
A Facility for the Downward Extension of a High-Level Language

Thomas N. Turba
~ = E r ~ ¥ UNIVAC
P.O. Box 43942

St. Paul, Minnesota 55164

Key Words and Phrases:
Assemblers, Code Generat ion, Compilers,
Efficiency, Encapsulat ion, Extensibi l i ty,
High-Level Languages, Inline Code, Machine
Code

Abstract

This paper presents a method whereby a
high-level language can be extended to provide
access to all the capabili t ies of the underlying
hardware and operat ing system of a machine. In
essence, it is a facility tha t allows a user to make
special purpose extensions to a language without
requir ing the compiler to be modified for each
extension. Extensions are specified in an
assembler- l ike language tha t is used at compile
t ime to produce executable code to be combined
with compi ler -genera ted code. This facility has
been implemented in a s y s t e m s - p r o g r a m m i n g
language and was designed to provide access to
facilities not directly avai lable in the language.
The way in which the facility was implemented
calls for a min imum of user-vis ible language
changes and is well suited for genera t ing code
sequences for any language. The facility provides
the extension wri ter access to informat ion
avai lable in the high- level language dur ing
compilation, permits the selective generat ion of
user-def ined code sequences depending on the
context in which they are being used, provides for
the in tegrat ion of this code with
compi le r -genera ted code, and provides for the
genera t ion of use r -unders tandab le e r ror
messages when an extension is used incorrectly.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Introduction

Many high- level languages have facili t ies for
upward extension by a user. Normal ly this
extensibi l i ty is provided by specific language
constructs to define and opera te on new data
types; al though, sometimes it is provided by a
macro facility tha t s imulates these constructs. In
e i ther case, the extensibi l i ty consists of defining
new data types and operat ions on them in te rms
of exist ing language primitives. Because of this,
an extensible language does not provide any
increase in capabi l i ty over tha t provided by the
basic constructs of the language. What i s
provided is the abil i ty to work with appl ica t ion-
specific data types in a way tha t is more na tura l
to the applicat ion area. This is a valuable goal
and a t remendous step forward in p rogramming
languages, and is not mean t to be down-played.
However, extensible languages do not provide any
new capabili t ies to a language, only var ia t ions on
expressing existing capabilities. Therefore, some
operat ions e i ther cannot be done in an extensible
language, or they are not done as efficiently as
they could be. In part icular , programs tha t make
extensive use of user-defined operat ions on new
da ta types can have a problem because these
operat ions are normal ly not as efficient as
bui l t - in operations.

Languages as old as ALGOL and as new as Ada
have considered the inclusion of assembler or
mach ine -dependen t code in the i r p rograms
impor tan t enough to have indicated the need for
such a facility in thei r defining documents. Some
of the reasons for providing such a facility are
tha t it:

Allows the use of operat ing system requests
wi thout having to build them into the
language,

© 1982 ACM0-89791-074-5 /82 /006 /0127 $00.75

127

Allows access to specialized hardware
instructions not normally generated by a
compiler, and

Allows a new program written in a
high-level language to interface with
existing code written in another language
(usually assembler) without needing
interface routines.

Even with these reasons and the desire to provide
such a facility, l i t t le has been defined regarding
the actual capabilities and how such code should
be integrated with compiler-generated code. This
lack of definition is no doubt part ly responsible
for the fact tha t few compilers provide this type
of facility and most of those that do provide a
facility appear to have a very limited capability.
(A complete determinat ion is hard to make
because most compilers tha t have such a
capabili ty are for propr ie tary languages of
computer manufac turers and documentat ion is
not generally available.)

This paper discusses the general considerations of
a facility for the integrated inclusion of user -
defined code sequences in compi ler -genera ted
code. The paper is based on a facili ty
implemented on Univac Series 1100 computers in
a high-level sys tems-programming language
called PLUS (Programming Language for Univac
Systems). Since its original implementat ion, the
facili ty has evolved from a s t ra ightforward
mechanism for accessing system functions and
specifying machine instruct ions to a general
facility where users cab specify the insertion of
sophisticated context- ta i lored code sequences
tha t can be effectively integrated with
compiler-generated code.

Interface Points

When designing a facility for the inclusion of
assembler- l ike code, one of the first
considerations is where such code should be
allowed. Although it is conceivable to allow the
insertion of such code anywhere in a program,
this would have implementat ion problems. In
addition, it would not provide a well-defined user
interface, which is of equal, if not greater ,
importance.

Another consideration is whether a sequence of
code will be used only once or in numerous places
throughout a program. In the design of the
system described here, it was felt tha t the normal

case would be for a code sequence to be used
repeatedly in many places. Therefore, the
approach taken was to provide a facility where a
code sequence would be defined once and then
later used in many places.

The interface points where assembler- l ike code
can be used should correspond to logical units in
a language. Examples of such units include:
procedures, functions, operators, and statements.
The units chosen in the PLUS system were
procedures and functions. Operators and
s ta tements were not included because the
language does not provide user extensibil i ty in
these areas. There are, however, no logical
differences if operator and s ta tement interface
points are included.

The declarations in the high-level language for
the inclusion of assembler-l ike code are similar to
procedure and function declarations. The forms
differ in tha t user -def ined code (called inline
code) permits the definition of generic procedures
and functions which can accept a different
number of arguments as well as arguments of
d i f ferent types. Such genera l i ty need not be
included in an i n l ine facility, but if included
implies some special considerations. For example,
the number and type of parameters are not
specified or checked in the high-level language.
This checking is performed by the inline wri ter
with special constructs in the lower-level code.
The declarations in the high-level language have
a form of:

INLINE n a m e ; and
INLINE n a m e RESULT t ype ;

As indicated by the second declaration, the result
type of an inline function is indicated along with
the name. In some respect, this could be
considered an anomaly because al though generic
argument types can be accepted, a generic type
cannot be returned. This restriction, however, is
consistent with the rest of the high-level
language which is strongly typed in the sense tha t
a function must have a specific type associated
with its result. The inline language, on the other
hand, is not strongly typed and it makes sense not
to do type checking in the high-level language
when parameters are passed down to that level.

Passing Information

For the inclusion of assembler-l ike code to be
general ly useful, there must be a means to pass

128

information from the high-level language to the
lower-level code. Such an information port could
conceivably be totally general and permit
interrogation of all information known to the
compiler at the place where inline code is being
used. In the design of the PLUS system, such
generality was not felt necessary or desirable.
The approach taken was to allow information to
be obtained on the arguments supplied with each
use of an inline. This is done with a set of built-in
interrogating functions in the inline language.
These functions include retrieval of information
on'-

• The number of arguments supplied with the
use of an inline,

• The data type of an individual a rgument
(e.g., integer, real, character),

• The class of an a rgument (e.g., constant,
automatic variable, static variable),

• Access information for an argument (e.g,,
storage address, size, bit offset), and

• The availability or status of an argument
(e.g., presently loaded in a register).

These functions consti tute the information port
into the assembler- level code facility. They
provide information on the actual arguments used
with an inline so that the inline wri ter can specify
code that will change depending on the actual
arguments used with it.

Code Generation

The specification of machine instructions is done
in a language tha t looks much like assembler
language. This language permits access to all the
machine instructions, but is a simpler language
that does not include many of the more complex
features of the assembler such as macros. In
addition, it does not provide some facilities
normally expected in an assembler such as the
definition of ent ry points and static variables.
This simplicity is acceptable because inline code
general ly consists of small sequences of
straightforward code tha t is to be integrated with
compi ler -genera ted code ra ther than complete
programs. Those portions of the inline language
that do the same thing as the assembler have the
same syntax so that programmers need not learn
another language. New features, such as the

interrogat ing functions, are provided in a form
that is consistent with similar assembler features.
These functions can be used to supply information
to instructions that are dependent on argument
character is t ics and to control s ta tements tha t
determine the actual code to be generated.

One control s t ructure essential for selective code
generat ion is a mechanism tha t includes or
excludes code based on the resul t of a conditional
expression. If the conditional expression is true,
code will be generated; otherwise, it will not. This
type of control s t ruc ture is needed so tha t
different code sequences can be generated from a
single inline depending on the type, number, and
class of arguments tha t are supplied with each use
of it. The control s t ructure used in the PLUS
system is a simple ON-OFF tha t corresponds to a
similar control s t ructure in the assembler. It is
the equivalent of an IF-THEN in a high-level
language. The form is:

label ON conditional-expression

Statements to be included
if expression is true.

OFF

The selection of different code sequences is
similar to the binding of different code skeletons
in a compiler, i.e., different code sequences are
genera ted depending on the values associated
with each use. The user of the inline facili ty is
in a sense augmenting the set of code skeletons
tha t are available in a compiler.

In addition to the ON-OFF control s t ructure for
the conditional generat ion of code, there is also an
ESCAPE s ta tement tha t permits an exit from a
code sequence (i.e., the remaining code for tha t
sequence will not be generated if an escape is
done). ON-OFF sequences can be nested and a
mul t i - level escape performed by referencing a
label at tached to an outer ON.

Another control s t ruc ture in the PLUS system is
an ENTER s ta tement which is the equivalent of
a local procedure call. It consists of a reference
to another inline within the same source text tha t
is to supply code at the point it is used. After
adding code from a referenced inline, code
generat ion resumes in the original inline. Each
inline is, in effect, a separate ent i ty with local
scope for compile- t ime variables, labels, and
other names.

129

Additional control s t ructures , such as a CASE
s ta tement , have been proposed and could be added
at a la ter date.

Interface Directives

An interface directive is the counte rpar t of an
in te r roga t ing function; much like an
in ter rogat ing function provides information to an
inline, an interface directive provides information
from an inline back to the compiler. Together,
they provide for a flow of information both into
and out of an inline so tha t code can be effectively
in tegrated with surrounding compi le r -genera ted
code.

An example of an interface directive is one tha t
informs the compiler about the location of a value
re turned from an inline function. Normal ly , a
function resul t is re turned in a predefined
register. However, if it is advantageous to re tu rn
a resul t in another register, this directive can be
used to indicate the register tha t will contain the
result.

Another directive for passing information back to
the compiler is one that informs the compiler that
the value of a variable will exist in a register at
the end of an inline sequence. The compiler can
then take advantage of this information, if the
value should need to be loaded for later code
generation.

In addition to these directives for in tegra t ing code
generat ion, the inline facil i ty also has a directive
tha t permi ts the shar ing and in tegra t ion of
working storage. This directive enables inline
code to request and be allocated working storage
from the au tomat ic s tack associated with a
procedure invocation. This s torage can be used
for holding t empora ry resul ts and other t r ans ien t
information during the execution of inline code.
Inlines can also access the s torage for stat ic global
var iables tha t have external names and use the
s torage associated with a rgumen t s if they are
passed by reference.

Register Handling

As al ready has been implied, the inline facil i ty
described here was implemented on a computer
with a register a rchi tec ture where values mus t be
loaded into registers to be operated on. Because
compilers for such an a rch i tec tu re normal ly
perform optimizations where values are kept in
registers for la ter use, some method had to be

found so t ha t compiler opt imizat ion is not
degraded when an inline is used and also assures
tha t inline code has registers to use. Although it
would have been possible to require inline code to
save and restore the registers it uses, or to inhibit
optimization across an inline use, both of these
a l te rnat ives were rejected for efficiency reasons.

The solution chosen was to have a convention
where a set of "volatile" registers are avai lable for
inline use which the compiler does not use for
holding informat ion across inline code. This set
of registers consists of 7 of the 28 genera l -purpose
a r i thmet ic and index registers and 4 of the 16
repeti t ion registers avai lable in the machine (i.e.,
1/4 of the registers are in the volati le set). This
approach leaves sufficient regis ter space for
optimization. I f an inline should need more
registers than are in the volati le set, or a specific
register tha t is outside it, a save and restore can
be done in the inline code.

The use of a volati le register set was an acceptable
solution in the PLUS system because of the large
n u m b e r of regis te rs avai lab le and because an
inline code sequence general ly will be small. If
very few registers were available, or inline code
was to be large, a more sophist icated approach
could have been taken. One such approach is to
have an inline declare what registers it uses and
have the compiler genera te code around this
regis ter usage. Another approach is to have the
inline code wri t ten using generic registers and let
the compiler bind them depending on the
surrounding code. Both of these approaches are
acceptable and have been tried. They require
only sl ightly more work for the compiler to
in t eg ra te inl ine code with compi l e r -gene ra t ed
code. I t should be noted, however, tha t if inline
code is being used to interface with exist ing code
t ha t has es tabl i shed regis te r conventions, the
inline code must be able to dictate what registers
are used. This is often the case when inline code
is to access system functions or exist ing libraries.

Another case when inline code may need to
d ic ta te specific regis ters is if it es tabl ishes a
r un - t ime environment . Examples include the use
of a regis ter for s tack ma in t enance or for
communicat ion purposes. I f such a register is to
contain information across inline uses, it may be
necessary to dedicate it and inhibi t its use by the
compiler. This can be done by a directive to the
compiler indicating tha t it cannot use a specific
register.

130

Error Cases

So far, we have only been considering the aspects
of generat ing and in tegra t ing inline code. This,
however, in only par t of the problem. Once an
inline is wri t ten and tested, it will be used; and
as usual, it will often be used incorrectly. For
example, it may be passed the wrong number or
type of a rguments . Such er rors mus t be
considered and handled. Preferably, it should be
possible to issue an error message of the same
quali ty for an error in the use of an inline as for
an er ror in the use of a bui l t - in function.
However, even if this is not possible, some form
of an error message facility must be provided.

The way error messages are handled in the PLUS
system is via a display s ta tement in the inline
language. A display s t a t emen t is normal ly
activated by a conditional s t a tement designed to
check for an er ror or is specified as the last
a l t e rna t ive in a set of possibilities. When a
display s t a tement is encountered in genera t ing
inline code, the compiler will produce a message
in the output listing just as if the compiler i tself
had detected the error. Such a message can be
prefixed with the word error, warning, or
message and contains the name of the inline
where the er ror was detected, the line number
where the inline was used in the high- level
program, and descript ive text supplied by the
display s ta tement . This text can vary in content
on each act ivat ion of a display s t a tement and
contain in format ion associated with the incorrect
use of the inline. For example, it could contain
a number indicating what a rgument caused an
error.

Implementation Overview

The way tha t inline code is handled in the PLUS
system is different from other systems known to
the author. Most other systems have assembler
code appear directly in the high-level language.
This is normal ly done by having a directive tha t
indicates to the compiler tha t the following code
is in assembler r a the r than the high- level
language. The approach taken in the PLUS
system is to have all inline code kept outside of
the high-level language it is used with. The only
s ta tements tha t appear in the high- level
language are declarat ions and references. A
declaration defines the name and, if a function,
the result type of an inline. A reference appears
as a normal procedure or function call.

All inline code is specified in one or more source
texts tha t are separa te from tha t of the h i g h - l e v e l
language. In addition, inline code is placed in a
separa te l ibrary before it is used by the compiler.
This l ibrary is kept in an in ternal format for easy
use by the compiler, r a the r than as source text.
This in te rna l fo rmat is created by a special
processor as a separa te step.

The declara t ion of an inline name in the
high- level language establ ishes a l ink to the
inline l ibrary; code is brought in from the l ibrary
as needed by the compiler. Each reference to an
inline name in the high-level language causes the
generat ion of an occurrence of the code sequence
specified in the inline. As indicated earl ier , the
actual code sequence genera ted for each use of an
inline may be different depending on the
a rguments tha t are supplied to it.

The generat ion and use of inline code is depicted
in the following figure.

Inline Source Inline Library

___)[Inline
1 Processor ~.

High-Level

] Pr°iram [

q Compiler

i I
Compiled
Program

Use of the Inline Facility

The separat ion of definitior, and use was done for
several reasons. These include:

The desire to isolate the wri t ing of inline
code from the wri t ing of high-level code.
This was felt necessary so tha t the
advantages of using a high-level language
would not be lost.

The desire to encourage the design and use
of inlines on a project basis r a the r than on
an individual basis. To fur ther encourage
this, each compilat ion is res t r ic ted to
accessing a single inline l ibrary.

131

The desire to provide a high degree of
encapsulation so that a user does not need to
see unnecessary information. All that a user
needs to know, and all that is seen by the
average user, is the inline interface
declaration.

The desire for an efficient implementation.
Because inlines are kept in an internal
format, it eliminates the need for the
compiler to reprocess an inline definition
each time it is used.

The desire to permit an inline to be shared
by modules tha t are separately compiled.
This sharing can be within a project or across
projects that have a common inline library.

There is one disadvantage to the separation of
definition and use. This disadvantage is seen by
the definer of an inline who must perform two
steps to test an inline. First the inline must be
processed into the internal format and placed in
a library; and then, a compilation must be done
to test it. However, because definition is
considerably less frequent than use, this is not a
major disadvantage and may even encourage a
more complete testing of an inline because it is a
separate step.

In addition to the reasons that promoted the
separation of definition and use of inline code,
some other equally valid reasons have been noted.
These are:

Language Independence. The separatio n of
definition and use permits the creation of a single
facility tha t can be used with any high-level
language. All that is needed are minor extensions
to a language to indicate that an inline is being
used and what its name is. These extensions can
be made in a way that is compatible with the
language so that there is no need for a different
lexical analyzer or parser to handle inline code.
These would otherwise be required for the
coml~iler of each language that was to provide an
inline facility if the facility was integrated with
each com~piler. The only impor tant changes
needed for a compiler are in its later stages where
inline code must be integrated with compiler-
generated code. This can often be handled in a
common manner and, with a proper design, can
even use the same code.

Machine Independence. The separation of
definition from use also provides for machine
independence because machine-specific code is
not included as part of a program. Therefore, a
program that uses inline code sequences can be
transported to another machine as long as the
new machine also has an inline processor. This
was, in fact, done in the PLUS system which has
compilers on more than one machine. However,
even if an inline facility is not available on the
new machine, the t ransportat ion of the code will
be considerably easier due to the isolation that is
enforced between definition and use. In the case
of the PLUS system, inline uses can be replaced
by procedure and function calls.

Environment Establishment. Although inline
code cannot ignore the normal code generation
conventions used by a compiler and its run- t ime
system, the use of inline code can provide for an
invariant run- t ime environment that is not bound
to a par t icular compiler implementation.
Therefore, a project can establish its own
environment and isolate itself from possible or
expected compiler changes.

Internal Representation

The internal format of an inline that is seen by
the compiler can best be described as a set of
interpretive instructions that corresponded to the
instructions in the inline language. The inline
processor is, in effect, a compiler for the inline
language that produces interpretive instructions.
These instructions are executed by an interpreter
within the compiler. This execution, which brings
together the information of a compiled program
and an inline, determines the actual code to be
generated for an inline.

There are two types of interpretive instructions.
Those that generate code and those that do not.
The instructions tha t generate code correspond in
a one-for-one manner to the instructions in the
inline source tha t specify actual code. The
instructions tha t do not generate code are used for
the evaluat ion of arguments , computat ion of
values, generation of messages, selection of code
sequences, conveyance of information to the
compiler, and performing other related activities.

132

Possible Changes

The inline facility described here has evolved
through use and is still changing as new features
are deemed necessary. There are many
enhancements and changes tha t could be made in
a future or different system. Some of the areas
where such changes could occur include:

Parameter Safeguards. The present system
places the responsibility for parameter checking
upon the inline writer. Some of this responsibility
could be assumed by the inline in terpre ter and
compiler. This could be done by having the set of
possible a rgument types declared in the
high-level language and have the compiler
perform checks for invalid argument types. In
addition, the inline processor could assure that all
argument types have been accounted for by the
inline writer.

Register Load Facility. Present ly, the inline
writer must supply all the instructions that are
needed to load an argument into a register
regardless of its size or storage a l ignment
characterist ics. Although this can be done
because the inline wr i te r has all the information
required, it would be less e r ror -prone and tedious
if the system had generic load instructions that
would generate any sequence of instruct ions
needed to load an argument. A similar s ta tement
can be made for a store to an arbi t rar i ly aligned
record field.

Generic Output Types. The present facility
requires tha t the result type of an inline function
be declared, and is therefore fixed. Because
inlines can accept generic arguments, it would be
desirable if they could also re turn a generic type.
This would permit the specification of generic
functions such as MAX and MIN where the type
of the result is dependent on the arguments
passed. Such a type could be one of a set of types
associated with an inline declaration, or it could
be a type dynamical ly selected by an inline
depending on the argument types passed to it
without the set of possibilities being specified
beforehand.

Generic Registers. As indicated earlier, inline
code writers are given a set of volatile registers
that they can use without the need to save and
restore their contents. This,was possible because
the machine on which the system is used has a
large number of registers. This approach may not
be possible on machines tha t have a small register

set. A good solution in such a case is to have
generic registers and let the compiler determine
which registers to use with the code. This
approach could be combined with specific register
handling where needed. If such a hybrid
approach is used, the compiler would need to
allocate registers around those instances that are
bound by the inline writer.

Conclusion

Experience with the inline system described here
has shown that it is both possible and practical to
provide facilities for the downward extension of a
high-level language, and that these facilities can
be effectively and efficiently integrated with
compi ler -genera ted code. The essential
characterist ics of such a facility include:

• The choice of well-defined points where
inline code is allowed,

In ter rogat ing functions for obtaining
information about the arguments supplied
with a use,

• Control s t ructures for selective code
generation,

• A method for allocating registers,

• Directives to pass information back to the
compiler, and

• An error message capability.

It is not expected that all high-level language
users, or even a majority, will have a need for
such a facility. However, for the few that do,
access to machine inStructions and operat ing
system primitives can be provided in an isolated
way that does not have a major effect on the
compiler and does not compromise the benefits of
using a high-level language. It is believed tha t
the general i ty and encapsulation features of the
PLUS inline system fit well with other high-level
languages, such as Ada, where there will
occasionally be the need to access more primitive
operations than those directly provided in the
language.

133

