
OCSEGen: Open Components and
Systems Environment Generator

Oksana Tkachuk
NASA Ames Research Center
oksana.tkachuk@nasa.gov

Abstract
To analyze a large system, one often needs to break it into smaller
components. To analyze a component or unit under analysis, one
needs to model its context of execution, called environment, which
represents the components with which the unit interacts. Environ-
ment generation is a challenging problem, because the environ-
ment needs to be general enough to uncover unit errors, yet precise
enough to make the analysis tractable. In this paper, we present a
tool for automated environment generation for open components
and systems. The tool, called OCSEGen, is implemented on top
of the Soot framework. We present the tool’s current support and
discuss its possible future extensions.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model Checking

General Terms Verification

Keywords User Specifications, Static Analysis, Code Generation

1. Introduction
When analyzing large systems, one often needs to break them
into smaller components or units under analysis. Many analysis
techniques require the unit under analysis to be executable, i.e., its
execution context or environment needs to be modeled.

Environment generation is a problem persistent across differ-
ent types of program analysis: in unit testing, one has to write test
drivers, components that make calls to the unit, and stubs, simpli-
fied implementations of actual components called by the unit; in
static analysis, one has to supply analysis results for components
that are missing or hard to analyze (e.g., native methods); in mod-
ular model checking, one has to write both drivers and stubs.

Environment generation is a challenging problem: the environ-
ment needs to be general enough to cover interesting unit behaviors
and uncover errors, yet restrictive enough to enable tractable anal-
ysis, without being overly restrictive, which may cause the analysis
to miss important unit behaviors, including errors.

In this paper, we present the Bandera Environment Generator [7,
9], implemented on top of Soot [6]. The approach evolved based
on experience gained while applying it to many case studies from
various domains. Recently, the tool has been released under an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SOAP’13, June 20, 2013, Seattle, Washington, USA.
Copyright c© 2013 ACM 978-1-4503-2201-0/13/06. . . $15.00

Drivers

Stubs

Unit Environment
Generation

Code Base

Unit
?

?

?

?

?

Figure 1. Environment Generation Problem

open source license and given a new name: Open Components and
Systems Environment Generator (OCSEGen) [4]. OCSEGen can
be used as

• Enabling technique: when an open component needs to be
closed first, e.g., with a test driver, before a back-end analysis
can be run.

• Performance-enhancing technique: when a system under test is
too large for a back-end analysis, e.g., due to the presence of
complex libraries that need to be stubbed out first.

The rest of the paper defines the environment generation prob-
lem and presents OCSEGen’s architecture, usage and possible fu-
ture extensions.

2. Environment Generation Problem
Figure 1 depicts the environment generation problem. On the left,
it shows a codebase as a collection of Java classes. We carve out
a unit under analysis as a subset of the entire codebase. On the
right, we show that we want to generate the unit’s environment con-
sisting of drivers and stubs. We define drivers as Java classes that
hold a thread of control, i.e., classes containing the main() method
or classes that extend/implement java.lang.Thread/Runnable.
The remaining environment classes are called stubs. Our experi-
ence shows that often, one needs to generate (1) drivers that exer-
cise the unit behavior by performing sequences of actions on the
unit and (2) stubs for the library components used by the unit.

Note that Figure 1 shows a common case when drivers make
calls to the unit, while stubs are called by the unit. In general,

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

9

InterfaceFinder

ApplInfo findInterface(ApplInfo)

AssumptionsAcquirer
ApplInfo acquireAssumptions

(ApplInfo)

CodeGenerator

ApplInfo generateCode(ApplInfo)

CodePrinter

void printCode(ApplInfo)

ApplInfo

ModuleInfo unit

ApplInfo

ModuleInfo unit

ModuleInfo env

ApplInfo

ModuleInfo unit

ModuleInfo env

Assumptions asmp

ApplInfo

ModuleInfo unit

ModuleInfo env

Assumptions asmp

Code Files

EnvGenerator Config file
main(String[])

Fills unit

Finds env structure

Fills env methods with
bodies

Fills assumptions

Figure 2. OCSEGen High Level Architecture

the unit-environment interactions may be arbitrary, e.g., stubs may
have callbacks to the unit. Interactions between a unit and its envi-
ronment can be complicated and difficult to analyze: the environ-
ment can influence the unit’s control (e.g., by invoking the unit’s
methods) and data (e.g., by modifying the unit’s data flowing into
the environment).

When no information is available about the environment be-
havior, one may start with the most general environment, e.g., a
driver that may perform all possible sequences of actions on the
unit and stubs that may have all possible side-effects on the unit
data. However, such environments are not practical. If some in-
formation about the environment behavior is available, it can be
used to generate more precise environments. Such information is
called environment assumptions and it can be mined from a variety
of sources, e.g., user specifications, static analysis, run-time analy-
sis, symbolic execution, or learning algorithms.

By default, OCSEGen generates the most general drivers and
empty stubs. In addition, OCSEGen has support for the following
options:

• User specifications: regular expressions and Linear Temporal
Logic (LTL) can be used to describe possible sequences of
actions that the environment may perform on the unit. This
option is useful for driver generation, especially in the absence
of the environment driver code.

• Static analysis: if the environment code is available, points-to
and side-effects analyses can be used to calculate possible side-
effects that the environment may have on the unit or environ-
ment data. This option is useful for stub generation of library
code.

OCSEGen has an extensible architecture that allows more anal-
yses to be plugged in. Next, we describe the tool’s architecture and
usage.

3. Architecture
Figure 2 shows OCSEGen’s architecture. At the high level, OC-
SEGen consists of four main modules that run in a sequence:
InterfaceFinder, AssumptionsAcquirer, CodeGenerator,
and CodePrinter. The interface finder gathers information about
the environment’s structure: its classes, methods, and fields. The

assumptions acquirer gathers information about the environment’s
behavior in the form of environment assumptions. The code gen-
erator fills the environment methods’ bodies with the behavior ac-
cording to the environment assumptions. The code printer simply
prints out the Java code for the newly constructed environment
classes. The tool uses the ApplInfo data structure to carry infor-
mation about the application under analysis from one OCSEGen
module to another; each module adds information to the ApplInfo
instance being passed.

OCSEGen has an extensible plug-in architecture. Each of the
modules includes an abstract class that can be extended and cus-
tomized for specific domains or user needs. ApplInfo is also ex-
tensible and can encode domain-specific information about the ap-
plication under analysis. The main class, EnvGenerator, reads
a configuration file and creates instances of the above types, ac-
cording to the configuration file. The main class also loads unit
classes using Soot, which loads and stores class files as instances of
SootClass. A SootClass has information about the name of the
class, its parent, the interfaces it implements, a list of SootMethods
and SootFields of the class. A SootMethod has information
about the name of the method, its modifiers, its parameter types,
return type, and a body, which consists of a list of locals and a list
of statements. In this work, we use Jimple, a three-address bytecode
representation, which offers typed variables and a limited number
of statement kinds. Jimple is a convenient representation for data
flow analyses.

Next, we describe each OCSEGen module in more detail.

3.1 Application Information
The ApplInfo data structure is used to carry information through
the pipeline of the OCSEGen modules. It is used to store the fol-
lowing information: the unit classes, the environment classes, the
system class hierarchy, call graph, and environment assumptions.
In addition, the class declares abstract methods such as

• boolean isRelevantType(Type type)

• boolean isRelevantClass(SootClass sc)

• boolean isRelevantMethod(SootMethod sm)

• boolean isRelevantField(SootField sf)

which are used to specify classes, methods, and fields to scope
the analysis. For example, isRelevantClass() can be used
to specify classes in the unit for the driver to work with and
isRelevantField() can be used to describe specific fields that
the side-effects analysis should keep track of.

3.2 Interface Finders
Consider the example in Figure 3, which shows snippets from the
customized implementation of the observer-observable pattern1.
Suppose, classes Subject and Watcher are considered as a unit
under analysis. Then Buffer, used to keep track of the registered
Watchers, becomes part of the environment.

There are two aspects of the unit-environment interface that
need to be calculated by OCSEGen: the entry points into the
unit under analysis, used to define possible actions that the driver
may perform on the unit, and the exit points from the unit into
the environment, used to define the structure of the environment
stubs. These two aspects are implemented by the following classes:
UnitInterfaceFinder and EnvInterfaceFinder.

UnitInterfaceFinder walks over the unit classes and gathers
relevant methods and fields. The algorithm uses implementation of
isRelevantClass/Method/Field() to gather domain-specific

1 Full example artifacts are available as part of the OCSEGen distribution

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

10

// unit under analysis
public class Subject extends Observable {
Buffer obs; // for registered watchers
public Subject () { obs = new Buffer (); }
public void add(Watcher o) {
obs.register(o);}

public void delete(Watcher o) {
obs.unregister(o);}

...
}
public class Watcher implements Observer{

public boolean registered = false; ...
}

// environment
public class Buffer extends Vector {
public void register(Watcher w){

if(! contains(w)){
w.registered = true;
super.addElement(w);

}
}

public void unregister(Watcher w){
if(super.removeElement(w))

w.registered = false;
} ...

}

Figure 3. Customized Observer Implementation (excerpts)

entry points into the unit under analysis. By default all public meth-
ods and fields in the unit are treated as possible entry points, e.g.,
public APIs of Subject, add(Watcher) and delete(Watcher).
This information is later used for driver generation.

One can extend UnitInterfaceFinder to collect specific
classes, methods, and fields by providing their own implementation
of isRelevant*() methods. For example, for GUI applications,
only special event-handling methods are gathered.

EnvInterfaceFinder walks over the unit classes and finds
all external references to classes, methods, and fields. For exam-
ple in Figure 3, all references to Buffer, including its methods
register(Watcher) and unregister(Watcher) are considered
external. For each external reference, EnvInterfaceFinder cre-
ates a new SootClass, SootMethod, or SootField and stores
them in the env field of the ApplInfo object. Note that this step
discovers the structural information about the environment, not its
behavior. Also, the analysis is not scoped at the step, since we need
to discover all external references in order to produce stubs that
enable compilation of the unit.

Before scanning the unit, the EnvInterfaceFinder builds a
call graph. This is done to resolve virtual invoke expressions. There
are two options available: one based on the Class Hierarchy Anal-
ysis (CHA) and one based on a call graph built by Spark [3]. The
second one is done using a whole-program analysis and requires
presence of the main method. Thus, the Spark call graph can be
used after the driver generation phase. The CHA-based call graph
can be used without a main class, however, it is less precise.

3.3 Assumptions Acquirers
OCSEGen has support for acquiring assumptions from two sources:
user specifications and static analysis.

The module for reading user specifications includes a class
SpecReader, which parses, type checks, and completes a user
specification to produce the Assumptions object, which encodes
the specification information. The left hand side of Figure 4 shows
a snippet of the driver assumptions for the observer example.
Note that the specification is type checked against the driver ac-
tions discovered by the previous module, i.e., add(Watcher)
and delete(Watcher). If some parameters are omitted, the type
checker makes the most general guess to complete the specifica-
tion. The Assumptions object is later used by the driver or stub
generators to produce bodies for the environment methods.

The static analysis module includes SideEffectsAnalyzer,
which walks over the external references discovered in the previ-
ous step, performing the interprocedural, compositional, parame-
terized, flow-sensitive points-to and side-effects analysis [8].

The right hand side of Figure 4 shows an example of the stub as-
sumptions discovered by the side-effects analysis for the Buffer’s
methods register(Watcher) and unregister(Watcher). The

analysis calculates that the methods may have side-effects on the
methods’ parameter of type Watcher, due to an assignment to
its field, registered. When possible, the analysis calculates the
right-hand side of the assignment that may cause side-effects.
When this is not possible, a special TOP value is used to denote
an unknown value.

OCSEGen uses Soot’s Data Flow Analysis (DFA) framework,
which, given an implementation of transfer functions, merge op-
erator, direction of data flow, and initial value, performs a fixed
point computation over the control flow graph of each method. OC-
SEGen uses Soot’s intraprocedural DFA framework and extends
it by implementing transfer functions for invoke statements. Since
OCSEGen calculates modular parameterized information for each
environment method, at each call site, it either plugs in the previ-
ously calculated information of the called method or, if the method
has not been visited yet, it first calculates its summary.

OCSEGen uses domain-specific information, encoded in the
isRelevant*() methods of the ApplInfo instance to (1) scope
the call graph based on isRelevantMethod(), (2) scope the
points-to analysis based on isRelevantType(), and (3) scope the
side-effects analysis based on isRelevantField(). Depending
on the implementation of isRelevant*() methods, the tool can
be tuned to produce side-effects to all unit-type fields or specific
fields in the environment. For example, for GUI applications, we
defined fields implementing specific features as relevant, e.g., com-
ponent visibility, enabledness and containment. One can provide
their own implementation of isRelevant*() methods to collect
side-effects to specific objects in the unit or its environment.

3.4 Code Generators
Code generators use information encoded in the Assumptions
object to build bodies for the environment methods discovered
by the interface finders. As mentioned, we use Jimple to perform
scanning and static analysis techniques. We extended the Soot
framework with classes that represent Java bodies, Java statements
and Java expressions. Code generators build Java bodies and attach
them to SootMethods of the environment classes.

3.5 Code Printers
The CodePrinter is an abstract class that declares methods for
pretty printing classes and methods. Currently, OCSEGen provides
implementation for JavaPrinter, which produces Java code. One
can extend the JavaPrinter to produce modeling primitives for
different analysis frameworks. By default, JavaPrinter produces
modeling primitives supported in Java PathFinder (JPF) [2], a pop-
ular analysis framework for model checking Java programs.

Figure 4 shows snippets of the generated code for a driver (on
the left) and stubs (right). We use JPF’s special modeling primitives
to account for non-deterministric choices in the environment. Such

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

11

// regular expr assumptions
Main: Subject s; Watcher w1; Watcher w2 #
Register: (add() | delete ()) #

// generated code
public class Register extends Thread {

public Subject s;
public Watcher w1;
public Watcher w2;
...

public void run(){
if(Verify.randomBool ()
s.delete(Verify.randomObject("Watcher"));

else
s.add(Verify.randomObject("Watcher"));
} ...

//side -effects assumptions
method: <Buffer: void register(Watcher)>
maySummary: {param1.registered =[true]}

method: <Buffer: void unregister(Watcher)>
maySummary :{ param1.registered =[false]}

// generated code
public class Buffer extends Vector {
public void register(Watcher param1){
// begin may se;
if(Verify.randomBool ()){
param1.registered=true;
}// end may se;

} ...

Figure 4. Observer Environment Assumptions and Generated Code (excerpts)

InterfaceFinder

AssumptionsAcquirer

CodeGenerator

CodePrinter

Code Files

EnvGenerator

Config file

Fills unit

Finds env
structure

Fills env methods
with bodies

Fills
assumptions

UnitInterface

Finder
EnvInterface

Finder

SpecReader SideEffects

Analyzer

SpecDriver

Generator

SEStub

Generator

Java

Printer

Config file

Figure 5. OCSEGen Common Configurations

choices may come from user specifications (e.g., the or operator
from regular expressions) or the may flavor of static analysis. For
example, to reflect the possibility of an environment action, it is
encoded as if(Verify.randomBool()){action}, which forces
JPF to explore both branches of the if statement: the one where the
action happens and the one where it does not.

4. Usage
OCSEGen has a command line interface. The following command
is used to run it: java EnvGenerator -c <configfile>, where
<configfile> is a name of the configuration file, which specifies
concrete classes to instantiate for each of the OCSEGen modules,
the domain-specific information about the application under test,
various options, and unit classes. Based on our experience, the
most common configurations include driver generation from user
specifications:

ApplInfo = DefaultDriverInfo
InterfaceFinder = UnitInterfaceFinder
AssumptionsAcquirer = SpecReader
CodeGenerator = SpecDriverGenerator
specFileName = specs/observer -re.spec
unit = Subject Watcher

and stub generation using side-effects analysis:

ApplInfo = DefaultStubInfo
InterfaceFinder = EnvInterfaceFinder
AssumptionsAcquirer = SideEffectsAnalyzer
CodeGenerator = SEStubGenerator
unit = Subject Watcher

Figure 5 shows the flow of these two approaches. The tool has
support for many options, including an option to analyze a unit
instead of the environment. This last option is useful when setting
up an analysis of libraries without a client.

5. Conclusion and Future Work
In this paper, we presented OCSEGen, a tool for automated envi-
ronment generation for open components and systems. OCSEGen
has been applied to many case studies from various domains. Ini-
tially, it was implemented to support driver generation based on all
public methods and fields in the unit and to calculate side-effects
to unit data [8, 9]. Later, the tool was extended to treat the domain
of GUI applications [1] by scoping the unit’s entry points to spe-
cial event-handling methods and scoping the side-effects analysis
to keep track of specific fields in the GUI library classes. Then fol-
lowed the extension to treat web applications [5].

We are currently working on extending the tool for analysis
of Android applications. We would also like to add more static
analyses, e.g., to calculate control effects for driver generation and
to produce reusable library stubs based on modular slicing.

References
[1] M. B. Dwyer, Robby, O. Tkachuk, and W. Visser. Analyzing interaction

orderings with model checking. In ASE, pages 154–163, 2004.
[2] JPF. Website. http://babelfish.arc.nasa.gov/trac/jpf.
[3] O. Lhoták. Spark: A flexible points-to analysis framework for Java.

Master’s thesis, McGill University, December 2002.
[4] OCSEGen. Website. http://code.google.com/p/envgen/.
[5] S. P. Rajan, O. Tkachuk, M. R. Prasad, I. Ghosh, N. Goel, and T. Ue-

hara. Weave: Web applications validation environment. In ICSE Com-
panion, pages 101–111, 2009.

[6] Soot. Website. http://www.sable.mcgill.ca/soot/.
[7] O. Tkachuk. Domain-Specific Environment Generation for Modular

Software Model Checking. PhD thesis, Kansas State University, 2008.
[8] O. Tkachuk and M. B. Dwyer. Adapting side effects analysis for

modular program model checking. In FSE, Sept. 2003.
[9] O. Tkachuk, M. B. Dwyer, and C. S. Păsăreanu. Automated environ-

ment generation for software model checking. In ASE, Oct. 2003.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

12

