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ABSTRACT 
This paper describes split-stream dictionary (SSD) compression, 
a new technique for transforming programs into a compact, 
interpretable form. We define a compressed program as 
interpretable when it can be decompressed at basic-block 
granularity with reasonable efficiency. The granularity 
requirement enables interpreters or just-in-time (JIT) 
translators to decompress basic blocks incrementally during 
program execution. Our previous approach to interpretable 
compression, the Byte-coded RISC (BRISC) program format 
[1], achieved unprecedented decompression speed in excess of 5 
megabytes per second on a 450MHz Pentium II while 
compressing benchmark programs to an average of three-fifths 
the size of their optimized x86 representation. SSD compression 
combines the key idea behind BRISC with new observations 
about instruction re-use frequencies to yield four advantages 
over BRISC and other competing techniques. First, SSD is 
simple, requiring only a few pages of code for an effective 
implementation. Second, SSD compresses programs more 
effectively than any interpretable program compression scheme 
known to us. For example, SSD compressed a set of programs 
including the spec95 benchmarks and Microsoft Word97 to less 
than half the size, on average, of their optimized x86 
representation. Third, SSD exceeds BRISC’s decompression and 
JIT translation rates by over 50%. Finally, SSD’s two-phased 
approach to JIT translation enables a virtual machine to 
provide graceful degradation of program execution time in the 
face of increasing RAM constraints. For example, using SSD, 
we ran Word97 using a JIT-translation buffer one-third the size 
of Word97’s optimized x86 code, yet incurred only 27% 
execution time overhead. 
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1. INTRODUCTION 
This research aims to increase our ability to trade program 

size for program execution time in designing computer systems. 
Specifically, we want to enable computer system designers to store 
native or virtual machine programs using a smaller amount of 
system ROM, RAM or disk space, while incurring an insignificant 
impact on program execution time. 

For example, hand-held organizer products currently popular 
can have as little as 2 megabytes ROM and 2 megabytes RAM to 
hold all system software, plus add-on software and data [2]. This 
limits the number and types of applications suitable for these 
organizers. Since data competes directly with programs for space, 
the number of contacts or maps that the device can hold will depend 
directly on the amount of space the device requires to store its 
programs. In embedded systems with even tighter constraints on 
program space, such as MEMS [3], the degree to which one can 
compress system programs determines the capabilities one can pack 
into the device. 

On desktop systems, we can use program compression to 
increase system performance by taking advantage of large 
differences in access time among components of the memory 
hierarchy. For example, we used the program compression scheme 
described this paper, split-stream dictionary (SSD) compression, to 
reduce the number of code pages required to start Microsoft 
Word97. Because SSD yields decompression speed of 7.8 
megabytes per second on a 450MHz Pentium II, disk latency 
dominated decompression time and Word97 started 14% faster than 
the same version of Word97 compiled to optimized x86 
instructions. 

The effects described in both these examples become more 
pronounced when computer systems use RISC or VLIW [4] 
instruction sets. These fixed-length program encodings are less 
compact than the variable length x86 bytecodes [5]. For example, 
early compiler implementations suggest that programs compiled for 
the Intel IA64 (Itanium) architecture [6] will require two to three 
times the code space of the same program compiled for the x86 
processor. 

Designers of embedded system processors have attempted to 
increase program encoding density by introducing 16-bit versions of 
their instruction sets or by adding complex features to their designs. 
For example, the ARM [7] computer architecture includes a 16-bit 
instruction set, called Thumb, which is used to provide program 
compression. The ARM architecture converts Thumb instructions 
back to ARM instructions during the decode pipeline stage, 
sacrificing chip area in an attempt to increase program density. 
Similarly, the ARM departs from RISC discipline by spending chip 
area on features, such as auto-increment addressing, designed to 
reduce code size. 

 
 
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
PLDI 2000, Vancouver, British Columbia, Canada. 
Copyright 2000 ACM 1-58113-199-2/00/0006…$5.00. 
 



 28 

Hence, the current evolution of embedded system processor 
designs illustrates the pressure that program storage cost exerts on 
embedded processor architecture. In adding complex features such 
as the Thumb instruction set or auto-increment addressing, ARM 
designers implicitly trade program density against program 
execution time. In contrast to these fixed-hardware approaches, SSD 
compression can reduce a program’s use of ROM, RAM and disk 
space without significantly increasing a program’s execution time. 

Specifically, SSD compressed a test suite of programs 
compiled for the Omniware virtual machine (OmniVM) [8,9], 
including Microsoft Word97 and the spec95 benchmarks, to an 
average of 47% the size of their optimized x86 representations. 
When incrementally decompressed, JIT-translated, and executed by 
the OmniVM, these programs ran an average of 6.6% slower than 
the optimized x86 versions, demonstrating that SSD supports fast 
JIT-translation of processor-neutral code. Further, execution-time 
profiles of these programs revealed that SSD decompression and JIT 
translation contributed no more than 0.7% to any program’s 
execution time; limitations on JIT-translated code quality accounted 
for most of the execution time overhead. 

Section 3 of this paper provides more details of these 
experiments; it also reports the impact of varying JIT-translation 
buffer size on program execution time. The results of this 
experiment show that SSD compression supports graceful 
degradation of program execution times as JIT-translation buffers 
shrink. SSD achieves this result by supporting two-phased JIT-
translation. In the phase one, the virtual machine loads and 
decompresses a dictionary. The dictionary maps 16-bit indices to 
sequences of one to four instructions. During phase two, the JIT-
translator expands a basic block by copying dictionary entries into a 
native code buffer. Because phase two translation consists mostly of 
copying memory blocks, it is fast. For our set of benchmark 
programs, we measured the average speed of 12.5 megabytes of 
produced code per second for phase two translation. Once the 
virtual machine pays the fixed cost of dictionary decompression, it 

can translate and re-translate parts of the program at this phase two 
translation speed. This feature enables a virtual machine to achieve 
reasonable program execution times even when using a native code 
buffer significantly smaller than the program being executed.  

The remainder of this paper is organized as follows. Section 2 
places SSD compression in the context of previous approaches to 
program compression. It then explains in more detail why and how 
SSD compression works and describes how to incorporate SSD 
compression into program loaders and virtual machine 
implementations. Section 3 provides a quantitative assessment of 
SSD. Finally, section 4 summarizes. 

2. SSD COMPRESSION 
Many compression techniques encode their input using a 

dictionary. In general, a compression dictionary stores common 
input patterns. All or part of a compressed input consists of compact 
references to the dictionary. When the dictionary does not depend 
on the input, we call it external. If the dictionary depends on input 
but does not change during decompression, we call it static; 
otherwise, we call a dictionary dynamic. Lempel-Ziv compression 
uses a dynamic dictionary [10]. As LZ decompresses data, it stores 
each novel sequence of bytes in a dictionary. Items further back in 
the stream of compressed data can refer to these implicitly generated 
dictionary entries using a byte offset and a length [11].  

Because LZ compression uses a dynamic dictionary, it is 
stream-oriented. An LZ decompressor can’t randomly access and 
decode a particular basic block or function. Arithmetic coding 
strategies, which have yielded the most effective archival program 
compression solutions known to us, share this limitation with LZ 
compression [12,18,19]. 

To support fast in-place interpretation or JIT-translation of 
compressed programs, we need to design a program compression 
scheme capable of fast decompression at basic block granularity. We 
designate as interpretable any program compression scheme that 
fulfills this criterion. 
 

Program 
 
 

Optimized 
x86 

Size (bytes) 
Total Instructions/ 

Unique Instructions 

Average Re-use 
Frequency for an 

Instruction 
Unique 
Digrams 

Average 
Re-use 

Frequency 
for a Digram 

Avg. Re-use Freq. Of 
Most Common 

Instruction Sequences 
(top 10%) 

Word97 5175500 1427592/124288 11.5 518351 2.8 16.6 

Gcc 2.6.3 747436 194501/22946 8.4 78413 2.5 12.5 

Vortex 400040 97931/11828 8.3 34657 2.8 12.8 

Perl 238950 75270/11664 6.5 34043 2.2 9.5 

Go 180838 36398/6133 5.9 17568 2.1 10.0 

Ijpeg 136070 31057/7893 3.9 19207 1.6 8.5 

M88ksim 119782 21957/5865 3.7 11403 1.9 3.4 

Xlisp 75942 13414/1860 7.2 5549 2.4 7.4 

Compress 7234 1411/591 2.4 1032 1.4 5.2 

 
Table 1: Redundancy of instructions occurring in benchmark programs. All columns reflect instruction-matching algorithm that compares 
sizes but not specific values of pc-relative branch targets. The last column reports the average re-use frequency for the 10% of instruction 

sequences (lengths 2-4) that were most common.  
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Figure 1: Instruction semantics often do not match byte 
boundaries. 

We can clarify further the class of interpretable program 
compression schemes by describing why some related efforts 
don’t fit into this category. Java class files [13] are directly 
interpretable, but are not compressed; they are often larger than 
the native-compiled version of a given Java class [14]. Further, 
Java class files can not efficiently represent programs written in 
many other programming languages, such as C++. ANDF 
programs [15] and slim binaries [16] represent programs at a high 
level of abstraction, similar to abstract syntax trees (ASTs) [17]. 
Hence, they represent programs in a form that requires significant 
further compilation following decompression. For this reason, 
AST representations such as these are not examples of 
interpretable program compression. 

Among previous approaches to interpretable program 
compression, the BRISC program format is the most effective 
known to us. BRISC compresses programs to about 61% the size 
of their optimized x86 representation and supports JIT translation 
at over five megabytes per second [1]. Like the best stream-
oriented program compression methods [12], BRISC excels by 
considering non-byte-aligned quantities in its input stream. 
Compression methods such as LZ are byte-oriented; they assess 
similarities among input patterns in terms of byte comparisons. 
However, most of the information within a virtual or native 
machine language program, for example opcodes or register 
numbers, is not aligned on byte boundaries (see Figure 1 for an 
illustration). Program compression methods that consider the 
individual fields within instructions are called split-stream 
methods [1]. BRISC and other split-stream compression 
techniques conceptually split the input stream of instructions into 
separate streams, one for each type of instruction field. In contrast 
to BRISC, SSD uses a split-stream method to compress not the 
entire program but only a dictionary of instruction sequences 
derived from the program. SSD compresses a program into two 
parts: a split-stream compressed dictionary and a stream of SSD 
items.  

SSD is significantly simpler to implement than BRISC. 
BRISC requires the generation and maintenance of a corpus-
derived set of instruction patterns designed to capture common 
opportunities for combining adjacent opcodes and for specializing 
opcodes to reflect frequently occurring instruction-field values. A 
virtual machine implementing BRISC will have to load and 
decode this external dictionary of instruction patterns 
(approximately 2000 instruction patterns or 150 kilobytes of 
data). Also, systems implementing BRISC must maintain a 
separate program to generate the external dictionary of instruction 
patterns from a training corpus of representative programs. 

Further, BRISC’s compression effectiveness depends on the 
applicability of the training corpus. In contrast, SSD embeds an 
input-specific dictionary into each compressed program. When its 
input is large (30 kilobytes or more), SSD is not only simpler than 
BRISC but also compresses programs more effectively (see 
Section 3 for details). 

SSD achieves this combination of simplicity and 
effectiveness by exploiting the surprisingly high frequency with 
which large programs re-use small sequences of instructions. 
Table 1 summarizes single instruction re-use frequency for our set 
of benchmark programs. These measurements show that our 

1. Make each unique instruction in P a base entry of D 
2. Cur=P; E=the empty sequence 
3. while (Cur not empty) 

a. find the longest sub-sequence of instructions 
s, with length L, such that: 

i. Cur contains at least L instructions 
and L<=4 

ii. s matches the first L instructions in 
Cur 

iii. s occurs at least twice in P 
iv. s is contained within a single basic 

block of P 
b. if L>=2 then 

i. Entry=GetEntry(D,s) 
c. else 

i. Entry=GetEntry(D,Head(Cur)) 
d. target=GetBranchTarget(Cur,L) 
e. Append(E,NewRef(Entry,Target)) 
f. Cur=Ntail(Cur,L) 
 

Algorithm 1: Dictionary Generation 

Input P: a sequence of instructions 
Outputs D: an SSD dictionary 

 E: a sequence of references to entries in D 
Variables Cur: a sequence yields of instructions 

 Entry: a dictionary entry 
 Target: pointer to branch target instruction 

Operators Ntail(S,n): If sequence S has length LS, returns 
the suffix of S with length LS-n 

 Head(S): returns first element of sequence S 
 Append(S,e): appends e to end of sequence S 
 GetEntry(D,s): returns dictionary entry matching 

instruction sequence s; creates entry if necessary.  
 NewRef(entry,tgt): returns structure containing 

reference to dictionary entry and branch target 
tgt 

 GetBranchTarget(S,L): return branch target, if 
any, of Lth instruction in sequence S 

 
Table 2: Variables used in Algorithm 1. 
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benchmark programs re-use each of their instructions an average 
of 2.4 to 11.5 times. Further, all programs whose x86 optimized 
code is at least 150 kilobytes in length re-use each of their 
instructions an average of 5.9 to 11.5 times. The data in Table 1 
reflects an instruction-matching algorithm that compares the sizes 
but not the specific values of pc-relative branch targets. All other 

instruction fields must match exactly. Section 2.1 explains why 
SSD handles branch targets in this way. Table 1 shows that re-use 
frequencies drop off for sequences of two instructions; however, it 
also shows that the benchmark programs rabidly re-use their 
favorite two- to four-instruction idioms. 

2.1 Overview of SSD 
SSD takes advantage of this phenomenon by constructing a 

dictionary that contains two types of entries. First, the dictionary 
contains an entry for each individual instruction that occurs in the 
program; we call these base entries. Second, the dictionary 
contains an entry for each two- to four-instruction sequence that 
occurs two or more times in the input program; we call these 
sequence entries.1 If an input program were to avoid re-using any 
instructions, the dictionary would be identical to the input 
program and SSD’s output would be larger than the input. 
Fortunately, the measurements in Table 1 show that large 
programs make extensive re-use of single instructions and short 
instruction sequences. 

Once it has constructed the dictionary for a given program P, 
SSD matches the instructions in P against the dictionary. Call the 
first instruction in P i1, the next i2, etc. SSD matches the 
sequence <i1,i2,i3,i4> against all four-instruction sequences in the 
dictionary. If it finds a match with sequence entry e it outputs an 
SSD item that refers to e and then continues matching with 
instruction i5. Otherwise, SSD tries to match <i1,i2,i3> against all 
three-instruction sequences in the dictionary, and so on. Finally, if 
no sequence entries match the current input, SSD will output an 
SSD item that refers to the base entry matching i1; then SSD will 
continue matching with instruction i2. SSD continues matching 
input instructions against the dictionary and generating SSD items 
until the input is exhausted. 

SSD items refer to dictionary entries using 16-bit indices. A 
dictionary of 215 entries proved sufficient for all benchmark 
programs except Word97; Word97 required 281,107 entries. If a 
dictionary requires more than 216 entries, SSD partitions the 
dictionary into a common dictionary that applies to the entire 
compressed program, and a series of sub-dictionaries that apply only 
to parts of the compressed program. 

In addition to a 16-bit index, an SSD item may also contain a 
pc-relative offset representing an intra-function branch target. A 
dictionary entry contain at most one branch instruction. In sequence 
entries, the branch instruction is always the last instruction of the 
sequence; no dictionary entry spans more than one basic block. 

For two reasons, SSD represents intra-function branch targets 
as pc-relative offsets in the stream of SSD items rather than as 
absolute instruction addresses inside dictionary entries. First, pc-
relative offsets are more compact than absolute addresses. Second, 
this enables SSD to ignore pc-relative offset values when comparing 
branch instructions during dictionary construction. Instead of 
matching the exact value of pc-relative offset fields, SSD matches 
only the size of pc-relative offsets. This choice sharply reduces

                                                                 
1 We’ll see below that the definition of sequence entries is slightly 

more complex. The SSD dictionary will not contain a k 
instruction sequence s1 if every occurrence of s1 is subsumed by 
a sequence s2 that is k+1 or more instructions long. 

dictionary size but requires that the stream of SSD items explicitly 
represent pc-relative offsets. For our set of benchmark programs, 
this choice yielded compressor output an average of 6.2% smaller 
than the output of a compressor configured to represent branch 
targets as absolute values within dictionary entries. 

2.2 SSD Details 
The previous sub-section provided an overview of SSD 

compression. In this sub-section, we describe in more detail the 
three main algorithms of SSD: dictionary construction, dictionary 
compression and SSD item generation. 

Given an input program P, SSD uses Algorithm 1 to generate a 
dictionary D and a sequence E of dictionary entries. Algorithm 2 
(detailed below) converts a dictionary entry sequence E to a 
sequence of SSD items. 

To implement Algorithm 1, we use two hash tables and an 
additional pass over the input. The first hash table (HI) contains 
individual instructions; the second (HD) contains digrams of 
adjacent instructions. Before executing Algorithm 1, our SSD 
implementation reads the entire program, constructing these two 
hash tables. To implement step 1 of Algorithm 1, our 
implementation makes each element of table HI a base entry of 
dictionary D. The remainder of Algorithm 1 constitutes a second 
pass through the input program P. Conceptually, the algorithm 
matches prefixes of lengths 2-4 of the remaining instructions (Cur) 
against the entire program (P), attempting to find a sequence of 
instructions (s) that matches the prefix and occurs at least twice in P. 

To accomplish this operation, our implementation matches the 
prefix of length 2 against the digram hash table (HD). For each 
digram d occurring at least twice in P, HD contains a list of all the 
program addresses at which d occurs. To implement step 3.a, our 
implementation traverses this list, matching the instructions at the 
front of Cur against up to four of the instructions found at each 
location of the matched digram d within the program P. The 
implementation compares the longest match, if any have length >= 
2, with the sequence entries already in D. If D does not already 
contain a sequence entry for matching instruction sequence s, step 
3.b.i creates a new sequence entry and adds it to D.  

 When a match is found, then step 3.f of Algorithm 1 sets 
Cur to begin at the next instruction after the matched prefix. This 
step yields a greedy algorithm, because by skipping over 
instructions once it has found a match, Algorithm 1 ignores the 
possibility of finding a longer match beginning at one of the other 
instructions in the matched prefix. In any case, step 3.e appends to 
output sequence E the dictionary entry (entry) obtained during 
steps 3.a and 3.b. 

It is important to emphasize that in the case of branch 
instructions our method for comparing instructions is more 
complex than simple equality. Two branch instructions a and b 
will match when their pc-relative branch target fields are equal in 
size and all other fields are exactly equal. A dictionary entry eb 
containing a branch instruction specifies only the size szb in bytes 
of eb’s target. Each SSD item referring to eb supplies a pc-relative 
branch target of size szb. 
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2.2.1 Base Entry Compression 
To compress the base entries of dictionary D, SSD first sorts 

the entries by opcode, creating an instruction group for each 
opcode. Within each instruction group, SSD sorts the entries by 
the largest instruction field for that group’s opcode. For example, 
SSD sorts call instructions by target address, but sorts 
arithmetic-immediate instructions (e.g. add r1,r2,45) by their 
immediate field. Of course, the details of this sorting step depend 
on the particular instruction set of the input program. For the 
measurements reported in Section 3, the input instruction set was 
the OmniVM virtual machine instruction set. 

Within an instruction group, each instruction field is output 
as a separate stream. For example, for an add immediate 
instruction group (with pattern add reg1,reg2,imm), our 
implementation would first sort the group by the imm field and 
then output all imm fields followed by all reg1 fields followed 
by all reg2 fields.  

We tried two techniques to further compress the base entries. 
First, we encoded the sorted field (in our example, the imm field) 
using delta coding. Delta coding expresses each value as an 
increment from the previous value (with suitable escape codes for 
occasional large deltas). All other fields are output literally. 
Second, we concatenated all of the sorted instruction groups and 
then applied a simple form of LZ compression to the result. This 
latter approach was simpler and yielded better compression. It is 
used for all experiments reported in Section 3. 

2.2.2 Sequence Entry Compression 
SSD compresses the sequence entries of a dictionary D by 

constructing a forest of trees, one tree for each instruction i that 
can start a sequence. A given tree ti represents all of the sequences 
in D that start with i. If two such sequence entries in D share a 
common prefix p of length L, their representation in ti will share 
the first L nodes. Figure 2 depicts a simple forest of sequence 
entries. SSD stores each tree as a sequence of 16-bit indices that 
refer to base entries of D. SSD stores these indices in prefix order. 
If D’s base entries number 215 or fewer, SSD represents the tree 
structure using the high-order bit of each index. If D has more 
than 215 base entries, SSD uses a special index value to mark 
upward tree traversal. 

2.2.3 SSD Item Generation 
Algorithm 2 describes the SSD algorithm for emitting SSD 

items. In practice, we need to perform some extra bookkeeping to 

support step 3 of Algorithm 2. For each forward branch processed 
in step 2.b.i, Algorithm 2 must create and save a relocation item. 
Each relocation item points to an SSD item bri in I. The relocation 
item also contains the intended target of the forward branch bri in 
terms of Algorithm 2’s input sequence E. Then, in step 3, 
Algorithm 2 traverses its list of relocation items, overwriting the 
pc-relative branch target values once their target addresses in I are 
known. To compute these target addresses, Algorithm 2 maintains 
a forwarding table that maps items in sequence E to items in 
sequence I. Algorithm 2’s ConvertTarget operator immediately 
looks up backward branches in this forwarding table, but for 
forward branches, it creates a relocation item. 

2.2.4 JIT Translation 
In this sub-section, we describe SSD decompression; we also 

show how to incorporate SSD decompression into virtual machine 
(VM) systems that incrementally translate compressed programs 
into native instructions. 

We divide SSD decompression into two phases, the first 
called the dictionary decompression phase, and the second called 

 
1. Cur=E 
2. while (Cur not empty) 

a. Ref=Head(Cur) 
b. If (IsBranch(Ref.t)) then 

i. Tgt=ConvertTarget(I,Ref.t) 
c. else 

i. Tgt=null 
d. Append(I,NewItem(GetIndex(Ref.R),Tgt)) 

3. Fix branch targets for forward branches 
 

Algorithm 2: SSD Item Generation 

Input E: a sequence of pairs <R,t> where R refers to a 
dictionary entry and t is a branch target 

Output I: a sequence of SSD items, one for each element 
of E 

Variables Ref: a pair <R,t> as described above 

 Tgt: a branch target 

Operators GetIndex(R): returns 16-bit index corresponding 
to dictionary entry referred to by R 

 NewItem(indx,tgt): given an index indx and a 
branch target, tgt, creates an SSD item 

 IsBranch(tgt): returns true if tgt is a valid branch 
target 

 ConvertTarget(I,tgt): given a branch target tgt, 
converts it to a branch target expressed relative 
to the end of SSD item sequence I 

 
Table 3: Variables used in Algorithm 2 

yields sequence 
entries 

A1 

B1 C1 

 A2 

B2 

C2 
D2 

E2 

A1, B1 
A1, C1 
 
A2, B2,C2 
A2,B2,D2,E2 

Figure 2: Tree representation of four sequence entries. 
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the copy phase. During dictionary decompression, the VM first 
reconstructs the base entries of the compressed program’s 
dictionary, reversing the compression steps described in Section 
2.2.1. Second, the VM reconstructs the sequence entries of the 
dictionary by traversing the tree that represents these entries. 

If the original input to SSD contained virtual machine 
instructions, then the VM performs additional work during the 
first of these dictionary decompression steps. As the VM 

generates base entries, it converts them from virtual machine 
instructions to native instructions. This type of conversion is 
appropriate only for virtual machine instruction sets (like 
OmniVM) that accommodate optimization, since the conversion 
is done by translation of individual instructions, rather than 
optimizing compilation. Of course, the VM can take a hybrid 
approach by further optimizing each function once it has 
generated the native code for that function. For example, the 
OmniVM can optionally perform machine-specific basic block 
instruction scheduling on its generated native code. 

The organization of the base dictionary entries facilitates 
rapid conversion from virtual to native instructions. Since SSD 
arranges these entries into instruction groups sorted by opcode 
and largest field value, much of the work needed to translate a 
particular instruction can be shared among the instructions in a 
group. 

SSD dictionary decompression produces an instruction table 
of native instructions organized to support the copy phase of SSD 
decompression. The instruction table maps the 16-bit indices 
found in SSD to sequences of native instructions. Each entry in 
the instruction table begins with a 32-bit tag. The tag provides the 
length of the ensuing instruction sequence. If the instruction 
sequence ends with a branch instruction b, the tag provides a 
negative offset from the end of b; this offset indicates where 
within b to copy the pc-relative branch target t that will be 
supplied by the SSD item. Instruction b’s opcode determines t’s 
size. 
 

Algorithm 3 details the copy phase of SSD decompression. 
This phase of SSD decompression can take place incrementally. 
The Omniware virtual machine implementation uses SSD 
decompression to perform JIT translation one function at a time. 
In Algorithm 3, this would correspond to setting start to point to 
the beginning of the function and end to point just past the 
function. There are three paths through step 2 of Algorithm 3, 
depending on whether the translated SSD item contains a forward 
branch or call, a backward branch, or only non-branching 
instructions. The latter path occurs most frequently and requires 
only 7+n x86 machine instructions to complete, where n is the 
number of bytes of native instructions copied. 

3. PERFORMANCE EVALUATION 
The decompression algorithms described in the previous 

section are designed to support rapid, incremental decompression 
and JIT translation of highly compressed programs. In this 
section, we provide a quantitative evaluation of how well SSD 
achieves these goals. We will present results from three sets of 
experiments. In the first experiment, we compared in size SSD-
compressed, optimized OmniVM versus optimized-x86 
representations of a set of benchmark programs, including the 
spec95 benchmarks and Word97. Second, we measured the 
impact of SSD decompression and JIT translation on the 
execution time of our benchmark programs. Finally, we limited 
the size of the buffer used to hold JIT-translated native 
instructions and measured the impact of this limitation on 
Word97 execution times. 

We performed all of these experiments on a 450MHz 
Pentium II processor with 128 megabytes of memory, running 
Microsoft Windows NT 4.0 service pack 5. We used Microsoft 
Visual C++ 5.0 at its highest level of optimization to compile our 

Inputs Ibuf: buffer containing SSD items 
 Start: address of first item to translate 
 End: addess just past last item to translate 
 Itab: instruction table produced by 

dictionary decompression 
Output:  Jbuf: JIT-translation buffer containing 

native instructions 
Variables Ptr: pointer to current SSD item  
 Copylen: number of instruction bytes to 

copy 
 Iptr: pointer into instruction table 
 Jptr: pointer into JIT translation buffer 
Operators GetLength(itab,item): use itab to find 

length in bytes of instructions to be copied 
for item 

 GetPointer(itab,item): return pointer to 
instructions to be copied 

 IsBranch(itab,item): returns true if item 
refers to instruction sequence ending with 
branch 

 
Table 4: Variables used in Algorithm 3. 

1. ptr=start;jptr=jbuf 
2. while (start<end) 

a. item=ibuf[ptr]  
b. copylen=GetLength(itab,item); 

iptr=GetPointer(itab,item) 
c. copy copylen bytes from iptr to jptr 
d. jptr=jptr+copylen 
e. if (IsBranch(itab,item) then 

i. get branch target from item 
ii. if forward branch or function call 

then create relocation item for 
branch target field else convert 
branch target to pc-relative offset 
and overwrite target field in copied 

f. ptr=ptr+size of item in ibuf 
3. Apply relocation items to fix up forward branches and 

call targets 
 

Algorithm 3: Copy Phase of SSD Decompression 
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benchmark programs. To measure execution time for the spec95 
benchmarks we used the standard benchmark input sets; for 
Word97, we used a performance test suite that includes the 
Word97 auto-format, auto-summarize and grammar check.  

Table 5 shows SSD compressed the OmniVM benchmark 
programs to less than half the size, on average, of their optimized 
x86 versions. Table 5 also compares SSD compression to BRISC 
compression, illustrating that SSD compresses programs more 
effectively than BRISC. 
 In addition, Table 5 lists execution times for our benchmark 
programs. The measurements demonstrate that SSD 
decompression does not significantly impact program execution. 

time; execution time overhead averaged just 6.6%. Table 5 breaks 
this overhead into components, measured using execution time 
profiling, showing that most of the execution time overhead was 
due to reduced quality of the JIT-translated native code rather 
than to decompression overhead. Decompression overhead 
contributed less than 0.5%, on average, to the total execution time 
of the benchmarks.  

Finally, Figure 3 graphs performance of Word97 as a 
function of JIT-translation buffer size, using both BRISC and 
SSD compression. We varied buffer size from 0.2 to 0.5 times the 
size of Word97’s optimized x86 code. The figure plots execution 
time overhead against buffer size. In these measurements, the 

Program 

Optimized 
x86 

Size (bytes) 

Ratio of 
SSD 

Compressed 
Size to 

Optimized 
x86 Size 

Ratio of 
BRISC 

Compressed 
Size to 

Optimized x86 
Size 

SSD 
Execution 

Time 
Overhead 

SSD JIT 
Translation and 
Decompression 
Execution Time 

Overhead 

SSD Overhead Due to 
Reduced Code 

Quality 

Word97 5175500 0.45 0.69 3.2% 0.7% 2.5% 

Gcc 2.6.3 747436 0.49 0.57 9.1% 0.4% 8.7% 

Vortex 400040 0.37 0.55 7.7% 0.4% 7.3% 

Perl 238950 0.57 0.85 8.6% 0.3% 8.3% 

Go 180838 0.42 0.60 5.5% 0.2% 5.3% 

Ijpeg 136070 0.50 0.60 8.1% 0.5% 7.6% 

M88ksim 119782 0.41 0.49 7.4% 0.3% 7.1% 

Xlisp 75942 0.43 0.59 5.1% 0.2% 4.9% 

Compress 7234 0.58 0.57 4.3% 0.2% 4.1% 

Average 786866 0.47 0.61 6.6% 0.4% 6.2% 

 
Table 5: Compression effectiveness of SSD compared to BRISC. Also, execution time performance of SSD. All execution time 

overhead values computed relative to optimized x86 program execution time. 

Buffer Size 
(including 

dictionary size) / 
Optimized x86 

Code Size 

Megabytes JIT-
Translated 

(including re-
translation) 

Buffer 
Hit Rate 

0.2 208.0 91.31 
0.25 119.1 94.35 

0.275 53.2 99.83 
0.3 13.5 99.87 

0.325 9.3 99.89 
0.35 7.4 99.89 
0.4 6.5 99.93 

0.45 6.1 99.95 
0.5 5.3 99.96 

 
Table 6: Megabytes JIT-Translated and Buffer Hit Rate 

Versus Buffer Size for Word97  
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buffer size is computed as the sum of the JIT translation buffer 
size plus the size of either the SSD dictionary or, for BRISC, the 
BRISC external dictionary. Also, the infrastructure required to 
discard and to re-generate JIT-translated code (including a level of 
indirection for function calls) increases to 14.1% the minimum 
execution time achievable (versus the JIT-translate-once overhead 
of 3.2%). 

 To perform this experiment, we used a buffer space 
replacement policy that combines round-robin and LRU 
concepts[20]. The replacement policy breaks the JIT translation 
buffer into a permanent and a round-robin area. During program 
execution, functions that are large and frequently used2 are moved 
to the permanent area. To reduce fragmentation, functions smaller 
than 512 bytes also reside in the permanent area. Table 6 shows 
that this policy achieves excellent hit rates. For example, when we 
ran Word97 using a JIT translation buffer 0.4 times the size of 
native Word97, 99.3% of all function calls were to functions 
already residing in the buffer. Despite this excellent hit rate, 
Word97 required re-translation of 6.5 megabytes of code during 
the benchmark, yielding a re-translation throughput of 12.5 
megabytes per second. These measurements show that the 
efficiency of SSD copy-phase decompression enables a graceful 
degradation in program performance, even when the virtual 
machine must re-generate several megabytes of code during 
program execution. 

4.  SUMMARY 
Embedded systems can use this graceful degradation of program 
performance to compactly store system programs in ROM but 
execute them at near-native performance in a small amount of 
RAM. Desktop and server systems can use SSD compression to 
reduce application startup latency. In general, we have 
demonstrated that SSD compression is a simple but powerful tool 
that increases our ability to trade program size for program 
execution time in designing computer systems. 
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