
 27

Split-Stream Dictionary Program Compression

Steven Lucco
Transmeta

3940 Freedom Circle, Santa Clara, CA 95054
slucco@transmeta.com

ABSTRACT
This paper describes split-stream dictionary (SSD) compression,
a new technique for transforming programs into a compact,
interpretable form. We define a compressed program as
interpretable when it can be decompressed at basic-block
granularity with reasonable efficiency. The granularity
requirement enables interpreters or just-in-time (JIT)
translators to decompress basic blocks incrementally during
program execution. Our previous approach to interpretable
compression, the Byte-coded RISC (BRISC) program format
[1], achieved unprecedented decompression speed in excess of 5
megabytes per second on a 450MHz Pentium II while
compressing benchmark programs to an average of three-fifths
the size of their optimized x86 representation. SSD compression
combines the key idea behind BRISC with new observations
about instruction re-use frequencies to yield four advantages
over BRISC and other competing techniques. First, SSD is
simple, requiring only a few pages of code for an effective
implementation. Second, SSD compresses programs more
effectively than any interpretable program compression scheme
known to us. For example, SSD compressed a set of programs
including the spec95 benchmarks and Microsoft Word97 to less
than half the size, on average, of their optimized x86
representation. Third, SSD exceeds BRISC’s decompression and
JIT translation rates by over 50%. Finally, SSD’s two-phased
approach to JIT translation enables a virtual machine to
provide graceful degradation of program execution time in the
face of increasing RAM constraints. For example, using SSD,
we ran Word97 using a JIT-translation buffer one-third the size
of Word97’s optimized x86 code, yet incurred only 27%
execution time overhead.

Keywords
Compression, virtual machine, runtime system.

1. INTRODUCTION
This research aims to increase our ability to trade program

size for program execution time in designing computer systems.
Specifically, we want to enable computer system designers to store
native or virtual machine programs using a smaller amount of
system ROM, RAM or disk space, while incurring an insignificant
impact on program execution time.

For example, hand-held organizer products currently popular
can have as little as 2 megabytes ROM and 2 megabytes RAM to
hold all system software, plus add-on software and data [2]. This
limits the number and types of applications suitable for these
organizers. Since data competes directly with programs for space,
the number of contacts or maps that the device can hold will depend
directly on the amount of space the device requires to store its
programs. In embedded systems with even tighter constraints on
program space, such as MEMS [3], the degree to which one can
compress system programs determines the capabilities one can pack
into the device.

On desktop systems, we can use program compression to
increase system performance by taking advantage of large
differences in access time among components of the memory
hierarchy. For example, we used the program compression scheme
described this paper, split-stream dictionary (SSD) compression, to
reduce the number of code pages required to start Microsoft
Word97. Because SSD yields decompression speed of 7.8
megabytes per second on a 450MHz Pentium II, disk latency
dominated decompression time and Word97 started 14% faster than
the same version of Word97 compiled to optimized x86
instructions.

The effects described in both these examples become more
pronounced when computer systems use RISC or VLIW [4]
instruction sets. These fixed-length program encodings are less
compact than the variable length x86 bytecodes [5]. For example,
early compiler implementations suggest that programs compiled for
the Intel IA64 (Itanium) architecture [6] will require two to three
times the code space of the same program compiled for the x86
processor.

Designers of embedded system processors have attempted to
increase program encoding density by introducing 16-bit versions of
their instruction sets or by adding complex features to their designs.
For example, the ARM [7] computer architecture includes a 16-bit
instruction set, called Thumb, which is used to provide program
compression. The ARM architecture converts Thumb instructions
back to ARM instructions during the decode pipeline stage,
sacrificing chip area in an attempt to increase program density.
Similarly, the ARM departs from RISC discipline by spending chip
area on features, such as auto-increment addressing, designed to
reduce code size.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PLDI 2000, Vancouver, British Columbia, Canada.
Copyright 2000 ACM 1-58113-199-2/00/0006…$5.00.

 28

Hence, the current evolution of embedded system processor
designs illustrates the pressure that program storage cost exerts on
embedded processor architecture. In adding complex features such
as the Thumb instruction set or auto-increment addressing, ARM
designers implicitly trade program density against program
execution time. In contrast to these fixed-hardware approaches, SSD
compression can reduce a program’s use of ROM, RAM and disk
space without significantly increasing a program’s execution time.

Specifically, SSD compressed a test suite of programs
compiled for the Omniware virtual machine (OmniVM) [8,9],
including Microsoft Word97 and the spec95 benchmarks, to an
average of 47% the size of their optimized x86 representations.
When incrementally decompressed, JIT-translated, and executed by
the OmniVM, these programs ran an average of 6.6% slower than
the optimized x86 versions, demonstrating that SSD supports fast
JIT-translation of processor-neutral code. Further, execution-time
profiles of these programs revealed that SSD decompression and JIT
translation contributed no more than 0.7% to any program’s
execution time; limitations on JIT-translated code quality accounted
for most of the execution time overhead.

Section 3 of this paper provides more details of these
experiments; it also reports the impact of varying JIT-translation
buffer size on program execution time. The results of this
experiment show that SSD compression supports graceful
degradation of program execution times as JIT-translation buffers
shrink. SSD achieves this result by supporting two-phased JIT-
translation. In the phase one, the virtual machine loads and
decompresses a dictionary. The dictionary maps 16-bit indices to
sequences of one to four instructions. During phase two, the JIT-
translator expands a basic block by copying dictionary entries into a
native code buffer. Because phase two translation consists mostly of
copying memory blocks, it is fast. For our set of benchmark
programs, we measured the average speed of 12.5 megabytes of
produced code per second for phase two translation. Once the
virtual machine pays the fixed cost of dictionary decompression, it

can translate and re-translate parts of the program at this phase two
translation speed. This feature enables a virtual machine to achieve
reasonable program execution times even when using a native code
buffer significantly smaller than the program being executed.

The remainder of this paper is organized as follows. Section 2
places SSD compression in the context of previous approaches to
program compression. It then explains in more detail why and how
SSD compression works and describes how to incorporate SSD
compression into program loaders and virtual machine
implementations. Section 3 provides a quantitative assessment of
SSD. Finally, section 4 summarizes.

2. SSD COMPRESSION
Many compression techniques encode their input using a

dictionary. In general, a compression dictionary stores common
input patterns. All or part of a compressed input consists of compact
references to the dictionary. When the dictionary does not depend
on the input, we call it external. If the dictionary depends on input
but does not change during decompression, we call it static;
otherwise, we call a dictionary dynamic. Lempel-Ziv compression
uses a dynamic dictionary [10]. As LZ decompresses data, it stores
each novel sequence of bytes in a dictionary. Items further back in
the stream of compressed data can refer to these implicitly generated
dictionary entries using a byte offset and a length [11].

Because LZ compression uses a dynamic dictionary, it is
stream-oriented. An LZ decompressor can’t randomly access and
decode a particular basic block or function. Arithmetic coding
strategies, which have yielded the most effective archival program
compression solutions known to us, share this limitation with LZ
compression [12,18,19].

To support fast in-place interpretation or JIT-translation of
compressed programs, we need to design a program compression
scheme capable of fast decompression at basic block granularity. We
designate as interpretable any program compression scheme that
fulfills this criterion.

Program

Optimized
x86

Size (bytes)
Total Instructions/

Unique Instructions

Average Re-use
Frequency for an

Instruction
Unique
Digrams

Average
Re-use

Frequency
for a Digram

Avg. Re-use Freq. Of
Most Common

Instruction Sequences
(top 10%)

Word97 5175500 1427592/124288 11.5 518351 2.8 16.6

Gcc 2.6.3 747436 194501/22946 8.4 78413 2.5 12.5

Vortex 400040 97931/11828 8.3 34657 2.8 12.8

Perl 238950 75270/11664 6.5 34043 2.2 9.5

Go 180838 36398/6133 5.9 17568 2.1 10.0

Ijpeg 136070 31057/7893 3.9 19207 1.6 8.5

M88ksim 119782 21957/5865 3.7 11403 1.9 3.4

Xlisp 75942 13414/1860 7.2 5549 2.4 7.4

Compress 7234 1411/591 2.4 1032 1.4 5.2

Table 1: Redundancy of instructions occurring in benchmark programs. All columns reflect instruction-matching algorithm that compares
sizes but not specific values of pc-relative branch targets. The last column reports the average re-use frequency for the 10% of instruction

sequences (lengths 2-4) that were most common.

 29

opcode dest src immed op2

Byte Boundaries

Figure 1: Instruction semantics often do not match byte
boundaries.

We can clarify further the class of interpretable program
compression schemes by describing why some related efforts
don’t fit into this category. Java class files [13] are directly
interpretable, but are not compressed; they are often larger than
the native-compiled version of a given Java class [14]. Further,
Java class files can not efficiently represent programs written in
many other programming languages, such as C++. ANDF
programs [15] and slim binaries [16] represent programs at a high
level of abstraction, similar to abstract syntax trees (ASTs) [17].
Hence, they represent programs in a form that requires significant
further compilation following decompression. For this reason,
AST representations such as these are not examples of
interpretable program compression.

Among previous approaches to interpretable program
compression, the BRISC program format is the most effective
known to us. BRISC compresses programs to about 61% the size
of their optimized x86 representation and supports JIT translation
at over five megabytes per second [1]. Like the best stream-
oriented program compression methods [12], BRISC excels by
considering non-byte-aligned quantities in its input stream.
Compression methods such as LZ are byte-oriented; they assess
similarities among input patterns in terms of byte comparisons.
However, most of the information within a virtual or native
machine language program, for example opcodes or register
numbers, is not aligned on byte boundaries (see Figure 1 for an
illustration). Program compression methods that consider the
individual fields within instructions are called split-stream
methods [1]. BRISC and other split-stream compression
techniques conceptually split the input stream of instructions into
separate streams, one for each type of instruction field. In contrast
to BRISC, SSD uses a split-stream method to compress not the
entire program but only a dictionary of instruction sequences
derived from the program. SSD compresses a program into two
parts: a split-stream compressed dictionary and a stream of SSD
items.

SSD is significantly simpler to implement than BRISC.
BRISC requires the generation and maintenance of a corpus-
derived set of instruction patterns designed to capture common
opportunities for combining adjacent opcodes and for specializing
opcodes to reflect frequently occurring instruction-field values. A
virtual machine implementing BRISC will have to load and
decode this external dictionary of instruction patterns
(approximately 2000 instruction patterns or 150 kilobytes of
data). Also, systems implementing BRISC must maintain a
separate program to generate the external dictionary of instruction
patterns from a training corpus of representative programs.

Further, BRISC’s compression effectiveness depends on the
applicability of the training corpus. In contrast, SSD embeds an
input-specific dictionary into each compressed program. When its
input is large (30 kilobytes or more), SSD is not only simpler than
BRISC but also compresses programs more effectively (see
Section 3 for details).

SSD achieves this combination of simplicity and
effectiveness by exploiting the surprisingly high frequency with
which large programs re-use small sequences of instructions.
Table 1 summarizes single instruction re-use frequency for our set
of benchmark programs. These measurements show that our

1. Make each unique instruction in P a base entry of D
2. Cur=P; E=the empty sequence
3. while (Cur not empty)

a. find the longest sub-sequence of instructions
s, with length L, such that:

i. Cur contains at least L instructions
and L<=4

ii. s matches the first L instructions in
Cur

iii. s occurs at least twice in P
iv. s is contained within a single basic

block of P
b. if L>=2 then

i. Entry=GetEntry(D,s)
c. else

i. Entry=GetEntry(D,Head(Cur))
d. target=GetBranchTarget(Cur,L)
e. Append(E,NewRef(Entry,Target))
f. Cur=Ntail(Cur,L)

Algorithm 1: Dictionary Generation

Input P: a sequence of instructions
Outputs D: an SSD dictionary

 E: a sequence of references to entries in D
Variables Cur: a sequence yields of instructions

 Entry: a dictionary entry
 Target: pointer to branch target instruction

Operators Ntail(S,n): If sequence S has length LS, returns
the suffix of S with length LS-n

 Head(S): returns first element of sequence S
 Append(S,e): appends e to end of sequence S
 GetEntry(D,s): returns dictionary entry matching

instruction sequence s; creates entry if necessary.
 NewRef(entry,tgt): returns structure containing

reference to dictionary entry and branch target
tgt

 GetBranchTarget(S,L): return branch target, if
any, of Lth instruction in sequence S

Table 2: Variables used in Algorithm 1.

 30

benchmark programs re-use each of their instructions an average
of 2.4 to 11.5 times. Further, all programs whose x86 optimized
code is at least 150 kilobytes in length re-use each of their
instructions an average of 5.9 to 11.5 times. The data in Table 1
reflects an instruction-matching algorithm that compares the sizes
but not the specific values of pc-relative branch targets. All other

instruction fields must match exactly. Section 2.1 explains why
SSD handles branch targets in this way. Table 1 shows that re-use
frequencies drop off for sequences of two instructions; however, it
also shows that the benchmark programs rabidly re-use their
favorite two- to four-instruction idioms.

2.1 Overview of SSD
SSD takes advantage of this phenomenon by constructing a

dictionary that contains two types of entries. First, the dictionary
contains an entry for each individual instruction that occurs in the
program; we call these base entries. Second, the dictionary
contains an entry for each two- to four-instruction sequence that
occurs two or more times in the input program; we call these
sequence entries.1 If an input program were to avoid re-using any
instructions, the dictionary would be identical to the input
program and SSD’s output would be larger than the input.
Fortunately, the measurements in Table 1 show that large
programs make extensive re-use of single instructions and short
instruction sequences.

Once it has constructed the dictionary for a given program P,
SSD matches the instructions in P against the dictionary. Call the
first instruction in P i1, the next i2, etc. SSD matches the
sequence <i1,i2,i3,i4> against all four-instruction sequences in the
dictionary. If it finds a match with sequence entry e it outputs an
SSD item that refers to e and then continues matching with
instruction i5. Otherwise, SSD tries to match <i1,i2,i3> against all
three-instruction sequences in the dictionary, and so on. Finally, if
no sequence entries match the current input, SSD will output an
SSD item that refers to the base entry matching i1; then SSD will
continue matching with instruction i2. SSD continues matching
input instructions against the dictionary and generating SSD items
until the input is exhausted.

SSD items refer to dictionary entries using 16-bit indices. A
dictionary of 215 entries proved sufficient for all benchmark
programs except Word97; Word97 required 281,107 entries. If a
dictionary requires more than 216 entries, SSD partitions the
dictionary into a common dictionary that applies to the entire
compressed program, and a series of sub-dictionaries that apply only
to parts of the compressed program.

In addition to a 16-bit index, an SSD item may also contain a
pc-relative offset representing an intra-function branch target. A
dictionary entry contain at most one branch instruction. In sequence
entries, the branch instruction is always the last instruction of the
sequence; no dictionary entry spans more than one basic block.

For two reasons, SSD represents intra-function branch targets
as pc-relative offsets in the stream of SSD items rather than as
absolute instruction addresses inside dictionary entries. First, pc-
relative offsets are more compact than absolute addresses. Second,
this enables SSD to ignore pc-relative offset values when comparing
branch instructions during dictionary construction. Instead of
matching the exact value of pc-relative offset fields, SSD matches
only the size of pc-relative offsets. This choice sharply reduces

1 We’ll see below that the definition of sequence entries is slightly

more complex. The SSD dictionary will not contain a k
instruction sequence s1 if every occurrence of s1 is subsumed by
a sequence s2 that is k+1 or more instructions long.

dictionary size but requires that the stream of SSD items explicitly
represent pc-relative offsets. For our set of benchmark programs,
this choice yielded compressor output an average of 6.2% smaller
than the output of a compressor configured to represent branch
targets as absolute values within dictionary entries.

2.2 SSD Details
The previous sub-section provided an overview of SSD

compression. In this sub-section, we describe in more detail the
three main algorithms of SSD: dictionary construction, dictionary
compression and SSD item generation.

Given an input program P, SSD uses Algorithm 1 to generate a
dictionary D and a sequence E of dictionary entries. Algorithm 2
(detailed below) converts a dictionary entry sequence E to a
sequence of SSD items.

To implement Algorithm 1, we use two hash tables and an
additional pass over the input. The first hash table (HI) contains
individual instructions; the second (HD) contains digrams of
adjacent instructions. Before executing Algorithm 1, our SSD
implementation reads the entire program, constructing these two
hash tables. To implement step 1 of Algorithm 1, our
implementation makes each element of table HI a base entry of
dictionary D. The remainder of Algorithm 1 constitutes a second
pass through the input program P. Conceptually, the algorithm
matches prefixes of lengths 2-4 of the remaining instructions (Cur)
against the entire program (P), attempting to find a sequence of
instructions (s) that matches the prefix and occurs at least twice in P.

To accomplish this operation, our implementation matches the
prefix of length 2 against the digram hash table (HD). For each
digram d occurring at least twice in P, HD contains a list of all the
program addresses at which d occurs. To implement step 3.a, our
implementation traverses this list, matching the instructions at the
front of Cur against up to four of the instructions found at each
location of the matched digram d within the program P. The
implementation compares the longest match, if any have length >=
2, with the sequence entries already in D. If D does not already
contain a sequence entry for matching instruction sequence s, step
3.b.i creates a new sequence entry and adds it to D.

 When a match is found, then step 3.f of Algorithm 1 sets
Cur to begin at the next instruction after the matched prefix. This
step yields a greedy algorithm, because by skipping over
instructions once it has found a match, Algorithm 1 ignores the
possibility of finding a longer match beginning at one of the other
instructions in the matched prefix. In any case, step 3.e appends to
output sequence E the dictionary entry (entry) obtained during
steps 3.a and 3.b.

It is important to emphasize that in the case of branch
instructions our method for comparing instructions is more
complex than simple equality. Two branch instructions a and b
will match when their pc-relative branch target fields are equal in
size and all other fields are exactly equal. A dictionary entry eb
containing a branch instruction specifies only the size szb in bytes
of eb’s target. Each SSD item referring to eb supplies a pc-relative
branch target of size szb.

 28

2.2.1 Base Entry Compression
To compress the base entries of dictionary D, SSD first sorts

the entries by opcode, creating an instruction group for each
opcode. Within each instruction group, SSD sorts the entries by
the largest instruction field for that group’s opcode. For example,
SSD sorts call instructions by target address, but sorts
arithmetic-immediate instructions (e.g. add r1,r2,45) by their
immediate field. Of course, the details of this sorting step depend
on the particular instruction set of the input program. For the
measurements reported in Section 3, the input instruction set was
the OmniVM virtual machine instruction set.

Within an instruction group, each instruction field is output
as a separate stream. For example, for an add immediate
instruction group (with pattern add reg1,reg2,imm), our
implementation would first sort the group by the imm field and
then output all imm fields followed by all reg1 fields followed
by all reg2 fields.

We tried two techniques to further compress the base entries.
First, we encoded the sorted field (in our example, the imm field)
using delta coding. Delta coding expresses each value as an
increment from the previous value (with suitable escape codes for
occasional large deltas). All other fields are output literally.
Second, we concatenated all of the sorted instruction groups and
then applied a simple form of LZ compression to the result. This
latter approach was simpler and yielded better compression. It is
used for all experiments reported in Section 3.

2.2.2 Sequence Entry Compression
SSD compresses the sequence entries of a dictionary D by

constructing a forest of trees, one tree for each instruction i that
can start a sequence. A given tree ti represents all of the sequences
in D that start with i. If two such sequence entries in D share a
common prefix p of length L, their representation in ti will share
the first L nodes. Figure 2 depicts a simple forest of sequence
entries. SSD stores each tree as a sequence of 16-bit indices that
refer to base entries of D. SSD stores these indices in prefix order.
If D’s base entries number 215 or fewer, SSD represents the tree
structure using the high-order bit of each index. If D has more
than 215 base entries, SSD uses a special index value to mark
upward tree traversal.

2.2.3 SSD Item Generation
Algorithm 2 describes the SSD algorithm for emitting SSD

items. In practice, we need to perform some extra bookkeeping to

support step 3 of Algorithm 2. For each forward branch processed
in step 2.b.i, Algorithm 2 must create and save a relocation item.
Each relocation item points to an SSD item bri in I. The relocation
item also contains the intended target of the forward branch bri in
terms of Algorithm 2’s input sequence E. Then, in step 3,
Algorithm 2 traverses its list of relocation items, overwriting the
pc-relative branch target values once their target addresses in I are
known. To compute these target addresses, Algorithm 2 maintains
a forwarding table that maps items in sequence E to items in
sequence I. Algorithm 2’s ConvertTarget operator immediately
looks up backward branches in this forwarding table, but for
forward branches, it creates a relocation item.

2.2.4 JIT Translation
In this sub-section, we describe SSD decompression; we also

show how to incorporate SSD decompression into virtual machine
(VM) systems that incrementally translate compressed programs
into native instructions.

We divide SSD decompression into two phases, the first
called the dictionary decompression phase, and the second called

1. Cur=E
2. while (Cur not empty)

a. Ref=Head(Cur)
b. If (IsBranch(Ref.t)) then

i. Tgt=ConvertTarget(I,Ref.t)
c. else

i. Tgt=null
d. Append(I,NewItem(GetIndex(Ref.R),Tgt))

3. Fix branch targets for forward branches

Algorithm 2: SSD Item Generation

Input E: a sequence of pairs <R,t> where R refers to a
dictionary entry and t is a branch target

Output I: a sequence of SSD items, one for each element
of E

Variables Ref: a pair <R,t> as described above

 Tgt: a branch target

Operators GetIndex(R): returns 16-bit index corresponding
to dictionary entry referred to by R

 NewItem(indx,tgt): given an index indx and a
branch target, tgt, creates an SSD item

 IsBranch(tgt): returns true if tgt is a valid branch
target

 ConvertTarget(I,tgt): given a branch target tgt,
converts it to a branch target expressed relative
to the end of SSD item sequence I

Table 3: Variables used in Algorithm 2

yields sequence
entries

A1

B1 C1

 A2

B2

C2
D2

E2

A1, B1
A1, C1

A2, B2,C2
A2,B2,D2,E2

Figure 2: Tree representation of four sequence entries.

31

 29

the copy phase. During dictionary decompression, the VM first
reconstructs the base entries of the compressed program’s
dictionary, reversing the compression steps described in Section
2.2.1. Second, the VM reconstructs the sequence entries of the
dictionary by traversing the tree that represents these entries.

If the original input to SSD contained virtual machine
instructions, then the VM performs additional work during the
first of these dictionary decompression steps. As the VM

generates base entries, it converts them from virtual machine
instructions to native instructions. This type of conversion is
appropriate only for virtual machine instruction sets (like
OmniVM) that accommodate optimization, since the conversion
is done by translation of individual instructions, rather than
optimizing compilation. Of course, the VM can take a hybrid
approach by further optimizing each function once it has
generated the native code for that function. For example, the
OmniVM can optionally perform machine-specific basic block
instruction scheduling on its generated native code.

The organization of the base dictionary entries facilitates
rapid conversion from virtual to native instructions. Since SSD
arranges these entries into instruction groups sorted by opcode
and largest field value, much of the work needed to translate a
particular instruction can be shared among the instructions in a
group.

SSD dictionary decompression produces an instruction table
of native instructions organized to support the copy phase of SSD
decompression. The instruction table maps the 16-bit indices
found in SSD to sequences of native instructions. Each entry in
the instruction table begins with a 32-bit tag. The tag provides the
length of the ensuing instruction sequence. If the instruction
sequence ends with a branch instruction b, the tag provides a
negative offset from the end of b; this offset indicates where
within b to copy the pc-relative branch target t that will be
supplied by the SSD item. Instruction b’s opcode determines t’s
size.

Algorithm 3 details the copy phase of SSD decompression.
This phase of SSD decompression can take place incrementally.
The Omniware virtual machine implementation uses SSD
decompression to perform JIT translation one function at a time.
In Algorithm 3, this would correspond to setting start to point to
the beginning of the function and end to point just past the
function. There are three paths through step 2 of Algorithm 3,
depending on whether the translated SSD item contains a forward
branch or call, a backward branch, or only non-branching
instructions. The latter path occurs most frequently and requires
only 7+n x86 machine instructions to complete, where n is the
number of bytes of native instructions copied.

3. PERFORMANCE EVALUATION
The decompression algorithms described in the previous

section are designed to support rapid, incremental decompression
and JIT translation of highly compressed programs. In this
section, we provide a quantitative evaluation of how well SSD
achieves these goals. We will present results from three sets of
experiments. In the first experiment, we compared in size SSD-
compressed, optimized OmniVM versus optimized-x86
representations of a set of benchmark programs, including the
spec95 benchmarks and Word97. Second, we measured the
impact of SSD decompression and JIT translation on the
execution time of our benchmark programs. Finally, we limited
the size of the buffer used to hold JIT-translated native
instructions and measured the impact of this limitation on
Word97 execution times.

We performed all of these experiments on a 450MHz
Pentium II processor with 128 megabytes of memory, running
Microsoft Windows NT 4.0 service pack 5. We used Microsoft
Visual C++ 5.0 at its highest level of optimization to compile our

Inputs Ibuf: buffer containing SSD items
 Start: address of first item to translate
 End: addess just past last item to translate
 Itab: instruction table produced by

dictionary decompression
Output: Jbuf: JIT-translation buffer containing

native instructions
Variables Ptr: pointer to current SSD item
 Copylen: number of instruction bytes to

copy
 Iptr: pointer into instruction table
 Jptr: pointer into JIT translation buffer
Operators GetLength(itab,item): use itab to find

length in bytes of instructions to be copied
for item

 GetPointer(itab,item): return pointer to
instructions to be copied

 IsBranch(itab,item): returns true if item
refers to instruction sequence ending with
branch

Table 4: Variables used in Algorithm 3.

1. ptr=start;jptr=jbuf
2. while (start<end)

a. item=ibuf[ptr]
b. copylen=GetLength(itab,item);

iptr=GetPointer(itab,item)
c. copy copylen bytes from iptr to jptr
d. jptr=jptr+copylen
e. if (IsBranch(itab,item) then

i. get branch target from item
ii. if forward branch or function call

then create relocation item for
branch target field else convert
branch target to pc-relative offset
and overwrite target field in copied

f. ptr=ptr+size of item in ibuf
3. Apply relocation items to fix up forward branches and

call targets

Algorithm 3: Copy Phase of SSD Decompression

32

 30

benchmark programs. To measure execution time for the spec95
benchmarks we used the standard benchmark input sets; for
Word97, we used a performance test suite that includes the
Word97 auto-format, auto-summarize and grammar check.

Table 5 shows SSD compressed the OmniVM benchmark
programs to less than half the size, on average, of their optimized
x86 versions. Table 5 also compares SSD compression to BRISC
compression, illustrating that SSD compresses programs more
effectively than BRISC.
 In addition, Table 5 lists execution times for our benchmark
programs. The measurements demonstrate that SSD
decompression does not significantly impact program execution.

time; execution time overhead averaged just 6.6%. Table 5 breaks
this overhead into components, measured using execution time
profiling, showing that most of the execution time overhead was
due to reduced quality of the JIT-translated native code rather
than to decompression overhead. Decompression overhead
contributed less than 0.5%, on average, to the total execution time
of the benchmarks.

Finally, Figure 3 graphs performance of Word97 as a
function of JIT-translation buffer size, using both BRISC and
SSD compression. We varied buffer size from 0.2 to 0.5 times the
size of Word97’s optimized x86 code. The figure plots execution
time overhead against buffer size. In these measurements, the

Program

Optimized
x86

Size (bytes)

Ratio of
SSD

Compressed
Size to

Optimized
x86 Size

Ratio of
BRISC

Compressed
Size to

Optimized x86
Size

SSD
Execution

Time
Overhead

SSD JIT
Translation and
Decompression
Execution Time

Overhead

SSD Overhead Due to
Reduced Code

Quality

Word97 5175500 0.45 0.69 3.2% 0.7% 2.5%

Gcc 2.6.3 747436 0.49 0.57 9.1% 0.4% 8.7%

Vortex 400040 0.37 0.55 7.7% 0.4% 7.3%

Perl 238950 0.57 0.85 8.6% 0.3% 8.3%

Go 180838 0.42 0.60 5.5% 0.2% 5.3%

Ijpeg 136070 0.50 0.60 8.1% 0.5% 7.6%

M88ksim 119782 0.41 0.49 7.4% 0.3% 7.1%

Xlisp 75942 0.43 0.59 5.1% 0.2% 4.9%

Compress 7234 0.58 0.57 4.3% 0.2% 4.1%

Average 786866 0.47 0.61 6.6% 0.4% 6.2%

Table 5: Compression effectiveness of SSD compared to BRISC. Also, execution time performance of SSD. All execution time

overhead values computed relative to optimized x86 program execution time.

Buffer Size
(including

dictionary size) /
Optimized x86

Code Size

Megabytes JIT-
Translated

(including re-
translation)

Buffer
Hit Rate

0.2 208.0 91.31
0.25 119.1 94.35

0.275 53.2 99.83
0.3 13.5 99.87

0.325 9.3 99.89
0.35 7.4 99.89
0.4 6.5 99.93

0.45 6.1 99.95
0.5 5.3 99.96

Table 6: Megabytes JIT-Translated and Buffer Hit Rate

Versus Buffer Size for Word97

RAM-Constrained Word97 Performance

0

1 00

200

300

400

500

600

0.2 0.25 0.28 0.3 0.33 0.35 0.4 0.45 0.5

Buffer Size

P
er

ce
nt

 O
ve

rh
ea

d

BRISC

SSD

Figure 3: RAM – Constrained Word97 Performance

33

 31

buffer size is computed as the sum of the JIT translation buffer
size plus the size of either the SSD dictionary or, for BRISC, the
BRISC external dictionary. Also, the infrastructure required to
discard and to re-generate JIT-translated code (including a level of
indirection for function calls) increases to 14.1% the minimum
execution time achievable (versus the JIT-translate-once overhead
of 3.2%).

 To perform this experiment, we used a buffer space
replacement policy that combines round-robin and LRU
concepts[20]. The replacement policy breaks the JIT translation
buffer into a permanent and a round-robin area. During program
execution, functions that are large and frequently used2 are moved
to the permanent area. To reduce fragmentation, functions smaller
than 512 bytes also reside in the permanent area. Table 6 shows
that this policy achieves excellent hit rates. For example, when we
ran Word97 using a JIT translation buffer 0.4 times the size of
native Word97, 99.3% of all function calls were to functions
already residing in the buffer. Despite this excellent hit rate,
Word97 required re-translation of 6.5 megabytes of code during
the benchmark, yielding a re-translation throughput of 12.5
megabytes per second. These measurements show that the
efficiency of SSD copy-phase decompression enables a graceful
degradation in program performance, even when the virtual
machine must re-generate several megabytes of code during
program execution.

4. SUMMARY
Embedded systems can use this graceful degradation of program
performance to compactly store system programs in ROM but
execute them at near-native performance in a small amount of
RAM. Desktop and server systems can use SSD compression to
reduce application startup latency. In general, we have
demonstrated that SSD compression is a simple but powerful tool
that increases our ability to trade program size for program
execution time in designing computer systems.

5. ACKNOWLEDGEMENTS
This research was conducted at the Microsoft Bay Area

Research Center, San Francisco, CA. Thanks to William Evans,
Jim Gray, and the PLDI 2000 Program Committee for their
suggestions in revising earlier drafts of this paper.

6. REFERENCES
[1] J. Ernst, W. Evans, C. Fraser, S. Lucco, and T. Proebsting,

“Code compression,” PLDI ’97:358-365, 6/97.

[2] http://www.palm.com/home.html

[3] J. Kahn, R.H. Katz, K.Pister, “MOBICOM challenges:
mobile networking for ‘Smart Dust’,” ACM MOBICOM
Conference, Seattle, WA, 8/99.

2 Specifically, a function is moved to the permanent area when the

product of its size and the number of times it has been translated
is greater than the size of the round-robin area.

[4] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Addison-Wesley, ISBN 1-55860-
329-8.

[5] Intel Corp., Pentium Processor User’s Manual Volume 3:
Architecture and Programming Manual, Intel Literature
Sales, ISBN 1-55512-195-0.

[6] http://developer.intel.com/design/ia64/microarch_ovw/index.
htm.

[7] S. Furber, ARM System Architecture, Addison-Wesley, ISBN
0-201-40352-8.

[8] S. Lucco, O. Sharp, and R. Wahbe, “Omniware: a universal
substrate for web programming,” in Fourth International
World Wide Web Conference, Boston, Massachusetts, 12/95.
http://www.w3.org/Conferences/WWW4/Papers/165/.

[9] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe,
“Efficient and language-independent mobile programs,”
PLDI ’96:127-136, 6/96.

[10] A. Lempel and J. Ziv, “On the complexity of finite
sequences,” IEEE Transactions on Information Theory
22(1):75-81, 1/76.

[11] J. Ziv and A. Lempel, “Compression of individual sequences
via variable-rate coding,” IEEE Transactions on Information
Theory 24(5):530-536, 9/78.

[12] C. Fraser, “Automatic inference of models for statistical code
compression,” PLDI ’99:242-246, 5/99.

[13] K. Arnold and J. Gosling, The Java Programming Language,
Addison-Wesley, ISBN 0-201-63455-4.

[14] W. Pugh, “Compressing java class files,” PLDI ’99:247-258,
5/99.

[15] “Architecture Neutral Distribution Format: a white paper,”
Open Software Foundation, 11/90.

[16] T. Kistler and M. Franz, “Slim binaries,” Communications of
the ACM, 40(12):87-94, 12/97.

[17] M. Franz, “Adaptive compression of syntax trees and
iterative dynamic code optimization: Two basic technologies
for mobile-object systems,” TR 97-04, Dept. of Information
and Computer Science, University of California, Irvine, 2/97.

[18] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for
data compression,” Communications of the ACM 30(6):520-
540, 6/87.

[19] T. Yu, “Data compression for PC software distribution,”
Software-Practice & Experience 26(11):1181-1195, 11/96.

[20] R. Jones and R. Lins, Garbage Collection: Algorithms for
Automatic Dynamic Memory Management, Wiley, ISBN 0-
471-94148-4.

34

