
MACHINE-INDEPENDENT REGISTER ALLOCATION

Richard L. Sites

Dept. of Electrical Engineering and Computer Sciences
University of California at San Diego

La Jolla, CA 92093

C-014

Introduction.

The context of this paper is a machine-

independent Pascal optimizer that

transforms an intermediate stack-machine

pseudo-code program into a generally smaller

and faster pseudo-code program. The emphasis

of this current paper is on the approach

taken for mapping registers and storage,

using an abstract but practical definition of

the target machine's storage hierarchy. A

companion paper [7] describes the overall

optimizer project. After starting on this

project, additional input became available

from a Fortran-to-Pcode compiler written at

Stanford [2]. Our storage mapping design is

sufficiently robust that the addition of

Fortran EQUIVALENCE and COMMON statements

required no changes.

Our particular allocation algorithm is

not unique or original, but the abstract

description of the storage hierarchy, and its

inclusion of practical considerations we

feel to be an original contribution. The

description framework has so far stood the

test of describing the storage hierarchy of

many commercially-available machines without

needing to be extended or embellished. We

hope that this is a good predictor for the

future.

The purpose of a machlne-independent

storage (and hence register) allocator is to

accept a set of variable names, their

corresponding llve ranges and frequency of

use, and to (re-)map these names into a

usually smaller set of names, such that

frequently-used variables are mapped into

names that are intended to correspond with

high-speed access in the final target

machine, and such that two variables with

disjoint live ranges are allowed to he

mapped into the same output name. The effect

of such a mapping is to speed up the

execution of the final program, while also

reducing the amount of run-tlme storage

needed. The rest of this paper describes the

problems encountered and the storage

description used in our mapping.

The Input.

Our allocation phase runs before final

target-machine code generation, but after

initial (compiler) mapping of activation

records and after a global common

sub expresslon optimizer that creates new

temporaries. Running after initial storage

mapping allows us to treat overlapping

variables (from Pasea] variant records and

Fortran EQUIVALENCE), and also allows us to

detect nested fields within records or

arrays, so that only the largest aggregate is

mapped as a single unit. Running before

target-machine code generation allows us to

he machine independent, hut requires a

partitioning of the registers -- part for us

and part left over for code generation. This

contrasts with the approach taken in the

orlginal Bliss compiler [8] and in the

current PQCC project [6].

The input to the storage allocator

consists of a Universal P-code program, where

P-code is a machine language for a

© 1979-ACM 0-89791-002-8/79/0800-0221 $00.75 see ii 2 2 1

hypothetlcal stack machine. Variables (and

compiler/optlmizer generated temporaries) are

referenced by quintuples:

<data type,memory type,block no ,offset,length>

The data type might be Integer, Real,

Boolean, Array, etc. The memory type is one

of the target machine memory hierarchy levels

described below. The block number is a

unique activation record number for each

procedure in the program. The offset and

length describe a particular set of storage

locations within the sub-activation record

<memory type, block number>. The unit of

storage (word, byte, bit, etc.) is not

specified -- the only constraint is that all

offsets and lengths must be consistent.

Typically, the unit would be the smallest

amount of storage allocated to a field in a

PACKED record.

The input P-code has storage mappings

within each procedure's activation record

already resolved, usually by simple first-

declared-first-allocated algorithms in the

compiler. In particular, mapping of fields

within records and boundary alignment of

fields and variables have been done. Fields

in variant records, which may overlap or

share storage, have been mapped into

overlapping or identical <offset, length>

pairs. Similarly, Fortran COMMON and

EQUIVALENCE statements have been resolved

into offsets and lengths within activation

records (COMMON blocks or groups of local

varlables).

A P-code program consists of many

procedures, not Just one, and each of these

consists of many basic blocks (pieces of

stralght-line code). The input to the

storage allocator includes both a P-code

program and an indication of the llve range

of each input name. The llve ranges can be

gathered by quite tradltlonal flow-analysis

techniques, which are not further discussed

in this paper.

and length fields will remain unchanged. The

output P-code will eventually be translated

to machine language for some target machine.

In general, the target machine may have a

storage hierarchy, for example some fast

registers, some directly addressable memory,

and some indirectly addressable memory.

Our current allocatlon algorithm is

similar to those described by Day [2] and

Frelburghouse [3]. It maps as many variables

as posslble (weighted by frequency of use,

and negatively weighted by length) into

offset 0 of the top level of the hierarchy,

then more variables into the next offset, and

eventually next level, until all variables

have been mapped. No variable, array, or

record is split across levels. The bias

toward low offsets is quite dellberate, since

it is a good match to machines with short-

and long-address instruction formats, it

encourages cache locality, it allows use of

block load/store instructions for registers,

and it doesnSt hurt on other machines.

This algorithm is in distinct contrast to

optlmal-colorlng algorlthms [4,5], which

exhibit no preference for low-numbered

locations, and which do not adopt well to

choosing which variables to place in each

level of the hlerartchy when not all fit in

the topmost level. An optimal algorithm

might need i0 registers for a set of

variables when only 9 are available. If so,

the optimal coloring gives no hints about the

best variables to spill. Our algorithm will

put the most heavily used variables in the 9

registers, even though this might cost us a

non-optlmal mapping that requires more than

I0 locatlons total. It is not clear which

approach is better for real programs.

To the extent that a wide range of target

machine hierarchies can be accurately

described via a small table of parameters, we

can use a slngle storage mapping algorithm to

do good reglster/storage allocation for all

of those machines. This is the main thrust

of our current work.

The Output.

The output of the storage allocator is a

P-code program with the variable references

re-arranged within each activation record,

i.e. the memory type and offset fields may

be changed, but the data type, block number,

The Storage Hierarchy Description.

Our "small table of parameters" consists

of an ordered llst of descriptions of each

level of the hierarchy, starting with the

most desirable level (fastest), and ending

222

with the least desirable (usually main

memory). Each level is described with five

parameters:

Memory type. A single letter corresponding

to the memory type field of output

quintuples.

Maximum size. The maximum number of storage

units available for this level (i.e. the

maximum value of offset + length in an

output quintuple with this memory type.

Minimum allocation. The minimum number of

storage units to be allocated at once.

All variables allocated will have offsets

that are a multiple of this number.

Maximum alignment. The maximum interesting

storage alignment boundary for the target

machine's hardware. Input variables that

are aligned to such a boundary (or a

simple fraction of one) will remain so

al Igned.

Set of data types. A list of all the

datatypes allowed to be allocated to this

level of the storage hierarchy.

We will give an example of a storage

hierarchy description, then Justify our

choice of parameters, then demonstrate the

power and flexlbility of this partlcular

choice.

Example. A description of the IBM 370
storage hierarchy, with 1 storage unit =
1 bit, 9 general-purpose registers
available for storage of variables, 1
floatlng-point register available, 3800
bytes of directly-addressable memory
available, and 16,000,000 bytes of
Indirectly-addressable memory available.

Memtype Maxsize Minalloe Maxallgn Datatypes
.......................................

G 9*32 32 32 A,B)C,I
F 1"64 64 64 R
D 3800*8 8 64 A-Z
M 16000000*8 8 64 A-Z

MemtvDes:
G - general purpose registers (GPRs)
F - floating-polnt registers (FPRs)
D - dlreetly-addressable main memory

(within the first 4K bytes of an
activation record -- assumes that
some base or dlsplay register will
point to the first memory byte of
each activation record)

M - the rest of main memory, i.e. large
offsets in an activation record,
which must be accessed via indirect
pointers in the first 4K bytes.

Datatypes:
A - address (pointer)
B - boolean
C - character
I - integer
R - real
Q - record
M - array

etc.

The above description specifies the four
interesting pieces of the IBM 370 storage
hierarchy, and supplles some details
about each piece. The sizes are shown as
products, rather than raw bit counts,
only for clarity in this example: in the
actual P-code, 9*32 would be 288. The
minimum allocatlon size is the size of
each register(32 or 64 bits), or the
minimum addressable unit (8 bits) in
memory. The maximum interesting alignment
in the GPRs is one register, and the same
in the FPRs. The maximum interesting
alignment in memory on the IBM 370 is
doubleword alignment -- multiples of 64
bits. The sets of datatypes allowed at
each level are carefully choosen to avoid
(I) allocation of a real number to a GPR
or an integer to an FPR, and (2)
allocation of any array to the registers,
since it is not practical to calculate a
register number as a variable subscript.

Justification.

The maximum size parameter is needed to

delineate exactly how much of the target

machine resources are available for storage

of varlables and temporaries. The remaining

resources (i.e. the other 7 GPRs, 3 FPRs,

and 296 bytes of dlrectly-addressable memory

above) are reserved for linkage conventions,

indirect pointers, expression evaluation

pseudo-stack, and other needs of the target

machine code generator.

The minimum allocatlon parameter makes it

possible to respect target machine addressing

boundaries, which may vary from level to

level. One of the subtleties addressed by

the minimum allocation idea is that two 32-

bit real numbers must not be allocated to the

same 64-bit FPR, while adjacent allocation

into 64 bits of main memory is all right.

The maximum alignment parameter is needed

so that the storage allocator can preserve

incoming boundary alignment of a variable,

without "over-preserving" it -- an incoming

223

variable with an offset that Just happens to

be a multlple of 1024 should not be

constrained to such a boundary if the target

machine only cares about multiples of 64.

Our alignment-preserving algorithm is:

New Align = GCD(Maxalign,input offset,length).

Length is included so that a 16-bit item is

not forced to be on a 64-blt boundary.

The set of datatypes is probably the most

important parameter, in terms of making sure

that a variable is not allocated in a place

that is entirely inappropriate to its

representation or to the set of operations

to be performed on it. The abillty to use

datatypes to prevent arrays from being

allocated to non-subscrlptable registers is

also important, and indicates the robustness

of the description.

F1 ex ib il ity.

The above description style has been used

to describe the storage hierarcy of the

Lawrence Livermore Labs S-I computer, a 36-

bit number-cruncher that vaguely resembles

the PDP-10. The machine has 32 36-blt

registers, and byte (9-blt) address

resolution in main memory. The registers are

a subset of the memory address space, so it

is possible to reference them as memory

addresses. Instructions can address the

first 64 words of offset from an address in a

register by using only a few address bits,

while larger offsets require extra

instruction words. In the hierarchy

descrlptlon,the size parameter is

straightforward. The minimum allocatlon

parameter is used to allow byte-slze

variables to be packed together in adjacent

bytes in memory, but to allocate registers 4

bytes at a time. The maximum allgnment

parameter for this machine is 36 bits (not a

power of two). Variables are preserved on 36-

bit boundaries, and also 18-, 12-, 9-, 6-,

4-, 3-, 2- and I- bit boundaries. Because

of cache llne considerations, it may prove

desirable to align to 72- or 144-bit

boundaries. This is trivially expressed by

changing the Maxallgn parameter.

In describing the storage hierarchy of

the tray-l, it is necessary to keep large

(64-blt) items from being allocated to the

small (24-blt) address registers, while

still allowing small integers to use those

registers. This is accomplished by having

two data types -- I for long integers, and J

for short integers. Variables of type J can

be allocated anywhere, but the short

registers are higher in the hierarchy than

the long ones, so the J's preferentially go

into the short registers if there is room,

and into the long registers next (instead of

defaulting immediately to main memory).

Variables of type I are allowed only in the

long registers and main memory.

Also on the Cray-l, it was decided to

allow a few large set variables, up to 4096

bits long, to be allocated directly to some

of the eight vector registers (instead of

only having large sets stored in main

memory). By specifying 12K bits of memory

type V, and a minimum allocation of 4K bits,

it turned out to be easy to describe S vector

registers for set temporaries, without

allowing two shorter sets in the same

register, and without allowing, say, a short

integer to accidently occupy an entire vector

register •

Memory hierarchy descriptions have also

been done for the D.E.C. PDP-II, Univac 1108,

and Burroughs B6700.

Summary.

The description mechanism appears to be

flexible enough to make realistic

descriptions of commercially available

architectures, and this in turn allows a

slngle machlne-lndependent algorithm to do a

reasonable Job of allocating storage for any

number of target machines. Through this

mechanism, it is also possible to read in a

program that has been mapped for one storage

hierarchy, and convert it to a program

matching another storage hierarchy. This in

turn allows expermentatlon in computer

architecture designs -- exploring the effects

of having various numbers of registers, or

exploring the range of offsets needed in a

three- level hierarchy vs. the range of

offsets in a slngle-level hierarchy, etc. We

plan to do research in this area in the

coming year.

224

Acknowledgement 8 •

This research was supported by Los A/amos

Scientific Laboratory under contract number

NP8-2322E-OI, and by Lawrence Livermore

Laboratory under contract number 2462109.

References.

[I] Chow, F. 1979. "UCFORT," Stanford

Artificial Intelllgence Laboratory,

Stanford, CA.

[2] Day, W.H.E. 1970. "Compiler assignment of

data items to registers," IBM Systems

Journal 9:4, pp. 281-317.

[3] Freiburghouse, R.A. 1974. "Register

allocation via usage counts,"

Communications of the ACM 17:11, pp.

638-642.

[4] Harrison, W. 1975. "A class of register

allocation algorithms," IBM Research

Report RC-5342.

[5] Johnsson, R.K. 1975. An approach t_~o
slobal ~ allocation, PhD. thesis,

Carnegle-Mellon University.

[6] Leverett, B.W. et al. 1979. "An overview

of the production quality compiler-

compiler project," Computer science

report CS-79-I05, Carnegie-Mellon

University.

[7] Perkins, D.R. and Sites, R.L. 1979.

"Machine-independent pascal code

optimization," Proceedinss of the

SIGPLAN S~poslum o__n_n Compiler

Construction, Boulder, CO.

[8] Wulf, W., Johnsson, R.K., Weinstoek,

C.B., Hobbs, S.O., and Gesche, C.M. 1975.

The design of an optimizing compiler,

Elsevier, New York.

2 2 5

