kinds: those that have
resulted from recompilation, as well as those
that arise from references to unknown variables
or procedures. In addition to noti fying the
user of the inconsistencies that require h i s
intervention, this tool also effects whatever
automatic adjustments and patches are
appropriate.

Benefits From The Design

The provision of a total ly supportive database
that allows separate compilation to take place
without forcing a monolithic structure or
requir ing semantic restrictions brings to the
CCS many extra benefits that come as free or
low cost bonuses. Some of the benefits are:

1. Design support. Although the CCS does
not actually impose a desi9 n
methodology, the embodiment of the
program skeleton within the Structure
Directory forces the design to become
public and encourages it to grow by
stepwise refinement. At the same time,
by permitt ing compilations to germinate
at any node of the Structure Directory
tree, the CCS allows bottom-up
experimentation to take place, either
within an official "baseline" version, or
in a less controlled way, in a
programmer-init iated version.

2. Good communication. Since the CCS
tools for program documentation are also
oriented by the Structure Directory, it
is a simple matter to project on to its
l isting additional kinds of information
that synthesize a type of Module
Interconnection Language. These may
include, for example,

a) Program static structure.

b) Descriptions of module data
abstractions together with the
operations they define.

c) The uses relation between modules.

d) The list of modules undergoing side
effects after the recompilation of a
dominant module.

e) The table of symbols visible at any
selected node of the program tree.

f) The names and parameter types of
the undefined procedures invoked in
each module.

3. Version control. The database supports
version control of the intermediate code,
allowing diverse views of the program
under development to be defined and
integrated into any given configuration
control environment.

4. Program consistency. Working from the
database, the Consistency Checker
automatically ensures that as private
versions are reinte9 rated into the
baseline version, any l ingering
inconsistencies are flushed out.

. 5. Program. database. Storing the
intermediate code in the database offers
countless possibilities for improvement of

306

the services offered by auxi l iary CCS
tools. For example, data flow
information for the use of optimizers is
most conveniently extracted from
intermediate code trees and stored in the
database as parts of the same relation
(10).

6. Improved eff iciency. The database-
anchored architecture frees the back end
from awkward dependencies on the
structure of the source, thus enabling
the code-generators to achieve maximal
f lex ib i l i t y (11). Furthermore, by
invoking separate code space and
execution time optimizer tools, the user
can select an optimal level of upgraded
code, thereby deferr ing some of the
passes over the intermediate code unti l
the point of usefulness.

Conclusion

The CCS is self-compiling in GTEL Pascal. I t
has been bootstrapped to run on the IBM 370,
TANDEM, and Vax 1~1/780; other implemented
back ends include code generators for the 18086
and 1432.

The database containing complete symbolic
information and intermediate code occupies f i le
space equivalent to 80~o of the source on the
IBM 370. A fu r ther 25~ reduction in space is
expected to be achieved through the use of
simple data compaction techniques.

Current ly , the f ront end processes 40,000 lines
per CPU mLnute on the IBM 3033. Af ter the
optimization tools have been completed and put
to use, this speed is expected to double. The
CCS back ends typical ly generate code in one-
half the time consumed by the f ront end.

Bibl iography

1. "Proposal for a recommendation for a
CCITT high level programming
language," CCITT Study Group XI ,
Brown Document, 1979.

2. Hamlet, R.G., "High-level binding with
low-level l inkers, " Comm. ACM, vo1.19,
1976, pp. 642-644.

3. Keiburg, R.B. , W. Barabash and C.R.
Hil l , "A Type-checking linkage system
for Pascal" Proceedings 3rd International
Conference on Software Engineering,
1978, pp. 23-28.

4. Celentano, A . , P. Della Vigna, C.
Ghezzi and D. Mandrioli, "Separate
Compilation and Partial Specification in
Pascal," IEEE Trans on Software Eng.,
vol. SE-6, 1980, pp. 320-328.

5. Hanson, D.R. , "A simple technique for
cont rolled communication s among
separately compiled modules," Software-
Practice and Experience, vol.9, 1979,
pp. 921-924.

6. LeBlanc, R.J. , and C.N. Fisher, "On
implementing separate compilation in
b lock-structured language," Sigplan
Notices, Vol. 14, 1979, pp 139-143.

7. Clarke, L .A . , Wiledon, J.C. and Wolf,
A .L . "Nesting in Ada Programs is for
the Bi rds, " Sigplan Notices, vol. 15,
1980, pp. 139-145.

8. Hanson, D.R. , "Is Block Structure
Necessary?", Software Practice and
Experience - , vo1.11, 1981, pp. 853-866.

9. Oldehoeft, R.R., W.D. Ralph and M.H.
Tindal l , "An Interactive Manager for
Pascal Software," Software-Practice and
Experience, vo1.11, 1981, pp. 867-873.

10. Ruclmik, A. and E.S. Lee, "Compiler
Design for Efficient Code Generation and
Program Optimization," Sigplan Notices,
vol. 14, 1979, pp.127-138.

11. Waite, W.M., and L.R. Carter, "An
Analysis/Synthesis Interface for Pascal
Compilers," Software Practice and
Experience, vo1.11, 1981, pp. 769-787.

307

