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Abstract
In this paper, we study the problem of generating inputs to a higher-
order program causing it to error. We first approach the problem in
the setting of PCF, a typed, core functional language and contribute
the first relatively complete method for constructing counterexam-
ples for PCF programs. The method is relatively complete with re-
spect to a first-order solver over the base types of PCF. In practice,
this means an SMT solver can be used for the effective, automated
generation of higher-order counterexamples for a large class of pro-
grams.

We achieve this result by employing a novel form of symbolic
execution for higher-order programs. The remarkable aspect of this
symbolic execution is that even though symbolic higher-order in-
puts and values are considered, the path condition remains a first-
order formula. Our handling of symbolic function application en-
ables the reconstruction of higher-order counterexamples from this
first-order formula.

After establishing our main theoretical results, we sketch how
to apply the approach to untyped, higher-order, stateful languages
with first-class contracts and show how counterexample generation
can be used to detect contract violations in this setting. To validate
our approach, we implement a tool generating counterexamples for
erroneous modules written in Racket.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Verification

Keywords Higher-order programs; symbolic execution; contracts

1. Introduction
Generating inputs that crash first-order programs is a well-studied
problem in the literature on symbolic execution [Cadar et al. 2006;
Godefroid et al. 2005], type systems [Foster et al. 2002], flow analy-
sis [Xie and Aiken 2005], and software model checking [Yang et al.
2004]. However, in the setting of higher-order languages, those that
treat computations as first-class values, research has largely focused

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3468-6/15/06…$15.00.
http://dx.doi.org/10.1145/2737924.2737971

on the verification of programs without investigating how to ef-
fectively report counterexamples as concrete inputs when verifica-
tion fails (e.g., Rondon et al. [2008]; Xu et al. [2009]; Kawaguchi
et al. [2010]; Vytiniotis et al. [2013]; Tobin-Hochstadt andVanHorn
[2012]; Nguyễn et al. [2014]).

There are, however, a few notable exceptions which tackle the
problem of counterexamples for higher-order programs. Perhaps the
most successful has been the approach of random testing found in
tools such as QuickCheck [Claessen and Hughes 2000; Klein et al.
2010]. While testing works well, it is not a complete method and
often fails to generate inputs for which a little symbolic reason-
ing could go further. Symbolic execution aims to overcome this
hurdle, but previous approaches to higher-order symbolic execu-
tion can only generate symbolic inputs, which are not only less
useful to programmers, but may represent infeasible paths in the
program execution [Tobin-Hochstadt and Van Horn 2012; Nguyễn
et al. 2014]. Higher-order model checking [Kobayashi 2013] of-
fers a complete decision procedure for typed, higher-order programs
with finite base types, and can generate inputs for programs with
potential errors. Unfortunately, only first-order inputs are allowed.
This assumption is reasonable for whole programs, but not suitable
for testing higher-order components, which often consume and pro-
duce behavioral values (e.g., functions, objects). Zhu and Jagan-
nathan [2013] give an approach to dependent type inference for
ML that relies on counterexample refinement. This approach can be
used to generate higher-order counterexamples, however no mea-
sure of completeness is considered.

In this paper, we solve the problem of generating potentially
higher-order inputs to functional programs. We give the first rel-
atively complete approach to generating counterexamples for PCF
programs. Our approach uses a novel form of symbolic execution
for PCF that accumulates a path condition as a symbolic heap. The
semantics is an adaptation of Nguyễn et al. [2014], where the criti-
cal technical distinction is our semantics maintains a complete path
condition during execution. The key insight of this work is that al-
though the space of higher-order values is huge, it is only neces-
sary to search for counterexamples from a subset of functions of
specific shapes. Symbolic function application can be leveraged to
decompose unknown functions to lower-order unknown values. By
the point at which an error is witnessed, there are sufficient first-
order constraints to reconstruct the potentially higher-order inputs
needed to crash the program. The completeness of generating coun-
terexamples reduces to the completeness of solving this first-order
constraint, and in this way is relatively complete [Cook 1978].

Beyond PCF, we show the technique is not dependent on as-
sumptions of the core PCFmodel such as type safety and purity. We
sketch how the approach scales to handle untyped, higher-order, im-
perative programs. We also show the approach seamlessly scales to
handle first-class behavioral contracts [Findler and Felleisen 2002]
by incorporating existing semantics for contract monitoring [Di-
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moulas et al. 2012] with no further work. The semantic decompo-
sition of higher-order contracts into lower-order functions naturally
composes with our model of unknown functions to yield a contract
counterexample generator for Contract PCF (CPCF).

Contributions We make the following contributions:
1. We give a novel symbolic execution semantics for PCF that

gradually refines unknown values and maintains a complete
path condition.

2. We give a method of integrating a first-order solver to simul-
taneously obtain a precise execution of symbolic programs and
enable the construction of higher-order counterexamples in case
of errors.

3. We prove our method of finding counterexamples is sound and
relatively complete.

4. We discuss extensions to our method to handle untyped, higher-
order, imperative programs with contracts.

5. We implement our approach as an improvement to a previous
contract verification system, distinguishing definite program er-
rors from potentially false positives.

Outline The remainder of the paper is organized as follows. We
first step through a worked example of a higher-order program that
consumes functional inputs (§ 2). Stepping through the example
illustrates the key ideas of how the path condition is accumulated
as a heap of potentially symbolic values with refinements and how
this heap can be translated to a first-order formula suitable for an
SMT solver. Generating a model for the path condition at the point
of an error reconstructs the higher-order input needed to witness the
error. Next, we develop the core model of Symbolic PCF (§ 3) as
a heap-based reduction semantics. We prove that the semantics is
sound and relatively complete, our main theoretical contribution.
We then show how to scale the approach beyond PCF to untyped,
higher-order, imperative languages with contracts (§ 4). We use
these extensions as the basis of a tool for finding contract violations
in Racket code to validate our approach (§ 5). Finally, we relate our
work to the literature (§ 6) and conclude (§ 7).

2. Worked Examples
We illustrate our idea using an incomplete OCaml program. The
basic idea is that we give a semantics to incomplete programs using
a heap of refinements that constrain all possible completions of the
program. When an error is reached, the heap is given to an SMT
solver, which constructs a model that represents a counterexample.

As our example we use a function f that takes as its arguments
a function g and a number n and performs a division whose denom-
inator involves the application of g to n. We write •T to denote an
unknown value of the appropriate type (and omit the type when it
is clear from context). This example, though contrived, is small and
conveys the heart of our method.

let f (g : int → int) (n : int) : int =
1 / (100 - (g n))

in
(• f)

Now let us consider the possible errors that can arise from running
this code for any interpretation of the unknown value.

Although the application of unknown function • is an arbitrary
computation that can result in any error, we restrict our attention
to possible errors stemming from misbehavior of the visible part
of the above code and assume function • is bug-free. Through
symbolic execution and incremental refinement of unknown values,
we reveal one implementation of • that triggers a division error in
f’s implementation.

Error: Division_by_zero
Breaking context:
• = fun f → (f (fun n → 100) 0)

To find a counterexample, we first seek a possible error by run-
ning the program under an extended reduction semantics allow-
ing unknown, or opaque, values. When execution follows differ-
ent branches, it remembers assumptions associated with each path,
and opaque values become partially known, or transparent. To keep
track of incremental refinements throughout execution, we allocate
all values in a heap and maintain an upper bound to the behavior of
each unknown value.

The semantics takes the form of a reduction relation on pairs
of expressions and heaps, written ⟨E, Σ⟩ 7−→ ⟨E′, Σ′⟩. In our
example, the first step of computation is to allocate a fresh location
to hold the unknown function being applied.

⟨(• f), ∅⟩ 7−→ ⟨(L1 f), [L1 7→ •]⟩

Allocating values in the heap this way gives us a means to refine
values and to communicate these refinements to later parts of the
computation.

At this point, we can partially solve for the unknown value. Since
it is applied to f, it must be a function of one argument. But how
can we solve for the body of the function? The key observation is
that while many possible solutions for the function body may exist,
if the function can reach an error state, then it can reach that error
state by immediately applying the input to some arguments,without
loss of generality. Since the input function takes two arguments, we
can partially solve for the body of the function as “apply the input
to two unknown values.” By allocating these two unknowns and
refining f, we arrive at the state:

⟨(f L2 L3), [L1 7→ fun f → (f L2 L3),
L2 7→ •int→int,
L3 7→ •int]

The program then executes f’s body, substituting g with L2 and
n with L3. The next sub-expression to reduce is (g n), which is
(L2 L3) after substitution, which is yet another unknown function
application, so the next step is to partially solve for L2. Unlike in
the higher-order case, there is no interaction with the input value
that needs to be considered (since it is not behavioral), so the func-
tion can simply return a new, unknown output, L4, giving us the
following transition:

⟨(L2 L3), [L1 7→ fun f → (f L2 L3),
L2 7→ •int→int,
L3 7→ •int]⟩

7−→ ⟨L4, [L1 7→ fun f → (f L2 L3),
L2 7→ fun n → L4,
L3 7→ •int,
L4 7→ •int]⟩

At this point, we need to compute 100 - L4, i.e. subtract an un-
known integer from 100. The solution is simple, we extend the prim-
itive arithmetic operations to produce new unknown values and an-
notate the unknown result with a predicate to embed the knowledge
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that it is equal to 100 - L4:
⟨100 - L4, [L1 7→ fun f → (f L2 L3),

L2 7→ fun n → L4,
L3 7→ •int,
L4 7→ •int]⟩

7−→ ⟨L5, [L1 7→ fun f → (f L2 L3),
L2 7→ fun n → L4,
L3 7→ •int,
L4 7→ •int,
L5 7→ •int,fun x→x=(100-L4)]⟩

We finally arrive at the point of computing 1 / L5. At this point the
semantics branches non-deterministically since L5 may represent a
zero or non-zero value. In the case of an error, we refine L5 to be
zero, giving us the final state:

⟨error, [L1 7→ fun f → (f L2 L3),
L2 7→ fun n → L4,
L3 7→ •int,
L4 7→ •int,
L5 7→ •int,fun x→x=0,fun x→x=(100-L4)]⟩

At this point, the program has reached an error state and has
accumulated a heap of invariants that constrain the unknown values.
But notice that since functions have been partially solved for as
they’ve been applied, there are only first-order unknowns in the
heap. At this point, translation of refinements on integers into first-
order assertions is straightforward:

(declare-const L3 Int)
(declare-const L4 Int)
(declare-const L5 Int)
(assert (= L5 (- 100 L4)))
(assert (= 0 L5))

A solver such as Z3 [De Moura and Bjørner 2008] can easily solve
such constraints and yield (L3 = 0, L4 = 100, L5 = 0) as a model. We
then plug these values into the current heap and straightforwardly
obtain the counterexample shown at the start.

In summary, we use execution to incrementally construct the
shape of each function, query a first-order solver for a model for
base values, and combine these first-order values to construct a
higher-order counterexample.

3. Formal Model with Symbolic PCF
This section presents a reduction semantics illustrating the core of
our approach. Symbolic PCF (SPCF) [Tobin-Hochstadt and Van
Horn 2012] extends the PCF language [Scott 1993] with incomplete
programs containing symbolic values that can be higher-order.

We present the language’s syntax and semantics, describe its
integration with an external solver, and show how the semantics
enables the generation of a counterexample when an error occurs.
Finally, we prove that our counterexample construction is sound
and complete relative to the underlying solver. The key technical
challenge in designing such a semantics is to make sure not to
over-constrain unknowns, which would be unsound, while also not
under-constraining unknowns, which would be incomplete.

3.1 Syntax of SPCF

Figure 1 presents the syntax of SPCF. We write
−→
E to mean a se-

quence of expressions and treat it as a set where convenient. The
language is simply typed with typical expression forms for condi-
tionals, applications, primitive applications, recursion, and values
such as natural numbers and lambdas. The evaluation context E is
standard for a call-by-value semantics. We highlight non-standard

Expressions E ::= A | V |X | ifEEE |EE | O−→
E L

Contexts E ::= [ ] | if E E E | E E| L E | O −→
L E−→E

Values V ::= •TL | λX : T.E | n
Answers A ::= LT | errLO
Operations O ::= zero? | add1 | div | . . .
Predicates P ::= λX : T.E

Types T ::= nat | T → T

Heaps Σ ::= ∅ | Σ, L 7→ S

Storeables S ::= •{T
−→
P } | λX :T.E | n | caseT −−−→

L 7→L

Variables X,L ∈ identifier

Figure 1. Syntax of SPCF

forms in gray. The key extension of SPCF compared to PCF is the
notion of symbolic, or opaque values. We write •T to mean an un-
known but fixed and syntactically closed value1 of type T . The sys-
tem automatically annotates each opaque value with a unique label
to identify its source location. It also uniquely labels each source
location that could have a potential run-time failure. In SPCF, such
failures can only occur with the application of partial, primitive op-
erations.

When evaluating an SPCF expression, we allocate all values and
maintain a heap to keep track of their constraints. When execution
proceeds through conditional branches and primitive operations, we
refine the heap at appropriate locations with stronger assumptions
taken at each branch. As figure 1 shows, a heap is a finite function
mapping each location L to a stored value S as an upper bound
of the value’s run-time behavior. A stored value S is similar to a
syntactic value, but a stored unknown value can be further refined
by arbitrary program predicates. For example, •{nat, λx.even? x}

denotes an unknown even natural number.
In addition, we use caseT

−−−−−→
[L 7→ L] to denote amapping approx-

imating an unknown function of type nat → T . We clarify the role
of this construct later when discussing the semantics of applying
opaque functions, but the intuition is that this form is used to con-
strain unknown functions (of base type input) to always produce the
same result when given the same input; it is critical for achieving
completeness and is not present in the original SCPCF semantics of
Tobin-Hochstadt and Van Horn [2012].

Syntax for answers A is internal and unavailable to program-
mers. An answer is either a location LT pointing to a value of type
T on the heap, or an error message errLO blaming source location
L for violating primitive O’s precondition. A source location in an
error message is not just for precise blaming, but is important in
defining what it means to have a sound symbolic execution, as we
will discuss in detail in section 3.2.

We omit straightforward type-checking rules for SPCF and as-
sume all considered programs are well-typed. In addition, we omit
showing types and labels for constructs such as locations and lamb-
das when they are irrelevant or clear from context.

In the following, we use the term unknown program portion to
refer to all unknown values in the original (incomplete) program,
and known program portion to refer to the rest of it.

3.2 Semantics of SPCF
We present the semantics of SPCF as a relation between states of the
form ⟨E,Σ⟩. Key extensions to the straightforward concrete seman-
tics include generalization of primitives to operate on symbolic val-

1 For example, • does not approximate (λx.y)
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ues and reduction rules for opaque applications. Intuitively, reduc-
tion on abstract states approximates reduction on concrete states,
accounting for all possible instantiations of symbolic values. Fig-
ure 2 presents the reduction semantics of SPCF. The semantics is
also mechanized as a Redex model and available online.2

Each value is allocated on the heap and reduces to a location as
shown in rules Opq and Conc. Because an opaque value stands for
an arbitrary but fixed and closed value, we reuse a location if it has
been previously allocated.

Rule Prim shows the reduction of a primitive application. We
use δ to relate primitive operators and values to results. Typically,
δ is a function, but here it is a relation because primitive operations
may behave non-deterministically on unknown values. In addition,
the relation includes a heap to remember assumptions in each taken
branch. Rules for conditionals are straightforward, except we also
rely on δ to determine the truth of the value branched on instead of
replicating the logic. We use 0 to indicate falsehood and any non-
zero number for truth (as in PCF). Application of a λ-abstraction
follows standard β-reduction.

Application of an unknown value to a function argument results
in a range of possibilities to consider. This space, however, can be
partitioned into a few cases. First, the unknown program portion can
have bugs of its own regardless of the argument, but our concern is
only to find bugs in the known program portion so the possibility of
these errors is ignored. Second, the function argument escapes into
an unknown context and can be invoked in an arbitrary way. How-
ever, any invocation triggering an error can be reduced to a chain
of function applications. Alternatively, the unknown function may
not explore its argument’s behavior directly during the execution of
its body, but delay that in a returned closure. Finally, the unknown
function may completely ignore its argument and fail to reveal any
hidden bug, allowing the program to proceed to other parts. These
four cases result in specific shapes a function can have. Therefore,
upon opaque function application, we refine the opaque function’s
shape accordingly.

Consider this example:

(•(nat→nat)→T

L1
) (λx : nat.(/ 1 x)L)

and the following possible instantiations of L1:

1. λf.(/ 1 0) 3. λf.λx.(add1 (f x))
2. λf.(f 0) 4. λf.λx.42

Completion (1) raises an error from within the unknown function
blaming L1 itself, (2) triggers the division error blaming L, (3) delays
the exploration of its argument’s behavior by returning a closure
referencing the argument, and (4) is a constant function ignoring its
argument. As we are only interested in errors in the known program
portion, we ignore behavior such as (1). Rules AppOpq1, AppOpq2,
AppOpq3 and AppHavoc model the remaining possibilities.

Rule AppOpq1 shows a simple case where the argument is a
first-order value with no behavior. In this case, we approximate the
application’s result with a symbolic value of appropriate type, and
refine the opaque function to be of the form caseT

−−−−−→
[L 7→ L] to

remember this mapping. Any future application of this function to
an equal argument gives an equal result.

Applying a higher-order opaque function results in multiple dis-
tinct possibilities. RuleAppOpq2 considers the case where the func-
tion ignores its argument (i.e. it is a constant function). Any future
application of this unknown function gives the same result. Rule
AppOpq3 considers the case where the unknown context does not
immediately explore its argument’s behavior but delays that work
by wrapping the argument inside another function. The context us-

2 https://github.com/philnguyen/soft-contract/tree/pldi-2015/
soft-contract/ce-redex

ing this result may or may not reveal a potential error. Finally, rule
AppHavoc considers the case where the unknown context explores
its argument’s behavior by supplying an unknown value to its argu-
ment and putting the result back into another unknown context.

When the argument is higher-order, we do not use a simple
dispatch as in rule AppOpq1 because there is no mechanism for
comparing functions for equality (without applying them as in rule
AppHavoc).

Application rules for mappings are straightforward. Rule App-
Case1 reuses the result’s location for a previously seen application,
whereas rule AppCase2 allocates a fresh location for the result of a
newly seen application.

These rules for opaque application collectively model the de-
monic context in previous work on higher-order symbolic execu-
tion [Tobin-Hochstadt and Van Horn 2012], but they unroll the
unknown context incrementally and remember its shape to enable
counterexample construction when execution finishes.

Finally, we define the semantics to be the contextual closure of
all the above reductions (rule Close). Errors halt the program and
discard the context (rule Error).

3.3 Primitive Operations
We rely on relation δ to interpret primitive operations. The rules
straightforwardly extend standard operators to work on symbolic
values. In particular, division by an unknown denominator non-
deterministically either returns another integer or raises an error.
The relation also remembers appropriate refinements to arguments
and results at each branch. Figure 3 presents a selection of represen-
tative rules for primitive operations zero? and div. We abbreviate
λX.(=XE) as (≡E). Rules for primitive predicates such as zero?
utilize a proof relation between the heap, the value, and a predicate,
which we present next.

3.4 Proof Relation
We define a proof relation deciding whether a value satisfies a
predicate. We write Σ ⊢ L : P 3 to mean the value at location
L definitely satisfies predicate P , which implies that all possible
instantiations of L satisfy P . In the same way, Σ ⊢ L : P 7 means
all instantiations of L definitely fail P . Finally, Σ ⊢ L : P ? is
a conservative answer when we cannot draw a conclusion given
information from existing refinements on the heap.

Precision of our execution relies on this proof relation. (A trivial
relation answering “neither” for all queries would make the execu-
tion sound though highly imprecise.) Instead of implementing our
own proof system, we rely on an SMT solver for sophisticated rea-
soning on base values.

Figure 4 shows the translation {{·}} of run-time constructs into
logical formulas. The translation of a heap is the conjunction of for-
mulas obtained from each location and its value, and the translation
of each location and value is straightforward. In particular, a loca-
tion pointing to a concrete number translates to the obvious asser-
tion of equality, and a mapping (case

−−−−→
L 7→ L) adds constraints as-

serting that equal inputs imply equal outputs. Since outputs of maps
may be functions, it might appear as thoughwe need function equal-
ity. However, we do not need general equality on functions, but just
a specialized equality that can handle those opaque functions gen-
erated by AppOpq1, AppOpq2, AppOpq3 and AppHavoc. Equality
on similar function forms proceeds structurally, while equality on
different function forms translate trivially to False (not shown).

Notice that the proof system only needs to handle predicates of
simple forms and not their arbitrary compositions. We rely on exe-
cution itself to break down complex predicates to smaller ones and
take care of issues such as divergence and errors in the predicate it-
self. For example, if the proof system can prove that a value satisfies
predicate P , it automatically allows the execution to prove that the
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⟨•TL , Σ⟩ 7−→ ⟨LT , Σ′⟩ where Σ′ = Σ[L 7→ •TL ] if L /∈ dom(Σ), or Σ otherwise [Opq]
⟨V, Σ⟩ 7−→ ⟨L, Σ[L 7→ V ]⟩ where L /∈ dom(Σ) and V ̸= • [Conc]
⟨if L E1 E2, Σ⟩ 7−→ ⟨E1, Σ

′⟩ δ(Σ, zero?, L) ∋ ⟨0, Σ′⟩ [IfTrue]
⟨if L E1 E2, Σ⟩ 7−→ ⟨E2, Σ

′⟩ δ(Σ, zero?, L) ∋ ⟨1, Σ′⟩ [IfFalse]
⟨(O

−→
L ), Σ⟩ 7−→ ⟨L′, Σ′[L′ 7→ V ]⟩ if δ(Σ, O,

−→
L ) ∋ ⟨V, Σ′⟩ and L′ /∈ dom(Σ′) [Prim]

⟨(L Lx), Σ⟩ 7−→ ⟨[Lx/X]E, Σ⟩ if Σ (L) = λX.E [AppLam]
⟨(L Lx), Σ⟩ 7−→ if Σ (L) = •nat→T and La /∈ dom(Σ) [AppOpq1]
⟨La, Σ[La 7→ •T , L 7→ caseT [Lx 7→ La]]⟩

⟨(L Lx), Σ⟩ 7−→ ⟨La, Σ[La 7→ •T , L 7→ λx : T ′.La]⟩ if Σ (L) = •T
′→T , T ′ = T1 → T2 and La /∈ dom(Σ) [AppOpq2]

⟨(L Lx), Σ⟩ 7−→ ⟨[Lx/x]V, Σ′⟩ if Σ (L) = •T
′→T , T ′ = T1 → T2, T = T3 → T4 [AppOpq3]

where Σ′ = Σ[L 7→ λx : T ′.V, L1 7→ •T
′→T ]

L1 /∈ dom(Σ), and V = λy : T3.((L1 x) y)
⟨(L Lx), Σ⟩ 7−→ if Σ (L) = •T

′→T , T ′ = T1 → T2, [AppHavoc]
⟨(L2 (Lx L1)), Σ[L 7→ V,L1 7→ •T1 , L2 7→ •T2→T ]⟩ L1, L2, La /∈ dom(Σ), and V = λx : T ′.(L2 (x L1))

⟨(L Lx), Σ⟩ 7−→ ⟨La, Σ⟩ if Σ (L) = case . . . [Lx 7→ La] . . . [AppCase1]
⟨(L Lx), Σ⟩ 7−→ if Σ (L) = case [Lz 7→ Lb] . . .and Lx /∈ {Lz . . .} [AppCase2]
⟨La, Σ[L 7→ case [Lz 7→ Lb] . . . [Lx 7→ La]]⟩ and La /∈ dom(Σ)

⟨E [E], Σ⟩ 7−→ ⟨E [E′], Σ′⟩ if ⟨E, Σ⟩ 7−→ ⟨E′, Σ′⟩ [Close]
⟨E [errLO], Σ⟩ 7−→ ⟨errLO, Σ⟩ if E ̸= [ ] [Error]

Figure 2. Semantics of SPCF

δ(Σ, zero?, L) ∋ ⟨1, Σ⟩ if Σ ⊢ L : zero?3
δ(Σ, zero?, L) ∋ ⟨0, Σ⟩ if Σ ⊢ L : zero?7
δ(Σ, zero?, L) ⊇ {⟨1, Σ[L 7→ 0]⟩, ⟨0, Σ[L 7→ ¬zero?]⟩}

if Σ ⊢ L : zero? ?

δ(Σ, div, L1, L2) ∋ ⟨m/n, Σ⟩
if Σ(L1) = m and Σ(L2) = n, n ̸= 0

δ(Σ, div, L1, L2) ∋ ⟨•nat, (≡ L1 / L2), Σ′⟩
if Σ(L2) ̸= n and δ(Σ, zero?, L2) ∋ ⟨0, Σ′⟩

δ(Σ, div, L1, L2) ∋ ⟨errdiv, Σ
′⟩

if Σ(L2) ̸= n and δ(Σ, zero?, L2) ∋ ⟨1, Σ′⟩

Figure 3. Selected Primitive Operations

value also satisfies (λx.(or (P x)E)) for an arbitrarily expression
E. By the time we have [L 7→ •

−→
P ], we can assume all predicates−→

P have terminated with true on L. Further, because many solvers
do not support uninterpreted higher-order functions, we do not as-
sume such a feature, and the translation only produces queries on
first-order values. Nevertheless, the symbolic execution itself can
reason about higher-order unknown values. Handling higher-order
functions on the semantics side and not relying on the theory of un-
interpreted functions also potentially allows the method to scale to
more realistic language features such as side effects.

For each query between heap Σ, location L and predicate P ,
we translate known assumptions from the heap to obtain formula ϕ,
and the relationship (L : P ) to obtain formula ψ. We then consult
the solver to obtain an answer. As figure 5 shows, validity of (ϕ
⇒ ψ) implies that value L definitely satisfies predicate P , and
unsatisfiability of (ϕ ∧ ψ) means value L definitely refutes P . If
neither can be determined, we return the conservative answer.

3.5 Constructing Counterexamples
For each answer reached by evaluation, the heap contains refine-
ments to symbolic values in order to reach such results. In particu-
lar, refinements on the heap in an error case describe the condition
under which the program goes wrong.

{{−−−−→L 7→ S}} =
∧−−−−−−→

{{L 7→ S}}
{{L 7→ n}} = (L = n)

{{L 7→ •nat
−→
P }} =

∧ −−−−−→
{{L : P}}

{{L 7→ case _ . . . [L1 7→ L2] _ . . . [L3 7→ L4] _ . . .}}
= (

∧
((L1 = L3) ⇒ (L2 = L4)) . . .)

{{L : (λX.zero?X )}} = (L = 0)
{{L : (λX.(= X(+ L1 L2)))}} = (L = (L1 + L2))
{{L1 = L2}}nat = (L1 = L2)
{{L1 = L2}}T→T ′ = {{Σ(L1) = Σ(L2)}}
{{(caseT [L1 7→ L2] . . . =caseT [L3 7→ L4] . . .)}} =

(
∧

{{(L1 = L3) ⇒ (L2 = L4)}} . . .)
{{λX.L1 = λX.L2}} = {{L1 = L2}}
{{λX.(L1 (X L2)) = λX.(L3 (X L4))}} =

(∧ {{L1 = L3}} {{L2 = L4}})
{{λX.λY.((L1 X) Y ) =λX.λY.((L2 X) Y )}} =

{{L1 = L2}}

Figure 4. Heap translation

Proved
{{Σ}} ⇒ {{L : P}} is valid

Σ ⊢ L : P 3

Refuted
{{Σ}} ∧ {{L : P}} is unsat

Σ ⊢ L : P 7

Ambig
{{Σ}} ⇒ {{L : P}} is invalid and {{Σ}} ∧ {{L : P}} is sat

Σ ⊢ L : P ?

Figure 5. Proof rules
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Specifically, at the end of evaluation, refinements on the heap
are nearly concrete: higher-order symbolic values are broken down
into a chain of argument deconstruction and mappings, and first-
order symbolic values have precise constraints that identify the
execution path. Indeed, a model to the first-order constraints on the
heap yields a counterexample to the program. We simply plug first-
order concrete values back into the heap.

The reader may wonder if this process always generates an ac-
tual counterexample witnessing a real program bug (soundness),
and if it always finds counterexample when a bug exists (complete-
ness). The next section clarifies these points.

3.6 Soundness and Completeness of Counterexamples
We show that our method of finding counterexamples in a higher-
order program is sound and relatively complete. Soundness means
that the system only gives an actual counterexample triggering a
bug (not a false positive). Relative completeness means that if the
program actually contains a bug and the underlying solver can an-
swer all queries on first order data, the system constructs a concrete
counterexample witnessing that bug, even when it involves com-
plex interactions between higher-order values.

The statements and proofs of soundness and completeness re-
volve around a notion of approximation, which we first describe
before stating our main theorems.

ApproximationRelation Wedefine an approximation relation be-
tween concrete and abstract states. A concrete state contains no un-
known values, while an abstract state may contain unknowns. We
write ⟨E′,Σ′⟩ ⊑ ⟨E,Σ⟩ to mean “⟨E,Σ⟩ approximates ⟨E′,Σ′⟩,”
or conversely, “⟨E′, Σ′⟩ instantiates ⟨E, Σ⟩,” where ⟨E′, Σ′⟩ is a
concrete state and ⟨E,Σ⟩ is an abstract state. Wemake two remarks
about the relation before defining it.

First, as discussed in section 3.2, when analyzing an incomplete
program, we are only concerned with errors coming from known
code. Therefore, we parameterize the approximation relation with a
set of labels

−→
L denoting application sites from the known program

portion. Figure 6 presents the straightforward definition of meta-
function lab for computing a program’s labels identifying applica-
tion sites. The function takes a heap to compute labels for intermedi-
ate states, where a function may be referenced indirectly through its
location. For the purpose of analyzing program E, the set of labels
is lab∅[[E]]. As an example, expressionE below has an instantiation
E′, but when analyzing E, we are only interested in the potential
division error at L and not L'.

E = (div 1 (•int→int 1))L

E′ = (div 1 (λx.(div 1 x)L' 1))L

Second, we enforce that each location in the abstract state un-
ambiguously approximates one location in the concrete state by pa-
rameterizing the approximation relation with a function F mapping
each label in the abstract state to one in the concrete state. For ex-
ample, we do not want the following concrete state ⟨E′, Σ′⟩ to in-
stantiate the abstract state ⟨E,Σ⟩, even though •int intuitively ap-
proximates each number 1, 2, and 3 individually.

⟨E, Σ⟩ = ⟨(if L L L) , {L 7→ •int}⟩
⟨E′, Σ′⟩ = ⟨(if L1 L2 L3), {L1 7→ 1, L2 7→ 2, L3 7→ 3}⟩
Instead, the following concrete state ⟨E′′,Σ′′⟩ properly instantiates
⟨E, Σ⟩ with function F = {L 7→ L1}:

⟨E′′, Σ′′⟩ = ⟨(if L1 L1 L1), {L1 7→ 1}⟩
Figure 7 defines the approximation parameterized by label set−→

L and function F . We present important, non-structural rules for
the approximation relation between heaps, values, and states. We
omit displaying parameters when they are unimportant or can be

labΣ[[(O E)L]] = {L} ∪ labΣ[[E]]
labΣ[[E1 E2]] = labΣ[[E1]] ∪ labΣ[[E2]]

labΣ[[if E E1 E2]] = labΣ[[E]] ∪ labΣ[[E1]] ∪ labΣ[[E2]]
labΣ[[λX.E]] = labΣ[[E]]

labΣ[[L]] = labΣ[[Σ(L)]]
labΣ[[_]] = ∅

Figure 6. Computing concrete labels

inferred from context. We defer the full definition to the appendix
of the extended version of this paper [Nguyễn and Van Horn 2015].

Rule Heap-Ext states that if a heap approximates a concrete
heap, it approximates any extension of that concrete heap. This rule
is necessary for ignoring irrelevant computations in instantiation of
an opaque function. Next, rulesHeap-Int,Heap-Lam,Heap-Opq-1,
and Heap-Opq-2 show straightforward extensions to the approxi-
mation when the heaps on both sides are extended. First, any con-
crete value of the right type instantiates the opaque value •T as long
as the instantiating value does not contain source locations from the
known program portion. Second, refining an abstract value with a
predicate known to be satisfied by the concrete value preserves the
approximation relation. Because a predicate can contain locations,
we substitute labels appropriately as indicated by function F . We
omit the straightforward definition of this substitution.

Rules Heap-Case-1 and Heap-Case-2 establish the approxima-
tion between functions on natural numbers. First, a fully opaque
mapping approximates all functions. In addition, if there exists
an execution trace witnessing that applying the concrete function
yields a value approximated by an opaque value, then refining the
mapping preserves the approximation.

Rule Loc states that locationL approximatesL′ if the pair agrees
with function F .

Rule Err-Opq reflects our decision of ignoring errors blaming
source locations from unknown code. Otherwise, rule Err says that
an error with a known label approximates another when they are the
same error.

Finally, rule Opq-App states that we ignore irrelevant computa-
tion from a concrete function that instantiates an unknown function.
Specifically, if we can establish that an opaque application approx-
imates a concrete application by the structural rule, then the opaque
application continues to approximate each non-answer state reach-
able from the concrete application. There are similar rules for ap-
proximation by applying other forms of opaque functions, whichwe
defer to the appendix of the extended version of this paper [Nguyễn
and Van Horn 2015].

Theorem 1 states that every constructed counterexample from
an error case actually reproduces the same error. Notice that the
theorem is conditioned on Σ′ ⊑ Σ2 and does not imply that all
errors in the abstract execution are real. In particular, if a path is
spurious, its final heap has no instantiation.

Theorem 1 (Soundness of Counterexamples).
If ⟨E, Σ1⟩ 7−→⋆ ⟨errLO, Σ2⟩ and Σ′ ⊑ Σ2, then ⟨E, Σ′⟩ 7−→⋆

⟨errLO, Σ′′⟩.

Theorem 2 states that we can discover every potential bug and
construct a counterexample for it, assuming the underlying solver
is complete for queries on first-order data.

Theorem 2 (Relative Completeness of Counterexamples).
If ⟨E′, Σ′

1⟩ 7−→⋆ ⟨errLO, Σ′
2⟩ and ⟨E′, Σ′

1⟩ ⊑−→
L

⟨E, Σ1⟩ and
L ∈ −→

L , then ⟨E′, Σ1⟩ 7−→⋆ ⟨errLO, Σ2⟩ such that there is an
instantiation Σ′ to Σ2.
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Heap-Empty
∅ ⊑{}

−→
L

∅

Heap-Ext
Σ′ ⊑F−→

L
Σ

Σ′[L′ 7→ S′] ⊑F−→
L

Σ

Heap-Int
Σ′ ⊑F−→

L
Σ

Σ′[L′ 7→ n] ⊑F [L 7→L′]
−→
L

Σ[L 7→ n]

Heap-Lam
Σ′ ⊑F−→

L
Σ ⟨E′, Σ′⟩ ⊑F−→

L
⟨E, Σ⟩

Σ′[L′ 7→ λX.E′] ⊑F [L 7→L′]
−→
L

Σ[L 7→ λX.E]

Heap-Opq-1
Σ′ ⊑F−→

L
Σ labΣ′ [[V ′]] ∩ −→

L = ∅

Σ′[L′ 7→ V ′] ⊑F [L 7→L′]
−→
L

Σ[L 7→ •T ]

Heap-Opq-2
Σ′[L′ 7→ V ′] ⊑F−→

L
Σ[L 7→ •TP...] Σ′ ⊢ V ′ : F (P1)3

Σ′[L′ 7→ V ′] ⊑F−→
L

Σ[L 7→ •TP...P1 ]

Heap-Case-1
Σ′ ⊑F−→

L
Σ labΣ′ [[E′]] ∩

−→
L = ∅

Σ′[L′ 7→ λX.E′] ⊑F [L 7→L′]
−→
L

Σ[L 7→ caseT [ ]]

Heap-Case-2
Σ′′[L′ 7→ λX.E′] ⊑F−→

L
Σ[L 7→ caseT [. . .]] F (Lx) = L′

x

⟨[X/L′
x]E

′, Σ′′⟩ 7−→⋆ ⟨V ′, Σ′⟩ ⟨V ′, Σ′⟩ ⊑F−→
L

⟨V, Σ⟩

Σ′[L′ 7→ λX.E′] ⊑F [L 7→L′]
−→
L

Σ[L 7→ caseT [. . . Lx 7→ V ]]

Loc
F (L) = L′

⟨L′, Σ′⟩ ⊑F−→
L

⟨L, Σ⟩

Err-Opq
L′ /∈

−→
L

⟨errL
′

O , Σ
′⟩ ⊑F−→

L
⟨E, Σ⟩

Err
L′ ∈

−→
L

⟨errLO, Σ′⟩ ⊑F−→
L

⟨errLO, Σ⟩

Opq-App
E′ ̸= A labΣ′ [[E′′]] ∩

−→
L = ∅

⟨L′
f L

′
x, Σ

′′⟩ ⊑F−→
L

⟨Lf Lx, Σ⟩ Σ′′(L′
f ) = λX.E′′

Σ(Lf ) = •T→T ′
⟨[X/L′

x]E
′′, Σ′′⟩ 7−→⋆ ⟨E′, Σ′⟩

⟨E′, Σ′⟩ ⊑F−→
L

⟨(Lf Lx), Σ⟩

Figure 7. Approximation

4. Extensions
We discuss important extensions to our system for a more practical
programming language with dynamic typing, data structures, con-
tracts, and mutable states. In addition, we address the issue with ter-
mination. Our end goal is apply the method to realistic Racket [Flatt
and PLT 2010] programs.

4.1 Dynamic Typing
Dynamically typed languages defer safety checks to run-time to
avoid conservative rejection of correct programs. Such languages
have mechanisms for run-time inspection of data’s type tag. We
model this feature by extending primitive predicates with run-time
type tests such as integer? or procedure?, which operate in the
same manner as zero? in the typed language. Changes to the se-
mantics are straightforward: we insert a run-time check into each
application to ensure a function is begin applied, and into each prim-
itive application to ensure arguments have the right tags. We also
modify the rules for applying unknown functions, where previous
static distinction in function types are turned to corresponding dy-
namic checks.

4.2 User-defined Data Structures
We extend the semantics to allow user-defined data structures, en-
abling programmers to express rich data such as lists and trees. Be-
low is an example definition of a binary tree’s node:

(struct node (left content right))

Each field in a data structure may itself be another data structure,
function, or base value. Following the same treatment as functions,
we do not encode data structures in the solver. Instead, we rely on
execution to incrementally refine an unknown value’s shape when
knowing that it has a specific tag. For example, an unknown node
has the shape of (node L1 L2 L3) where each of the fields L1, L2
and L3 is an unknown and refinable value. As before, we only need
to encode constraints on base values at the leaves of data structures.

4.3 Contracts
Contracts generalize pre-and-post conditions to higher-order spec-
ifications [Findler and Felleisen 2002], allowing programmers to
express rich invariants using arbitrary code. They can either refine
an existing type system [Hinze et al. 2006] or ensure safety in an
untyped language.

The following Racket [Flatt and PLT 2010] program illustrates
the use of a higher-order contract. Function argmin requires a
number-producing function as its first argument and a list as its
second, and returns the list’s element that minimizes the function.
;(argmin f xs) → any/c
; f : (any/c → number?)
; xs : (and/c pair? list?)
(define (argmin f xs)

(argmin/acc f (car xs) (f (car xs)) (cdr xs)))

(define (argmin/acc f b a xs)
(cond
[(null? xs) a]
[(< b (f (car xs))) (argmin/acc f a b (cdr xs))]
[else (argmin/acc f (car xs) (f (car xs)) (cdr xs))]))

Although the semantics of contract checking can be com-
plex [Greenberg et al. 2010; Dimoulas et al. 2011], it introduces
no new challenges in our system. We simply rely on the semantics
of contract checking itself to break down complex and higher-order
contracts into simple predicates. In addition, opaque flat contracts
can be modeled soundly and precisely by rules for opaque appli-
cation. Extension to the contract checking semantics enables our
system to construct counterexamples to violated higher-order con-
tracts.
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4.4 Mutable State
We support stateful programs by extending the language with prim-
itives for assigning to and dereferencing mutable cells, along with
a type tag predicate.

When an unknown function is applied to a mutable cell, it may
invoke its content and mutate the cell arbitrarily. Second, if its ar-
gument is a function, the unknown context may apply the function
any number of times, affecting the argument’s internal state arbi-
trarily. Finally, in the presence of mutable states, the system can no
longer assume that each function yields equal outputs for equal in-
puts, so a memoized mapping is no longer applicable. Because this
last change can be too conservative for reasoning about idiomatic
functional programs, where programmers often think of functions
as pure and use mutable cells judiciously, it is useful in a practi-
cal system to have a special annotation for marking an unknown
function as pure.3

One challenge introduced by mutable cells is aliasing. For ex-
ample, a result from applying an unknown function can either be a
fresh value, or any previous value on the heap. Future side effects
performed on this unknown result may or may not affect an existing
mutable cell. To soundly execute symbolic programs with mutable
states, we modify the behavior of primitive box? for run-time test-
ing of mutable cells. When an unknown value L is determined to
be a mutable cell, it is non-deterministically a distinct cell from any
previous one on the heap or an alias to each previous cell and per-
form a substitution in the entire program. Although this process is
expensive, mutable cells are sparse in idiomatic Racket programs.
Programs with no invocation of box? (which is implicit in other op-
erations) do not pay this cost. More efficient handling of aliasing in
large imperative programs is one direction of our future work.

4.5 Termination
The semantics presented so far does not guarantee termination.
We can either accelerate (but not guarantee) termination by detect-
ing recursion and widen values accordingly [Nguyễn et al. 2014],
or guarantee termination through systematic transformation of the
semantics into a finite state or pushdown analysis of itself [Van
Horn and Might 2010]. These techniques introduce spurious paths
as over-approximations to actual execution branches. This affects
both soundness and completeness of counterexamples. First, it re-
quires more work to guarantee soundness. Because multiple con-
crete traces may be approximated to the same abstract trace, run-
ning the programwith one instantiation of a constraint set may steer
the program’s flow to a different concrete trace that has the same
abstraction. To ensure an instantiation corresponds to a real coun-
terexample, it is necessary to first run the programwith the concrete
value set before reporting it as a counterexample. Second, relative
completeness is also lost in practice. Even though execution still
reveals every possible error, approximation results in a less precise
constraint set for each trace, and the system may repeatedly query
the solver for the wrong model before timing out. For example, a
simplistic solver trying to refute that “factorial(n + 4) ≥ 10”
with no constraint may keep producing non-negative values for n.

Nevertheless, for our specific need of counterexample genera-
tion to refine an existing verification system (discussed next in sec-
tion 5), we perform no abstraction. We rely on the previous system
to prove the lack of counterexamples for a large set of correct pro-
grams [Nguyễn et al. 2014] (therefore, many correct programswith-
out counterexamples do terminate).When used in combination with
a verification system, abstracting the state space for counterexample
generation is of little value, and makes it difficult to later concretize
values to obtain a counterexample.

3 First-class contracts can have internal states and enforce extensionality,
which symbolic execution can make use of.

5. Implementation and Evaluation
To evaluate our approach, we integrate counterexample generation
into an existing contract verification system for programs written
in a subset of Racket [Flatt and PLT 2010]. The system previously
either successfully verified correct programs or conservatively re-
ported probable contract violations and did not distinguish definite
program errors from potentially false positives. With the new en-
hancement, the tool identifies a subset of reported errors as defi-
nite bugs with concrete counterexamples. Below, we describe im-
plementation extensions, discuss promising experiment results, and
address current difficulties.

5.1 Implementation
Our implementation and benchmarks can be found at

github.com/philnguyen/soft-contract/tree/pldi-2015

The prototype handles a much more realistic set of language fea-
tures beyond SPCF. First, our implementation supports dynamic
typing with user-defined structures and first class contracts as dis-
cussed in section 4.We also supportmore contract combinators such
as conjunction, disjunction, and recursion. Second, we extend the
set of base values and primitive operations, such as pairs, strings and
Racket’s full numeric tower, which introduces more error sources
and interesting counterexamples. Finally, we employ a module sys-
tem to let users organize code. A module can export multiple values
and define private ones for internal use.

Apart from being implemented as a command line tool, our
prototype is also available as a web REPL at

scv.umiacs.umd.edu

The system attempts to verify correct programs and refute erroneous
programswith concrete counterexamples. In some cases, it reports a
probable contract violation without giving any counterexample due
to limitations of the underlying solver, or the server simply times
out after 10 seconds.

5.2 Evaluation
We collect benchmarks for our analysis from two sources: (1) prior
published work and (2) submissions to the web REPL we built.

Benchmarks from prior work are drawn from research on
higher-order model checking [Kobayashi et al. 2011], dependent
type checking [Terauchi 2010], occurrence type checking [Tobin-
Hochstadt and Felleisen 2010], and our own work on contract ver-
ification [Nguyễn et al. 2014]. Since these prior works focus on
verification, the benchmarks are largely correct programs. In order
to evaluate our counterexample generation technique, we modify
each of the programs to introduce errors. To do so, we weakened
preconditions and omitted checks before performing partial oper-
ations. For example, a resulting program may deconstruct a po-
tentially empty list or compare potentially non-real numbers. We
believe these changes are representative of common mistakes. A
complete listing of the modifications is available.4

Benchmarks from our web service are submitted (anonymously)
by users experimenting with the verification system. Many of these
programs are buggy and we test how effective at discovering coun-
terexamples.

In total, the evaluation is run on 282 programs consisting of
4050 lines of Racket code, excluding empty lines and comments.
The largest programs are three student video games of the order of
250 lines. The test suite includes correct programs the system tries
to verify as well as incorrect programs the system tries to generate
counterexamples for.

4 https://github.com/philnguyen/soft-contract/blob/pldi-2015/
soft-contract/benchmark-verification/diff.txt
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We summarize our benchmark results in table 1. Each row shows
the program’s size (column 1), its highest function order (column 2),
the time taken to verify the correct version of the program (column
3, if applicable), and the time taken to generate a counterexample
refuting an incorrect variant of the program (column 4, if applica-
ble). We compute each program’s order by inspecting its contract’s
syntax (which is an under-approximation, because a contract may
be dynamically computed). The last 3 rows “others”, “others-e” and
“others-w” summarize many small programs from our own bench-
mark suite as well as those collected from the server; we report their
total, minimum and maximum line counts, total verification time,
and highest function orders. With the exception of 5 programs in
the last row “others-w”, the system gives a counterexample for each
incorrect program in a reasonable amount of time: the most com-
plicated error takes 7 seconds to detect, and most errors in typi-
cal higher-order programs take less than 2 seconds. The last row
shows benchmarks (all contributed by anonymous users) that re-
veal the limitation of our counterexample generation in practice. In
each of these cases, the system soundly reports a probable contract
violation, but is unable to generate a counterexample confirming it.
We discuss current shortcomings and language features known to
thwart the tool in section 5.3.

The overall result is promising. First, there are specific exam-
ples where our prototype proves to be a good complement to ran-
dom testing. For example, the tool finds a counterexample to the
following program quickly and automatically:

f n = (/ 1 (- 100 n))

By default, QuickCheck does not find this error as it only considers
integers from -99 to 99. Because QuickCheck treats a program as
a black box, this conservative choice is reasonable for fear that the
integer may be a loop variable causing the test case to run for a long
time [Hughes 2015]. In contrast, our method explores the program’s
semantics symbolically and discovers 100 as a good test case.

Second, the resulting higher-order counterexamples suggest that
the analysis can produce useful feedback. For example, it is easy
for programmers to forget that Racket supports the full numeric
tower [St-Amour et al. 2012] and that the predicate number? accepts
complex numbers. The contract on argmin in section 4.3 is in fact
too weak to protect the function. The system proves argmin unsafe
by applying it to a specific combination of arguments. First, f is
given a function that produces a non-real number, which causes <
to signal an error. Second, xs is given a list of length 2, which is the
minimum length to trigger a use of <.

f = (λ (x) 0+1i); xs = (list 0 0)

Finally, the tool analyzes the functional encoding of object-
oriented programs effectively. Zombie is one such example with ex-
tensive use of higher-order functions to encode objects and classes,
and the analysis can reveal errors buried in delayed function calls.
We believe this is a promising first step for generating classes and
objects as counterexamples. In the example below, we define inter-
face posn/c that accepts twomessages x and y, and function first-
quadrant? that tests whether a position is in the first quadrant.

(define posn/c
([msg : (one-of/c 'x 'y)]
→ (match msg ['x number?] ['y number?])))

; posn/c → boolean?
(define (first-quadrant? p)
(and (≥ (p 'x) 0) (≥ (p 'y) 0)))

The counterexample reveals one conforming implementation to in-
terface posn/c that causes error in the module.

(λ (msg) (case msg [(x) 0+1i] [(y) 0]))

Program Lines Order Correct (ms) Incorrect (ms)
Kobayashi et al. 2011 benchmarks

fhnhn 18 2 38 50
fold-div 18 2 321 160
fold-fun-list 20 3 92 442
hors 25 2 49 34
hrec 9 2 52 143
intro1 13 2 24 128
intro2 13 2 25 127
intro3 13 2 25 23
isnil 9 1 13 9
max 14 2 32 135
mem 12 1 22 254
mult 9 1 61 147
nth0 15 1 19 296
r-file 50 1 74 123
r-lock 17 1 56 49
reverse 11 1 15 205

Terauchi 2010 benchmarks
boolflip 10 1 10 22
mult-all 10 1 9 225
mult-cps 12 1 253 35
mult 10 1 72 21
sum-acm 10 1 33 833
sum-all 9 1 8 186
sum 8 1 44 19

Tobin-Hochstadt and Felleisen 2010 benchmarks
occurrence (14) 116 1 99 226

Nguyên et al. 2014 benchmarks (video games)
snake 164 1 37,350 2,476
tetris 267 2 11,809 2,188
zombie 249 3 19,239 954

Nguyên et al. 2014 other benchmarks and anonymous web submissions
others (73) (2 - 51) 818 3 20,465 -
others-e (124) (3 - 23) 972 3 - 19,588
others-w (5) (4 - 4) 20 1 - 431*

Table 1. Program verification and refutation time

5.3 Difficulties
We discuss current difficulties to our approach and solutions in
mitigating them.

First, the analysis is prone to combinatorial explosion as inherent
in symbolic execution. Our tool finds bugs by performing a simple
breadth-first search on the execution graph, then stops and reports
on the first error encountered with a fully concrete counterexample.
In practice, most conditionals come from case analyses instead of
independent alternatives, and we rely on a precise proof system
to eliminate spurious paths. In addition, the modularity mitigates
the problem further, as modules tend to be small, and contracts at
boundaries help recovering necessary precision.

One major source of slowdown in our system is complex pre-
conditions, where each input is guarded against a deep, inductively
defined property. Execution follows different branches before be-
ing able to generate a valid input to continue verifying the module.
A naive breadth-first search is bogged down by a large frontier re-
sulting from different attempts to generate inputs, most of which are
eventually found invalid. To mitigate this slow-down, we identify a
class of expressions as likely to lead to counterexamples and prior-
itize their execution. Specifically, an expression whose innermost
contract monitoring is of a first-order property on a concrete mod-
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ule is likely to reveal a bug.5 In contrast, expressions in the middle
of input generation do not have this form, because the inner-most
contract monitoring is on the opaque input source. Once the system
successfully instantiates a concrete input and turns the program into
this “suspect” form, it focuses on exploring this branch with that in-
put instead of trying numerous other inputs in parallel. Using this
simple heuristic, we are able to cut the execution time of a mod-
ule violating the “braun-tree” invariant from non-terminating after
1 hour down to 2 seconds.

Second, there is a mismatch in the data-types between Z3’s data-
type and Racket’s rich numeric tower. In particular, Racket supports
mixed arithmetic between different types of numbers up to complex
numbers [St-Amour et al. 2012], while Z3’s treatment of numbers
resembles that from most statically typed languages, and the solver
does not perform well in generating models involving a dynamic
restriction of a number’s type. Below is an example in the last row
in table 1 where the tool fails to generate a counterexample:

; (integer? → integer?)
(define (f n) (/ 1 (+ 1 (* n n))))

In Racket, division is defined on the full numeric tower, and the
result of (/ 1 (+ 1 (* n n))) may not be an integer. In the
generated query, this result is an unknown number L of type Real,
and the solver cannot give a model to a constraint set asserting
“(not (is_int L))”. In addition, Racket distinguishes between
exact and inexact numbers, where inexact numbers are floating
point approximations. Because Z3 does not reason about floating
points, we currently do not soundly model inexact arithmetic.

6. Related Work
We relate our work to four main lines of research: symbolic execu-
tion, counterexample guided abstraction refinement for dependent
type inference, random testing, and contract verification.

First-order Symbolic Execution Symbolic execution on first-
order programs is mature and has been used to find bugs in real-
world programs [Cadar et al. 2006, 2008]. Cadar et al. [2006]
presents a symbolic execution engine for C that generates coun-
terexamples of the form of mappings from addresses to bit-vectors.
Later work extends the technique to generate comprehensive test
cases that discover bugs in large programs interacting with the en-
vironment [Cadar et al. 2008].

Counterexample-guided Abstraction Refinement CEGAR has
been used in model checking and dependent type inference [Ron-
don et al. 2008; Kobayashi et al. 2011; Zhu and Jagannathan 2013],
where the inference algorithm iteratively uses a counterexample
given by the solver to refine preconditions attached to functions
and values. In case the algorithm fails to infer a specification, the
counterexample serves as a witness to a breaking input. Our work
finds higher-order counterexamples only by integrating a first-order
solver, and is applicable to both typed and untyped languages. In
contrast, dependent type inference relies on an extension to ML. In
addition, work on higher-order model checking analyzes complete
programs with first-order unknown inputs, while we analyze par-
tial programs with potentially higher-order unknown values at the
boundaries.

Random Testing Random testing is a lightweight technique for
finding counterexamples to program specifications through ran-
domly generated inputs. QuickCheck for Haskell [Claessen and
Hughes 2000] proves the approach highly practical in finding bugs

5 In a symbolic program, the monitored value in this position is usually
abstract and covers all values the module produces.

for functional programs. Later works extend random testing to im-
prove code coverage and scale the technique to more language fea-
tures such as states and class systems. Heidegger and Thiemann
[2010] use contracts to guide random testing for Javascript, allow-
ing users to annotate inputs to combine different analyses for in-
creasing the probability of hitting branches with highly constrained
preconditions. Klein et al. [2010] also extend random testing to
work on higher-order stateful programs, discovering many bugs in
object-oriented programs in Racket. Seidel et al. [2015] use refine-
ment types as generators for tests, significantly improving code cov-
erage.

Our approach is a complement to random testing. By combining
symbolic execution with an SMT solver, the method takes advan-
tage of conditions generated by ordinary program code and not just
user-annotated contracts. In addition, the approach works well with
highly constrained preconditions without further help from users.
In contrast, random testing systems typically require programmers
to implement custom generators [Claessen and Hughes 2000] or re-
quire user annotations to incorporate a specific analysis collecting
all literals in the program to guide input construction [Heidegger
and Thiemann 2010]. Type-targeted testing [Seidel et al. 2015] is
more lightweight and does not necessitate an extension to the exist-
ing semantics, but gives no guarantee about completeness, as inher-
ent in random testing. Even though the tool rules out test cases that
fail the pre-conditions, regular code and post-conditions do not help
the test generation process. Our system makes use of both contracts
and regular code to guide the execution to seek inputs that both
satisfy pre-conditions and fail post-conditions. Exploring possible
combination of symbolic execution and random testing for more
efficient bug-finding in higher-order programs is our future work.
Contract Verification and Refinement Type Checking Contracts
and refinement types are mechanisms for specifying much richer
program invariants than those allowed in a typical type system. Ver-
ification systems either restrict the language of refinements to be
decidable [Rondon et al. 2008] or allow arbitrary enforcement but
leave unverifiable invariants as residual run-time checks [Flanagan
2006; Knowles and Flanagan 2010; Xu 2012; Tobin-Hochstadt and
Van Horn 2012]. While verification proves the absence of errors but
may give false positives, our tool aims to discover concrete, real
counterexamples to faulty programs. Our work is a direct exten-
sion to previous work on symbolic execution of higher-order pro-
grams [Tobin-Hochstadt and Van Horn 2012] and can be viewed as
a complement to contract verification.

7. Conclusion
We have presented a symbolic execution semantics for finding con-
crete counterexamples in higher-order programs and proved it to be
sound and relatively complete. An early prototype shows that the
approach can scale to realistically sized functional programs with
practical features such as first-class contracts. From the program-
mer’s perspective, the approach is lightweight and requires no cus-
tom annotation to get started. However, if contracts are present, they
can help guide the search for counterexamples. Combined with pre-
vious work on contract verification, it is possible to construct a tool
that can statically guarantee contract correctness of programs and
simultaneously ease the understanding of faulty programs, speed-
ing up the development of reliable software.
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