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ABSTRACT 

HAL/S is a large general purpose real-tlme 
programming language somewhat similar to ADA. Its 
major appllcations are for embedded real-tlme sys- 
tems, in particular for the Space Shuttle on-board 
computer software and similar applications trlthln 
NASA. After the language had been in regular use 

for several years, we were requested by NASA to 
prepare a formal semantic definition of the lan- 
guage using the method of H-graph semantics. This 
paper reports on the method and structure of that 
definition and on experience with its use in find- 
ing and c o r r e c t i n g  e r r o r s  i n  the  l anguage  s p e c i f i -  
c a t i o n  and i n  the  d e s i g n  of i m p l e m e n t a t i o n s  f o r  
the  l a n g u a g e .  

1. ~ / s  

HAL/S [I] is a precursor to ADA. It was de- 
signed and implemented in the early 1970"s by 
Intermetrlcs, a company that also prepared one of 
the two final ADA designs. HAL/S is intended for 
a similar set of applications (embedded real-tlme 
software) and is a language of about the same size 
as ADA, in terms of number of features. The NASA 
Space Shuttle project is the primary user of the 
language, but it is also used for several other 
projects within NASA. HAL/S represents a good 
state-of-the art design from the early 1970"s. 
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Because it is not as widely known as ADA or 
PASCAL, some of its key features are listed below. 
The language includes: 

a. A complete set of features for real-tlme 
control of concurrent tasks, including task defi- 
nition, scheduling using priorities, clock times, 
or events, task cancellation based on clock times 
or events, critical sections with lockout 
from s h a r e d  d a t a ,  and wa i t  and s i g n a l  o p e r a t i o n s ;  

b .  E x c e p t i o n  h a n d l i n g  mechan i sms ,  i n c l u d i n g  
program d e f i n i t i o n  of e x c e p t i o n  h a n d l e r s  and r a i s -  
i ng  of  e x c e p t i o n s ;  

c .  A l a r g e  complement of  t m i l t - i n  da t a  t y p e s  
(bu t  no type  d e f i n i t i o n  m e c h a n i s m s ) ,  i n c l u d i n g  
real, integer, vector, matrix, array, record, 
p o i n t e r ,  bit s t r i n g ,  c h a r a c t e r  s t r i n g ,  and e v e n t ;  

d .  Ex t r e me ly  g e n e r a l  s u b s c r i p t i n g  of  a r r a y s ,  
i n c l u d i n g  s e l e c t i o n  of a r b i t r a r y  s l i c e s ,  s u b a r r a y s  
and a r b i t r a r y  s e t s  of  components  t h rough  use  of 
"arrayed" subscripts; 

e. Primitive operations and expressions de- 
fined for array operands, including some reshaping 
and type conversions; 

f. "Reentrant" procedures (shared concur- 
rently by multiple tasks) and "exclusive" proce- 
dures ( e x c l u s i v e  a c c e s s  by one t a s k  a t  a t i m e ) ;  no 
r e c u r s i o n ;  

g .  Many m i s c e l l a n e o u s  f e a t u r e s :  mac ros ,  
In-llne functions, Input-output (primitive), tem- 
porary variables in loops, control of storag~ 
representations and storage allocation, etc. 

HAL/S i m p l e m e n t a t i o n s  e x i s t  t h a t  a re  h o s t e d  
on a t  l e a s t  t h r e e  d i f f e r e n t  ma in f rames  (IBM 
360/370,  DG ECLIPSE, and MODCOMP) and t h a t  compi le  
code f o r  a t  l e a s t  t e n  d i f f e r e n t  t a r g e t  m a c h i n e s .  
The major  i m p l e m e n t a t i o n  on the  360/370 i s  b u i l t  
u s i n g  a m o d i f i e d  XPL c o m p i l e r - g e n e r a t o r  to  produce 
an i n t e r m e d i a t e  code c a l l e d  HALMAT. HALMAT i s  oF" 
t i m i z e d  i n  a s e p a r a t e  m a c h i n e - i n d e p e n d e n t  pass  and 
t h e n  fed to  code g e n e r a t o r s  f o r  p a r t i c u l a r  t a r g e t  
m a c h i n e s .  HAL/S a l s o  p r o v i d e s  a s u p p o r t  
e nv i ronme n t  of  s i m u l a t i o n  and a n a l y s i s  t o o l s .  
Thus HAL/S p r o v i d e s ,  i n  a somewhat more p r i m i t i v e  
form, much of what ADA w i l l  p r o v i d e .  I t  i s  one of 
the  major  h l g h - l e v e l  l a n g u a g e s  f o r  embedded compu- 
t e r  a p p l i c a t i o n s  t h a t  i s  i n  p r o d u c t i o n  use  a t  
p r e s e n t .  More i m p o r t a n t l y  f o r  t h i s  paper ,  i t  r e p -  
r e s e n t s  a l a ngua ge  t h a t  had been i n  use  f o r  l a r g e  
s c a l e ,  p o t e n t i a l l y  l i f e - c r i t i c a l  r e a l - t i m e  a p p l i -  
c a t i o n s  f o r  s e v e r a l  y e a r s  p r i o r  to the  s t a r t  of 
this project. It also is a language developed 
primarily in an industrial environment which has 
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not received extended academic study or analysis 
during its formative years, in contrast to ADA. 

2. H-graphSemantlcs 

The formal semantic definition of HAL/S uses 
a definitional method called H-~raph semantics 
[2,3]. The approach is an operational one: a for- 
mal model is defined that represents an abstract 
implementation of the language. The definition 
has two parts, defining the translation and execu- 
tion of programs. 

Execution is modelled in terms of an abstract 
H-graph machine, using notions of state and state 
transition. States are represented as H-graphs, 
which are hierarchies of directed graphs that rep- 
resent the various data and code structures pre- 
sent during execution of a program. The class of 
possible state structures is defined by an H-graph 
~rammar, which is a formal grammar in which pro- 
ductions define the various types of data and code 
structures (H-graphs) that are used in the 
model. State transitions are defined by a set of 
H-graph transforms, each of which defines a possi- 
ble local transformation in a state H-graph during 
execution, and by a transition functlon, which de- 
fines the next transform to apply at any state to 
effect the next state transition. The transforms 
thus represent the primitive operations of the ab- 
stract machine, and the transition function repre- 
sents the interpretation cycle of the machine. 

Translation is modeled also as an H-graph ma- 
chine, usually with two basic transitions corre- 
sponding to (I) parsing and translation into in- 
termediate code using a context free translation 
specification, and (2) static type checking, reso- 
lution of overloading, and other "semantic 
actions" that produce the correct initial state 
for the run-tlme abstract machine. The first step 
is conveniently represented by a pair ~rammar 
which defines the translation by pairing produc- 
tions in the BNF grammar defining the syntax with 
productions in the H-graph grammar defining the 
intermediate code. 

These semantic definition methods are well- 
developed and described elsewhere [2,3]. For this 
paper the technical details are not needed to un- 
derstand the results. H-graph semantics is sub- 
stantially different from other semantic defini- 
tion methods such as denotational semantics [4], 
axiomatic semantics [5], or the Vienna Definition 
Language [6]. The most important difference for 
this paper lies in the emphasis in H-graph seman- 
tics on a definition that is also an abstract 
implementation model for the language. 

3. The HAL/S Semantic Definition 

The complete formal semantic definition is 
found in [7]. The definition includes all parts 
of the language with the exception of certain low- 
level or strongly implementation dependent 
features. In particular, the d e f i n i t i o n  includes 
all of the real-time features, exception handling, 
tasks, programs, procedures and functlons, data 
s t r u c t u r e s ,  and o t h e r  h l g h - l e v e l  p a r t s  of  t he  l a n -  
guage .  A comple te  r u n - t i m e  model f o r  t he  l a n g u a g e  
is g i v e n .  The t r a n s l a t i o n  d e f i n i t i o n  i n c l u d e s  
o n ly  the t r a n s l a t i o n  i n t o  the initial state of the 

run-time machine (using a pair grammar to map each 
syntactic construct into code and/or data for the 
run-time machine). No attempt is made to formally 
model the static type-checking and other semantic 
analysis parts of the compiler. 

The definition includes: 
176 pair grammar productions, each of 

which defines the mapping of one syntactic con- 
struct into an initial code/data structure for the 
run-time machine; 

73 productions that define data struc- 
tures used in the run-tlme machine, where the data 
structure is either a "system data structure" 
(such as a queue used in the real-time process 
scheduling) that is part of the run-time support 
structure, or a data structure that changes during 
execution from its initial form as given in the 
pair grammar production. If a code or data struc- 
ture is invarlant during execution (as most code 
structures are) the production is given only once 
in the pair grammar; 

139 transform definitions, each defining 
a possible primitive action (or set of actions) 
during program execution; and 

the transition function. 

In preparing the definition, we worked almost 
entirely from the language specification [I], ra- 
ther than from the implementation model provided 
by some existing implementation of the language. 
In the cases where the spaicificatlon was vague, 
ambiguous, or inconsistent, we often ran one or 
more test programs on the 360/370 implementation 
to see what semantics was used by the implementa- 
tion. However, we made no significant use of 
available documentation on existing HAL/S compiler 
s t r u c t u r e s .  

Comparison of t he  HAL/S fo rma l  s e m a n t i c  d e f i -  
n i t i o n  w i t h  t he  ADA d e f i n i t i o n  [8] u s i n g  d e n o t a -  
t i o n a l  s e m a n t i c s  b r i n g s  out  as  major  d i f f e r e n c e s :  

a .  The mode l ing  of t he  s e m a n t i c s  of  r e a l -  
time features for HAL/S; this part of ADA is not 
treated in [8]; 

b.  The mode l ing  of t he  s t a t i c  c h e c k i n g  p a r t s  
of compilation in the ADA definition; this part of 
IiAL/S semantics is not treated in [7], although we 
have modeled these parts of compilation in other 
language definitions ; 

c. The emphasis on realistic implementation 
models  i n  t he  HAL/S definition; t h e  d e n o t a t i o u a l  
d e f i n i t i o n  of ADA i s  not  i n t e n d e d  to  be u s e d  d i -  
r e c t l y  a s  an i m p l e m e n t a t i o n  g u i d e ;  

d. The general style of the definitions of 
r u n - t i m e  s e m a n t i c s :  t h e  ADA d e f i n i t i o n  u s e s  r e c u r -  
s i r e  f u n c t i o n s ,  c o n t i n u a t i o n s ,  f i x e d  p o i n t s ,  and 
t he  u s u a l  f o r m a l  a p p a r a t u s  of  d e n o t a t i o n a l  seman-  
t i c s ;  control and state structure descriptions are 
d e c e n t r a l i z e d .  The HAL/S d e f i n i t i o n  u s e s  a b s t r a c t  
"state machine" c o n c e p t s ,  w i t h  control centralized 
i n  t he  t r a n s i t i o n  f u n c t i o n  and t he  s t a t e  d e s c r i p -  
t i o n  c e n t r a l i z e d  i n  t h e  H-graph  grammar p roduc -  
t i o n s  d e f i n i n g  t he  s t a t e  s t r u c t u r e .  

4 .  E x p e r i e n c e w i t h  Use of t he  HAL/S D e f i n i t i o n  

Even though  HAL/S had been i n  i n t e n s i v e  u se  
f o r  s e v e r a l  y e a r s  p r i o r  t o  t h i s  p r o j e c t ,  t h e  p r o -  
d u c t i o n  of the formal semantic definition led to 
c l a r i f i c a t i o n  and correction of s e v e r a l  dozen 
s u b t l e  problems i n  t h e  l a ngua ge  s p e c i f i c a t i o n  and 
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its implementation. In addition the definition 
proved to be a useful basis for a detailed design 
of a HAL/S implementation. We discuss each of 
these experiences separately. 

Clarification of Language Definition 

Clarification of a language definition is one 
of the primary uses for any semantic definition. 
Despite the implementation and use of the lan- 
guage, we assembled a llst of over 50 significant 
errors, ambiguities, and inconsistencies in the 
language specification during this project [9]. 
These problem areas were discovered in the course 
of trying to find a consistent implementation mod- 
el for the language, that is, an implementation 
model for the run-time structure that would make a 
complete, consistent whole out of the diverse set 
of features in [I]. Examples include almost every 
aspect of the language, including, in particular, 
tasking, exceptions, and arrayed subscripts. 

The llst of problem areas was of serious con- 
cern to NASA, because several hundred thousand 
lines of HAL/S code for Space Shuttle had already 
been coded and tested. After checking each pro- 
blem area, it was determined that few involved 
language structures that had been used in Space 
Shuttle code, because of decisions early in that 
project to avoid parts of the language that were 
"suspect" such as arrayed subscripts and exception 
handling. However, six changes to the language 
were made directly as a result of this problems 
llst [I0], and the "array subscript" feature was 
completely deleted. Also a number of sections of 
the specification were clarified to remove ambigu- 
ities and inconsistencies (over 30 modifications 
to the language specification were made). 

Obviously the implementors of HAL/S had come 
up against these same problems areas in the defi- 
nition, but as often happens, an arbitrary imple- 
mentation choice was made and the specification 
was not corrrected or clarified. Thus, although 
it might be expected that an implementation effort 
would find and bring to attention the same set of 
problems, this was not the case. 

Detection of Compiler Errors 

Residual bugs in compilers and run-tlme sup- 
port routines are a serious problem where life 
critical software is written in hlgh-level lan- 
guages. No verification or analysis of a source 
program is of much value if the compiler does not 
correctly implement the language specified. Our 
goal in the HAL/S definition was not to find er- 
rors in existing compilers, but the llst of prob- 
lem areas described above identified language fea- 
tures that might have caused trouble for implemen- 
tots. Where the language specification is incom- 
plete, ambigious, or contradictory, the language 
implementation necessarily does something. What 
is implemented in these cases is not necessarily 
an error until the specification is tightened to 
eliminate the problem, but at that time if the 
specification and implementation differ, then each 
problem becomes a compiler error. Our llst of 
HAL/S problem areas was used by others to find 
several subtle bugs in HAL/S implementations, and 
we inadvertently discovered one with one of our 
test programs as well. 

Three kinds of errors were found: 
I. Implementation more restricted than the 

specification. The implementation did not allow a 
construct that the specification stated to be le- 
gal. 

2. Implementation different from the speci~ 
flcation. An error caused by incorrectly inter- 
preting part of the language specification. 

3. Implementation matches the specification~ 
but both are incorrect. The most serious errors 
were those in which the specification was too 
"loose" in allowing a construct that should have 
been prohibited (because it bad no reasonable 
meaning) and where the implementation allowed the 
construct as well, simply producing "bad code" in 
response to use of the construct. Execution of 
the bad code could potentially compromise the in ~ 
tegrlty of the entire run-tlme structure (which is 
not the case in (I) or (2)). 

Examples. 

The major problems found in the language 
specification are detailed below. In each case, 
the language feature is briefly described, then 
the problem with the specification and/or imple- 
mentation of the feature, and finally the disposi- 
tlon of the problem is given (to the extent 
known). The options for disposition of problems 
where implementation and specification differ were 
somewhat unique to the special circumstances of 
HAL/S, in which the same group was both the de- 
signer and almost the sole implementor. A correc- 
tion could be made either by changing the specifi- 
cation to match the implementation, or vice versa, 
or possibly by changing both. For a standard lan- 
guage such as Ada or Fortran, the option of chang- 
ing the specification instead of the implementa- 
tion is usually not open. 

Problem I. Arrayed subscripts. HAL provides 
an extremely general subscriptlng feature for ar- 
rays (and other data structures such as vectors, 
matrices, character strings and bit strings, all 
of which are separate types in HAL). A subscript 
may be: 

a. A simple index (as in most languages), 

b. A slice along a single dimension, speci- 
fied by "*" (all elements), I AT J (I elements 
starting at element J), or J TO K (elements J 
through K), 

c. An "arrayed subscript", e.g., A B where B 
is an integer array of subscripts, specifying se- 
lection of a subarray of A, where B gives the sub- 
scripts of the selected elements and their posi- 
tion in the result array. 

The problem. The semantics of many aspects 
of arrayed subscripts are left undefined by the 
language specification. The major problems are: 

a. Assignment to a varlable with an arrayed 
subscript is not clearly defined if the subscript 
contains a repeated value. For example, the mean- 
ing of M I . = MI,.+I when I ffi [2,1,1] (an example 
f rom [ 1 ] ) . '  

b .  No r u l e s  a r e  g i v e n  f o r  d e t e r m i n i n g  t h e  
shape  o f  the  r e s u l t i n g  a r r a y  when a c o m b i n a t i o n  o f  
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a r r a y e d  s u b s c r i p t s  and s l i c e s  i s  s p e c i f i e d .  

c .  No r u l e s  a r e  g i v e n  f o r  d e t e r m i n i n g  the  d a -  
t a  t ype  of  t he  r e s u l t  when an  a r r a y e d  s u b s c r i p t  i s  
a p p l i e d  t o  a m a t r i x ,  v e c t o r ,  o r  s t r i n g .  For exam- 
p l e ,  i f  A i s  a c h a r a c t e r  s t r i n g  and I i s  a o n e -  
d i m e n s i o n a l  a r r a y  of  s u b s c r i p t s ,  i s  A I a c h a r a c t e r  
s t r i n g  o r  an a r r a y  o f  one c h a r a c t e r  c h a r a c t e r  
s t r i n g s .  

Disposition of the problem. The implementors 
analyzed possible solutions to these problems as 
follows [14]: 

" I t  would be e x t r e m e l y  d i f f i c u l t  t o  c l e a r l y  
s p e c i f y  how a r r a y n e s s  i n  s u b s c r i p t s  i s  p r e s e n t l y  
implemented. To have the Language Specification 
and compiler match would therefore involve changes 
to b o t h .  Ar rayed  s u b s c r i P t S  a r e  v e r y  se ldom 
u s e d . . . . "  The a r r a y e d  s u b s c r i p t  f e a t u r e  was e n -  
t i r e l y  deleted from the language. 

Problem 2.  V i s i b i l i t y  of  TEMPORARY 
v a r i a b l e s .  The g e n e r a l  l o o p i n g  c o n s t r u c t  i n  HAL 
i s  t h e  DO...END g r o u p .  In  a DO g r o u p  h e a d e r  i t  i s  
p o s s i b l e  to  d e c l a r e  v a r i a b l e s  a s  TEMPORARY. The 
l i f e t i m e  of  such  a v a r i a b l e  t h e n  i s  r e s t r i c t e d  to  
t he  e x e c u t i o n  of  t h e  DO g r o u p  r a t h e r  t h a n  to  t h a t  
of the larger program unit containing the DO 
g r o u p .  

The p r o b l e m .  A TEMPORARY v a r i a b l e  may become 
v i s i b l e  t h r o u g h  n o n l o c a l  r e f e r e n c e s  b e f o r e  a DO 
group is entered or after its execution is 
complete. This may happen because a task, proce- 
dure, or function may be declared within a DO 
group and may then access nonlocally any TEMPORARY 
variable defined in the DO group. Such a subpro- 
gram may be called from outside the DO group, and 
such a task may be initiated without the DO group 
being entered. In checking what was allowed by 
the 360 implementation, we found that the compiler 
allowed the constructs, but the value of the 
TEMPORARY variable was garbage regardless of whe- 
ther the DO group had been executed previously. 

Disposition of the problem. The Implementors 
identified this problem as the only one in which 
the compiler produced "bad code" that might affect 
existing Space Shuttle programs. Declaration of a 
task within a DO group was prohibited. Calls to 
procedures and functions declared within a DO 
group were allowed only from within the same DO 
group. Thus TEMPORARY variables were made visible 
only during execution of the DO group in which 
they were defined. 

Prob lem 3. Mutual  e x c l u s i o n  f rom s h a r e d  
data. In HAL, variables shared among tasks are 
organized into "lockgroups" numbered I to N (an 
implementation defined maximum). A shared varia- 
ble is declared with the attribute LOCK(k) to 
place it in lockgroup k. Locked variables may on- 
ly be referenced within UPDATE blocks (critical 
regions). Locked variables may be passed as para- 
meters to subprograms. The corresponding formal 
parameter may be declared LOCK(k), indicating the 
actual parameter is always from the kth lockgroup, 
or LOCK(*), indicating that the actual parameter 
is from a different lockgroup on different calls. 

The p r ob l e m.  On e n t r y  t o  an  UPDATE b l o c k  
which  r e f e r e n c e s  a f o r m a l  p a r a m e t e r  d e c l a r e d  a s  
LOCK(*), i t  i s  no t  c l e a r  w h e t h e r  a l l  I o c k g r o u p a  
a r e  locked  o r  o n l y  t h a t  l o c k g r o u p  t o  which  t h e  a c -  
t u a l  p a r a m e t e r  b e l o n g s  on each  c a l l .  The 360 im-  
p l e m e n t a t i o n  was found  t o  l ock  a l l  I o c k g r o u p s  
( i . e . ,  a c c e s s  to  any s h a r e d  d a t a  was c l o s e d  o f f  
u n t i l  t h e  UPDATE b l o c k  was c o m p l e t e ) .  

Vlsposltion of the problem. The specifica- 
tion was clarified to indicate that all lockgroups 
are locked. 

Problem 4. Real-tlme tasking. HAL contains 
a variety of statements for defining and control- 
ling t a s k s  i n  r e a l - t l m e  a p p l i c a t i o n s .  Tasks  may 
be s c h e d u l e d  f o r  e x e c u t i o n  i n  a v a r i e t y  o f  w a y s ,  
i n c l u d i n g  c y c l i c  r e p e t i t i o n  a t  a s e t  t ime i n t e r -  
v a l ,  e . g . ,  u s i n g  "SCHEDULE P REPEAT UNTIL E" t o  
indicate immediate repetition of P each time a cy- 
cle completes, continuing until some "event ex- 
pression" E becomes true. Tasks may be given pri- 
orities. Tasks  may be t e r m i n a t e d  e i t h e r  by a 
TERMINATE s t a t e m e n t  ( i m m e d i a t e  t e r m i n a t i o n )  o r  a 
CANCEL statement (terminate a t  end of  current c y -  
C le ) • 

The problem. Although the specification of 
this rather difficult area of the language was 
generally "tight", the specification was silent or 
ambiguous  on s e v e r a l  p o i n t s :  

a .  No meaning  was g i v e n  f o r  a p r i o r i t y  s p e c i -  
f i c a t i o n  on a t a s k .  

b .  When a t a s k  was t e r m i n a t e d  by CANCEL, i t s  
d e p e n d e n t  t a s k s  were  a l s o  t o  be  c a n c e l e d .  But 
were  t h e  d e p e n d e n t s  c a n c e l e d  i m m e d i a t e l y  o r  a t  t h e  
end of  t h e  c u r r e n t  c y c l e  ( t h e  s p e c i f i c a t i o n  s a i d  
i m m e d i a t e l y ,  bu t  t h e  360 i m p l e m e n t a t l o n  c a n c e l e d  
a t  t h e  end of  t h e  c y c l e ) .  Both t h e  t a s k  and i t s  
d e p e n d e n t s  c o u l d  s c h e d u l e  o t h e r  t a s k s  a f t e r  t h e  
CANCEL s t a t e m e n t  was e x e c u t e d ;  were  t h e s e  o t h e r  
t a s k s  a l s o  c a n c e l e d ?  In  g e n e r a l ,  t he  " t r i c k l e  
down" s e m a n t i c s  of  CANCEL was n o t  w e l l  d e f i n e d .  

c. If a task were terminated by a TERMINATE 
command, " c e s s a t i o n  of  e x e c u t i o n "  o f  i t s  d e p e n -  
d e n t s  was a l s o  t o  t a k e  p l a c e .  Was t h i s  t h e  same 
t h i n g  as  t e r m i n a t i o n ?  

Disposition of the problem. The semantics 
for CANCEL was changed to delete the reference to 
cancelation of dependents. TERMINATE was clari- 
fied to specify TERMINATE of dependents. The se- 
m a n t l c s  of  t a s k  p r i o r i t i e s  was s p e c i f i e d  a s  e n -  
t i r e l y  implementation dependent. 

Problem 5. Lifetimes of EVENT variables. A 
t a s k  o r  s u b p r o g r a m  may d e c l a r e  a v a r i a b l e  of  t y p e  
EVENT. Such a v a r i a b l e  i s  s i m i l a r  to  a b o o l e a n  
v a r i a b l e ,  but it may be used  i n  "event e x p r e s -  
s i o n s "  f o r  t a s k  s c h e d u l i n g ,  e . g . ,  i n  t h e  s t a t e m e n t  
"SCHEDULE P ON E" (where  E i s  an EVENT 
v a r l a b l e ) .  In  a n o t h e r  p a r t  of  t h e  s p e c i f i c a t i o n ,  
a v a r i a b l e  may be d e c l a r e d  t o  be i n  e i t h e r  of  t h e  
i n i t i a l i z a t i o n  c l a s s e s  STATIC ( v a l u e  p r e s e r v e d  b e -  
tween c a l l s )  o r  AUTOMATIC ( v a l u e  n o t  p r e s e r v e d  b e -  
tween c a l l s ) ,  and any v a r i a b l e  may be a s s i g n e d  an  
i n i t i a l  v a l u e .  STATIC i n i t i a l i z a t i o n  o c c u r s  o n l y  
once a t  t he  f i r s t  e x e c u t i o n  of  t he  d e c l a r i n g  r o u -  
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tlne; AUTOMATIC initialization occurs on each en- 
try. 

The problem. An EVENT variable used in a 
real-tlme scheduling statement may "outlive" the 
routine declaring it, because the declaring rou- 
tlv~ may complete its execution before the event 
is signaled (changed to true). If so, then the 
declaring routine dles, but the event variable 
continues to be evaluated by the "real-tlme execu- 
tive" until the related scheduling is complete. 
In the meantime, the declaring routine might have 
been executed a second time. An AUTOMATIC EVENT 
variable would not necessarily have its vlue pre- 
served a f t e r  e x i t  f r om t h e  d e c l a r i n g  r o u t i n e  and  
i t  would  be r e l n l t l a l l z e d  on t h e  n e x t  c a l l .  
AUTOMATIC EVENT v a r i a b l e s  t u r n e d  o u t  t o  be p r o h i -  
b i t e d  by t h e  360 c o m p i l e r ,  a l t h o u g h  a l l o w e d  by t h e  
l a n g u a g e  s p e c i f i c a t i o n .  A r e l a t e d  p r o b l e m  was 
t h a t  e v e n t  e x p r e s s i o n s  c o u l d  i n c l u d e  s u b s c r i p t  e x -  
p r e s s i o n s  nam i ng  o t h e r  v a r i a b l e s .  The ti~ o f  
e v a l u a t i o n  o f  t h e s e  s u b s c r i p t  e x p r e s s i o n s  was n o t  
d e f i n e d ,  and  m i g h t  a l s o  l e a d  t o  t h e s e  v a r i a b l e s  
o u t l i v i n g  their d e f i n i n g  s u b p r o g r a m .  

Disposition of the problem. The specifica- 
tion was changed to prohibit AUTOMATIC EVENT vari- 
ables. Disposition of the other problem is un- 
known. 

Problem 6. Exception handlln~. HAL contains 
facilities for defining exception handlers ("error 
environments") and for raising and propogatlng ex- 
ceptions. The action in an exception handler may 
be to execute a statement, to IGNORE the exception 
and resume execution, or to SYSTEM the exception 
(invoke a system-defined action). Exception hand- 
lers may handle individual exceptions, groups of 
e x c e p t i o n s ,  o r  ALL e x c e p t i o n s ,  w i t h  a p r e c e d e n c e  
i n  t h a t  o r d e r .  Thus  when an  e x c e p t i o n  i s  r a i s e d ,  
i t  i s  h a n d l e d  by an  i n d i v i d u a l  h a n d l e r  i f  one 
e x i s t s ,  o t h e r w i s e  by a h a n d l e r  f o r  i t s  g r o u p ,  and  
f i n a l l y  by a g e n e r a l  ALL h a n d l e r  i f  one e x i s t s .  

The problem. The HAL specification Implled 
that exception propogatlon followed static scope 
rules (block nesting), but the 360 implementation 
turned out to use dynamic scope rules (calllng 
chain). Which was correct? The precise meaning 
of the IGNORE 0ptlon was not clear in the case of 
an" exception propogated down several levels of 
subprogram nesting. Also the precedence rules for 
propegated exceptions were not clearly defined. 

Disposition of the p r o b l e m .  The speclflca- 
tlon was modified t o  specify dynamic scope rules 
for exception propogatlon. The other points were 
c l a r i f i e d .  

P r o b l e m  7.  P a r a m e t e r  s p e c i f i c a t i o n s .  A c h a -  
r a c t e r  s t r i n g  f o r m a l  p a r a m e t e r  c o u l d  h a v e  a l e n g t h  
s p e c i f i c a t i o n  o r  "*"  t o  i n d i c a t e  an  a r b i t r a r y  
length. Other parameter types could have some 
differences between actual and formal parameter 
specification, for example, a formal might be de- 
clared BOOLEAN and an  a c t u a l  BIT(1 )  ( d e f i n e d  a s  
e q u i v a l e n t  i n  mos t  s i t u a t i o n s ) .  

The p r o b l e m .  The r u l e s  o f  c o r r e s p o n d e n c e  b e -  
tween  t h e  a t t r i b u t e s  o f  a c t u a t  and  f o r m a l  p a r a m e -  
t e r s  were not complete. For example, could the 

actual be declared BOOLEAN while the formal was 
declared BIT(1)? Could a character string formal 
have a length specification other than * (Indlca- 
tlng an arbitrary length)? 

Disposition of the problem. The language 
specification was changed to prohibit any length 
b u t  " * "  f o r  a c h a r a c t e r  string f o r m a l  parameter. 
Disposition of the other problems is unknown. 

Problem 8. Subscripts on character strin~ 
variables. A subscript "# "  on a variable indi- 
cates the "maximum Index-value in the relevant di- 
mension". T h i s  applies to bit and character 
string variables as well as to vectors, ~atrices, 
and arrays. 

The problem. A character string has both a 
maximum length and a current length. Which length 
was meant by "# "?  If the current length is meant 
and  t h e  l e n g t h  i s  z e r o ,  wha t  i s  t h e  r e s u l t ?  I f  
t h e  maximum l e n g t h  i s  m e a n t ,  and  t h e  c u r r e n t  
l e n g t h  i s  l e s s  t h a n  t h e  maximum, wha t  i s  t h e  
r e s u l t ?  

D i s p o s i t i o n  o f  t h e  p r o b l e m .  "#"  was d e f i n e d  
t o  r e f e r  t o  t h e  c u r r e n t  l e n g t h  o f  a s t r i n g .  D i s -  
p o s i t i o n  o f  t h e  o t h e r  p r o b l e m  i s  unknown.  

P r o b l e m  9 .  I /O and  f i l e  P o s i t i o n i n ~ .  A READ 
s t a t e m e n t  may c o n t a i n  e x p r e s s i o n s  i n v o l v i n g  t h e  
v a r i a b l e s  b e i n g  r e a d ,  e i t h e r  i n  s u b s c r i p t  e x p r e s -  
s i o n s  f o r  o t h e r  v a r i a b l e s  o r  i n  a r g u m e n t s  f o r  c o n -  
t r o l  f u n c t i o n s  s u c h  a s  TAB, SKIP, and LINE t h a t  
Control file positioning. 

The problem. The time of evaluation of ex- 
pressions in READ lists is not defined, whether 
before execution of the statement begins o r  when 
reached during execution. For example, the mean- 
ing o f  READ (u )  I ,  A I c a n n o t  be d e t e r m i n e d .  The 
f i l e  p o s i t i o n i n g  a f t e r  a r e a d  s t e p  was a l s o  n o t  
s p e c i f i e d  c l e a r l y ,  so  t h e  e f f e c t  o f  t h e  c o n t r o l  
f u n c t i o n s  s u c h  a s  TAB and  SKIP c o u l d  n o t  be d e t e r -  
m ined  p r e c i s e l y .  

D i s p o s i t i o n  o f  t h e  p r o b l e m .  E v a l u a t i o n  o f  
e x p r e s s i o n s  i n  READ s t a t e m e n t s  was d e f i n e d  t o  
o c c u r  when t h e  e x p r e s s i o n  was r e a c h e d  d u r i n g  e x e -  
c u t i o n  o f  the statement. Disposition of the other 
problems is unknown. 

It should be apparent from this llst of pro- 
blems that most were caused simply by the informal 
style of semantic definition used. Similar ambi- 
guities and  i n c o n s i s t e n c i e s  h a v e  p l a g u e d  a l m o s t  
e v e r y  p r o g r a m m i n g  l a n g u a g e  d e f i n i t i o n  (PASCAL, 
FORTRAN, ALGOL 60 ,  ADA, e t c . )  t h a t  h a s  u s e d  t h i s  
i n f o r m a l  s t y l e  o f  s e m a n t i c  d e f i n i t i o n .  C o n s i d e r -  
i n g  t h e  r e l a t i v e l y  l i m i t e d  e x p o s u r e  o f  HAL/S i n  
t h e  p r o g r a m m i n g  c o m m u n i t y ,  t h e  d e f i n i t i o n  o f  t h i s  
comp lex  l a n g u a g e  i s  f a i r l y  t i g h t .  Many o f  t h e  
p r o b l e m s  we u n c o v e r e d  were  r e m e d i e d  by a d d i n g  some 
s h o r t  c l a r i f i c a t i o n  t o  t h e  l a n g u a g e  s p e c i f i c a t i o n .  

Implementation Design 

An important v i r t u e  o f  structuring a f o r m a l  
definition so that it is also an abstract design 
for an implementation lles in the potential use of 
t h e  d e f i n i t i o n  a s  an  i n t e r m e d i a t e  s t e p  i n  t h e  d e -  
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tailed design of an implementation. The major 
goal of our project was not to "debug" the HAL/S 
specification but rather to use the formal seman- 
tic definition to determine how effectively vari- 
ous language features could be implemented on par- 
ticular restricted hardware architectures. The 
goal was to identify a subset of the language that 
could be implemented with good run-tlme efficiency 
on a particular computer. The two machines chosen 
for the study were the IBM NSSC-II, a radiation 
hardened, slightly modified version of the IBM 
360, and the Intel 8080A microprocessor. 

An H-graph semantics definition is well- 
suited to this use because the level of abstrac- 
tion in such a definition lies between the imple- 
mentation independent specification found in the 
usual informal language definition (e.g., [I]) and 
the detail of a particular implementation for a 
particular machine. The productions of the "state 
grammar" (the H-graph grammar defining the state 
of the run-tlme machine) define the various data 
and code structures necessary to support program 
execution and the information that each contains, 
but they do not specify any detailed storage lay- 
outs, linkages, or other details that may be ma- 
chine dependent. Similarly the definitions of H- 
graph transforms specify what the run-tlme support 
routines or in-llne code sequences produced by the 
compiler must do to the data structures, but the 
specification is also independent of machine de- 
tails. 

We were successful in analyzing the detailed 
implementation design for these two machines by 
the relatively simple process of (I) mapping each 
production in the state grammar into a particular 
storage representation on the target machine for 
the defined data or code structure and (2) mapping 
each transform definition into a particular code 
sequence that manipulated the defined data repre- 
sentation appropriately. However, both studies 
were terminated without any actual implementation 
completed. Subsequently, Feyock [13] used essen- 
tially the same methods to produce an implementa- 
tion of the HAL/S real-tlme structure coded in 
PASCAL. In his work, productions in the state 
grammar were mapped into PASCAL type definitions 
and H-graph transforms were represented as PASCAL 
procedures. 

The study of implementation of the NSSC-II 
[II] and the Intel 8080A [12] dealt primarily with 
the larger structures of the language, especially 
the real-tlme features, storage management, sub- 
program activations, exception handling, and the 
run-tlme structures needed to support these lan- 
guage features. The lower-level parts of the lan- 
guage were less interesting because they were 
somewhat more conventional and also in most cases 
our semantic model omitted some low-level details 
needed for a careful analysis. The model of the 
implementation of the larger structures of the 
language was found to be useful in several ways: 

I. It brought together into a coherent whole 
all the underlying run-tlme support structures 
needed to implement a diversity of language fea- 
tures, each described separately in the language 
specification. For an implementor, construction 
of such a coherent implementation model is neces- 
sarily the first step in implementation design and 

often is extremely difficult without a "blueprint" 
such as is provided by the H-graph semantic defi- 
nition. 

2. It allowed a straightforward layout for 
local storage areas for each task, program and 
subprogram to be determined. A few productions in 
the H-graph grammar defined, for each type of pro- 
gram, exactly which items of information were nee- 
ded in the local storage area for that type of 
program unit. From this it was simple to deter- 
mine the storage layout for activation records, 
and to "fine tune" these layouts as the detailed 
design of other parts of the implementation was 
completed. 

3. It allowed analysis of the storage man- 
agement structure required in the 
implementation. From study of the abstract imple- 
mentation model, several subtle facts about the 
storage management structure for HAL/S became ap- 
parent. For real-tlme life-crltlcal systems, dy- 
namic storage management is particularly trouble- 
some because of the possibility of a system fail- 
ure caused by running out of storage (e.g., an 
overflow of a dynamically allocated queue is re- 
ported to have forced a manual takeover and land- 
ing of one of the early lunar flights). By ana- 
lyzing the HAL/S model, a few simple restrictions 
were found that enabled a static storage manage- 
ment structure for all the real-tlme queues to be 
used. At the same time, a potentially serious 
storage management problem for reentrant proce- 
dures was identified that either required a re- 
striction in the language, a worst case static al- 
location strategy (potentially expensive in 
storage), or dynamic allocation during execution. 

As an abstract implementation model, an 
H-graph semantic definition has some similarities 
to definition of a machine independent intermedi- 
ate code for the language, such as the DIANA in- 
termediate representation proposed for ADA [15]. 
Our original intent was to use the HALMAT interme- 
diate code (in an abstract form) used by the HAL/S 
implementation as the basis for our code represen- 
tations in the formal model. However, we found 
HALMAT to be only marginally useful for that pur- 
pose, primarily because the HALMAT operations re- 
flected rather strongly the syntactic divisions of 
HAL/S programs and only rather weakly modeled the 
run-tlme distinctions that were the basis for our 
choice of transforms in the run-tlme model. We 
suspect that this may be true of intermediate 
codes in general. The DIANA intermediate code for 
ADA is a form of abstract syntax tree for ADA 
programs, and thus also reflects more the syntac- 
tic structure of ADA than the run-tlme organiza- 
tion needed in an ADA implementation. 

5. C o n c l u s i o n  

Experience with the H-graph semantic defini- 
tion of HAL/S indicates that this style of lan- 
guage definition r e a l i z e s  two major  advantages: 

a. In constructing a formal semantic defini- 
tion, vague, ambiguous and inconsistent parts of 
the language specification are identified and 
g i v e n  p r e c i s e  meaning;  and 

b .  By p r o v i d i n g  an  a b s t r a c t  i m p l e m e n t a t i o n  
model, the definition simplifies implementation 
d e s i g n  and s u p p o r t s  p r e c i s e  a n a l y s i s  of l a r g e  
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s c a l e  implementa t ion  des ign  i s s u e s  a t  an e a r l y  
s t a g e .  

Advantage (a) would apply to any careful, 
complete analysis of a language definition, 
whether or not a formal semant ic  definition was 
the goal. However, our experience shows that slm- 
ply having several complete implementations of the 
language in use is not necessarily sufficient to 
provide thls result. 

Advantage (b) ls not commonly realized 
through formal semantic definitions, because other 
definition methods such as denotatlonal and ax io -  
matic semantics have usually avoided direct imple- 
mentation models. Our experience indicates that 
development of an abstract implementation model Is 
valuable for a variety of purposes during imple- 
mentation design. Recent experience wlth the use 
of an H-graph semantic definition in implementa- 
tion of another language strongly supports thls 
c o n c l u s i o n .  
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