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Abstract 

The IEEE/ANSI standard for Scheme requires implementa- 
tions to be properly tail recursive. This ensures that portable 
code can rely upon the space efficiency of continuation-pass- 
ing style and other idioms. On its face, proper tail recursion 
concerns the efficiency of procedure calls that occur within 
a tail context. When examined closely, proper tail recur- 
sion also depends upon the fact that garbage collection can 
be asymptotically more space-efficient than Algol-like stack 
allocation. 

Proper tail recursion is not the same as ad hoc tail call 
optimization in stack-based languages. Proper tail recursion 
often precludes stack allocation of variables, but yields a 
well-defined asymptotic space complexity that can be relied 
upon by portable programs. 

This paper offers a formal and implementation-indepen- 
dent definition of proper tail recursion for Scheme. It also 
shows how an entire family of reference implementations can 
be used to characterize related safe-for-space properties, and 
proves the asymptotic inequalities that hold between them. 

1 Introduction 

Tail recursion is a phrase that has been used to refer to var- 
ious syntactic notions, to particular techniques for imple- 
menting syntactic tail recursion, and to the space efficiency 
of those techniques. Syntactically, a call is a tail call if it 
appears within a function body that can reduce to the call; 
this is formalized in Section 2. Since the complete call graph 
is seldom available, a tail call is often said to be tail recur-- 
siwe regardless of whether it occurs within a cycle in the call 
graph. 

Scheme, Standard ML, and several other mostly-function- 
al languages rely heavily on the efficiency of tail recursion. 
Common idioms, notably continuation-passing style (CPS), 
would quickly run out of stack space if tail calls were to 
consume space. To ensure that portable code can rely upon 
these idioms, the IEEE standard for Scheme [IEESl] says 

Implementations of Scheme are required to be 
properly tail-recursive [Ste78]. This allows the 
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Figure 1: Internal syntax of Core Scheme. 

execution of an iterative computation in constant 
space, even if the iterative computation is de- 
scribed by a syntactically recursive procedure. 

The standard’s citation refers to a technical report that uses 
CPS-conversion to explain what proper tail recursion meant 
in the context of the first Scheme compiler [Ste78]. That 
explanation is formally precise, but it is not entirely clear 
how it applies to an implementation that uses a different al- 
gorithm for CPS-conversion or does not use CPS-conversion 
at all. Most attempts to characterize proper tail recursion 
in a truly implementation-independent way have been more 
informal [Ste78]: 

Intuitively, function calls do not “push control 
stack”; instead, it is argument evaluation which 
pushes control stack. 

Using a style of definition proposed by Morrisett and 
Harper [MH97], this paper defines a set of asymptotic space 
complexity classes that characterize proper tail recursion 
and several related safe-for-space complexity properties. Al- 
though these complexity classes are defined in terms of spe- 
cific reference implementations, they can be used without 
depending upon the details or even the existence of imple- 
mentation-dependent data structures such as stacks or heaps. 
This provides a solid foundation for reasoning about the 
asymptotic space complexity of Scheme programs, and also 
provides implementors with a formal basis for determin- 
ing whether potential optimizations are safe with respect 
to proper tail recursion. 
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Figure 2: Static frequency of tail calls. These numbers were obtained by instrumenting two compilers: ICC and Twobit 
lFH95. CH941. The self-tail calls shown for Scheme include all tail calls to known closures, because Twobit has no reason to 
iecogn’ize self&l calls as a special case. See also Section 14. 

2 Tail Calls 

Figure 1 shows an internal syntax for the core of Scheme. 
The external syntax of full Scheme can be converted into 
this internal syntax by expanding macros and by replacing 
vector, string, and list constants by references to constant 
storage. 

Deflnition 1 The tail expressions of a program written in 
Core Scheme are defined inductively as follows. 

1. The body of a lambda expression is a tail expression. 

2. If (if Eo El Ez) is a tail expression, then both El 
and E2 are tail expressions. 

3. Nothing else is a tail expression. 

[KCR98] extends this definition to the syntax of full Scheme. 

Definition 2 A tail call is a tail expression that is a proce- 
dure call. 

Figure 2 shows that tail calls are much more common than 
the special case of self-tail calls, in which a procedure calls 
itself tail recursively. 

3 The Essence of Proper Tail Recursion 

The essence of proper tail recursion is that a procedure can 
return by performing a tail call to any procedure, including 
itself. This is a kind of dual to the informal characterization 
quoted in Section 1. A tail call does not cause an immediate 
return, but passes the responsibility for returning from the 
procedure that performs the tail call to the procedure it 
is calling. In other words, the activation of a procedure 
extends from the time that it is called to the time that it 
performs either a return or a tail call. 

This is fundamentally different from the traditional view 
of procedure calls, in which the activation of a procedure 
encompasses the activations of all procedures that it calls. 

4 An Example 

Figure 3 shows a procedure definition that contains three tail 
calls, of which the last is a self-tail call. Given a predicate, 
a binary tree, and a failure continuation of no arguments, 
find-leftmost searches for the leftmost leaf that satisfies 
the predicate. If such a leaf is found, then it is returned 
normally. Otherwise the procedure returns by performing a 
tail call to the failure continuation or to itself. 

(define (find-leftmost predicate? tree fail) 
(if (leaf? tree) 

(if (predicate? tree) 
tree ; return 
(fail)) ; tail call 

(let ((continuation 
(lambda 0 

(find-leftmost ; tail call 
predicate? 
(right-child tree) 
fail>>>> 

(find-leftmost predicate? ; tail call 
(left-child tree) 
continuation>>>> 

Figure 3: An example with three tail calls. 

Although find-leftmost uses an explicit failure continu- 
ation, it is not a pure example of continuation-passing style, 
because its fourth line returns tree to the implicit continu- 
ation. Returning is equivalent to performing an implicit tail 
call to the implicit continuation. 

In Scheme, it is perfectly feasible to write large programs 
in which no procedure ever returns, and all calls are tail 
call~.~ This is pure continuation-passing style. Proper tail 
recursion guarantees that implementations will use only a 
bounded amount of storage to implement all of the calls 
that are performed by a program written in this style. 

To make this precise, we need a proper model of space 
consumption. This model should allow us to reason about 
the space needed to run a program, independent of imple- 
mentation. For this to be tractable, the space model should 
take the form of an asymptotic upper bound on the space 
consumed by an implementation. 

Proper tail recursion constrains but does not determine 
the space model. To obtain a complete model, we must also 
model the space consumed by variables and data, and spec- 
ify the roots that a garbage collector would use to determine 
whether a variable or datum is reachable. Garbage collec- 
tion then completes the model. With a reasonable garbage 
collector, the asymptotic space required for variables and 
data is O(N), where N is the largest number of words oc- 
cupied by reachable variables and data at any point in the 
program [App92]. 

For example, a Scheme programmer can tell that the 
space required by find-leftmost is independent of the num- 

‘Some compilers do this routinely, using CPS Scheme as their tsr- 
get language. 
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ber of right edges in the tree, and is proportional to the 
maximal number of left edges that occur within any directed 
path from the root of the tree to a leaf. If every left child is a 
leaf, then find-leftmost runs in constant space, no matter 
how large the tree. 

5 Retention versus Deletion 

A deletion strategy reclaims storage at statically determined 
points in the program, whereas a retention strategy retains 
storage until it is no longer needed, as determined by dy- 
namic means such as garbage collection [Fis72]. Algol-like 
stack allocation is the most important deletion strategy. 

By allowing the lifetime of a variable or value to extend 
beyond the lifetime of the block in which it was declared or 
created, retention strategies support more flexible program- 
ming styles. It is less well-known that retention strategies 
can also reclaim storage sooner than a deletion strategy, and 
can have better asymptotic space efficiency. This is crucial 
for proper tail recursion. 

Deletion strategies interfere with proper tail recursion 
[Ste78, Cha88, App92, ASwS96]. For the example of Section 
4, allocating continuation on a stack would require O(n) 
space instead of O(1) space, even when every left child is a 
leaf. 

Nevertheless many compilers for Scheme, Standard ML, 
and similar languages employ optimizations that allocate 
some variables on a stack [Ste78, KKsR+86, HanSO, SF96, 
Ser97, Sis97]. Some researchers have gone so far as to sug- 
gest that a static deletion strategy could be used to replace 
dynamic garbage collection altogether, for some programs 
at least [TT94, AFL95, Sis97]. 

In Scheme, stack allocation and other deletion strategies 
can be used only when they do not destroy the property of 
proper tail recursion. This is not always easy to determine 
[Cha88, SF96]. It has not been made easier by the informal- 
ity with which proper tail recursion has been defined. 

It is fairly easy to define proper tail recursion formally 
for a particular implementation, but an implementation- 
independent formalization cannot refer to implementation- 
dependent structures such as a stack. Standard ML of New 
Jersey, for example, allocates continuation frames on a heap, 
and does not distinguish them from closures that are allo- 
cated for explicit lambda expressions [App92]. Algol-like im- 
plementations use a single stack to represent three distinct 
kinds of runtime structure: continuations, environments, 
and the store. The distinction between storage allocated 
for continuations, environments, and the store is not always 
clear even to the implementor. 

6 Forinal Definitions 

The largest number of machine words that a (possibly non- 
deterministic) implementation X might consume when run- 
ning a program P on an input D can be described by a (de- 
terministic) function SX such that Sx(P, D) E R U {oo}, 
where R stands for the real numbers. I will refer to SX 
as the space consumption function of X. To compare the 
asymptotic behavior of such functions, I will use big-0 no- 
tation as defined below. For real-valued functions of the 
natural numbers, this definition is equivalent to the usual 
definition as given in [Knu73, CLRSO]. 

Definition 3 (asymptotic complexity, O(f)) 
Zf A is any set, and f : A --t RU {co}, then the asymptotic 
(upper bound) complexity class off is O(f), which is defined 

Cotiguration ::= (v, a) 

I (E, P, K:, 4 

I b,P,K,d 
v E Value ::= c 

I 

UNSPECIFIED 

UNDEFLNED 

PRIMOP$ 

ESCAPE:(a$) 

CLOSURE:(+, p) 

I(, ::= halt 

I 

select:(El, &, p, n) 

assign:(I, p, K) 

I push:((E,. ..), h.. .),T,p,d 

I call:((E,. . .), K) 

P E Identifier 3 Location 

I7 E Location 2 Value 

?r E Permutation 

Figure 4: Syntax of configurations. 

as the set of all functions g : A -+ W U {oo} for which there 
exist real constants cl and co such that cl > 0 and 

Vu E A . g(a) 5 cl f (a) + co 

Each space consumption function Sx induces an asymp- 
totic space complexity class O(Sx). Sections 7 through 10 
describe a family of reference implementations that formal- 
ize several important models of space efficiency. Their space 
consumption functions Sstack, &ail, Sevlis, and S,fs are de- 
fined in Section 12. Their induced complexity classes are 
related by the proper inclusions 

O(Ssfs) C O(SevId C O(Stail> C O(Sstack) 

Definition 4 (conventional space leaks) An implemen- 
tation has a conventional space leak iff its space consumption 
is not in O(Set&). An implementation has no conventional 
space leaks iff its space consumption is in O(Ssta&. 

Definition 5 (properly tail recursive) An implementa- 
tion is properly tail recursive iff its space consumption is 
in O(St&. An implementation has a stack-like space leak 
iff it hers no conventional space leaks but is not properly tail 
recursive. An implementation with a stack-like space leak is 
also known aa improperly tail recursive. 

Definition 6 (evlis tail recursive, safe for space) 
An implementation is evlis tail recursive [WangO, Que96] iff 
its space wnsumption is in O(Sevlis). An implementation is 
safe for space complexity in the sense of Appel [App92] i# 
its space consumption is in 0(&f,). 

Among these properties of an implementation, proper 
tail recursion is especially important because it is easy to 
construct programs that should run in small constant space 
but are likely to require at least linear space in implemen- 
tations that are not properly tail recursive. 
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Reduction rules: 
((quote C),P,K,U) + 

(1, Pl %a) + 

((if Eo El Ed,p,tc,a) + 
(bet! I Eo),p,lE,u) + 
(Wo El *. .),p,K,u) + 

Continuation rules: 
b, 0, halt,4 

+ 
b, P’, halt, 0) 

+ 
(v,p’, select:(El, E2, p, K), 0) 

+ 

if I E Dom p, p(l) E Dom o, 
and o@(l)) #UNDEFINED 

(CLOSURE:(Q, L, p), p, K, u[a I+ urwmcwmD]) 
if a does not occur within L, p, K, u 

(Eo,p,select:(&, E~,P,K),u) 
(Eo, p, asskn:(I, p, K), 0) 
(G,p,push:((E:,. .A 0,~,~,4,4 

if (Eb,Ei,...) = reverse(?r-‘(Eo, El,. . .)) 

b>(J) 

(v, { 1, halt, 0) 

if v # FALSE 

b, P’, asskn:(I, P, K), 4 
--f (~NsPEcIFIED,~, K,&(I)- v]) 

(~~,P’,push:((E:,E~,...),(v:,...),A,p,KE),u) 
+ (E;,p,push:((E;,...),(v~,v:,...),a,p,KE),u) 

(~:,,p’,push:(O,(~:,...),~,P,K),u) 
--f (vo,p,call:((vl,. . .),K),u) 

if (vo,vl,...) =7r(wh,w: ,...) 
(CLOSURE:@, L,p),p’, call:((vl,. . . ,v,), IE),U) 

+ (E,P”,K,Q’) 
ifL= (lambda (11 . ..> E) 
andpI, . . . . fin do not occur within E, p, K, u 
andp”=p[Il,..., Intip ,..., fin] 
andu’=u[/& ,..., &-WI ,..., V,J 

Garbage collection rule: 
(~,P,K.,U1o,...I--1~‘,...]) --t (%P,IE,4 

if {/I,. . . } is nonempty 
and p, . . . do not occur within v, p, K, u 

Figure 5: Properly tail recursive semantics. 
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7 Proper Tail Recursion (Gail) 

To expose its space requirements, while retaining the sim- 
plicity needed for proofs, the properly tail recursive ref- 
erence implementation is expressed as a small-step oper- 
ational semantics of the kind known as a CEKS machine 
[NN92, MFH%]. The asymptotic space required by a refer- 
ence implementation must be at least as great as the space 
required by any reasonable implementation of Scheme, in- 
cluding pure interpreters, so this implementation is reso- 
lutely non-clever. It is also nondeterministic, to reflect ram- 
pant underspecification in the definition of Scheme. 

A configuration of this semantics, as shown in Figure 
4, is either a final configuration consisting of a value and 
a store, or an intermediate configuration consisting of an 
expression or value, an environment, a continuation, and a 
store. An intermediate configuration represents the state of 
an abstract machine with three registers-accumulator, en- 
vironment (static link), continuation (dynamic link)-and 
a garbage-collected heap. When the first component of a 
configuration is an expression, the accumulator acts as a 
program counter. When the first component is a value, the 
continuation register acts as the program counter. The ini- 
tial configurations are described in Section 11, which also 
defines the observable answer represented by a final config- 
uration. 

The core transition rules are shown in Figure 5. These 
core rules must be supplemented by additional rules, mainly 
for primitive procedures, which are not specified in this pa- 
per. 

The six reduction rules say that: 

l A quoted datum evaluates to the datum. 

l An identifier evaluates to its R-value; if I e Dom p, 
p(l) $Z Dom u, or u(p(1)) = UNDEFINED, then the 
transition rule cannot be applied, and the computation 
will be stucL 

l A lambda expression evaluates to a closure. A bug 
in the design of Scheme requires that a location (Y be 
allocated to tag the closure [Ram94]. 

l A conditional expression is evaluated by evaluating the 
test with a continuation that will select one of the al- 
ternatives. 

l The right-hand side of an assignment is evaluated with 
a continuation that will store its R-value into the L- 
value of the left-hand side. 

l A procedure call is evaluated by nondeterministically 
choosing a permutation ?r of its operator and operand 
expressions; the first of the permuted expressions is 
then evaluated with a continuation that will evaluate 
the others and then perform the call. 

Other sources of nondeterminism include the choice of loca- 
tions to allocate when a closure is called, and the choice of 
whether and when to use the garbage collection rule. 

The conceptual difference between proper tail recursion 
and ad hoc tail call optimization permeates this semantics. 
Proper tail recursion affects every rule shown in Figure 5 
except for the first three reduction rules and the first two 
continuation rules. 

In a properly tail recursive implementation, continua- 
tions are created to evaluate subexpressions, not to ca]] 
a procedure [Ste78]. A procedure call is just a goto that 
changes the environment register. Notice that every call is 

a goto, not just tail calls. Hence the last continuation rule, 
which shows how closures are called, does not create a new 
continuation. In particular, a procedure call does not create 
or pass a new return address, push the environment p’, or 
allocate a stack frame. 

The continuations that are tagged by select, assign, 
and push include an environment, which is restored when 
the continuation is invoked. This allows the test part of a 
conditional, the right hand side of an assignment, and an 
operator or operand expression to destroy the environment 
by performing a procedure call. 

The garbage collection rule allows unreachable storage 
to be recycled.2 If there exists a nonempty set of locations 
that are not reachable via the active store from the loca- 
tions mentioned by V, p, and IE, then those locations may 
be removed from the active store and become available for 
future steps of the computation. 

The garbage collection rule allows but does not require 
garbage collection. To prevent improper tail recursion from 
being masked by uncollected garbage, we must require the 
garbage collection rule to be used sufficiently often. In Sec- 
tion 12 we will require the garbage collection rule to be used 
whenever garbage remains to be collected. In a real imple- 
mentation the garbage collector would run much less often, 
but would use no more than some fixed constant R times 
the space required when collecting after every computation 
step ([App92], Section 12.4). Usually R 5 3. 

8 Improper Tail Recursion (Zgc, GtacJ 

An improperly tail recursive reference implementation Zgc 
is obtained by replacing the last continuation rule in Figure 
5 by 

(CLOSURE:((Y, L,p), p', call:((vr,. . . ,21,), IE),O) 
-+ (E,p”,return:(p’,~),u’) 

if L = (lambda (11 . . . I,,) E) 
mdP1, . . . . ,& do not occur in E, p, K, u 
andp”=p[li ,..., I,,c,Pi ,..., Pn] 
andu’=upr ,..., /3,,eur ,..., u,J 

and by adding the continuation rule 

By creating a continuation for every procedure call, these 
rules waste space for no reason [Ste78]. They would look 
a lot less silly if they implemented a deletion strategy for 
local variables. In Scheme, however, a deletion strategy can 
create dangling pointers. As mentioned in Section 4, most 
Scheme compilers nonetheless use a deletion strategy as an 
optimization for variables whose lifetimes can be statically 
bounded. To see what would happen if such optimizations 
were pursued without regard for their effect on tail recursion, 
let %tack be the semantics obtained by replacing the last 
continuation rule in Figure 5 by 

(CLOSURE:(CY, L,p), p’, call:((m,. . . ,?I,), K),u) 

+ (E, p”, return:(A, p’, IC), a’) 
if L = (lambda (11 . . . 1,) El 
andPI, . . . . /3,, do not occur in E, p, K, u 
dp"=p[Il,..., Ine-tpl,..., /3n] 
andu’=upi ,..., p,,e,i ,..., V,,] 
and AC {Pl,...rPn} 

‘No sequence of reduction steps allocates more than one storage 
location, so oo garbage collection rule is needed for configurations 
whose first cornpooerlt is ao expression. 
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(v, p, return:(A, p’, IE), a’) 
--f b,P',~,4 

if no p E A occurs within v, p’, K, u 
and u = u’ ] (Dom u’ \ A) 

The nondeterministic choice of A subsumes any static anal- 
ysis for an optimization that allocates variables on a stack, 
provided the optimization does not create dangling point- 
ers, and does not extend the lifetime of a garbage variable 
beyond that of Algol-like stack allocation. 

For the Algol-like subset of Scheme, it is always possible 
to choose A = {PI,... ,&}, which results in the space re- 
quired by Algol-like stack allocation of variables. This choice 
of A always consumes the most space, so it determines the 
space consumption S’s,,& on such programs. Hence Sstad 
also characterizes the space consumed by Algol-like imple- 
mentations. 

9 Evlis Tail Recursion (Ze,lis) 

Although &ail uses less space than Zgc or &tad, it too 
wastes space needlessly. For example, it is not necessary to 
preserve the environment across the evaluation of the last 
subexpression to be evaluated during the evaluation of a 
procedure call. Even a pure interpreter can take advan- 
tage of this technique, which is known as e&s tail recursion 
[Wan80, Que96]. Let { } denote an empty environment, and 
let Gvlis be the semantics obtained from &ail by replacing 
the first continuation rule for push by the two rules 

I I 
(~~o,P,PUS~:((E:,E~,E~ ,... ),(v:,...),x,P,K),~ 

--f (E;,p,push:((E~,E~,...),(vb,v:,...),~,p,K),u) 
(~:,~‘,push:((E~),(v:,...),~,~,~),u) 

+ (E~,p,push:(O,(v;,v;,...),?r,O,K),u) 

10 Safe for Space Complexity (Z&,. Z&J 

In the implementations that have been described so far, a 
lambda expression is closed over all variables that are in 
scope, regardless of whether those variables actually occur 
free within the lambda expression. This is typical of in- 
terpretive and Algol-like implementations, but it sometimes 
forces programmers to write awkward code to avoid space 
leaks. Compiled implementations often close over only the 
free variables, which improves the space complexity of some 
programs. 

Let Zfree be the semantics obtained from Z&l by replac- 
ing the reduction rule for lambda expressions by 

(L,P,h4 
-+ (CLOSURE:(CY, L,p’),p, K, U[(Y i--k UNSPECIFIED]) 

if cx does not occur within L, K, p, u 
and p’ = p 1 (Dom p n FV(L)) 

Let Zsfs be the semantics obtained from &J by replacing 
the reduction rule for lambda expressions as above, and by 
replacing the last three reduction rules and the next-to-last 
continuation rule by 

((if EO EI Ed,p,~,u) 
+ (Eo,p,select:(E1,Ez,p’,“),u) 

if p’ = p 1 (Dom p fl (FV(&) U FV(E2))) 
((set! I Eo),p,~,u) 

+ (Eo,p,assign:(l,p’,~),O) 
ifp’=p 1 {I} 

(CEO El . . .),P,K,U) 
-+ (E~,p,push:((E:,...),O,w,~‘,K),u) 

if (Eh, Ei,. . .) = reverse(rr-l(Eo, El,. . .)) 
and p’ = p 1 (Dom p n (FV(E:) u . . .)) 

(vb,~',~ush:((E:,E;,...),(v;,...),~,~,~E),o) 
--$ (E;,p,push:((E;,...),(v~,v;,...),~,p',KE),u) 

if p’ = p 1 (Dom p II (FV(Eh) U . . .)) 

The asymptotic space efficiency of Zsfs represents safe- 
for-space complexity in the sense defined by Appel [AppSP, 
ASSG], whereas the asymptotic space efficiency of Z&e rep- 
resents a weaker but still useful sense of safe-for-space. 

11 Equivalence of Implementations 

This section proves that all of the reference implementations 
compute the same answers. Since some of the implemen- 
tations use more space than others, this result requires a 
countably infinite set of locations Location = {cri ( i 2 0). 

Lemma 7 If C is a configuration of &,twkt and C’ is the 
configuration of Zgc obtained by replacing all continuations 
of the form return:(A,p,K) by return:(p,K), and C +* 
(71, u), then C’ +* (v, u). 

Proof: By induction on the number of computation steps. 
The locations that occur within C’ are a subset of those that 
occur within C, so all of the nondeterministic choices that 
are made in the original computation can also be made by 
the computation in Zgc. cl 

The next two lemmas are proved similarly. 

Lemma 8 If C is a configuration of Z&, and C’ is the con- 
figuration of I&l obtained by replacing all continuations 
of the form return:(p,~) by K, and C -+* (w,u), then 
C’ +* (v,u). 

Lemma 9 If C +* (~,a) by the rules of &I, then C +* 
(v, u) by the rules of Ze,lis. 

Definition 10 (initial configurations) An initial config- 
uration is a configuration of the form (E,po, halt, 00) such 
that 

l Zf cy occurs in E, po, or UO, then (Y E Dom 60. 

l If an identifier Z occurs free in E, then Z E Dom po. 

l Zf (Y occurs in E, then a $! Ran po. 

Definition 11 (answers) The observable answer represented 
by a final configuration (v, a) is the possibly infinite sequence 
of output tokens answer(v,u) where 

answer(v, a) 
itnS(TRUE, U,S) 

anS(FALSE, u, s) 
ans(NUM:z, (T, s) 
ans(SYM:~, 6, S) 

anS(VEC:(oe, . . .),a, S) 

anS(ESCAPE:(o, K), 0, S) 

ans(CLOSURE:(cy, L, p), u, s) 

ans(v, u, EOF) 
#t, ans(s, u,EOF) 

#f, ans(s, u,EOF) 
z, ans(s, (r,ECF) 

I,ans(s, u,EOF) 

#(,~S((U(cu),...),U,S) 
#<PROC>, an+, u,EOF) 

#<PROC>, ans(s, u,EOF) 

am((), u, s) = 1, ans(s, u, EOF) 

am((z1o,m,. . .),u,s) = =s(vo,u, ((211,. . $5)) 
ans(EOF,store,s) = ;End of output 
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Lemma 12 If 

l X is l&j1 and Y is Zfree, or 

0 X is Ze,ljs and Y is Z&f,, or 

l X is Ii&,, and Y is qfs, 

and C +* (v,u) by the rules of X, then there exist v’ and 
o’ such that answer(v, u) = answer(v’, 0’) and C +* (~‘,a’) 
by the rules of Y. 

Proof: At each step of the computation, the analogous rule 
of Y can be used with the same nondeterministic choices, be- 
cause the only differences between two corresponding con- 
figurations are that some of the environments that occur in 
the configuration of Y have been restricted to the free vari- 
ables of the expression(s) that will be evaluated using that 
environment. The final configurations differ only in the en- 
vironment components of closures and of continuations that 
have been captured as part of an escape procedure; these 
differences are not observable. 0 

Definition 13 (a-convertible) Configurations Cl and CZ 
are cr-convertible, written Cl g CZ, iff there exists a one-to- 
one function R : Location + Location such that CZ is 
the configuration obtained from Cl by renaming its locations 
according to R. 

The following lemma shows that a-convertible configura- 
tions are semantically equivalent. 

Lemma 14 Zf C g C’, and C +* (~,a), then there exist v’ 
and U’ such that answer(v,c) = answer(v’,o’) and C’ +* 
(v’,u’). 

Sketch of proof: None of the rules treat any location 
specially. This must be verified for the primitive operations 
as well, whose rules are omitted from this paper. 0 

The next few definitions and lemmas establish the ex- 
istence of two canonical forms for computations: without 
garbage collection, and with maximal garbage collection. 

Definition 15 (gc-transform of a configuration) 
If C is a configuration, then its gc-transform is D defined 
as follows. 

l If C is a final configuration (~,a), then D = (v,o’) 
where (v, { }, halt, 0’) is the gc-transform of 
b,O,halt,d. 

l If the garbage collection rule does not apply to C, and 
C is not a final configuration, then D = C. 

l Otherwise D is the unique configuration such that C --t 
D by the garbage collection rule, and the garbage wl- 
k&ion rule does not apply to D. 

Lemma 16 Zf C + C’, and D and D’ are the gc-transforms 
of C and c’, then D = D’, OT D --f D’, OT there exists a 
configuration D” (unique up to a-convertibility) such that 
D+D”+D’. 

Definition 17 (gc-transform of a computation) 
Zf co + Cl + *. . is a computation, and for each i the gc- 
transform of Ci is Di, then the gc-transform of the wmputa- 
tion is the computation obtained from the sequence Do, D1, . . , 
as follows. If Di = Di+l, then D~+I is erased from the se- 
quence. If Di + Di+l, then D; and D;+l remain adjacent. 
If Di + D” + Di+l, then D” is inserted into the sequence 
between Di and D+l. 

wstack 1 Wgc) 
I> 

o(stail) 

w%fd 

o(sevlis) o(sfree) 

Figure 6: A hierarchy of space complexity classes. 

Theorem 18 (canonical forms) If Co + Cl --t *-a is 
any computation, then its gc-transform is (pointwise) cr- 
convertible to the gc-transform of a computation that never 
uses the garbage collection rule. 

Theorem 19 If an answer can be computed from some ini- 
tial configuration by the rules of&f,, then it can be computed 
from that configuration by the rules of Z&.k. 

Proof: Given a computation in Z&s, Theorem 18 can be 
used to lift it to a structurally similar computation that does 
not use the garbage collection rule. This gc-free computa- 
tion can be transformed into a computation in &ail by using 
p instead of p’ at each use of a rule for which Zsfs differs from 

z, ail. The resulting computation can then be transformed 
into a computation in Zgc by adding return continuations 
at each use of the call rule, and by inserting uses of the re- 
turn rule into the computation. The resulting computation 
can be transformed into a computation in &tack by adding 
an empty set to each return continuation. 0 

Corollary 20 All of the reference implementations wm- 
pute the same answers. 

12 Space Consumption 

This section gives a formal definition of the space required 
by a configuration, and defines functions S&l, Sgc, S&a&, 
S e,,l+, Sfree, and Ssfs that characterize the space required 
to run a program on an input as the worst case among all 
execution sequences that have a certain property. These 
functions induce the hierarchy of space complexity classes 
that is shown in Figure 6. 

To define the space consumed by an implementation, I 
will take inputs to be expressions, and programs to be ex- 
pressions that evaluate to a procedure of one argument. The 
constants of a program P must not share storage with the 
constants of an input D, nor may P or D share storage 
with the standard library. The easiest way to ensure this is 
to forbid vector, string, and list constants. This entails no 
loss of generality, because all such constants can be replaced 
by references to global variables that are initialized using 
the standard library procedures that allocate new vectors, 
strings, and lists. 

Let po and 00 be some fixed initial environment and ini- 
tial store that contain Scheme’s standard procedures, as de- 
scribed in Section 6 of [IEESl]. Let Program and Input 
both denote the set of Core Scheme expressions that contain 
no locations, and whose free variables are bound in ~0. 
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space((v, u)) = space(v) + space(u) 

space((E,p,K,u)) = [Dam pi +space(K) +space(u) 

space((v, p, K, a)) = space(v) + (Dom pi + space(K) + space(u) 

space(u) = C (1 + space(u(cr))) 
QEU 

spaCe(TRUE) = SpXe(FALSE) = space(SYM:I) = 1 

space(vEc:(crg, . . . , on--l)) = 1 + n 
SpXe(NUM:z) = 1 + log, z if z is an exact positive integer [IEESl] 

space(cLosuRE:(cu, L,p)) = l+lDompl 

space(halt) = 1 

space(select:(Ei, Ez, p, K)) = 1 + [Dam pi + space(K) 

space(assign:(I, p, K)) = 1 + [Dam pi + space(&) 

space(push:((&,. . . , J-L), (VI,. . . ,vn),7r,p,~)) = l+m+n+lDompl+space(K) 

space(call:((vi,...,v,),K)) = l+m+space(~) 

space(return:(p, K)) = 1 + [Dam pi + space(&) 
space(return:(A, p, K)) = 1 + [Dam pi + space(K) 

Figure 7: The space consumed by a configuration (using flat environments). 

The space consumed by a configuration is defined in Fig- 
ure 7. This definition corresponds to the use of flat (copied) 
environments, because the purpose of this definition is to es- 
tablish upper bounds, not lower bounds. For a comparison 
of flat environments with linked (shared) environments, see 
Section 13. 

Definition 21 A space-efficient computation in Zx is a fi- 
nite OT countably infinite sequence of wnjigurations {Ci}ier 
such 

. 

b 

. 

. 

that 

C0 is an initial configuration. 

If the sequence is finite, then it ends with a final con- 
figuration C, . 

For each i E I, if i > 0 then C.&-I + Ci by the rules 
of zx. 

If the garbage collection rule is applicable to Ci, then 
Ci + Ci+1 by the garbage collection rule. 

This definition eliminates incomplete or stuck computations 
from consideration. A stuck computation represents a pro- 
gram error or, in the case of Zeta&, a stack allocation that 
creates a dangling pointer. 

Definition 22 (supremum) Zf R C Sz, then the supre- 
mum sup R is the least upper bound of R, OT 00 if there 
is no upper bound in 8. 

Definition 23 (space consumption Sx) The space con- 
sumption function of Zx is Sx : Program x Input + 
32 U {w} defined by 

sxU’,D) = PI + 
sup{sup{space(Ci) ( i E I} I 

{Ci}i,I is a space-eficient 
computation in 2x, with 

Co = (W D),po,halt,uo)} 

where (PI is the number of nodes in the abstract syntax tree 
of P. 

Theorem 24 FOT all P E Program and D E Input, 

l stail(P,D) I sgc(P,D) 5 Sstak(P,D) 

l ssfs(P, D) 5 sevlis(P, D) 5 sttil(P, D) 

l ssfs(p, D) I sfree(p, D) I sttil (p, D) 

ProoE To prove Sx(P, D) 5 Sy(P, D), consider an arbi- 
trary space-efficient computatron in 1,. This computation 
is pointwise o-convertible to the gc-transform of a compu- 
tation that does not use the garbage collection rule. This 
gc-free computation can be lifted to Zy as in the proof of 
Theorem 19. The gc-transform of this lifted computation is 
a space-efficient computation in ZY that is equivalent to the 
original computation in 2x, and consumes at least as much 
space. cl 

Theorem 25 All set inclusions shown in Figure 6 are pro- 

per, and O(Sev& and O(Sf,,,) are inwmparab6e. 

Proof: To show O(Sy) g O(Sx), it suffices to give an 
example of a program P such that 

AN. Sy(P, (quote NJ) $! O(XN. Sx(P, (quote N))) 

For readability, I will write each program in full Scheme as 
a procedure definition. Except for the program that distin- 
guishes Stail from Sgc, these programs consume quadratic 
space in one implementation but only linear in the other. (In 
Scheme the linear programs are actually O(Nlog, N) be- 
cause of unlimited precision arithmetic, but would be O(N) 
with fixed precision arithmetic.) 

1-0 show 0(&t&) $i o(sgc): 
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(define (f n) 
(let ((v (make-vector 

(if (zero? n) 
0 
(f (- II 1))))) 

To show O(Sgc) g O(St,jl): 

n>>> 

(define (f n> (if (zero? n) 0 (f (- n 1)))) 

TO show O(Sttil) !Z O(Sevd~ 0(&e) SZ O(sevd, 
Wfme) Sz O&f,): 

(define (f n> 
(define (g) 

(begin (f (- n 1)) 
(lambda 0 n))) 

(let ((v (make-vector II))) 
(if (zero? n> 

0 
((g)>))> 

To show W%l) Gz O(Sf*tXA WG,lis) It O(Sfr,,), 
WWli,) 52 O(Ssfs): 

(define (f n> 
(let ((v (make-vector n) )) 

(if (zero? n) 
0 
((lambda 0 

(begin (f (- n 1)) n>>)>>> 

u 

13 Fiat versus Linked Environments 

A definition of space consumption that corresponds to linked 
environments can be obtained by counting each binding (of 
an identifier I to a location o) only once per configuration, 
regardless of how many environments contain that binding. 
Recall that p is a finite function, so it can be viewed as a 
subset of Identifier x Location. Let graph(p) be that set 
of ordered pairs. Figure 8 then defines the space consumed 
by a configuration using linked environments. 

The space consumed by an implementation ZX that uses 
linked environments can then be defined in terms of the 
space consumption function Ux that differs from Sx by us- 
ing Figure 8 instead of Figure 7 in Definition 23. It is easy 
to see that analogues of Theorems 24 and 25 hold for linked 
environments, and that Ux 5 S’X for each implementation 

TX* 
In this sense, linked environments are more space-efficient 

than flat environments. Unfortunately, Z&e, and Zsfs can- 
not always use linked environments; in general, they require 
flat environments. Hence Ufm, and Vaf, have no practical 
meaning. The asymptotic relationships that hold between 
u tail, uevlis~ Sfreer and Sef, therefore become a question of 
some practical interest. 

Theorem 26 Both O(Utail) and O(Ue,& are inwmpara- 
ble with both O(Sfree) and O(S,.,). 

Proof: Appel [App92] has given examples that show 

o(“evlis) SZ o(Sfree) 

Since Uevlis C UtGl and S sfs 
establish half of the theorem. 

= Sfree, Appel’s examples 

The other half of the theorem is established by using 
an example to show O(S,f,) g O(Ut,i1). For each natural 
number k, let Ee,k be 

(let ((x0 n)> 
(define (loop i thunks) 

(if (zero? i) 
((list-ref thunks (random (length thunks)))) 
(loop (- i 1) 

(cons (lambda 0 
(list i x0 xl . . . xk)) 

thuas)))) 
(loop n JO>> 

For each j > 0 let Ej,k E (let ((xi (- n j>>> Ej-1.k). 
Let pk 2 (define (f n) &,k). Then 

XIV. Uf&l(PN, (quote N)) E O(NlOg, N) 

and would be linear with fixed precision arithmetic, but 

AN. S,f,(PN, (quote NJ) E O(N2) 

0 
This theorem reveals an important difference between 

the formulation of space complexity in Section 6 of this pa- 
per and the formulation used by Appel in [AppSP, AS96]. 
Appel’s formulation allows the constants of Definition 3 to 
be chosen separately for each program. This effectively ig- 
nores the extra space that is consumed by flat environments 
and closures, as well as the space consumed by a large class 
of compiler optimizations such as inlining and loop unrolling. 
As formulated here, the space safety properties allow any 
bounded increase in space due to inlining, loop unrolling, 
shared closures, and similar techniques, but the bound must 
be independent of the source program. 

Appel’s formulation has led to a perception that flat 
closures (over free variables only) are asymptotically more 
space-efficient than linked closures (that close over all vari- 
ables in scope); as formulated here, however, the asymptotic 
space complexities of flat and linked closures are incompa- 
rable. This is consistent with the intuition of implemen- 
tors who have argued that it does not make sense to im- 
pose stringent safe for space complexity requirements with- 
out also bounding the increases in space consumption that 
result from a compiler’s transformation of the program. 

14 Sanity Check 

The idea of defining proper tail recursion as a space complex- 
ity class is new, so it is intensionally not the same as informal 
notions of proper tail recursion. Extensionally, however, it 
should coincide with the consensus of the Scheme and Stan- 
dard ML programming communities concerning which im- 
plementations are properly tail recursive. 

To the best of my knowledge, most implementations of 
Scheme and Standard ML are properly tail recursive by the 
formal definition of this paper. Some implementations are 
not, for one of the following reasons: 

space leaks caused by bugs. 

space leaks caused by conservative garbage collection 
(Boe93J. 

space leaks caused by over-aggressive stack allocation 
or other optimizations. 

a target architecture that makes proper tail recursion 
difficult, hence slow, so the implementors have deliber- 
ately sacrificed proper tail recursion for speed and/or 
compatibility. 
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space(CLOSURE:(Q, L, p)) 
space(balt) 

space(select:(E1, Ez,p, K)) 

bindings(cLosURE:(cr, L,p)) 
bindings(halt) 

bindings(select:(Ei, Ez, p, 6)) 
bindings(assign:(I, p, tc)) 

bindings(push:((Ei,. . . , Em), (VI,. . . ,~),r,p, K)) 
bindings(call:((vi,. . . ,nm), K)) 

bindings(return:(p, K)) 
bindings(return:(A, p, K)) 

= space(v) + space(a) 

= ]graph(p) U bindings(n)] + space(K) + space(u) 

= space(v) + ]graph(p) U bindings(K)] + space(K) + space(a) 

= 1 

= 1 

= 1 + space(K) 

For example, Larceny v0.29 [CHSB] sometimes retains 
a temporary for too long within a stack frame. As with 
conservative garbage collection, few users would notice this 
bug, but it causes rare failures of proper tail recursion. 

On most target architectures, for languages like Scheme 
that require garbage collection anyway, proper tail recursion 
is considerably faster than improper tail recursion. Unfortu- 
nately, the standard calling conventions of some machines3 
make proper tail recursion difficult or inefficient, so the im- 
plementor must choose between 

l improper tail recursion, or 

l proper tail recursion using a nonstandard and possibly 
slower calling convention. 

This dilemma arises most often when the target architecture 
is ANSI C. As explained by the Bigloo user’s manual [Ser97]: 

Bigloo produces C files. C code uses the C stack, 
so some programs can’t be properly tail recur- 
sive. Nevertheless all simple tail recursions are 
compiled without stack consumption. 

Thus Bigloo and similar implementations fail with contin- 
uation-passing style and with the find-leftmost example 
of Section 4, but most tail calls to known procedures con- 
sume no space. Implementations of this kind often assume 
that the global variable defined by a top-level procedure def- 
inition is never assigned, which increases the percentage of 
calls to known procedures beyond that shown in the last 
column of Figure 2. 

= gwhb) 
= 0 
= graph(p) U bindings(K) 
= graph(p) U bindings(K) 

= graph(p) U bindings(K) 

= bindings(K) 
= graph(p) U bindings(K) 

= graph(p) U bindings(K) 

Figure 8: The space consumed by a configuration (using linked environments). 

One of the standard techniques for generating properly 
tail recursive C code is to allocate stack frames for all calls, 

but to perform periodic garbage collection of stack frames 
as well as heap nodes [BakSB]. A definition of proper tail re- 
cursion that is based on asymptotic space complexity allows 
this technique. To my knowledge, no other formal defini- 
tions do. 

15 Previous Work 

Scheme was invented by Steele and Sussman for the purpose 
of understanding Hewitt’s actor model, which made heavy 
use of continuation-passing style and was among the first 
attempts to formalize proper tail recursion [SS75, Hew77]. 
Proper tail recursion was then popularized by Steele, Suss- 
man, and others [SS75, WF78, SS76, Ste76, Ste77, Ste78, 
SS78b, SS78a, ASwSSG]. 

Proper tail recursion is one of the safety properties con- 
sidered by Chase in his analysis of optimizations that can in- 
crease the asymptotic space complexity of programs [Cha88]. 
The close connection between proper tail recursion, garbage 
collection, and asymptotic space complexity was pointed out 
by Appel in Chapter 12 of [App92]. 

Most discussions of proper tail recursion have been infor- 
mal, but there have been several formal definitions within 
the context of a particular implementation [Ste78, Cli84, 
App92, FSDF93, Ram97]. 

3Examples include the SPARC and PowerPC. Their standard call- 
ing conventions pass some arguments in a stack frame created by the 
caller. If the callee performs a tail call to a procedure whose argu- 
ments require more space than wes allocated in the caller’s frame, 
then the callee must either allocate a new frame, which causes im- 
proper tail recursion, or must increase the size of its caller’s frame, 
which is impossible on the PowerPC and slow on the SPARC. Both 
architectures perform very well in properly tail recursive impletnen- 
tations that use slightly nonstandard calling conventions. 

My definition is essentially the same as a definition pro- 
posed by Morrisett and Harper [MH97]. My treatment of 
garbage collection is closely related to that of Morrisett, 
Felleisen, and Harper [MFH95]. 

16 Future Work 

The reference implementations described here can be related 
to the denotational semantics of Scheme by proving that 
every answer that is computed by the denotational semantics 
is computed by the reference implementations. 
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It should be possible to prove that implementations such 
as MacScheme and VLISP are properly tail recursive [Cli84, 
Lig90, GW95]. These proofs should be much easier than 
proofs of their correctness, and might not be much more 
difficult than the proofs in Sections 11 and 12. 

It should also be possible to formulate and to prove the 
soundness of a formal system for reasoning about the space 
complexity of programs written in Scheme, Standard ML, 
and similar languages. 

17 Conclusions 

The space efficiency that is required of properly tail recursive 
implementations can be stated in a precise and implemen- 
tation-independent manner. Other kinds of safe-for-space 
properties can be defined in similar fashion. 

The space complexity classes that are defined in this 
paper justify formal, implementation-independent reasoning 
about the space required by programs. Three of the space 
complexity classes defined in this paper (Sstad, Stail, and 
Ssfs) correspond to the models that working programmers 
already use to reason about the space required by Algol-like, 
Scheme, and Standard ML programs respectively. 

These complexity classes can be used to classify space 
leaks created by some optimizations. Algol-like stack alloca- 
tion can itself be viewed as an optimization that usually de- 
livers a small constant improvement over the space required 
by a garbage collector, while risking asymptotic increases in 
the space required to run some programs. 
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