
Java Interoperability in Managed X10
Mikio Takeuchi David Cunningham David Grove Vijay Saraswat

IBM Research - Tokyo IBM T. J. Watson Research Center
mtake@jp.ibm.com, dcunnin,groved,vsaraswa@us.ibm.com

Abstract
The ability to smoothly interoperate with other programming lan-
guages is an essential feature to reduce the barriers to adoption for
new languages such as X10. Compiler-supported interoperability
between Managed X10 and Java was initially previewed in X10
version 2.2.2 and is now fully supported in X10 version 2.3. In this
paper we describe and motivate the Java interoperability features
of Managed X10. For calling Java from X10, external linkage for
Java code is explained. For calling X10 from Java, the current im-
plementation of Java code generation is explained.

An unusual aspect of X10 is that, unlike most other JVM-hosted
languages, X10 is also implemented via compilation to C++ (Na-
tive X10). The requirement to support multiple execution platforms
results in unique challenges to the design of cross-language inter-
operability. In particular, we discovered that a single top excep-
tion type that covers all exception types from source and all target
languages is needed as a native type of the source language for
portable exception handling. This realization motivated both mi-
nor changes in the X10 language specification and an extensive re-
design of the X10 core class library for X10 2.3.

Categories and Subject DescriptorsD.3.4 [Programming Lan-
guages]: Processors—code generation, compilers

General Terms Languages, Design

Keywords X10, Java, multi-platform, interoperability, unified
type system, code generation, exceptions, primitives, arrays, gener-
ics

1. Introduction
The X10 programming language [11] was originally designed as a
“better Java” – Java [6] with PGAS [10] extensions for distributed
computing and enhancements for true multi-dimensional arrays.
X10 was implemented solely by compilation to Java and used the
JVM as its only execution platform. Most existing Java programs
were also valid X10 programs.

However, through major revisions of the language, X10 has
been redesigned as a full-fledged programming language whose
implementation targets multiple execution substrates. In addition
to the original Managed X10, which continues to target the JVM,
Native X10 targets the C++ [14] and CUDA (GPGPU) [2] exe-
cution platforms. X10 also introduced more features from main-
stream and modern programming languages. The introduction of
Scala [12]-like syntax in X10 1.7 meant that most existing Java
code was no longer valid X10 code. The changes were not limited
to the way in which X10 programs look like. The introduction of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

X10’13, June 20, 2013, Seattle, Washington.
Copyright c⃝ 2013 ACM 978-1-4503-2157-0/13/06. . . $15.00

reified generics like C++ templates made the efficient execution of
X10 programs on Java platform require novel implementation tech-
niques that were described in [15, 16] (distributed GC is described
in [8]), and complicated the interoperation with existing Java code.

The ability to interoperate with other programming languages
is an essential feature for the new languages such as X10. Cross-
language interoperability enables both the incremental adoption of
X10 in existing applications and the usage of existing libraries
and frameworks by newly developed X10 programs. There are
two primary interoperability scenarios that are supported by X10:
inline substitution of X10 constructs (types, methods, fields, and
statements) with foreign code fragments and external linkage to
foreign code.

The design of X10/Java interoperability was motivated and in-
formed by our experience in developing M3R: an X10 Main Mem-
ory Map Reduce engine [13]. The core M3R engine is several thou-
sand lines of X10 code which provides an X10 Map/Reduce API
against which application programs can be written. This core en-
gine (and programs that use it) can be compiled with either Man-
aged X10 or Native X10 to enable flexibility in selecting the ex-
ecution platform to match the desired performance characteristics
and/or need to link with existing application libraries. On top of the
core M3R engine, there is also a Hadoop API compatibility layer
that allows unmodified Hadoop Map/Reduce jobs to be executed on
the M3R engine. The Hadoop compatibility layer is written using
a mix of X10 and Java code and heavily uses the Java interoper-
ability capabilities of Managed X10. Our work with M3R/Hadoop
drove the initial design of Java interoperability in X10 2.2.3 and the
experience of “hardening” M3R into a production server motivated
the redesign in X10 2.3 in the area of exception handling.

In the rest of this paper we describe the Java interoperability
features of Managed X10. The description is based on X10 2.3.1
unless otherwise specified. Section 2 provides background infor-
mation on the Managed X10 and Native X10. Section 3 explains
a simple text-based macro mechanism for inline substitution with
foreign code fragments, which is available in all X10 implementa-
tions. The next two sections describe Java interoperability in Man-
aged X10: Section 4 describes external linkage to Java code and
Section 5 shows linking Java to X10. After discussing how other
JVM-based languages implement Java interoperability in Section 6,
Section 7 offers our conclusions.

2. Review of Managed and Native X10
X10 is implemented via source-to-source compilation to another
language, which is then compiled and executed using that lan-
guage’s existing tool chain. X10 2.3 supports two such implemen-
tation paths: Managed X10, which is X10 compiled to Java, and
Native X10, which is X10 compiled to C++.

The overall architecture of the X10 compiler is depicted in Fig-
ure 1. This compiler is composed of two main parts: an AST-
based front-end and optimizer that parses X10 source code and per-
forms AST based program transformation; Native/Java backends
that translate the X10 AST into C++/Java source code and invokes
a post compilation process that either uses a C++ compiler to pro-
duce an executable binary or a Java compiler to produce bytecode.

39

��������	
���
�����������������������	�	���

�������
	���	��
��������
�������������	�	���	���

����������	��

�� ��!��"����#��	 ��!��"����

�������

�� �$�%

�������

�&'

�(()*
� +� ��

!,�������*��%���
�

����-%��	��

��((�#��	 ��

����-%��	��

�� ��#��	 ��

���-�

#��	 ��!��"���� ��������� ��!��"����

�((

�./�

�����
�����	��

���-�

����-%��	��

0�����

Figure 1. X10 Compiler Architecture

This final executable form can then either be executed directly or
loaded and run by a JVM.

Additional details on the implementation and performance mod-
els of Managed and Native X10 can be found in [7] and in the
online documentation at [17].

3. Inline Substitution with Foreign Code
Fragments

This section describes a primitive mechanism for foreign language
interoperability that provides inline substitution of X10 constructs
(types, methods, fields, and statements) with foreign code frag-
ments. This basic mechanism is supported by the X10 compiler
for all X10 target platforms (Java, C++, CUDA).

What is provided is a simple text-based simple macro mecha-
nism, which supports both positional and keyword (preferred) pa-
rameters, in forms of either@NativeRep(lang,useType,defType,
runType) type or @Native(lang,code) methodFieldStmt.
When they are compiled for the target languagelang, the type
is substituted with eitheruseType or defType1 and runtime type
of type is substituted withrunType. The methodFieldStmt is
substituted withcode2.

The advantages of this mechanism are its simplicity and univer-
sality. The substitution is done by the front-end of X10 compiler,
thus it is available in all X10 implementations and can be used for
conditional programming for different target languages by attach-
ing multiple@NativeRep or@Native annotations to the same X10
construct, as shown in Figure 2. Native X10 uses an additional set
of similar annotations to indicate external header files that need
#include directives in the generated file and to specify additional
C++ source files or libraries that should be compiled and linked
along with the generated C++ code.

The downside of these mechanisms is that there is no integration
with X10 type system. The type system does not infer their types
from foreign code fragments3, nor type check them. X10 program-
mers need to not only specify their types explicitly, but also be care-
ful to write correct code fragments in the target language to avoid
post-compilation errors.

1defType is not usedin Managed X10.
2 In user programs,@Native annotations that are attached to non-final
virtual methods are ignored.
3 In current implementation, the type system does not infer their types even
if they have X10-based implementation, too.

package x10.lang;
import x10.compiler.Native;
import x10.compiler.NativeRep;

@NativeRep("java", "java.lang.Object", null, "x10.rtt.Types.ANY")
@NativeRep("c++", "x10::lang::Any*", "x10::lang::Any", null)
public interface Any {

@Native("java", "x10.rtt.Types.toString(#this)")
@Native("c++", "x10aux::to_string(#this)")
def toString():String;

@Native("java", "x10.rtt.Types.typeName(#this)")
@Native("c++", "x10aux::type_name(#this)")
def typeName():String;

@Native("java", "((java.lang.Object)(#this)).equals(#that)")
@Native("c++", "x10aux::equals(#this,#that)")
def equals(that:Any):Boolean;

@Native("java", "x10.rtt.Types.hashCode(#this)")
@Native("c++", "x10aux::hash_code(#this)")
def hashCode():Int;

}

Figure 2. Inline substitution example (the definition ofx10.
lang.Any)

4. External Linkage to Java Code
Unlike Native X10, Managed X10 has a type-safe mechanism to
interoperate with existing Java code. Because this mechanism is
much easier to use than macro based ones, it is the recommended
way for writing X10 applications that interoperate with existing
Java code. Managed X10 does not pre-process existing Java code
to make it accessible from X10. The generated Java code by Man-
aged X10 compiler directly calls existing Java code as is. The key
capability that enables this mechanism is support in the X10 com-
piler for processing Java class files and creating a representation
in the X10 type system and abstract syntax trees for the entities
contained in them. In this section, we describe how various Java
entities are seen in X10.

Types Java classes are seen as X10 classes. Java enums are seen
as X10 final classes. Java interfaces are seen as X10 interfaces.

In Managed X10, both at compile time and run time, there is
no way to distinguish Java types from X10 types. Java types can
be referred to with regularimport statements, or their qualified
name. The packagejava.lang is not auto-imported into X10. The
resolver is enhanced to resolve types with X10 source files in the
source path first, then resolve them with Java class files in the class
path. Note that the resolver does not resolve types with Java source
files, therefore Java source files must be compiled before compiling
X10 source files that refer to the Java types. To refer to Java types
listed in Tables 1 and 2, which include all Java primitive types, use
the corresponding X10 type (e.g.x10.lang.Int (or in short,Int)
instead ofint). These X10 types are alias of Java types and the
Java types are hidden from the X10.

Fields Fields of Java types are seen as fields of X10 types.
Since X10 does not have mutable static fields, there is no natural

way to set values to Java static fields. To workaround such situation,
Managed X10 has a utility classx10.interop.Java to support
Java interoperability. By using its static methodsJava.setStatic
Field[T](name:String,value:Int) etc., we can set values of
any type to Java static fields, as shown in Figure 3.

Managed X10 does not change the static initialization seman-
tics of Java types, which is per-class and at load time, therefore, it
is subtly different than the per-field and lazy (at first access) initial-
ization semantics of X10 static fields.

40

public class J {
public static String s = "hello, ";
public static void main(String[] args) {

System.out.print(s);
s = "world";
System.out.println(s);

}
}

import x10.interop.Java;
public class X {
public static def main(Rail[String]):void {

Console.OUT.print(J.s);
Java.setStaticField[J]("s","world");
Console.OUT.println(J.s);

}
}

> javac J.java
> java J
hello, world
> x10c -cp . X.x10
> x10 X
hello, world

Figure 3. Java fields in X10

public class J {
public static int sum(int... nums) {

int sum = 0;
for (int num : nums) sum += num;
return sum;

}
public static void main(String[] args) {

int sum = sum(1,2,3);
System.out.println(sum);

}
}

import x10.interop.Java;
public class X {
public static def main(Rail[String]):void {

//val sum = J.sum(1,2,3); // wrong
val sum = J.sum(Java.convert([1,2,3])); // OK
Console.OUT.println(sum);

}
}

> javac J.java
> java J
6
> x10c -cp . X.x10
> x10 X
6

Figure 4. Java methods in X10

Methods Methods of Java types are seen as methods of X10
types.

X10 does not support variadic methods. To invoke Java method
that takes variable number of arguments, X10 programmers need
to create a Java array that includes all arguments and pass it to the
method as shown in Figure 4.

Constructors Constructors of Java types are seen as constructors
of X10 types.

Generic types Generic Java types are seen as their raw types (§4.8
in [6]). Raw type is a mechanism to handle generic Java types
as non-generic types, where the type parameters are assumed as
java.lang.Object or their upperbound if they have it. Java intro-
duced generics and raw type at the same time to facilitate generic
Java code interfacing with non-generic legacy Java code. Managed
X10 uses this mechanism for a slightly different purpose. Java
erases type parameters at compile time, whereas X10 preserves
their values at run time. To manifest this semantic gap in gener-
ics, Managed X10 represents Java generic types as raw types and
eliminates type parameters at source code level. For more detailed
discussions, please refer to [15, 16].

Arrays X10 array type is a generic type and its representation is
different from Java array types.

Managed X10 provides a special X10 typeJava.array[T] to
represent Java array typeT[]. Note that for X10 types in Table 1,
this type means the Java array type of their primary type. For exam-
ple,Java.array[Int] meansint[]. Managed X10 also provides
conversion methods4 between X10 array of rank 1Rail[T]5 and
Java array (i.e.Java.convert[T] (Rail[T]) : Java.array [T]
andJava.convert[T] (Java.array[T]) : Rail[T]), and con-
struction methods for Java arrays (e.g.Java.newArray[T](Int):
Java.array[T]). Java array elements can be accessed with the
same syntax as for X10 arrays, as shown in Figure 5.

Exceptions For multi-platform languages such as X10, it is im-
portant for cross-language interoperability to have a single top ex-
ception typeas a native type of source languageand cover all ex-
ceptions from the source and all the target languages with it. Fig-
ure 6 shows the type hierarchy in X10 2.2.2, when we previewed
Java interoperability with Managed X10 for the first time. As you
notice, there were two independent exception hierarchies topped
by x10.lang.Throwable andjava.lang.Throwable. Because
the latter one is a Java type which is visible only in Managed X10,
there was no way to implement portable X10 libraries that can be
used in cross-language interoperability scenarios.

Before X10 2.3, there were two reasons for not being able to
have a single top exception type. One reason was the presence
of x10.lang.Object as a supertype of all reference types which
include X10 exception types. Becausex.l.Object was compiled
to some type differ fromjava.lang.Object, which is the alias
of x10.lang.Any, and all existing Java types do not have such
X10 unique type as their supertype, it was not possible to map Java
exception types to X10 exception types.

Another reason was the lack of checked exceptions. Unlike
Java exception types, all X10 exception types were (and still are)
unchecked exceptions, therefore X10 did not have checked excep-
tions northrows clause. To handle Java checked exceptions in
that situation, X10 compiler needs to generate code that catches
checked exceptions and converts them to unchecked ones at each
call site of Java method that may throw checked exceptions. It not
only complicates the code generation but slows down the invoca-
tion of Java methods.

To solve these issues, we removedx.l.Object and introduced
checked exceptions andthrows clause in X10 2.3.

Figure 7 shows the type hierarchy of X10 2.3. As you notice,
there is a single top exception typex10.lang.CheckedThrowable.

4 These conversion methods do not copy backing arrays.
5 Currently (in X10 2.3.1),Rail[T] is an alias ofArray[T](1). In X10
2.4, we will reimplementRail[T] as a separate type that represents a
dense, zero based, one dimensional X10 array and replace the most use
of Array[T](1) with it for better performance.

41

import x10.interop.Java;
public class X {
public static def main(Rail[String]):void {

try {
val a = Java.newArray[Int](2);
a(0) = 0;
a(1) = 1;
a(2) = 2;

} catch (e:ArrayIndexOutOfBoundsException) {
Console.OUT.println(e);

}
}

}

> x10c -o X.jar X.x10
> x10 -cp X.jar X
x10.lang.ArrayIndexOutOfBoundsException: \
Array index out of range: 2

Figure 5. Java exceptions in X10

x10.lang.Any

(=java.lang.Object)

x10.lang.Objectx10.lang.Int

(=int)

x10.lang.UInt

(=int)

x10.lang.String

(=java.lang.String)

x10.lang.Throwable

x10.lang.Exceptionx10.lang.Error

x10.lang.NullPointerException

x10.lang.Array[T]

java.lang.IntegerJava.array[T]

(=T[])

java.lang.Throwable

java.lang.Exceptionjava.lang.Error

java.lang.RuntimeException

java.lang.NullPointerException

Java.convert()

implicit conversion

x10.lang.Any

(=java.lang.Object)

x10.lang.Objectx10.lang.Int

(=int)

x10.lang.UInt

(=int)

x10.lang.String

(=java.lang.String)

x10.lang.Throwable

x10.lang.Exceptionx10.lang.Error

x10.lang.NullPointerException

x10.lang.Array[T]

java.lang.IntegerJava.array[T]

(=T[])

java.lang.Throwable

java.lang.Exceptionjava.lang.Error

java.lang.RuntimeException

java.lang.NullPointerException

Java.convert()

implicit conversion

Figure 6. Type hierarchy in X10 2.2.2

x10.lang.Any

(=java.lang.Object)

x10.lang.Int

(=int)

x10.lang.UInt

(=int)

x10.lang.String

(=java.lang.String)

x10.lang.CheckedThrowable

(=java.lang.Throwable)

x10.lang.CheckedException

(=java.lang.Exception)

x10.lang.Error

(=java.lang.Error)

x10.lang.NullPointerException

(=java.lang.NullPointerException)

x10.lang.Array[T] java.lang.IntegerJava.array[T]

(=T[])

Java.convert()

x10.lang.Exception

(=java.lang.RuntimeException)

x10.lang.Any

(=java.lang.Object)

x10.lang.Int

(=int)

x10.lang.UInt

(=int)

x10.lang.String

(=java.lang.String)

x10.lang.CheckedThrowable

(=java.lang.Throwable)

x10.lang.CheckedException

(=java.lang.Exception)

x10.lang.Error

(=java.lang.Error)

x10.lang.NullPointerException

(=java.lang.NullPointerException)

x10.lang.Array[T] java.lang.IntegerJava.array[T]

(=T[])

Java.convert()

x10.lang.Exception

(=java.lang.RuntimeException)

Figure 7. Type hierarchy in X10 2.3

By mapping it tojava.lang.Throwable in Managed X10, we
can now implement portable X10 libraries that handle any excep-
tions from both the source and all the target languages. In addition,
the new X10 type hierarchy was designed so that there is a natural
correspondence with the Java exception hierarchy. As shown in Ta-
ble 2, many X10 exception types are alias of Java exception types.
Note that Java exception types that are aliased can (and must) be
caught (and thrown) using their X10 types, as shown in Figure 5.

5. Linking Java to X10
Managed X10 translates X10 programs to Java class files.

X10 does not provide a Java reflection-like mechanism to re-
solve X10 types, methods, and fields with their name at runtime,
nor a code generation tool, such asjavah, to generate stub code
to access them from other languages. Java programmers, therefore,
need to access X10 types, methods, and fields in the generated Java
code directly as they access Java types, methods, and fields. To
make it possible, Java programmers need to understand how X10
programs are translated to Java.

Some aspects of the X10 to Java translation scheme may change
in future version of X10; therefore in this document only a stable
subset of translation scheme will be explained. Although it is a
subset, it has been extensively used by X10 core team and proved
to be useful to develop Java Hadoop [4] interop layer for a Main-
memory Map Reduce (M3R) engine [13] in X10.

In the following discussions, we deliberately ignore generic
X10 types because the translation of generics is an area of active
development and will undergo some changes in future versions
of X10. For those who are interested in the implementation of
generics in Managed X10, please consult [16]. We also do not
cover function types, function values, and all non-static methods.
Although slightly outdated, another paper [15], which describes
translation scheme in X10 2.1.2, is still useful to understand the
overview of Java code generation in Managed X10. We also do
not cover how X10’s parallel constructs such asasync, finish
etc. are translated to Java. In the generated Java code, types, fields,
and methods have the same name as in X10 code unless otherwise
specified.

Types X10 classes and structs are translated to Java classes. X10
interfaces are translated to Java interfaces.

Table 1 shows the list of special types that have two representa-
tions in the generated Java code. Primitives are their primary rep-
resentations that are useful for good performance. Wrapper classes
are used when the reference types are needed. Each wrapper class
has two static methods$box() and$unbox() to convert its value
from primary representation to wrapper class, and vice versa. Man-
aged X10 compiler inserts their calls as needed, but Java program-
mers need to insert them manually for passing Java primitives to
X10 method whose parameter type isAny or T6. As you notice, ev-
ery unsigned type uses the same Java primitive as its corresponding
signed type for its representation.

Table 2 shows the list of another kind of special types that are
mapped (not translated) to Java types. As you notice, since the
interfaceAny is mapped to the classjava.lang.Object and it
is hidden from X10, there is no direct way to create an instance of
it. As a workaround,Java.newObject() is provided.

As you also notice,x10.lang.Comparable[T] is mapped to
java.lang.Comparable (cf. raw type). This is needed to map
x10.lang.String, which implementsComparable[String], to
java.lang.String for performance, but as a trade off, this map-
ping results in the loss of runtime type information forComparable
[T] in Managed X10. The runtime of Managed X10 has built-in
knowledge forj.l.String, but for other Java classes that imple-
mentjava.lang.Comparable, instanceof Comparable[Int]
etc. may return incorrect results. In principle, it is impossible to
map X10 generic type to the existing Java generic type without
losing runtime type information.

Fields As shown in Figure 8, instance fields of X10 classes and
structs are translated to the instance fields of the generated Java
classes. Static fields of X10 classes and structs are translated to the
static methods of the generated Java classes, whose name hasget$
prefix. X10 does not have mutable static fields. Static fields of X10
interfaces are translated to the static methods of the special nested
class named$Shadow of the generated Java interfaces.

Methods As shown in Figure 9, methods of X10 classes or structs
are translated to the methods of the generated Java classes. Methods
of X10 interfaces are translated to the methods of the generated
Java interfaces.

6 In a future version of X10, we plan to mostly eliminate the need for
inserting boxing and unboxing manually by using standard Java wrapper
classes such asjava.lang.Integer and auto-boxing byjavac.

42

X10 Java
primitive (primary) wrapper class

x.l.Byte 1y byte (byte)1 x.c.Byte

x.l.UByte 1uy byte (byte)1 x.c.UByte

x.l.Short 1s short (short)1 x.c.Short

x.l.UShort 1us short (short)1 x.c.UShort

x.l.Int 1 int 1 x.c.Int

x.l.UInt 1u int 1 x.c.UInt

x.l.Long 1l long 1l x.c.Long

x.l.ULong 1ul long 1l x.c.ULong

x.l.Float 1.0f float 1.0f x.c.Float

x.l.Double 1.0 double 1.0 x.c.Double

x.l.Char ’c’ char ’c’ x.c.Char

x.l.Boolean true boolean true x.c.Boolean

Table 1. X10 types that have two representations in Java (x10,
lang, core are represented asx, l, c respectively)

X10 Java

x.l.Any j.l.Object

x.l.Comparable[T] j.l.Comparable (raw type)

x.l.String j.l.String

x.l.CheckedThrowable j.l.Throwable

x.l.CheckedException j.l.Exception

x.l.Exception j.l.RuntimeException

x.l.ArithmeticException j.l.ArithmeticException

x.l.ClassCastException j.l.ClassCastException

x.l.IllegalArgumentException j.l.IllegalArgumentException

x.l.IllegalStateException j.l.IllegalStateException

x.u.NoSuchElementException j.u.NoSuchElementException

x.l.NullPointerException j.l.NullPointerException

x.l.NumberFormatException j.l.NumberFormatException

x.l.UnsupportedOperationException j.l.UnsupportedOperationException

x.l.IndexOutOfBoundsException j.l.IndexOutOfBoundsException

x.l.ArrayIndexOutOfBoundsException j.l.ArrayIndexOutOfBoundsException

x.l.StringIndexOutOfBoundsException j.l.StringIndexOutOfBoundsException

x.l.Error j.l.Error

x.l.AssertionError j.l.AssertionError

x.l.OutOfMemoryError j.l.OutOfMemoryError

x.l.StackOverflowError j.l.StackOverflowError

x.l.InternalError j.l.InternalError

void void

Table 2. X10 types that are mapped to Java types. (x10, java,
lang, util are represented asx, j, l, u respectively)

class C {
static val a:Int = ...;
var b:Int;

}
interface I {
val x:Int = ...;

}

class C {
static int get$a() { return ...; }
int b;

}
interface I {
abstract static class $Shadow {

static int get$x() { return ...; }
}

}

Figure 8. X10 fields in Java

interface I {
def f():Int;
def g():Any;

}
class C implements I {

static def s():Int = 0;
static def t():Any = null;
def f():Int = 1;
def g():Any = null;

}

interface I {
int f$O();
java.lang.Object g();

}
class C implements I {

static int s$O() { return 0; }
static java.lang.Object t() { return null; }
int f$O() { return 1; }
java.lang.Object g() { return null; }

}

Figure 9. X10 methods in Java

Every method whose return type has two representations, such
as the types in Table 1, will have$O suffix with its name. For
example,def f():Int in X10 will be compiled asint f$O()
in Java. This is kind of optimization for the implementation of
covariant method override while preserving the ability for passing
and returning Java primitives without boxing. For details, please
refer to our paper [16].

Constructors Constructors of X10 classes or structs are translated
to the constructors of the generated Java classes.

Arrays X10 array typex10.array.Array[T] is a generic X10
type which is defined over a region that is made of a set of points. It
is not easy to access an arbitrary X10 array in Java, but if we assume
a dense, zero based, one dimensional X10 array, it is possible in the
following way.

x.a.Array[T] is translated to a Java generic classx10.array.
Array<T> which has an instance methodraw() that returns an in-
stance of a generic X10 typex10.util.IndexedMemoryChunk[T]
which represents a dense, zero based, one dimensional X10 array.
With @NativeRep annotation,x.u.IndexedMemoryChunk[T] is
represented with a generic Java classx10.core.IndexedMemory
Chunk<T> which has instance methods such asgetIntArray()
to get the Java backing array of typeint[].

X10’s distributed array typex10.array.DistArray[T] has
the same instance methodraw() that returns an instance of
x.u.IndexedMemoryChunk[T] which holds the Java backing ar-
ray for the place where the program is running.

Exceptions X10 exception types except for the types in Table 2
are translated to Java exception types. Since all X10 exception
types are subtype ofjava.lang.RuntimeException, Java pro-
grammers do not need to worry about how to handle them.

6. Related Work
Scala Scala [12] is a statically typed general purpose program-
ming language for Java and .NET platforms. Like X10, Scala pro-
vides a unified type system, where all types are subtype of the sin-
gle top typescala.Any. Scala supports value types.scala.AnyVal
is the root class of all value types. Numbers, character, and boolean
types are value types and they are mapped to Java primitive types.

43

Scala Java
s.Any j.l.Object

s.AnyRef j.l.Object

s.Throwable j.l.Throwable

s.Byte byte

s.Short short

s.Int int

s.Long long

s.Float float

s.Double double

s.Char char

s.Boolean boolean

Table 3. Scalatypes that are mapped to Java types. (scala, java,
lang are represented ass, j, l respectively)

Since Scala 2.10 which was released in January 2013, Scala also
supports user-defined value types.

When value types are upcast to eitherAnyVal, Any or T, they
are boxed. To eliminate the cost of boxing, Scala uses an annotation
at declaration site, in a form of[@specialized(scala.Int) T],
to specify Scala compiler to generate specialized code forInt as
well as general code forT.

Array type in Scalascala.Array[T] is a generic type of
rank 1 which is specially handled by the compiler. For exam-
ple, Array[Int] is represented asint[] etc. Methods of the
Array[T] are implemented by implicit conversions toscala.
collection.mutable.ArrayOps[T] andscala.collection.
mutable.WrappedArray[T]. The conversion toArrayOps[T] is
temporary as all operations defined onArrayOps[T] return an
Array[T], while the conversion toWrappedArray[T] is perma-
nent as all operations return aWrappedArray[T].

Scala does not have checked exceptions per se. Scala has a
single exception hierarchy and its top typescala.Throwable
is mapped tojava.lang.Throwable for Java interoperability.
Scala uses@throws[T <: Throwable] annotation to generate
throws T clause.

Scala does not have its own string type andString is an alias
of java.lang.String. Note that for Scala types in Table 3 are
mapped to Java types.

Scala has overlapping goals with X10, providing a similarly rich
type system with support for generic types and type composition.
Scala’s implementation uses type erasure in much the same way
as Java, so it does not provide runtime access to reified generic
types. However, Scala has two functions that may be used to pro-
vide substitute functionality in the user program directly. Manifest
objects coupled with implicit method parameters can be used to
pass the type information down to the generic method implemen-
tation. Scala compiler implicitly creates the manifest objects at the
call site, where the concrete type information is available at the
compilation time. Generic method implementation however, must
declare implicit parameters to have access to them, and this im-
plicit manifest parameter declaration must be repeated in all meth-
ods that may be called from the generic method called first. On the
byte code level, manifest is explicitly created at caller site and is
passed as ordinary parameter. In contrast, Managed X10 stores the
type descriptor objects as instance fields of the generic object in-
stances, so does not require type parameter arguments, except for
constructor invocation and interface method calls. To reduce foot-
print, type descriptor objects are cached and reused for the same
type parameter value.

Ceylon Ceylon [1] is a statically typed programming language
for large-scale team development, addressing the problems of Java
language that were discovered during years of using Java. Ceylon

Ceylon Java
c.l.Anything j.l.Object

c.l.Object j.l.Object

c.l.IdentifiableObject j.l.Object

c.l.Null j.l.Object

c.l.Boolean boolean

c.l.Integer long

c.l.Float double

c.l.Character int

c.l.String j.l.String

c.l.Exception c.l.Exception
(in instantiations andextends clauses)
j.l.Exception (in catch clauses)
j.l.Throwable (everywhereelse)

c.l.Sequence c.l.Iterable

Table 4. Ceylon types that are mapped to Java types. (ceylon,
java, lang(uage) are represented asc, j, l respectively)

provides reified generics with reified types, declaration-site vari-
ance annotations and type bounds.

Ceylon supports reified generics since M5 which was released
in March 2013. Method overloading based on type parameter value
is implemented by passing type descriptor as extra method argu-
ments (i.e. type lifting). This is the same technique as X10 uses,
but X10 even optimizes it to allow primitives in method parameters
and return value [16].

Table 4 shows the list of special types that are mapped to Java
types. As shown in the table, Ceylon has only one integer and one
floating point types. For Java primitive types that are not directly
mapped to Ceylon types, widening conversion will be applied.

Ceylon has a single exception hierarchy topped byceylon.
language.Exception. Ceylon does not have checked excep-
tions. Because in catch clausec.l.Exception is mapped to
java.lang.Exception, there is no way to catch exceptions
that are not subtype ofjava.lang.Exception, which include
java.lang.Error and its subtypes.

Ceylon has Java array typeceylon.language.Array<T>
which represents Java array typeT[]. It is not possible at the mo-
ment to create an array of Java primitive types in Ceylon.

Kotlin Kotlin [9] is a statically typed programming language
aimed at providing a pragmatic language for application devel-
opment for JVM platform. Kotlin supports erasure based generics
like Java. It also supports declaration-site variance.

Kotlin provides unified type system where numbers, character,
and boolean types can instantiate type parameters. In Kotlin, num-
bers, character, and boolean types are mapped to Java primitive
types and they are boxed as needed.

In Kotlin, array is a generic typekotlin.jet.Array<T>.
However, unlike Java or X10, array is invariant. Unlike in X10, the
backing array of generic array typeArray<T> is always the array
of reference typeT[]. To avoid boxing/unboxing operations, Kotlin
also has special non-generic array types for numbers, character, and
boolean types such askotlin.jet.IntArray etc. Table 5 shows
the list of special types that are mapped to Java types.

Kotlin does not have checked exceptions. Compiler generates
code that catches checked exception and converts it to unchecked
exception.

Fantom Fantom [3] is a statically typed, general purpose, object-
oriented programming language that runs on the Java Runtime
Environment (JRE), JavaScript, and the .NET Common Language
Runtime (CLR). Its primary design goal is to provide a standard
library API that abstracts away the question of whether the code
will ultimately run on the JRE or CLR.

44

Kotlin Java
k.j.Any j.l.Object

k.j.Byte byte

k.j.Short short

k.j.Int int

k.j.Long long

k.j.Float float

k.j.Double double

k.j.Char char

k.j.Boolean boolean

k.j.ByteArray byte[]

k.j.ShortArray short[]

k.j.IntArray int[]

k.j.LongArray long[]

k.j.FloatArray float[]

k.j.DoubleArray double[]

k.j.CharArray char[]

k.j.BooleanArray boolean[]

Table 5. Kotlin types that are mapped to Java types. (kotlin, jet,
java, lang are represented ask, j, j, l respectively)

Fantom Java
sys::Obj j.l.Object

sys::Bool boolean

sys::Int long

sys::Float double

sys::Str j.l.String

sys::Decimal j.m.BigDecimal

Foo[] (sys::List parameterized withFoo) Foo[]

[java]fanx.interop::ByteArray byte[]

[java]fanx.interop::ShortArray short[]

[java]fanx.interop::IntArray int[]

[java]fanx.interop::LongArray long[]

[java]fanx.interop::FloatArray float[]

[java]fanx.interop::DoubleArray double[]

[java]fanx.interop::CharArray char[]

[java]fanx.interop::BooleanArray boolean[]

[java]foo.bar::Baz foo.bar.Baz

Table 6. Fantom types that are mapped to Java types. (java, lang,
math are represented asj, l, m respectively)

Fantom provides unified type system where all types are sub-
type of sys::Obj. Fantom supports value typessys::Bool,
sys::Int, andsys::Float and they are mapped to Java prim-
itive types boolean, long, and double, respectively. No user-
defined values type are supported. When value types are co-
erced to/from either reference types orT, the compiler will gen-
erate boxing/unboxing operations. Fantom does not support user-
defined generic types, however it has a set of built-in generic types
sys::List, sys::Map, andsys::Func.

Table 6 shows the list of special types that are mapped to Java
types. As shown in the table, Fantom provides separate Java array
type for each Java primitive type.

An exception is a normal object which subclasses fromsys::Err.
Fantom does not use Java styled checked exceptions. Checked ex-
ceptions are caught at their call site and wrapped withsys:Err or
its subtypes such assys::IOErr andsys::InterruptedErr.

Xtend Xtend [18] is a statically typed programming language
which translates to comprehensible Java source code. Syntacti-
cally and semantically Xtend has its roots in the Java program-
ming language but improves on many aspects, which include ex-
tension methods, lambda expressions, operator overloading, type
based switching, multiple dispatch, template expressions, statement

expressions, properties, local type inference etc. Xtend fully sup-
ports Java generics.

Unlike other JVM languages, Xtend uses Java’s type system
without modifications. This guarantees that Xtend programmers
will not run into any interoperability caveats. Integration with Java
works as expected in both directions and the generated code runs
as fast as or faster than hand-written Java.

7. Conclusion
In this paper we explained how Java Interoperability in Managed
X10 is designed and implemented.

For multi-platform language such as X10, design of cross-
language interoperability is more difficult than other JVM lan-
guages. Use of target-language specific types such as Java primi-
tive types and Java array types can be easily implemented by in-
troducing corresponding types in the source language. However,
exception handing has different requirements. For portable excep-
tion handling in the source language, we need to have a single top
exception type in the source language, which covers exceptions
from both the source and all the target languages. To this end, X10
redesigned its type system in X10 2.3 and combined X10, Java, and
C++ exception hierarchies into one.

Acknowledgments
We would like to thank past and current members of X10 team,
namely, Igor Peshansky, Olivier Tardieu, Avraham Shinnar, Ben-
jamin Herta, Mandana Vaziri, Kiyokuni Kawachiya, Akihiko
Tozawa, Tatsuhiro Chiba, Salikh Zakirov, Yuki Makino, Takao
Moriyama, and Tamiya Onodera for their valuable comments on
the early design of Java interoperability.

Java and all Java-based trademarks are trademarks of Sun Mi-
crosystems, Inc. in the United States, other countries, or both.

References
[1] Ceylon - A JVM Based Programming Language.http://

ceylon-lang.org/

[2] CUDA C Programming Guide, Version 3.2.http://developer.
download.nvidia.com/compute/cuda/3_2/toolkit/docs/
CUDA_C_Programming_Guide.pdf

[3] Fantom Programming Language.http://fantom.org/

[4] Apache Hadoop.http://hadoop.apache.org/

[5] JDT Core Component.http://www.eclipse.org/jdt/core/
index.php

[6] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley.The Java
Language Specification, Java SE 7 Edition. Addison-Wesley Publish-
ing Company. 2013.

[7] David Grove, Olivier Tardieu, David Cunningham, Ben Herta, Igor
Peshansky, and Vijay Saraswat. A performance model for X10 appli-
cations: what’s going on under the hood? InProceedings of the 2011
ACM SIGPLAN X10 Workshop, X10 ’11, pages 1:1–1:8, New York,
NY, USA, 2011. ACM.

[8] K. Kawachiya, M. Takeuchi, S. Zakirov, and T. Onodera. Distributed
Garbage Collection for Managed X10, InProceedings of the ACM
SIGPLAN 2012 X10 Workshop (X10 ’12), 2012.

[9] Kotlin - A New Programming Language for the JVM.http://
kotlin.jetbrains.org/

[10] PGAS – Partitioned Global Address Space Languages.http://www.
pgas.org/

[11] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove.
X10 Language Specification.http://x10.sourceforge.net/
documentation/languagespec/x10-latest.pdf

[12] The Scala Programming Language.http://www.scala-lang.
org/

45

[13] A. Shinnar,D. Cunningham, B. Herta, and V. Saraswat. M3R: In-
creased Performance for In-Memory Hadoop Jobs, InProceedings of
the VLDB Endowment (VLDB ’12), pp. 1736–1747, 2012.

[14] B. Stroustrup.The C++ Programming Language, Third Edition.
Addison-Wesley Publishing Company. 1997.

[15] M. Takeuchi, Y. Makino, K. Kawachiya, H. Horii, T. Suzumura,
T. Suganuma, and T. Onodera. Compiling X10 to Java, InProceed-
ings of the ACM SIGPLAN 2011 X10 Workshop (X10 ’11), 2011.

[16] M. Takeuchi, S. Zakirov, K. Kawachiya, and T. Onodera. Fast Method
Dispatch and Effective Use of Primitives for Reified Generics in Man-
aged X10, InProceedings of the ACM SIGPLAN 2012 X10 Workshop
(X10 ’12), 2012.

[17] X10: Performance and Productivity at Scale.http://x10-lang.
org/

[18] Xtend - Modernized Java.http://www.eclipse.org/xtend/

A. Compilation and Execution
Compiling and executing X10 programsTo compile and run
X10 program that interoperates with existing Java code, the same
x10c andx10 commands are used with additional-classpath (or
in short,-cp) option to specify the location of Java class files or jar
files that your X10 program refers to.

x10c -cp JavaLib.jar -o X10Prog.jar X10Prog.x10
x10 -cp X10Prog.jar:JavaLib.jar X10Prog

Compiling Java programs To compile Java program that inter-
operates with X10 code, it is needed to specify the location of class
files or jar files that were generated byx10c command. In addition,
in many cases it is also needed to specify the location of standard
X10 library jar filex10.jar. x10c command uses JDT Core Batch
Compiler (a.k.a. Eclipse Compiler for Java) [5] as post compiler
and generates Java 6 compliant class files.

For convenience,x10cj command, which accepts the same
options asjavac accepts and invokes the post compiler with the
same options asx10c command passes, is provided.

x10cj -cp X10Lib.jar JavaProg.java

Executing Java programs The generated Java code byx10c
command assumes that the runtime of Managed X10 is set up
properly at each place before execution.

For X10 program that hasstatic def main(Rail[String]):
void method,x10c command generates a static nest class$Main
with static void main(java.lang.String[]) method.x10
command executes the Java main method of the static nested class,
which will first set up X10 runtime then execute the X10 main
method.

To launch Java class that hasstatic void main(java.lang.
String[]) method, a special launcher commandrunjava, which
accepts the same options asx10 command does, is provided. It
will set up X10 runtime then execute the Java main method. All
Java programs that interoperate with X10 code should be launched
with it, and no other mechanisms, namely the direct execution with
java command, are supported.

runjava -cp X10Lib.jar JavaProg

46

