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Introduction. 

The context of this paper is a machine- 

independent Pascal optimizer that 

transforms an intermediate stack-machine 

pseudo-code program into a generally smaller 

and faster pseudo-code program. The emphasis 

of this current paper is on the approach 

taken for mapping registers and storage, 

using an abstract but practical definition of 

the target machine's storage hierarchy. A 

companion paper [7] describes the overall 

optimizer project. After starting on this 

project, additional input became available 

from a Fortran-to-Pcode compiler written at 

Stanford [2]. Our storage mapping design is 

sufficiently robust that the addition of 

Fortran EQUIVALENCE and COMMON statements 

required no changes. 

Our particular allocation algorithm is 

not unique or original, but the abstract 

description of the storage hierarchy, and its 

inclusion of practical considerations we 

feel to be an original contribution. The 

description framework has so far stood the 

test of describing the storage hierarchy of 

many commercially-available machines without 

needing to be extended or embellished. We 

hope that this is a good predictor for the 

future. 

The purpose of a machlne-independent 

storage (and hence register) allocator is to 

accept a set of variable names, their 

corresponding llve ranges and frequency of 

use, and to (re-)map these names into a 

usually smaller set of names, such that 

frequently-used variables are mapped into 

names that are intended to correspond with 

high-speed access in the final target 

machine, and such that two variables with 

disjoint live ranges are allowed to he 

mapped into the same output name. The effect 

of such a mapping is to speed up the 

execution of the final program, while also 

reducing the amount of run-tlme storage 

needed. The rest of this paper describes the 

problems encountered and the storage 

description used in our mapping. 

The Input. 

Our allocation phase runs before final 

target-machine code generation, but after 

initial (compiler) mapping of activation 

records and after a global common 

sub expresslon optimizer that creates new 

temporaries. Running after initial storage 

mapping allows us to treat overlapping 

variables (from Pasea] variant records and 

Fortran EQUIVALENCE), and also allows us to 

detect nested fields within records or 

arrays, so that only the largest aggregate is 

mapped as a single unit. Running before 

target-machine code generation allows us to 

he machine independent, hut requires a 

partitioning of the registers -- part for us 

and part left over for code generation. This 

contrasts with the approach taken in the 

orlginal Bliss compiler [8] and in the 

current PQCC project [6]. 

The input to the storage allocator 

consists of a Universal P-code program, where 

P-code is a machine language for a 
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hypothetlcal stack machine. Variables (and 

compiler/optlmizer generated temporaries) are 

referenced by quintuples: 

<data type,memory type,block no ,offset,length> 

The data type might be Integer, Real, 

Boolean, Array, etc. The memory type is one 

of the target machine memory hierarchy levels 

described below. The block number is a 

unique activation record number for each 

procedure in the program. The offset and 

length describe a particular set of storage 

locations within the sub-activation record 

<memory type, block number>. The unit of 

storage (word, byte, bit, etc.) is not 

specified -- the only constraint is that all 

offsets and lengths must be consistent. 

Typically, the unit would be the smallest 

amount of storage allocated to a field in a 

PACKED record. 

The input P-code has storage mappings 

within each procedure's activation record 

already resolved, usually by simple first- 

declared-first-allocated algorithms in the 

compiler. In particular, mapping of fields 

within records and boundary alignment of 

fields and variables have been done. Fields 

in variant records, which may overlap or 

share storage, have been mapped into 

overlapping or identical <offset, length> 

pairs. Similarly, Fortran COMMON and 

EQUIVALENCE statements have been resolved 

into offsets and lengths within activation 

records (COMMON blocks or groups of local 

varlables). 

A P-code program consists of many 

procedures, not Just one, and each of these 

consists of many basic blocks (pieces of 

stralght-line code). The input to the 

storage allocator includes both a P-code 

program and an indication of the llve range 

of each input name. The llve ranges can be 

gathered by quite tradltlonal flow-analysis 

techniques, which are not further discussed 

in this paper. 

and length fields will remain unchanged. The 

output P-code will eventually be translated 

to machine language for some target machine. 

In general, the target machine may have a 

storage hierarchy, for example some fast 

registers, some directly addressable memory, 

and some indirectly addressable memory. 

Our current allocatlon algorithm is 

similar to those described by Day [2] and 

Frelburghouse [3]. It maps as many variables 

as posslble (weighted by frequency of use, 

and negatively weighted by length) into 

offset 0 of the top level of the hierarchy, 

then more variables into the next offset, and 

eventually next level, until all variables 

have been mapped. No variable, array, or 

record is split across levels. The bias 

toward low offsets is quite dellberate, since 

it is a good match to machines with short- 

and long-address instruction formats, it 

encourages cache locality, it allows use of 

block load/store instructions for registers, 

and it doesnSt hurt on other machines. 

This algorithm is in distinct contrast to 

optlmal-colorlng algorlthms [4,5], which 

exhibit no preference for low-numbered 

locations, and which do not adopt well to 

choosing which variables to place in each 

level of the hlerartchy when not all fit in 

the topmost level. An optimal algorithm 

might need i0 registers for a set of 

variables when only 9 are available. If so, 

the optimal coloring gives no hints about the 

best variables to spill. Our algorithm will 

put the most heavily used variables in the 9 

registers, even though this might cost us a 

non-optlmal mapping that requires more than 

I0 locatlons total. It is not clear which 

approach is better for real programs. 

To the extent that a wide range of target 

machine hierarchies can be accurately 

described via a small table of parameters, we 

can use a slngle storage mapping algorithm to 

do good reglster/storage allocation for all 

of those machines. This is the main thrust 

of our current work. 

The Output. 

The output of the storage allocator is a 

P-code program with the variable references 

re-arranged within each activation record, 

i.e. the memory type and offset fields may 

be changed, but the data type, block number, 

The Storage Hierarchy Description. 

Our "small table of parameters" consists 

of an ordered llst of descriptions of each 

level of the hierarchy, starting with the 

most desirable level (fastest), and ending 
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with the least desirable (usually main 

memory). Each level is described with five 

parameters: 

Memory type. A single letter corresponding 

to the memory type field of output 

quintuples. 

Maximum size. The maximum number of storage 

units available for this level (i.e. the 

maximum value of offset + length in an 

output quintuple with this memory type. 

Minimum allocation. The minimum number of 

storage units to be allocated at once. 

All variables allocated will have offsets 

that are a multiple of this number. 

Maximum alignment. The maximum interesting 

storage alignment boundary for the target 

machine's hardware. Input variables that 

are aligned to such a boundary (or a 

simple fraction of one) will remain so 

al Igned. 

Set of data types. A list of all the 

datatypes allowed to be allocated to this 

level of the storage hierarchy. 

We will give an example of a storage 

hierarchy description, then Justify our 

choice of parameters, then demonstrate the 

power and flexlbility of this partlcular 

choice. 

Example. A description of the IBM 370 
storage hierarchy, with 1 storage unit = 
1 bit, 9 general-purpose registers 
available for storage of variables, 1 
floatlng-point register available, 3800 
bytes of directly-addressable memory 
available, and 16,000,000 bytes of 
Indirectly-addressable memory available. 

Memtype Maxsize Minalloe Maxallgn Datatypes 
....................................... 

G 9*32 32 32 A,B)C,I 
F 1"64 64 64 R 
D 3800*8 8 64 A-Z 
M 16000000*8 8 64 A-Z 

MemtvDes: 
G - general purpose registers (GPRs) 
F - floating-polnt registers (FPRs) 
D - dlreetly-addressable main memory 

(within the first 4K bytes of an 
activation record -- assumes that 
some base or dlsplay register will 
point to the first memory byte of 
each activation record) 

M - the rest of main memory, i.e. large 
offsets in an activation record, 
which must be accessed via indirect 
pointers in the first 4K bytes. 

Datatypes: 
A - address (pointer) 
B - boolean 
C - character 
I - integer 
R - real 
Q - record 
M - array 

etc. 

The above description specifies the four 
interesting pieces of the IBM 370 storage 
hierarchy, and supplles some details 
about each piece. The sizes are shown as 
products, rather than raw bit counts, 
only for clarity in this example: in the 
actual P-code, 9*32 would be 288. The 
minimum allocatlon size is the size of 
each register(32 or 64 bits), or the 
minimum addressable unit (8 bits) in 
memory. The maximum interesting alignment 
in the GPRs is one register, and the same 
in the FPRs. The maximum interesting 
alignment in memory on the IBM 370 is 
doubleword alignment -- multiples of 64 
bits. The sets of datatypes allowed at 
each level are carefully choosen to avoid 
(I) allocation of a real number to a GPR 
or an integer to an FPR, and (2) 
allocation of any array to the registers, 
since it is not practical to calculate a 
register number as a variable subscript. 

Justification. 

The maximum size parameter is needed to 

delineate exactly how much of the target 

machine resources are available for storage 

of varlables and temporaries. The remaining 

resources (i.e. the other 7 GPRs, 3 FPRs, 

and 296 bytes of dlrectly-addressable memory 

above) are reserved for linkage conventions, 

indirect pointers, expression evaluation 

pseudo-stack, and other needs of the target 

machine code generator. 

The minimum allocatlon parameter makes it 

possible to respect target machine addressing 

boundaries, which may vary from level to 

level. One of the subtleties addressed by 

the minimum allocation idea is that two 32- 

bit real numbers must not be allocated to the 

same 64-bit FPR, while adjacent allocation 

into 64 bits of main memory is all right. 

The maximum alignment parameter is needed 

so that the storage allocator can preserve 

incoming boundary alignment of a variable, 

without "over-preserving" it -- an incoming 
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variable with an offset that Just happens to 

be a multlple of 1024 should not be 

constrained to such a boundary if the target 

machine only cares about multiples of 64. 

Our alignment-preserving algorithm is: 

New Align = GCD(Maxalign,input offset,length). 

Length is included so that a 16-bit item is 

not forced to be on a 64-blt boundary. 

The set of datatypes is probably the most 

important parameter, in terms of making sure 

that a variable is not allocated in a place 

that is entirely inappropriate to its 

representation or to the set of operations 

to be performed on it. The abillty to use 

datatypes to prevent arrays from being 

allocated to non-subscrlptable registers is 

also important, and indicates the robustness 

of the description. 

F1 ex ib il ity. 

The above description style has been used 

to describe the storage hierarcy of the 

Lawrence Livermore Labs S-I computer, a 36- 

bit number-cruncher that vaguely resembles 

the PDP-10. The machine has 32 36-blt 

registers, and byte (9-blt) address 

resolution in main memory. The registers are 

a subset of the memory address space, so it 

is possible to reference them as memory 

addresses. Instructions can address the 

first 64 words of offset from an address in a 

register by using only a few address bits, 

while larger offsets require extra 

instruction words. In the hierarchy 

descrlptlon,the size parameter is 

straightforward. The minimum allocatlon 

parameter is used to allow byte-slze 

variables to be packed together in adjacent 

bytes in memory, but to allocate registers 4 

bytes at a time. The maximum allgnment 

parameter for this machine is 36 bits (not a 

power of two). Variables are preserved on 36- 

bit boundaries, and also 18-, 12-, 9-, 6-, 

4-, 3-, 2- and I- bit boundaries. Because 

of cache llne considerations, it may prove 

desirable to align to 72- or 144-bit 

boundaries. This is trivially expressed by 

changing the Maxallgn parameter. 

In describing the storage hierarchy of 

the tray-l, it is necessary to keep large 

(64-blt) items from being allocated to the 

small (24-blt) address registers, while 

still allowing small integers to use those 

registers. This is accomplished by having 

two data types -- I for long integers, and J 

for short integers. Variables of type J can 

be allocated anywhere, but the short 

registers are higher in the hierarchy than 

the long ones, so the J's preferentially go 

into the short registers if there is room, 

and into the long registers next (instead of 

defaulting immediately to main memory). 

Variables of type I are allowed only in the 

long registers and main memory. 

Also on the Cray-l, it was decided to 

allow a few large set variables, up to 4096 

bits long, to be allocated directly to some 

of the eight vector registers (instead of 

only having large sets stored in main 

memory). By specifying 12K bits of memory 

type V, and a minimum allocation of 4K bits, 

it turned out to be easy to describe S vector 

registers for set temporaries, without 

allowing two shorter sets in the same 

register, and without allowing, say, a short 

integer to accidently occupy an entire vector 

register • 

Memory hierarchy descriptions have also 

been done for the D.E.C. PDP-II, Univac 1108, 

and Burroughs B6700. 

Summary. 

The description mechanism appears to be 

flexible enough to make realistic 

descriptions of commercially available 

architectures, and this in turn allows a 

slngle machlne-lndependent algorithm to do a 

reasonable Job of allocating storage for any 

number of target machines. Through this 

mechanism, it is also possible to read in a 

program that has been mapped for one storage 

hierarchy, and convert it to a program 

matching another storage hierarchy. This in 

turn allows expermentatlon in computer 

architecture designs -- exploring the effects 

of having various numbers of registers, or 

exploring the range of offsets needed in a 

three- level hierarchy vs. the range of 

offsets in a slngle-level hierarchy, etc. We 

plan to do research in this area in the 

coming year. 
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