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Abstract 

This paper  presents  a method whereby a 
high-level  language can be extended to provide 
access to all the capabili t ies of the underlying 
hardware  and operat ing system of a machine.  In 
essence, it is a facility tha t  allows a user to make  
special purpose extensions to a language without  
requir ing the compiler to be modified for each 
extension. Extensions are specified in an 
assembler- l ike  language tha t  is used at  compile 
t ime to produce executable code to be combined 
with compi ler -genera ted  code. This facility has 
been implemented  in a s y s t e m s - p r o g r a m m i n g  
language and was designed to provide access to 
facilities not directly avai lable in the language. 
The way in which the facility was implemented  
calls for a min imum of user-vis ible  language 
changes and is well suited for genera t ing code 
sequences for any language. The facility provides 
the extension wri ter  access to informat ion 
avai lable  in the high- level  language dur ing 
compilation, permits  the selective generat ion of 
user-def ined code sequences depending on the 
context in which they are being used, provides for 
the in tegrat ion of this code with 
compi le r -genera ted  code, and provides for the 
genera t ion of use r -unders tandab le  e r ror  
messages when an extension is used incorrectly. 
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Introduction 

Many high- level  languages  have facili t ies for 
upward extension by a user. Normal ly  this 
extensibi l i ty  is provided by specific language 
constructs  to define and opera te  on new data  
types; al though, sometimes it is provided by a 
macro facility tha t  s imulates  these constructs.  In 
e i ther  case, the extensibi l i ty consists of defining 
new data  types and operat ions on them in te rms  
of exist ing language primitives.  Because of this, 
an extensible  language does not provide any 
increase in capabi l i ty  over tha t  provided by the 
basic constructs  of the language.  What  i s  
provided is the abil i ty to work with appl ica t ion-  
specific data  types in a way tha t  is more na tura l  
to the applicat ion area.  This is a valuable goal 
and a t remendous  step forward in p rogramming  
languages,  and is not mean t  to be down-played.  
However, extensible languages do not provide any 
new capabili t ies to a language, only var ia t ions on 
expressing existing capabilities. Therefore,  some 
operat ions e i ther  cannot  be done in an extensible 
language, or they are not done as efficiently as 
they could be. In part icular ,  programs tha t  make 
extensive use of user-defined operat ions on new 
da ta  types can have a problem because these 
operat ions are normal ly  not as efficient as 
bui l t - in  operations.  

Languages as old as ALGOL and as new as Ada 
have considered the inclusion of assembler  or 
mach ine -dependen t  code in the i r  p rograms 
impor tan t  enough to have indicated the need for 
such a facility in thei r  defining documents.  Some 
of the reasons for providing such a facility are 
tha t  it: 

Allows the use of operat ing system requests 
wi thout  having to build them into the 
language, 
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Allows access to specialized hardware 
instructions not normally generated by a 
compiler, and 

Allows a new program written in a 
high-level language to interface with 
existing code written in another language 
(usually assembler) without needing 
interface routines. 

Even with these reasons and the desire to provide 
such a facility, l i t t le has been defined regarding 
the actual capabilities and how such code should 
be integrated with compiler-generated code. This 
lack of definition is no doubt part ly responsible 
for the fact tha t  few compilers provide this type 
of facility and most of those that  do provide a 
facility appear  to have a very limited capability. 
(A complete determinat ion is hard to make 
because most compilers tha t  have such a 
capabili ty are for propr ie tary  languages of 
computer  manufac turers  and documentat ion is 
not generally available.) 

This paper discusses the general  considerations of 
a facility for the integrated inclusion of user -  
defined code sequences in compi ler -genera ted  
code. The paper is based on a facili ty 
implemented on Univac Series 1100 computers in 
a high-level  sys tems-programming language 
called PLUS (Programming Language for Univac 
Systems). Since its original implementat ion,  the 
facili ty has evolved from a s t ra ightforward 
mechanism for accessing system functions and 
specifying machine instruct ions to a general  
facility where users cab specify the insertion of 
sophisticated context- ta i lored code sequences 
tha t  can be effectively integrated with 
compiler-generated code. 

Interface Points 

When designing a facility for the inclusion of 
assembler- l ike code, one of the first  
considerations is where such code should be 
allowed. Although it is conceivable to allow the 
insertion of such code anywhere in a program, 
this would have implementat ion problems. In 
addition, it would not provide a well-defined user 
interface, which is of equal, if not greater ,  
importance. 

Another  consideration is whether  a sequence of 
code will be used only once or in numerous places 
throughout  a program. In the design of the 
system described here, it was felt  tha t  the normal 

case would be for a code sequence to be used 
repeatedly in many places. Therefore, the 
approach taken was to provide a facility where a 
code sequence would be defined once and then 
later used in many places. 

The interface points where assembler- l ike code 
can be used should correspond to logical units  in 
a language. Examples  of such units  include: 
procedures, functions, operators,  and statements.  
The units chosen in the PLUS system were 
procedures and functions. Operators  and 
s ta tements  were not included because the 
language does not provide user extensibil i ty in 
these areas. There  are, however, no logical 
differences if operator  and s ta tement  interface 
points are included. 

The declarations in the high-level  language for 
the inclusion of assembler-l ike code are similar to 
procedure and function declarations. The forms 
differ  in tha t  user -def ined  code (called inline 
code) permits  the definition of generic procedures 
and functions which can accept a different  
number  of arguments  as well as arguments  of 
d i f ferent  types. Such genera l i ty  need not be 
included in an i n l ine  facility, but if included 
implies some special considerations. For example, 
the number  and type of parameters  are not 
specified or checked in the high-level  language. 
This checking is performed by the inline wri ter  
with special constructs in the lower-level code. 
The declarations in the high-level  language have 
a form of: 

INLINE n a m e  ; and 
INLINE n a m e  RESULT t ype ;  

As indicated by the second declaration,  the result  
type of an inline function is indicated along with 
the name. In some respect, this could be 
considered an anomaly because al though generic 
argument  types can be accepted, a generic type 
cannot  be returned.  This restriction, however, is 
consistent  with the rest  of the high-level  
language which is strongly typed in the sense tha t  
a function must have a specific type associated 
with its result. The inline language, on the other  
hand, is not strongly typed and it makes sense not 
to do type checking in the high-level language 
when parameters  are passed down to that  level. 

Passing Information 

For the inclusion of assembler-l ike code to be 
general ly useful, there  must be a means to pass 
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information from the high-level language to the 
lower-level code. Such an information port could 
conceivably be totally general and permit 
interrogation of all information known to the 
compiler at the place where inline code is being 
used. In the design of the PLUS system, such 
generality was not felt necessary or desirable. 
The approach taken was to allow information to 
be obtained on the arguments supplied with each 
use of an inline. This is done with a set of built-in 
interrogating functions in the inline language. 
These functions include retrieval of information 
on'- 

• The number  of arguments  supplied with the 
use of an inline, 

• The data type of an individual a rgument  
(e.g., integer, real, character),  

• The class of an a rgument  (e.g., constant,  
automatic variable, static variable), 

• Access information for an argument (e.g,, 
storage address, size, bit offset), and 

• The availability or status of an argument 
(e.g., presently loaded in a register). 

These functions consti tute the information port 
into the assembler- level  code facility. They 
provide information on the actual arguments  used 
with an inline so that  the inline wri ter  can specify 
code that  will change depending on the actual 
arguments  used with it. 

Code Generation 

The specification of machine instructions is done 
in a language tha t  looks much like assembler 
language. This language permits access to all the 
machine instructions, but is a simpler language 
that  does not include many of the more complex 
features of the assembler such as macros. In 
addition, it does not provide some facilities 
normally expected in an assembler such as the 
definition of ent ry  points and static variables. 
This simplicity is acceptable because inline code 
general ly consists of small sequences of 
straightforward code tha t  is to be integrated with 
compi ler -genera ted  code ra ther  than  complete 
programs. Those portions of the inline language 
that  do the same thing as the assembler have the 
same syntax so that  programmers need not learn 
another  language. New features,  such as the 

interrogat ing functions, are provided in a form 
that  is consistent with similar assembler features.  
These functions can be used to supply information 
to instructions that  are dependent  on argument  
character is t ics  and to control  s ta tements  tha t  
determine the actual code to be generated. 

One control s t ructure  essential for selective code 
generat ion is a mechanism tha t  includes or 
excludes code based on the resul t  of a conditional 
expression. If the conditional expression is true, 
code will be generated; otherwise, it will not. This 
type of control  s t ruc ture  is needed so tha t  
different  code sequences can be generated from a 
single inline depending on the type, number,  and 
class of arguments  tha t  are supplied with each use 
of it. The control s t ructure  used in the PLUS 
system is a simple ON-OFF tha t  corresponds to a 
similar control s t ructure  in the assembler. It  is 
the equivalent  of an IF-THEN in a high-level 
language. The form is: 

label ON conditional-expression 

Statements  to be included 
if expression is true. 

OFF 

The selection of different  code sequences is 
similar to the binding of different  code skeletons 
in a compiler, i.e., different code sequences are 
genera ted  depending on the values associated 
with each use. The user of the inline facili ty is 
in a sense augmenting the set of code skeletons 
tha t  are available in a compiler. 

In addition to the ON-OFF control s t ructure  for 
the conditional generat ion of code, there  is also an 
ESCAPE s ta tement  tha t  permits  an exit from a 
code sequence (i.e., the remaining code for tha t  
sequence will not be generated if an escape is 
done). ON-OFF sequences can be nested and a 
mul t i - level  escape performed by referencing a 
label at tached to an outer  ON. 

Another  control s t ruc ture  in the PLUS system is 
an ENTER s ta tement  which is the equivalent  of 
a local procedure call. It consists of a reference 
to another  inline within the same source text  tha t  
is to supply code at the point it is used. After 
adding code from a referenced inline, code 
generat ion resumes in the original inline. Each 
inline is, in effect, a separate  ent i ty  with local 
scope for compile- t ime variables,  labels, and 
other  names. 
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Additional control s t ructures ,  such as a CASE 
s ta tement ,  have been proposed and could be added 
at  a la ter  date. 

Interface Directives 

An interface directive is the counte rpar t  of an 
in te r roga t ing  function; much like an 
in ter rogat ing function provides information to an 
inline, an interface directive provides information 
from an inline back to the compiler. Together,  
they provide for a flow of information both into 
and out of an inline so tha t  code can be effectively 
in tegrated with surrounding compi le r -genera ted  
code. 

An example  of an interface directive is one tha t  
informs the compiler  about  the location of a value 
re turned from an inline function. Normal ly ,  a 
function resul t  is re turned  in a predefined 
register.  However,  if it is advantageous  to re tu rn  
a resul t  in another  register,  this directive can be 
used to indicate the register  tha t  will contain the 
result. 

Another directive for passing information back to 
the compiler is one that informs the compiler that 
the value of a variable will exist in a register at 
the end of an inline sequence. The compiler can 
then take advantage of this information, if the 
value should need to be loaded for later code 
generation. 

In addition to these directives for in tegra t ing  code 
generat ion,  the inline facil i ty also has a directive 
tha t  permi ts  the shar ing  and in tegra t ion  of 
working storage. This directive enables inline 
code to request  and be allocated working storage 
from the au tomat ic  s tack associated with a 
procedure invocation. This s torage can be used 
for holding t empora ry  resul ts  and other  t r ans ien t  
information during the execution of inline code. 
Inlines can also access the s torage for stat ic global 
var iables  tha t  have external  names  and use the 
s torage associated with a rgumen t s  if they are 
passed by reference. 

Register Handling 

As al ready has  been implied, the inline facil i ty 
described here  was implemented  on a computer  
with a register  a rchi tec ture  where values mus t  be 
loaded into registers  to be operated on. Because 
compilers  for such an a rch i tec tu re  normal ly  
perform optimizations where values are  kept  in 
registers  for la ter  use, some method had to be 

found so t ha t  compiler  opt imizat ion is not 
degraded when an inline is used and also assures 
tha t  inline code has registers  to use. Although it 
would have been possible to require inline code to 
save and restore  the registers  it uses, or to inhibit  
optimization across an inline use, both of these 
a l te rnat ives  were rejected for efficiency reasons. 

The solution chosen was to have a convention 
where a set of "volatile" registers  are avai lable  for 
inline use which the compiler  does not use for 
holding informat ion across inline code. This set 
of registers  consists of 7 of the 28 genera l -purpose  
a r i thmet ic  and index registers  and 4 of the 16 
repeti t ion registers  avai lable in the machine  (i.e., 
1/4 of the registers  are in the volati le set). This 
approach leaves sufficient regis ter  space for 
optimization.  I f  an  inline should need more 
registers  than  are in the volati le set, or a specific 
register  tha t  is outside it, a save and restore  can 
be done in the inline code. 

The use of a volati le register  set was an acceptable 
solution in the PLUS system because of the large 
n u m b e r  of regis te rs  avai lab le  and because an 
inline code sequence general ly  will be small.  If  
very few registers  were available,  or inline code 
was to be large, a more sophist icated approach 
could have been taken.  One such approach is to 
have an inline declare what  registers  it uses and 
have the compiler  genera te  code around this 
regis ter  usage. Another  approach is to have the 
inline code wri t ten  using generic registers  and let 
the compiler  bind them depending on the 
surrounding code. Both of these approaches  are 
acceptable and have been tried. They require 
only sl ightly more work for the  compiler  to 
in t eg ra te  inl ine code with compi l e r -gene ra t ed  
code. I t  should be noted, however,  tha t  if inline 
code is being used to interface with exist ing code 
t ha t  has es tabl i shed regis te r  conventions,  the 
inline code must  be able to dictate what  registers  
are  used. This is often the case when inline code 
is to access system functions or exist ing libraries.  

Another  case when inline code may  need to 
d ic ta te  specific regis ters  is if  it es tabl ishes  a 
r un - t ime  environment .  Examples  include the use 
of a regis ter  for s tack ma in t enance  or for 
communicat ion purposes. I f  such a register  is to 
contain information across inline uses, it may  be 
necessary to dedicate it and inhibi t  its use by the 
compiler. This can be done by a directive to the 
compiler  indicating tha t  it cannot  use a specific 
register.  
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Error Cases 

So far, we have only been considering the aspects 
of generat ing and in tegra t ing inline code. This, 
however, in only par t  of the problem. Once an 
inline is wri t ten and tested, it will be used; and 
as usual, it will often be used incorrectly. For 
example,  it may be passed the wrong number  or 
type of a rguments .  Such er rors  mus t  be 
considered and handled. Preferably,  it should be 
possible to issue an error  message of the same 
quali ty for an error  in the use of an inline as for 
an er ror  in the use of a bui l t - in  function. 
However, even if this is not possible, some form 
of an error  message facility must  be provided. 

The way error  messages are handled in the PLUS 
system is via a display s ta tement  in the inline 
language. A display s t a t emen t  is normal ly  
activated by a conditional s t a tement  designed to 
check for an er ror  or is specified as the last  
a l t e rna t ive  in a set of possibilities. When a 
display s t a tement  is encountered in genera t ing  
inline code, the compiler will produce a message 
in the output  listing just  as if the compiler  i tself  
had detected the error.  Such a message can be 
prefixed with the word error, warning,  or 
message  and contains the name of the inline 
where the er ror  was detected, the line number  
where the inline was used in the high- level  
program,  and descript ive text  supplied by the 
display s ta tement .  This text  can vary in content  
on each act ivat ion of a display s t a tement  and 
contain in format ion  associated with the incorrect  
use of the inline. For example,  it could contain 
a number  indicating what  a rgument  caused an 
error.  

Implementation Overview 

The way tha t  inline code is handled in the PLUS 
system is different from other systems known to 
the author.  Most other  systems have assembler  
code appear  directly in the high-level  language. 
This is normal ly  done by having a directive tha t  
indicates to the compiler tha t  the following code 
is in assembler  r a the r  than  the high- level  
language. The approach taken  in the PLUS 
system is to have all inline code kept outside of 
the high-level  language it is used with. The only 
s ta tements  tha t  appear  in the high- level  
language are declarat ions and references.  A 
declaration defines the name and, if a function, 
the result  type of an inline. A reference appears  
as a normal  procedure or function call. 

All inline code is specified in one or more source  
texts  tha t  are separa te  from tha t  of the  h i g h - l e v e l  
language. In addition, inline code is placed in a 
separa te  l ibrary before it is used by the compiler.  
This l ibrary is kept  in an in ternal  format  for easy 
use  by the compiler,  r a the r  than  as source text. 
This in te rna l  fo rmat  is created by a special 
processor as a separa te  step. 

The declara t ion of an inline name in the 
high- level  language establ ishes  a l ink to the 
inline l ibrary; code is brought  in from the l ibrary 
as needed by the compiler. Each reference to an 
inline name in the high-level  language causes the  
generat ion of an occurrence of the code sequence 
specified in the inline. As indicated earl ier ,  the 
actual  code sequence genera ted for each use of an 
inline may  be different  depending on the 
a rguments  tha t  are  supplied to it. 

The generat ion and use of inline code is depicted 
in the following figure. 

Inline Source Inline Library 

___)[ Inline 
1 Processor ~. 

High-Level 

] Pr°iram [ 

q Compiler 

i I 
Compiled 
Program 

Use of the Inline Facility 

The separat ion of definitior, and use was done for 
several  reasons. These include: 

The desire to isolate the wri t ing of inline 
code from the wri t ing of high-level  code. 
This was felt necessary so tha t  the 
advantages  of using a high-level  language 
would not be lost. 

The desire to encourage the design and use 
of inlines on a project basis r a the r  than  on 
an individual basis. To fur ther  encourage 
this, each compilat ion is res t r ic ted to 
accessing a single inline l ibrary. 
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The desire to provide a high degree of 
encapsulation so that  a user does not need to 
see unnecessary information. All that  a user 
needs to know, and all that  is seen by the 
average user, is the inline interface 
declaration. 

The desire for an efficient implementation. 
Because inlines are kept in an internal  
format, it eliminates the need for the 
compiler to reprocess an inline definition 
each time it is used. 

The desire to permit an inline to be shared 
by modules tha t  are separately compiled. 
This sharing can be within a project or across 
projects that  have a common inline library. 

There is one disadvantage to the separation of 
definition and use. This disadvantage is seen by 
the definer of an inline who must perform two 
steps to test an inline. First the inline must be 
processed into the internal format and placed in 
a library; and then, a compilation must be done 
to test it. However, because definition is 
considerably less frequent than use, this is not a 
major disadvantage and may even encourage a 
more complete testing of an inline because it is a 
separate step. 

In addition to the reasons that  promoted the 
separation of definition and use of inline code, 
some other equally valid reasons have been noted. 
These are: 

Language Independence. The separatio n of 
definition and use permits the creation of a single 
facility tha t  can be used with any high-level  
language. All that  is needed are minor extensions 
to a language to indicate that  an inline is being 
used and what its name is. These extensions can 
be made in a way that  is compatible with the 
language so that  there is no need for a different 
lexical analyzer or parser to handle inline code. 
These would otherwise be required for the 
coml~iler of each language that  was to provide an 
inline facility if the facility was integrated with 
each com~piler. The only impor tant  changes 
needed for a compiler are in its later stages where 
inline code must be integrated with compiler-  
generated code. This can often be handled in a 
common manner  and, with a proper design, can 
even use the same code. 

Machine Independence. The separation of 
definition from use also provides for machine 
independence because machine-specific code is 
not included as part  of a program. Therefore, a 
program that  uses inline code sequences can be 
transported to another machine as long as the 
new machine also has an inline processor. This 
was, in fact, done in the PLUS system which has 
compilers on more than one machine. However, 
even if an inline facility is not available on the 
new machine, the t ransportat ion of the code will 
be considerably easier due to the isolation that  is 
enforced between definition and use. In the case 
of the PLUS system, inline uses can be replaced 
by procedure and function calls. 

Environment Establishment. Although inline 
code cannot ignore the normal code generation 
conventions used by a compiler and its run- t ime 
system, the use of inline code can provide for an 
invariant  run- t ime environment  that  is not bound 
to a par t icular  compiler implementation.  
Therefore, a project can establish its own 
environment  and isolate itself from possible or 
expected compiler changes. 

Internal Representation 

The internal format of an inline that  is seen by 
the compiler can best be described as a set of 
interpretive instructions that  corresponded to the 
instructions in the inline language. The inline 
processor is, in effect, a compiler for the inline 
language that  produces interpretive instructions. 
These instructions are executed by an interpreter  
within the compiler. This execution, which brings 
together the information of a compiled program 
and an inline, determines the actual code to be 
generated for an inline. 

There are two types of interpretive instructions. 
Those that  generate code and those that  do not. 
The instructions tha t  generate code correspond in 
a one-for-one manner  to the instructions in the 
inline source tha t  specify actual  code. The 
instructions tha t  do not generate code are used for 
the evaluat ion of arguments ,  computat ion of 
values, generation of messages, selection of code 
sequences, conveyance of information to the 
compiler, and performing other related activities. 
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Possible Changes 

The inline facility described here  has evolved 
through use and is still changing as new features 
are deemed necessary. There  are many 
enhancements  and changes tha t  could be made in 
a future  or different system. Some of the areas 
where such changes could occur include: 

Parameter Safeguards. The present  system 
places the responsibility for parameter  checking 
upon the inline writer. Some of this responsibility 
could be assumed by the inline in terpre ter  and 
compiler. This could be done by having the set of 
possible a rgument  types declared in the 
high-level  language and have the compiler 
perform checks for invalid argument  types. In 
addition, the inline processor could assure that  all 
argument  types have been accounted for by the 
inline writer. 

Register Load Facility. Present ly,  the inline 
writer  must supply all the instructions that  are 
needed to load an argument  into a register  
regardless of its size or storage a l ignment  
characterist ics.  Although this can be done 
because the inline wr i te r  has all the information 
required, it would be less e r ror -prone  and tedious 
if the system had generic load instructions that  
would generate  any sequence of instruct ions 
needed to load an argument.  A similar s ta tement  
can be made for a store to an arbi t rar i ly  aligned 
record field. 

Generic Output Types. The present  facility 
requires tha t  the result  type of an inline function 
be declared, and is therefore  fixed. Because 
inlines can accept generic arguments,  it would be 
desirable if they could also re turn  a generic type. 
This would permit  the specification of generic 
functions such as MAX and MIN where the type 
of the result  is dependent  on the arguments  
passed. Such a type could be one of a set of types 
associated with an inline declaration, or it could 
be a type dynamical ly selected by an inline 
depending on the argument  types passed to it 
without the set of possibilities being specified 
beforehand. 

Generic Registers. As indicated earlier,  inline 
code writers are given a set of volatile registers 
that  they can use without the need to save and 
restore their  contents. This,was possible because 
the machine on which the system is used has a 
large number  of registers. This approach may not 
be possible on machines tha t  have a small register 

set. A good solution in such a case is to have 
generic registers and let the compiler determine 
which registers to use with the code. This 
approach could be combined with specific register 
handling where needed. If such a hybrid 
approach is used, the compiler would need to 
allocate registers around those instances that  are 
bound by the inline writer. 

Conclusion 

Experience with the inline system described here  
has shown that  it is both possible and practical to 
provide facilities for the downward extension of a 
high-level language, and that  these facilities can 
be effectively and efficiently integrated with 
compi ler -genera ted  code. The essential  
characterist ics of such a facility include: 

• The choice of well-defined points where 
inline code is allowed, 

In ter rogat ing functions for obtaining 
information about the arguments  supplied 
with a use, 

• Control s t ructures  for selective code 
generation, 

• A method for allocating registers, 

• Directives to pass information back to the 
compiler, and 

• An error  message capability. 

It is not expected that  all high-level language 
users, or even a majority, will have a need for 
such a facility. However, for the few that  do, 
access to machine inStructions and operat ing 
system primitives can be provided in an isolated 
way that  does not have a major effect on the 
compiler and does not compromise the benefits of 
using a high-level language. It  is believed tha t  
the general i ty  and encapsulation features of the 
PLUS inline system fit well with other  high-level 
languages, such as Ada, where there  will 
occasionally be the need to access more primitive 
operations than those directly provided in the 
language. 
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