
EXPERIENCE WITH THE H)RHAL SEMANTIC DEFINITION OF HAL/S

Terrence W. Pratt
George D. Maydwell*

Department of Applied Mathematics and Computer Science
U n i v e r s i t y of Virginia

Charlottesville, Virginia 22901

ABSTRACT

HAL/S is a large general purpose real-tlme
programming language somewhat similar to ADA. Its
major appllcations are for embedded real-tlme sys-
tems, in particular for the Space Shuttle on-board
computer software and similar applications trlthln
NASA. After the language had been in regular use

for several years, we were requested by NASA to
prepare a formal semantic definition of the lan-
guage using the method of H-graph semantics. This
paper reports on the method and structure of that
definition and on experience with its use in find-
ing and c o r r e c t i n g e r r o r s i n the l anguage s p e c i f i -
c a t i o n and i n the d e s i g n of i m p l e m e n t a t i o n s f o r
the l a n g u a g e .

1. ~ / s

HAL/S [I] is a precursor to ADA. It was de-
signed and implemented in the early 1970"s by
Intermetrlcs, a company that also prepared one of
the two final ADA designs. HAL/S is intended for
a similar set of applications (embedded real-tlme
software) and is a language of about the same size
as ADA, in terms of number of features. The NASA
Space Shuttle project is the primary user of the
language, but it is also used for several other
projects within NASA. HAL/S represents a good
state-of-the art design from the early 1970"s.

"~Curren t a d d r e s s : Sof tware A r t s , I n c . , 675 Massa -
c h u s e t t s Ave . , Cambridge, MA 02139.

Th i s r e s e a r c h was s u p p o r t e d i n pa r t by NASA Grant
No. NSG-1458 and NSF Grant No. MCS78-00763 and a l -
so by NASA Contract No. NASI-16394 while the first
a u t h o r was in residence at the Institute for Com-
puter Applications in Science and Englneeering,
NASA Langley Research Center, Hampton, VA 23665.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5/82/006/0327 $00.75

Because it is not as widely known as ADA or
PASCAL, some of its key features are listed below.
The language includes:

a. A complete set of features for real-tlme
control of concurrent tasks, including task defi-
nition, scheduling using priorities, clock times,
or events, task cancellation based on clock times
or events, critical sections with lockout
from s h a r e d d a t a , and wa i t and s i g n a l o p e r a t i o n s ;

b . E x c e p t i o n h a n d l i n g mechan i sms , i n c l u d i n g
program d e f i n i t i o n of e x c e p t i o n h a n d l e r s and r a i s -
i ng of e x c e p t i o n s ;

c . A l a r g e complement of t m i l t - i n da t a t y p e s
(bu t no type d e f i n i t i o n m e c h a n i s m s) , i n c l u d i n g
real, integer, vector, matrix, array, record,
p o i n t e r , bit s t r i n g , c h a r a c t e r s t r i n g , and e v e n t ;

d . Ex t r e me ly g e n e r a l s u b s c r i p t i n g of a r r a y s ,
i n c l u d i n g s e l e c t i o n of a r b i t r a r y s l i c e s , s u b a r r a y s
and a r b i t r a r y s e t s of components t h rough use of
"arrayed" subscripts;

e. Primitive operations and expressions de-
fined for array operands, including some reshaping
and type conversions;

f. "Reentrant" procedures (shared concur-
rently by multiple tasks) and "exclusive" proce-
dures (e x c l u s i v e a c c e s s by one t a s k a t a t i m e) ; no
r e c u r s i o n ;

g . Many m i s c e l l a n e o u s f e a t u r e s : mac ros ,
In-llne functions, Input-output (primitive), tem-
porary variables in loops, control of storag~
representations and storage allocation, etc.

HAL/S i m p l e m e n t a t i o n s e x i s t t h a t a re h o s t e d
on a t l e a s t t h r e e d i f f e r e n t ma in f rames (IBM
360/370, DG ECLIPSE, and MODCOMP) and t h a t compi le
code f o r a t l e a s t t e n d i f f e r e n t t a r g e t m a c h i n e s .
The major i m p l e m e n t a t i o n on the 360/370 i s b u i l t
u s i n g a m o d i f i e d XPL c o m p i l e r - g e n e r a t o r to produce
an i n t e r m e d i a t e code c a l l e d HALMAT. HALMAT i s oF"
t i m i z e d i n a s e p a r a t e m a c h i n e - i n d e p e n d e n t pass and
t h e n fed to code g e n e r a t o r s f o r p a r t i c u l a r t a r g e t
m a c h i n e s . HAL/S a l s o p r o v i d e s a s u p p o r t
e nv i ronme n t of s i m u l a t i o n and a n a l y s i s t o o l s .
Thus HAL/S p r o v i d e s , i n a somewhat more p r i m i t i v e
form, much of what ADA w i l l p r o v i d e . I t i s one of
the major h l g h - l e v e l l a n g u a g e s f o r embedded compu-
t e r a p p l i c a t i o n s t h a t i s i n p r o d u c t i o n use a t
p r e s e n t . More i m p o r t a n t l y f o r t h i s paper , i t r e p -
r e s e n t s a l a ngua ge t h a t had been i n use f o r l a r g e
s c a l e , p o t e n t i a l l y l i f e - c r i t i c a l r e a l - t i m e a p p l i -
c a t i o n s f o r s e v e r a l y e a r s p r i o r to the s t a r t of
this project. It also is a language developed
primarily in an industrial environment which has

327

not received extended academic study or analysis
during its formative years, in contrast to ADA.

2. H-graphSemantlcs

The formal semantic definition of HAL/S uses
a definitional method called H-~raph semantics
[2,3]. The approach is an operational one: a for-
mal model is defined that represents an abstract
implementation of the language. The definition
has two parts, defining the translation and execu-
tion of programs.

Execution is modelled in terms of an abstract
H-graph machine, using notions of state and state
transition. States are represented as H-graphs,
which are hierarchies of directed graphs that rep-
resent the various data and code structures pre-
sent during execution of a program. The class of
possible state structures is defined by an H-graph
~rammar, which is a formal grammar in which pro-
ductions define the various types of data and code
structures (H-graphs) that are used in the
model. State transitions are defined by a set of
H-graph transforms, each of which defines a possi-
ble local transformation in a state H-graph during
execution, and by a transition functlon, which de-
fines the next transform to apply at any state to
effect the next state transition. The transforms
thus represent the primitive operations of the ab-
stract machine, and the transition function repre-
sents the interpretation cycle of the machine.

Translation is modeled also as an H-graph ma-
chine, usually with two basic transitions corre-
sponding to (I) parsing and translation into in-
termediate code using a context free translation
specification, and (2) static type checking, reso-
lution of overloading, and other "semantic
actions" that produce the correct initial state
for the run-tlme abstract machine. The first step
is conveniently represented by a pair ~rammar
which defines the translation by pairing produc-
tions in the BNF grammar defining the syntax with
productions in the H-graph grammar defining the
intermediate code.

These semantic definition methods are well-
developed and described elsewhere [2,3]. For this
paper the technical details are not needed to un-
derstand the results. H-graph semantics is sub-
stantially different from other semantic defini-
tion methods such as denotational semantics [4],
axiomatic semantics [5], or the Vienna Definition
Language [6]. The most important difference for
this paper lies in the emphasis in H-graph seman-
tics on a definition that is also an abstract
implementation model for the language.

3. The HAL/S Semantic Definition

The complete formal semantic definition is
found in [7]. The definition includes all parts
of the language with the exception of certain low-
level or strongly implementation dependent
features. In particular, the d e f i n i t i o n includes
all of the real-time features, exception handling,
tasks, programs, procedures and functlons, data
s t r u c t u r e s , and o t h e r h l g h - l e v e l p a r t s of t he l a n -
guage . A comple te r u n - t i m e model f o r t he l a n g u a g e
is g i v e n . The t r a n s l a t i o n d e f i n i t i o n i n c l u d e s
o n ly the t r a n s l a t i o n i n t o the initial state of the

run-time machine (using a pair grammar to map each
syntactic construct into code and/or data for the
run-time machine). No attempt is made to formally
model the static type-checking and other semantic
analysis parts of the compiler.

The definition includes:
176 pair grammar productions, each of

which defines the mapping of one syntactic con-
struct into an initial code/data structure for the
run-time machine;

73 productions that define data struc-
tures used in the run-tlme machine, where the data
structure is either a "system data structure"
(such as a queue used in the real-time process
scheduling) that is part of the run-time support
structure, or a data structure that changes during
execution from its initial form as given in the
pair grammar production. If a code or data struc-
ture is invarlant during execution (as most code
structures are) the production is given only once
in the pair grammar;

139 transform definitions, each defining
a possible primitive action (or set of actions)
during program execution; and

the transition function.

In preparing the definition, we worked almost
entirely from the language specification [I], ra-
ther than from the implementation model provided
by some existing implementation of the language.
In the cases where the spaicificatlon was vague,
ambiguous, or inconsistent, we often ran one or
more test programs on the 360/370 implementation
to see what semantics was used by the implementa-
tion. However, we made no significant use of
available documentation on existing HAL/S compiler
s t r u c t u r e s .

Comparison of t he HAL/S fo rma l s e m a n t i c d e f i -
n i t i o n w i t h t he ADA d e f i n i t i o n [8] u s i n g d e n o t a -
t i o n a l s e m a n t i c s b r i n g s out as major d i f f e r e n c e s :

a . The mode l ing of t he s e m a n t i c s of r e a l -
time features for HAL/S; this part of ADA is not
treated in [8];

b. The mode l ing of t he s t a t i c c h e c k i n g p a r t s
of compilation in the ADA definition; this part of
IiAL/S semantics is not treated in [7], although we
have modeled these parts of compilation in other
language definitions ;

c. The emphasis on realistic implementation
models i n t he HAL/S definition; t h e d e n o t a t i o u a l
d e f i n i t i o n of ADA i s not i n t e n d e d to be u s e d d i -
r e c t l y a s an i m p l e m e n t a t i o n g u i d e ;

d. The general style of the definitions of
r u n - t i m e s e m a n t i c s : t h e ADA d e f i n i t i o n u s e s r e c u r -
s i r e f u n c t i o n s , c o n t i n u a t i o n s , f i x e d p o i n t s , and
t he u s u a l f o r m a l a p p a r a t u s of d e n o t a t i o n a l seman-
t i c s ; control and state structure descriptions are
d e c e n t r a l i z e d . The HAL/S d e f i n i t i o n u s e s a b s t r a c t
"state machine" c o n c e p t s , w i t h control centralized
i n t he t r a n s i t i o n f u n c t i o n and t he s t a t e d e s c r i p -
t i o n c e n t r a l i z e d i n t h e H-graph grammar p roduc -
t i o n s d e f i n i n g t he s t a t e s t r u c t u r e .

4 . E x p e r i e n c e w i t h Use of t he HAL/S D e f i n i t i o n

Even though HAL/S had been i n i n t e n s i v e u se
f o r s e v e r a l y e a r s p r i o r t o t h i s p r o j e c t , t h e p r o -
d u c t i o n of the formal semantic definition led to
c l a r i f i c a t i o n and correction of s e v e r a l dozen
s u b t l e problems i n t h e l a ngua ge s p e c i f i c a t i o n and

328

its implementation. In addition the definition
proved to be a useful basis for a detailed design
of a HAL/S implementation. We discuss each of
these experiences separately.

Clarification of Language Definition

Clarification of a language definition is one
of the primary uses for any semantic definition.
Despite the implementation and use of the lan-
guage, we assembled a llst of over 50 significant
errors, ambiguities, and inconsistencies in the
language specification during this project [9].
These problem areas were discovered in the course
of trying to find a consistent implementation mod-
el for the language, that is, an implementation
model for the run-time structure that would make a
complete, consistent whole out of the diverse set
of features in [I]. Examples include almost every
aspect of the language, including, in particular,
tasking, exceptions, and arrayed subscripts.

The llst of problem areas was of serious con-
cern to NASA, because several hundred thousand
lines of HAL/S code for Space Shuttle had already
been coded and tested. After checking each pro-
blem area, it was determined that few involved
language structures that had been used in Space
Shuttle code, because of decisions early in that
project to avoid parts of the language that were
"suspect" such as arrayed subscripts and exception
handling. However, six changes to the language
were made directly as a result of this problems
llst [I0], and the "array subscript" feature was
completely deleted. Also a number of sections of
the specification were clarified to remove ambigu-
ities and inconsistencies (over 30 modifications
to the language specification were made).

Obviously the implementors of HAL/S had come
up against these same problems areas in the defi-
nition, but as often happens, an arbitrary imple-
mentation choice was made and the specification
was not corrrected or clarified. Thus, although
it might be expected that an implementation effort
would find and bring to attention the same set of
problems, this was not the case.

Detection of Compiler Errors

Residual bugs in compilers and run-tlme sup-
port routines are a serious problem where life
critical software is written in hlgh-level lan-
guages. No verification or analysis of a source
program is of much value if the compiler does not
correctly implement the language specified. Our
goal in the HAL/S definition was not to find er-
rors in existing compilers, but the llst of prob-
lem areas described above identified language fea-
tures that might have caused trouble for implemen-
tots. Where the language specification is incom-
plete, ambigious, or contradictory, the language
implementation necessarily does something. What
is implemented in these cases is not necessarily
an error until the specification is tightened to
eliminate the problem, but at that time if the
specification and implementation differ, then each
problem becomes a compiler error. Our llst of
HAL/S problem areas was used by others to find
several subtle bugs in HAL/S implementations, and
we inadvertently discovered one with one of our
test programs as well.

Three kinds of errors were found:
I. Implementation more restricted than the

specification. The implementation did not allow a
construct that the specification stated to be le-
gal.

2. Implementation different from the speci~
flcation. An error caused by incorrectly inter-
preting part of the language specification.

3. Implementation matches the specification~
but both are incorrect. The most serious errors
were those in which the specification was too
"loose" in allowing a construct that should have
been prohibited (because it bad no reasonable
meaning) and where the implementation allowed the
construct as well, simply producing "bad code" in
response to use of the construct. Execution of
the bad code could potentially compromise the in ~
tegrlty of the entire run-tlme structure (which is
not the case in (I) or (2)).

Examples.

The major problems found in the language
specification are detailed below. In each case,
the language feature is briefly described, then
the problem with the specification and/or imple-
mentation of the feature, and finally the disposi-
tlon of the problem is given (to the extent
known). The options for disposition of problems
where implementation and specification differ were
somewhat unique to the special circumstances of
HAL/S, in which the same group was both the de-
signer and almost the sole implementor. A correc-
tion could be made either by changing the specifi-
cation to match the implementation, or vice versa,
or possibly by changing both. For a standard lan-
guage such as Ada or Fortran, the option of chang-
ing the specification instead of the implementa-
tion is usually not open.

Problem I. Arrayed subscripts. HAL provides
an extremely general subscriptlng feature for ar-
rays (and other data structures such as vectors,
matrices, character strings and bit strings, all
of which are separate types in HAL). A subscript
may be:

a. A simple index (as in most languages),

b. A slice along a single dimension, speci-
fied by "*" (all elements), I AT J (I elements
starting at element J), or J TO K (elements J
through K),

c. An "arrayed subscript", e.g., A B where B
is an integer array of subscripts, specifying se-
lection of a subarray of A, where B gives the sub-
scripts of the selected elements and their posi-
tion in the result array.

The problem. The semantics of many aspects
of arrayed subscripts are left undefined by the
language specification. The major problems are:

a. Assignment to a varlable with an arrayed
subscript is not clearly defined if the subscript
contains a repeated value. For example, the mean-
ing of M I . = MI,.+I when I ffi [2,1,1] (an example
f rom [1]) . '

b . No r u l e s a r e g i v e n f o r d e t e r m i n i n g t h e
shape o f the r e s u l t i n g a r r a y when a c o m b i n a t i o n o f

329

a r r a y e d s u b s c r i p t s and s l i c e s i s s p e c i f i e d .

c . No r u l e s a r e g i v e n f o r d e t e r m i n i n g the d a -
t a t ype of t he r e s u l t when an a r r a y e d s u b s c r i p t i s
a p p l i e d t o a m a t r i x , v e c t o r , o r s t r i n g . For exam-
p l e , i f A i s a c h a r a c t e r s t r i n g and I i s a o n e -
d i m e n s i o n a l a r r a y of s u b s c r i p t s , i s A I a c h a r a c t e r
s t r i n g o r an a r r a y o f one c h a r a c t e r c h a r a c t e r
s t r i n g s .

Disposition of the problem. The implementors
analyzed possible solutions to these problems as
follows [14]:

" I t would be e x t r e m e l y d i f f i c u l t t o c l e a r l y
s p e c i f y how a r r a y n e s s i n s u b s c r i p t s i s p r e s e n t l y
implemented. To have the Language Specification
and compiler match would therefore involve changes
to b o t h . Ar rayed s u b s c r i P t S a r e v e r y se ldom
u s e d " The a r r a y e d s u b s c r i p t f e a t u r e was e n -
t i r e l y deleted from the language.

Problem 2. V i s i b i l i t y of TEMPORARY
v a r i a b l e s . The g e n e r a l l o o p i n g c o n s t r u c t i n HAL
i s t h e DO...END g r o u p . In a DO g r o u p h e a d e r i t i s
p o s s i b l e to d e c l a r e v a r i a b l e s a s TEMPORARY. The
l i f e t i m e of such a v a r i a b l e t h e n i s r e s t r i c t e d to
t he e x e c u t i o n of t h e DO g r o u p r a t h e r t h a n to t h a t
of the larger program unit containing the DO
g r o u p .

The p r o b l e m . A TEMPORARY v a r i a b l e may become
v i s i b l e t h r o u g h n o n l o c a l r e f e r e n c e s b e f o r e a DO
group is entered or after its execution is
complete. This may happen because a task, proce-
dure, or function may be declared within a DO
group and may then access nonlocally any TEMPORARY
variable defined in the DO group. Such a subpro-
gram may be called from outside the DO group, and
such a task may be initiated without the DO group
being entered. In checking what was allowed by
the 360 implementation, we found that the compiler
allowed the constructs, but the value of the
TEMPORARY variable was garbage regardless of whe-
ther the DO group had been executed previously.

Disposition of the problem. The Implementors
identified this problem as the only one in which
the compiler produced "bad code" that might affect
existing Space Shuttle programs. Declaration of a
task within a DO group was prohibited. Calls to
procedures and functions declared within a DO
group were allowed only from within the same DO
group. Thus TEMPORARY variables were made visible
only during execution of the DO group in which
they were defined.

Prob lem 3. Mutual e x c l u s i o n f rom s h a r e d
data. In HAL, variables shared among tasks are
organized into "lockgroups" numbered I to N (an
implementation defined maximum). A shared varia-
ble is declared with the attribute LOCK(k) to
place it in lockgroup k. Locked variables may on-
ly be referenced within UPDATE blocks (critical
regions). Locked variables may be passed as para-
meters to subprograms. The corresponding formal
parameter may be declared LOCK(k), indicating the
actual parameter is always from the kth lockgroup,
or LOCK(*), indicating that the actual parameter
is from a different lockgroup on different calls.

The p r ob l e m. On e n t r y t o an UPDATE b l o c k
which r e f e r e n c e s a f o r m a l p a r a m e t e r d e c l a r e d a s
LOCK(*), i t i s no t c l e a r w h e t h e r a l l I o c k g r o u p a
a r e locked o r o n l y t h a t l o c k g r o u p t o which t h e a c -
t u a l p a r a m e t e r b e l o n g s on each c a l l . The 360 im-
p l e m e n t a t i o n was found t o l ock a l l I o c k g r o u p s
(i . e . , a c c e s s to any s h a r e d d a t a was c l o s e d o f f
u n t i l t h e UPDATE b l o c k was c o m p l e t e) .

Vlsposltion of the problem. The specifica-
tion was clarified to indicate that all lockgroups
are locked.

Problem 4. Real-tlme tasking. HAL contains
a variety of statements for defining and control-
ling t a s k s i n r e a l - t l m e a p p l i c a t i o n s . Tasks may
be s c h e d u l e d f o r e x e c u t i o n i n a v a r i e t y o f w a y s ,
i n c l u d i n g c y c l i c r e p e t i t i o n a t a s e t t ime i n t e r -
v a l , e . g . , u s i n g "SCHEDULE P REPEAT UNTIL E" t o
indicate immediate repetition of P each time a cy-
cle completes, continuing until some "event ex-
pression" E becomes true. Tasks may be given pri-
orities. Tasks may be t e r m i n a t e d e i t h e r by a
TERMINATE s t a t e m e n t (i m m e d i a t e t e r m i n a t i o n) o r a
CANCEL statement (terminate a t end of current c y -
C le) •

The problem. Although the specification of
this rather difficult area of the language was
generally "tight", the specification was silent or
ambiguous on s e v e r a l p o i n t s :

a . No meaning was g i v e n f o r a p r i o r i t y s p e c i -
f i c a t i o n on a t a s k .

b . When a t a s k was t e r m i n a t e d by CANCEL, i t s
d e p e n d e n t t a s k s were a l s o t o be c a n c e l e d . But
were t h e d e p e n d e n t s c a n c e l e d i m m e d i a t e l y o r a t t h e
end of t h e c u r r e n t c y c l e (t h e s p e c i f i c a t i o n s a i d
i m m e d i a t e l y , bu t t h e 360 i m p l e m e n t a t l o n c a n c e l e d
a t t h e end of t h e c y c l e) . Both t h e t a s k and i t s
d e p e n d e n t s c o u l d s c h e d u l e o t h e r t a s k s a f t e r t h e
CANCEL s t a t e m e n t was e x e c u t e d ; were t h e s e o t h e r
t a s k s a l s o c a n c e l e d ? In g e n e r a l , t he " t r i c k l e
down" s e m a n t i c s of CANCEL was n o t w e l l d e f i n e d .

c. If a task were terminated by a TERMINATE
command, " c e s s a t i o n of e x e c u t i o n " o f i t s d e p e n -
d e n t s was a l s o t o t a k e p l a c e . Was t h i s t h e same
t h i n g as t e r m i n a t i o n ?

Disposition of the problem. The semantics
for CANCEL was changed to delete the reference to
cancelation of dependents. TERMINATE was clari-
fied to specify TERMINATE of dependents. The se-
m a n t l c s of t a s k p r i o r i t i e s was s p e c i f i e d a s e n -
t i r e l y implementation dependent.

Problem 5. Lifetimes of EVENT variables. A
t a s k o r s u b p r o g r a m may d e c l a r e a v a r i a b l e of t y p e
EVENT. Such a v a r i a b l e i s s i m i l a r to a b o o l e a n
v a r i a b l e , but it may be used i n "event e x p r e s -
s i o n s " f o r t a s k s c h e d u l i n g , e . g . , i n t h e s t a t e m e n t
"SCHEDULE P ON E" (where E i s an EVENT
v a r l a b l e) . In a n o t h e r p a r t of t h e s p e c i f i c a t i o n ,
a v a r i a b l e may be d e c l a r e d t o be i n e i t h e r of t h e
i n i t i a l i z a t i o n c l a s s e s STATIC (v a l u e p r e s e r v e d b e -
tween c a l l s) o r AUTOMATIC (v a l u e n o t p r e s e r v e d b e -
tween c a l l s) , and any v a r i a b l e may be a s s i g n e d an
i n i t i a l v a l u e . STATIC i n i t i a l i z a t i o n o c c u r s o n l y
once a t t he f i r s t e x e c u t i o n of t he d e c l a r i n g r o u -

330

tlne; AUTOMATIC initialization occurs on each en-
try.

The problem. An EVENT variable used in a
real-tlme scheduling statement may "outlive" the
routine declaring it, because the declaring rou-
tlv~ may complete its execution before the event
is signaled (changed to true). If so, then the
declaring routine dles, but the event variable
continues to be evaluated by the "real-tlme execu-
tive" until the related scheduling is complete.
In the meantime, the declaring routine might have
been executed a second time. An AUTOMATIC EVENT
variable would not necessarily have its vlue pre-
served a f t e r e x i t f r om t h e d e c l a r i n g r o u t i n e and
i t would be r e l n l t l a l l z e d on t h e n e x t c a l l .
AUTOMATIC EVENT v a r i a b l e s t u r n e d o u t t o be p r o h i -
b i t e d by t h e 360 c o m p i l e r , a l t h o u g h a l l o w e d by t h e
l a n g u a g e s p e c i f i c a t i o n . A r e l a t e d p r o b l e m was
t h a t e v e n t e x p r e s s i o n s c o u l d i n c l u d e s u b s c r i p t e x -
p r e s s i o n s nam i ng o t h e r v a r i a b l e s . The ti~ o f
e v a l u a t i o n o f t h e s e s u b s c r i p t e x p r e s s i o n s was n o t
d e f i n e d , and m i g h t a l s o l e a d t o t h e s e v a r i a b l e s
o u t l i v i n g their d e f i n i n g s u b p r o g r a m .

Disposition of the problem. The specifica-
tion was changed to prohibit AUTOMATIC EVENT vari-
ables. Disposition of the other problem is un-
known.

Problem 6. Exception handlln~. HAL contains
facilities for defining exception handlers ("error
environments") and for raising and propogatlng ex-
ceptions. The action in an exception handler may
be to execute a statement, to IGNORE the exception
and resume execution, or to SYSTEM the exception
(invoke a system-defined action). Exception hand-
lers may handle individual exceptions, groups of
e x c e p t i o n s , o r ALL e x c e p t i o n s , w i t h a p r e c e d e n c e
i n t h a t o r d e r . Thus when an e x c e p t i o n i s r a i s e d ,
i t i s h a n d l e d by an i n d i v i d u a l h a n d l e r i f one
e x i s t s , o t h e r w i s e by a h a n d l e r f o r i t s g r o u p , and
f i n a l l y by a g e n e r a l ALL h a n d l e r i f one e x i s t s .

The problem. The HAL specification Implled
that exception propogatlon followed static scope
rules (block nesting), but the 360 implementation
turned out to use dynamic scope rules (calllng
chain). Which was correct? The precise meaning
of the IGNORE 0ptlon was not clear in the case of
an" exception propogated down several levels of
subprogram nesting. Also the precedence rules for
propegated exceptions were not clearly defined.

Disposition of the p r o b l e m . The speclflca-
tlon was modified t o specify dynamic scope rules
for exception propogatlon. The other points were
c l a r i f i e d .

P r o b l e m 7. P a r a m e t e r s p e c i f i c a t i o n s . A c h a -
r a c t e r s t r i n g f o r m a l p a r a m e t e r c o u l d h a v e a l e n g t h
s p e c i f i c a t i o n o r "*" t o i n d i c a t e an a r b i t r a r y
length. Other parameter types could have some
differences between actual and formal parameter
specification, for example, a formal might be de-
clared BOOLEAN and an a c t u a l BIT(1) (d e f i n e d a s
e q u i v a l e n t i n mos t s i t u a t i o n s) .

The p r o b l e m . The r u l e s o f c o r r e s p o n d e n c e b e -
tween t h e a t t r i b u t e s o f a c t u a t and f o r m a l p a r a m e -
t e r s were not complete. For example, could the

actual be declared BOOLEAN while the formal was
declared BIT(1)? Could a character string formal
have a length specification other than * (Indlca-
tlng an arbitrary length)?

Disposition of the problem. The language
specification was changed to prohibit any length
b u t " * " f o r a c h a r a c t e r string f o r m a l parameter.
Disposition of the other problems is unknown.

Problem 8. Subscripts on character strin~
variables. A subscript "# " on a variable indi-
cates the "maximum Index-value in the relevant di-
mension". T h i s applies to bit and character
string variables as well as to vectors, ~atrices,
and arrays.

The problem. A character string has both a
maximum length and a current length. Which length
was meant by "# "? If the current length is meant
and t h e l e n g t h i s z e r o , wha t i s t h e r e s u l t ? I f
t h e maximum l e n g t h i s m e a n t , and t h e c u r r e n t
l e n g t h i s l e s s t h a n t h e maximum, wha t i s t h e
r e s u l t ?

D i s p o s i t i o n o f t h e p r o b l e m . "#" was d e f i n e d
t o r e f e r t o t h e c u r r e n t l e n g t h o f a s t r i n g . D i s -
p o s i t i o n o f t h e o t h e r p r o b l e m i s unknown.

P r o b l e m 9 . I /O and f i l e P o s i t i o n i n ~ . A READ
s t a t e m e n t may c o n t a i n e x p r e s s i o n s i n v o l v i n g t h e
v a r i a b l e s b e i n g r e a d , e i t h e r i n s u b s c r i p t e x p r e s -
s i o n s f o r o t h e r v a r i a b l e s o r i n a r g u m e n t s f o r c o n -
t r o l f u n c t i o n s s u c h a s TAB, SKIP, and LINE t h a t
Control file positioning.

The problem. The time of evaluation of ex-
pressions in READ lists is not defined, whether
before execution of the statement begins o r when
reached during execution. For example, the mean-
ing o f READ (u) I , A I c a n n o t be d e t e r m i n e d . The
f i l e p o s i t i o n i n g a f t e r a r e a d s t e p was a l s o n o t
s p e c i f i e d c l e a r l y , so t h e e f f e c t o f t h e c o n t r o l
f u n c t i o n s s u c h a s TAB and SKIP c o u l d n o t be d e t e r -
m ined p r e c i s e l y .

D i s p o s i t i o n o f t h e p r o b l e m . E v a l u a t i o n o f
e x p r e s s i o n s i n READ s t a t e m e n t s was d e f i n e d t o
o c c u r when t h e e x p r e s s i o n was r e a c h e d d u r i n g e x e -
c u t i o n o f the statement. Disposition of the other
problems is unknown.

It should be apparent from this llst of pro-
blems that most were caused simply by the informal
style of semantic definition used. Similar ambi-
guities and i n c o n s i s t e n c i e s h a v e p l a g u e d a l m o s t
e v e r y p r o g r a m m i n g l a n g u a g e d e f i n i t i o n (PASCAL,
FORTRAN, ALGOL 60 , ADA, e t c .) t h a t h a s u s e d t h i s
i n f o r m a l s t y l e o f s e m a n t i c d e f i n i t i o n . C o n s i d e r -
i n g t h e r e l a t i v e l y l i m i t e d e x p o s u r e o f HAL/S i n
t h e p r o g r a m m i n g c o m m u n i t y , t h e d e f i n i t i o n o f t h i s
comp lex l a n g u a g e i s f a i r l y t i g h t . Many o f t h e
p r o b l e m s we u n c o v e r e d were r e m e d i e d by a d d i n g some
s h o r t c l a r i f i c a t i o n t o t h e l a n g u a g e s p e c i f i c a t i o n .

Implementation Design

An important v i r t u e o f structuring a f o r m a l
definition so that it is also an abstract design
for an implementation lles in the potential use of
t h e d e f i n i t i o n a s an i n t e r m e d i a t e s t e p i n t h e d e -

331

tailed design of an implementation. The major
goal of our project was not to "debug" the HAL/S
specification but rather to use the formal seman-
tic definition to determine how effectively vari-
ous language features could be implemented on par-
ticular restricted hardware architectures. The
goal was to identify a subset of the language that
could be implemented with good run-tlme efficiency
on a particular computer. The two machines chosen
for the study were the IBM NSSC-II, a radiation
hardened, slightly modified version of the IBM
360, and the Intel 8080A microprocessor.

An H-graph semantics definition is well-
suited to this use because the level of abstrac-
tion in such a definition lies between the imple-
mentation independent specification found in the
usual informal language definition (e.g., [I]) and
the detail of a particular implementation for a
particular machine. The productions of the "state
grammar" (the H-graph grammar defining the state
of the run-tlme machine) define the various data
and code structures necessary to support program
execution and the information that each contains,
but they do not specify any detailed storage lay-
outs, linkages, or other details that may be ma-
chine dependent. Similarly the definitions of H-
graph transforms specify what the run-tlme support
routines or in-llne code sequences produced by the
compiler must do to the data structures, but the
specification is also independent of machine de-
tails.

We were successful in analyzing the detailed
implementation design for these two machines by
the relatively simple process of (I) mapping each
production in the state grammar into a particular
storage representation on the target machine for
the defined data or code structure and (2) mapping
each transform definition into a particular code
sequence that manipulated the defined data repre-
sentation appropriately. However, both studies
were terminated without any actual implementation
completed. Subsequently, Feyock [13] used essen-
tially the same methods to produce an implementa-
tion of the HAL/S real-tlme structure coded in
PASCAL. In his work, productions in the state
grammar were mapped into PASCAL type definitions
and H-graph transforms were represented as PASCAL
procedures.

The study of implementation of the NSSC-II
[II] and the Intel 8080A [12] dealt primarily with
the larger structures of the language, especially
the real-tlme features, storage management, sub-
program activations, exception handling, and the
run-tlme structures needed to support these lan-
guage features. The lower-level parts of the lan-
guage were less interesting because they were
somewhat more conventional and also in most cases
our semantic model omitted some low-level details
needed for a careful analysis. The model of the
implementation of the larger structures of the
language was found to be useful in several ways:

I. It brought together into a coherent whole
all the underlying run-tlme support structures
needed to implement a diversity of language fea-
tures, each described separately in the language
specification. For an implementor, construction
of such a coherent implementation model is neces-
sarily the first step in implementation design and

often is extremely difficult without a "blueprint"
such as is provided by the H-graph semantic defi-
nition.

2. It allowed a straightforward layout for
local storage areas for each task, program and
subprogram to be determined. A few productions in
the H-graph grammar defined, for each type of pro-
gram, exactly which items of information were nee-
ded in the local storage area for that type of
program unit. From this it was simple to deter-
mine the storage layout for activation records,
and to "fine tune" these layouts as the detailed
design of other parts of the implementation was
completed.

3. It allowed analysis of the storage man-
agement structure required in the
implementation. From study of the abstract imple-
mentation model, several subtle facts about the
storage management structure for HAL/S became ap-
parent. For real-tlme life-crltlcal systems, dy-
namic storage management is particularly trouble-
some because of the possibility of a system fail-
ure caused by running out of storage (e.g., an
overflow of a dynamically allocated queue is re-
ported to have forced a manual takeover and land-
ing of one of the early lunar flights). By ana-
lyzing the HAL/S model, a few simple restrictions
were found that enabled a static storage manage-
ment structure for all the real-tlme queues to be
used. At the same time, a potentially serious
storage management problem for reentrant proce-
dures was identified that either required a re-
striction in the language, a worst case static al-
location strategy (potentially expensive in
storage), or dynamic allocation during execution.

As an abstract implementation model, an
H-graph semantic definition has some similarities
to definition of a machine independent intermedi-
ate code for the language, such as the DIANA in-
termediate representation proposed for ADA [15].
Our original intent was to use the HALMAT interme-
diate code (in an abstract form) used by the HAL/S
implementation as the basis for our code represen-
tations in the formal model. However, we found
HALMAT to be only marginally useful for that pur-
pose, primarily because the HALMAT operations re-
flected rather strongly the syntactic divisions of
HAL/S programs and only rather weakly modeled the
run-tlme distinctions that were the basis for our
choice of transforms in the run-tlme model. We
suspect that this may be true of intermediate
codes in general. The DIANA intermediate code for
ADA is a form of abstract syntax tree for ADA
programs, and thus also reflects more the syntac-
tic structure of ADA than the run-tlme organiza-
tion needed in an ADA implementation.

5. C o n c l u s i o n

Experience with the H-graph semantic defini-
tion of HAL/S indicates that this style of lan-
guage definition r e a l i z e s two major advantages:

a. In constructing a formal semantic defini-
tion, vague, ambiguous and inconsistent parts of
the language specification are identified and
g i v e n p r e c i s e meaning; and

b . By p r o v i d i n g an a b s t r a c t i m p l e m e n t a t i o n
model, the definition simplifies implementation
d e s i g n and s u p p o r t s p r e c i s e a n a l y s i s of l a r g e

332

s c a l e implementa t ion des ign i s s u e s a t an e a r l y
s t a g e .

Advantage (a) would apply to any careful,
complete analysis of a language definition,
whether or not a formal semant ic definition was
the goal. However, our experience shows that slm-
ply having several complete implementations of the
language in use is not necessarily sufficient to
provide thls result.

Advantage (b) ls not commonly realized
through formal semantic definitions, because other
definition methods such as denotatlonal and ax io -
matic semantics have usually avoided direct imple-
mentation models. Our experience indicates that
development of an abstract implementation model Is
valuable for a variety of purposes during imple-
mentation design. Recent experience wlth the use
of an H-graph semantic definition in implementa-
tion of another language strongly supports thls
c o n c l u s i o n .

REFERENCES

[1] HAL/S Language Specification, Version IR-
61-9, Intermetrlcs, Inc., Cambridge, HA,
September 1976.

[2] Pratt, T., '~-graph semantics, Part I: Data
structure grammars, Part 2: H-graph ma-
chines," DAMACS Reports 81-15 and 81-16,
University of Virginia, September 1981,
submitted for publication.

[31 Pratt, T., "Application of formal grammars
and automata to programming language
definition," In Applied Computation
Theory, R. T, Yeh, e d . , P r e n t i c e - H a l l ,
1976.

[4] Gordon, H., The Denotatlonal Description of
Programming Languages, Sprlnger-Verlag,
1979.

[5] Hoare, C. A. R., "An axlomatlc basls for com-
puter programming," Comm. ACM, Vol 12,
No. i0, October 1969, 576-583.

[6] Lucas, P. and Walk, K., "On the formal de-
scription of PL/I," Annual Review In
Automatic Programming, 6, 3, Pergamon
Press, 1969, 105-181.

[7] Pratt, T. and Maydwell, G., "HAL/S formal se-
mantlc definition," SEAS Report
UVA/528164/AMCS79/102, University of
Virginia, August 1979, 350 pp.

[8] Formal Definition of the ADA Programming Lan-
guage, Honeywell, Inc., CII Honeywell
Bull, and Inrla, November 1980 (prelimi-
nary).

[9] Pratt, T. and Maydwell, G., 'tHAL/S language
ambiguities and inconsistencies," SEAS
Report UVA/528164/AMCS79/101, University
of Virginia, July 1979.

[I0] Garman, J. R., personal communlcatlon, 1979.

[11] Pratt, T., "HAL/S subset definition and im-
plementation design for the NSSC-II
flight computer," SEAS Report
UVA/528164/AMCS79/103, University of
Virginia, August 1979.

[12] Maydwell, G., "Virtual computer to hardware
mapping: an approach to programming lan-
guage implementation," SEAS Report
UVA/528164/AMCS79/104, University of
Virginia, October 1979.

[13] Feyock, S., "Formal semantic specifications
as implementation blueprints for real-
tlme programming languages," Proc. AIAA
Computers in Aerospace Conf. III, Oct.
1981.

[14] Gallant, S. "HAL/S language group memo no.
#04-79," Intermetrlcs, Inc., May 22, 1979

[15] Coos, G. and Wulf, W. "DIANA reference
manual", Rept. CMU-CS-81-101, Dept. of
Comp. Sol., Carnegle-Mellon Univ., March
1981.

333

