
Achieving Load-Balancing in Power System Parallel

Contingency Analysis Using X10 Programming Language

Siddhartha Kumar Khaitan and James D. McCalley

Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa, USA.

{skhaitan, jdm}@iastate.edu

Abstract

Due to recent trends of expansion and deregulation in power

systems, the stress level of power systems has increased

which has highlighted the importance of conducting stabil-

ity analysis. Further, due to increasing emphasis on analyz-

ing N − k contingency, the number of contingencies which
are required to be analyzed has greatly increased. To ad-

dress this challenge, researchers have used parallel comput-

ing resources, however, in absence of efficient load-balanced

scheduling, parallelization leads to wastage of computation

resources. In this paper, we present an approach to paral-

lelize power system contingency analysis using X10 lan-

guage. We discuss the features of X10 which enable us to

achieve high performance gains. Our approach is evaluated

using a large 13029-bus power systems. We parallelize con-

tingency analysis over 2, 4, 8 and 16 threads and use efficient

work-stealing algorithm to achieve load-balancing.

The results have shown that our approach scales effec-

tively with the number of cores and provides large computa-

tional gains. Also, it outperforms a conventional scheduling

technique, namely master-slave scheduling.

General Terms Algorithm, design

Keywords X10 programming language, concurrency, par-

allelization, HPC (high-performance computing), work-

stealing, scheduling, load-balancing, power system simu-

lation, control center, time domain simulation.

1. Introduction

In recent years, rising electricity demands and deregulation

in power systems have led to significant increase in their

sizes. This along with the emphasis on analyzing N − k

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

X10’13 June 20, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2157-0/13/06. . . $15.00

contingency1 has led to huge increase in the number of con-

tingencies to be analyzed for the purpose of ensuring stabil-

ity of the power system. Due to this, serial execution plat-

forms are proving to be insufficient in fulfilling the demands

of contingency analysis and hence, in the absence of high-

performance computing resources, the power system opera-

tors are unable to analyze a large number of contingencies in

a short amount of time. This prevents the operators from tak-

ing suitable preventive and corrective actions towards fail-

ures which may lead to catastrophic events such as blackouts

(e.g. the one that happened in August 2003 [5]). To address

this, parallelization of contingency analysis is extremely im-

portant. However, parallelization also necessitates achieving

load-balancing since a load-unbalanced scheduling is likely

to lead to wastage of processor resources and in worst case,

may even nullify the advantage obtained from paralleliza-

tion.

In this paper, we present an approach for parallelization

of power system contingency analysis while also achiev-

ing load-balancing. To achieve parallelization, we use X10

[10, 13] a state-of-the-art open-source parallel programming

language which is being developed by IBM. We evaluate

our approach using a large 13029-bus power systems. We

simulate 500, 1000, 1500 and 2000 contingencies. Also, we

simulate contingencies using serial execution and parallel

execution using 2, 4, 8 and 16 threads with work-stealing

based scheduling2 for load-balancing. Further, we compare

our approach with master-slave scheduling algorithm, which

is a well-known conventional scheduling algorithm. The re-

sults show that our approach scales well with the number of

threads and outperforms master-slave scheduling algorithm.

In this paper, we make three important contributions.

First, we highlight the need of using HPC in power sys-

tem contingency analysis and demonstrate parallelization of

1 In power systems, a contingency refers to the possible event of failure

of a single or more components. Further, in a power system with a total

of N components, a failure in at most k components is termed as N − k

contingency.
2Note that the X10 runtime also implements a work-stealing scheduler,

however our implementation is totally different from that scheduler, as we

show in Section 5.

20

 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
 (

s
e

c
o

n
d

s
)

Contingencies

Simulation time of individual contingencies

Figure 1: Simulation time variation across contingencies (sorted in ascending order of time)

thousands of contingencies to achieve computational gains.

With 16 threads we achieve more than 14× speedup over
serial execution and with such speedup, a workload requir-

ing one day of execution time can be executed in less than

2 hours. Second, we propose an approach for accelerat-

ing legacy software code using widely available general-

purpose processors (CPUs). Thus, our approach does not re-

quire special purpose hardware (e.g. GPUs or FPGAs) and

also does not incur the cost of rewriting and porting legacy

code to new platforms. Third, we discuss the details that

went into the use of HPC, specifically X10 parallel program-

ming language and work-stealing scheduling algorithm, in

the context of contingency analysis in power systems. HPC

techniques have been used in several application-domains

[3, 14, 15, 23, 26] and we believe that the insights presented

in this paper will be extremely helpful for power system

operators to bring the benefits of HPC in modern control

centers also. Our work provides the power system operators

with a decision support tool for making crucial decisions af-

fecting the operation of power systems. The rest of the paper

is organized as follows. Section 2 reviews the use of HPC in

power systems and also presents a brief background on the

languages used. Section 3 discusses the time domain simula-

tion and overall parallelization approach. Section 4 explains

the work-stealing scheduling algorithm. Section 5 discusses

the features of our implementation. Section 6 presents the

experimental platform and results. Finally, we discuss the

conclusion and future work in Section 7.

2. Related Work and Background

2.1 Power System Contingency Analysis

Modern control centers routinely analyze a large number

of contingencies to assess the ability of power system to

sustain any possible component failures which may lead to

disastrous consequences such as blackouts. This also en-

ables them to devise suitable preventive and corrective ac-

tions.While some of the previousworks perform steady state

contingency analysis (e.g. [16]), we perform dynamic con-

tingency analysis, which requires more computational re-

sources and execution time.

2.2 HPC in Power Systems

Due to the limits imposed by power dissipation, the clock

frequency of computing systems can no longer be increased

at the rate that had been sustained during the last several

years. Instead, state-of-the-art computing systems are us-

ing multiprocessor systems to leverage parallelism instead

of frequency scaling for achieving high computational capa-

bilities. Driven by this paradigm shift, in recent years, high

performance computing (HPC) has been used in several do-

mains to accelerate computation intensive tasks [22, 24]. In

the field of power systems also, HPC techniques have been

used to achieve large computational gains in power system

stability analysis [17, 18, 21]. Researchers have used several

high-performance computing languages and libraries, such

as OpenMP [9], Pthreads [20], Cilk [6], D [4], Go [2], Scala

[25] and Chapel [8]. In this paper, we use X10 and discuss

its unique features below.

2.3 A Brief Background of X10

X10 is a strongly typed, concurrent objectoriented program-

ming language and is designed for providing a higher-level

of abstraction than several existing languages (e.g. MPI).

The design of X10 is guided by the motivation of provid-

ing safety from errors, scalability and flexibility. X10 pro-

vides automatic garbage collection and array bounds check-

ing, which significantly simplifies memory management and

also avoids a large number of errors, as typically observed

in C/C++ programs. X10 aims to improve programmer pro-

ductivity by making distributed programming easier. Other

features of X10 include ability to integrate with C++/Java

code. Thus, X10 provides significant advantages compared

to conventional languages such as Java or C/C++ [10].

X10 is based on the APGAS (Asynchronous Partitioned

Global Address Space) model, where a computation is di-

vided among a set of places or threads, which host single

or multiple activities (e.g. computation, I/O etc.). A X10

“place” refers to a single operating system process.

X10 provides programming constructs to allow the pro-

grammer to explicitly identify potentially concurrent com-

putations and to easily synchronize them as per the require-

ments. Thus, it allows easily expressing parallelism and effi-

21

C1 C2 C3 Cn

Stability Analysis

Failure Detection

Stability Analysis

Failure Detection

System ModelSystem Model

DAE Kernel

1. Integrator

2. Nonlinear Solver

3. Linear Solver

DAE Kernel

1. Integrator

2. Nonlinear Solver

3. Linear Solver

Feedback

Scheduler

Contingency List

T1 T2 Tp

schedule

Processor

Threads

Software

Hardware

Figure 2: Overall Flow Diagram of Our Approach

ciently exploiting the hardware resources on modern multi-

core and clustered architectures.

X10 has been shown to scale to more than 32,000 cores

[1], and thus, as a highly scalable language, it offers a

promising approach to address the computational demands

of contingency analysis.

2.4 Scheduling Techniques For Achieving

Load-balancing

As shown in figure 1, the simulation time of contingen-

cies varies a lot. For this reason, efficient scheduling tech-

niques are required to avoid resource wastage. In literature,

both static and dynamic scheduling techniques have been

used. For the scenarios where task lengths differ widely,

the static scheduling techniques lead to poor resource-usage

efficiency. In this paper, we do not study static schedul-

ing, since in real-world scenario, the worst-case performance

of static scheduling can be very poor. Moreover, obtaining

load-balancing using static scheduling generally requires a

priori knowledge of the completion time of different tasks,

which may be unavailable in some domains as in dynamic

contingency analysis.

Among dynamic scheduling techniques, master-slave

based dynamic scheduling algorithm has been widely used

[16]. Work stealing [7] is a dynamic scheduling method

which works on the principle that scheduling with load bal-

ancing can be achieved if a worker with no remaining job is

allowed to steal a job from other worker. We discuss these

scheduling algorithms in more detail in Section 4.

Blumofe et al. have shown [7] that using work-stealing

scheduling method with P workers, the time taken in exe-
cuting a fully-strict computation is given by:

T = T1/P + O(T∞) (1)

Here T1 denotes the execution time with 1 worker (i.e.

serial execution) and T∞ denotes the expected execution

time with infinite number of workers. Further, the space

requirement of the work-stealing method scales only linearly

with the number of workers [7]. From this it is concluded

that work-stealing algorithm is efficient in terms of space

and time requirement. Note that a fully-strict computation is

one where the data dependencies of a thread do not go to any

thread other than its parent. In the context of this paper, the

contingencies can be independently analyzed and hence, the

theoretical guarantee provided by them hold for our work

also.

3. System Architecture and Design

Figure 2 shows the overall diagram of our approach. In

the following sections, we discuss each component of our

approach in detail.

22

3.1 Power System Simulation

To analyze power system contingencies, we use time domain

simulation (TDS) approach, where we simulate the response

and characteristics of the power system for each time-step.

For this purpose, we use a high speed power system simula-

tor [19] which has been verified against commercial software

packages. This simulator models the power system differen-

tial and algebraic equations (DAEs). These DAEs are solved

using three different classes of numerical solvers, namely an

integration solver, a linear solver and a nonlinear solver. For

each of these classes, the simulator provides several numer-

ical solvers. For integration solver, we use IDAS integrator

[29] since it provides high-performance and handles the stiff

power system dynamics in efficient and accuratemanner. For

linear solver, we use KLU [12], which has been found to

provide better performance than other solvers such as UMF-

PACK and SuperLU etc. For non-linear solver we have used

VDHN (very dishonest Newton method) solver.

Contingency analysis is regularly performed in all power

systems for ensuring safe and reliable operation. For contin-

gency analysis, firstly, a simulator is used for modeling the

power system being studied. Then, a set of critical contin-

gencies are identified for which the analysis needs to be per-

formed. Each contingency represents a combination of dif-

ferent events taking place within the simulation time-frame.

This is simulated by modeling the effect of these events

on system variables such as voltage, rotor angle etc. This

is achieved through event-driven modeling approach in the

power system simulator. At the end of simulation, the re-

sponse obtained is analyzed to decide whether the power

system is stable for the contingency being analyzed. If the

power system is not stable for a particular contingency, fur-

ther investigation is being made to identify suitable preven-

tive and corrective measures.

3.2 Parallelization Approach

Data parallelism and task parallelism are two widely-used

approaches for parallelization. As the name implies, in data

parallelism, parallelization is achieved across parts of the

data (e.g. pixels in a large image) and in task parallelism,

parallelization is achieved across different tasks (e.g. ren-

dering different objects in a scene). Given that computing

the response of the system for each time-step requires using

multiple solvers, it is evident that TDS does not offer large

data-parallelism for simulation of individual contingencies.

For this reason, in this paper, we use task-parallelism where

analysis of a single contingency is referred to as a single

task.

As for programming model, in parallel programming,

both shared memory and distributed memory computing

have been used. Compared to distributed memory com-

puting, the advantage of shared memory programming is

that it uses threads or lightweight processes which typically

have small overhead. Moreover, shared memory program-

ming reduces the overhead of data communication between

processes. The limitation of shared memory programming

is that it does not scale well to large number of cores. In

this paper, we use shared memory model. Use of distributed

memory computing is planned as a future work.

3.3 Using X10 For Parallelization

We now discuss the basic programming constructs used for

parallelization and scheduling and then discuss the actual

details of the algorithm in the next section.

In X10, computation is seen in terms of one or more asyn-

chronous activities which happens at one or more places.

To start a new asynchronous activity, we use async state-

ment, which represents the fundamental concurrency con-

struct in X10. The newly created activity has access to the

same heap of data objects as the current activity, but has its

own control stack. Thus, an activity represents a very light-

weight thread of execution. An activity can also access the

local variables which are declared outside of the async

block. Unlike the threads in Java, the activities in X10 are

not named. Also, unlike Java threads, the activities cannot

be interrupted and on its completion, an activity ‘dies’ (i.e.

releases its resources) on its own without requiring the pro-

grammer to specify a command. Thus, use of asynchronous

activity provides a foundation for lightweight “threads”. For

sake of convenience, in the remainder of the paper, we use

the word ‘thread’ to denote an X10 activity.

In work-stealing algorithm access to worker queues may

be done by multiple workers and hence, it represents a

shared data. To protect these shared data from race con-

ditions, we have used atomic command. When an atomic

block is executed, all the other concurrent activities in the

same place are suspended and hence the block is executed in

a single step. Note that although an atomic statement might

itself involve execution of multiple statements; with respect

to all other activities of the system, it is performed in a single

step. Since atomic execution leads to serialization of execu-

tion, we have taken due care to keep its use minimum.

To provide a barrier synchronization and wait till the

completion of all threads, we use finish statement. This

ensures that till all the activities spawned within the body

of finish have terminated, the subsequent statement can-

not be executed. This is referred to as global termination.

In the context of work-stealing algorithm, finish com-

mand is used for detecting algorithm termination. Use of

atomic command ensures integrity of shared data in the

multithreaded context. This provides the flexibility while

leaving the responsibility of lock management and other

mechanisms for actually enforcing atomicity to the under-

lying implementation itself. It has been shown that any pro-

gram written using the parallel constructs (viz. async, finish,

atomic etc.) will never deadlock [28].

To execute each task (i.e. the contingency), we have used

Runtime.execForWrite() function which runs the

specified command in a separate process. We also use the

23

close() function, which ensures that the control of the

main program waits till the simulation of individual contin-

gency in the separate process is completed.

4. Work-Stealing Based Load Balancing

Algorithm

Algorithm 1 Work-Stealing Scheduling Algorithm For

Load-Balancing on P Threads

Require: task-list T
Ensure: A best-effort load-balanced scheduling of tasks.

Allocate P task-queues and assign tasks in T to these
task-queues

Spawn P threads
Wait for completion of all the threads

Algorithm Terminated. Return

Algorithm For Each Worker Thread i
(Assumption: If no task is returned, a NULL is returned.)

while true do

Dequeue a task ti from task-queue of i
if ti is not NULL then
Finish the task ti

else

Choose a victim k with remaining tasks
Steal a task tk from from k
if tk is NULL then
Break from while loop

else

Finish the task tk
end if

end if

if stealing request arrives from q then
if an unstarted task tr is remaining then
return tr to q

else

return NULL to q
end if

end if

end while

Mark thread i as completed. Return.

Algorithm 1 shows the pseudo-code of the work-stealing

algorithm, which works as follows. We first allocate P task
queues and distribute the available works to these queues.

These queues are used by individual workers. We then start

P activities (threads) which act as worker and start execut-
ing their tasks (contingency analysis). Each worker deques a

task from its queue for execution. On finishing its own tasks,

it tries to steal a task from another worker (called victim).

However, if no other worker has an extra task, it indicates

that either all other workers are finished or they are execut-

ing their last tasks. In such a case, the worker thread is ter-

minated. When all the threads are terminated, the algorithm

is also completed.

To enable efficient implementation, we have made the

following choices in the implementation of the algorithm.

1. Since contingencies can be independently analyzed, the

design of work-stealing algorithm is simplified, com-

pared to the scenarios where tasks need to be analyzed

in a specific order (e.g. [27]).

2. In work-stealing algorithm, polling strategy (also referred

to as victim selection strategy) has significant impact on

communication overhead of each stealing event. In liter-

ature, several polling strategies have been proposed such

as random selection (i.e. a victim is randomly chosen),

fixed-order selection (i.e. a victim is chosen in a fixed

order, e.g. 1, 2, 3...) and circular selection (i.e. a thief q
searches in the order q+1, q+2, . . . , N, 1, . . . , q−1). Of
these, we choose circular selection strategy, since unlike

fixed-order selection, it does not create contention on the

initial threads and it also avoids the need of generating

random numbers, while distributing the stealing requests

to the available threads.

3. The granularity of task-stealing is chosen as one task,

since it leads to fine-grain load-balancing and also avoids

the possibility where the victim itself may be left with

few tasks. Using a large value of task-stealing granular-

ity leads to aggressive stealing which is useful when the

communication cost between workers is high. In our ex-

periments, a multicore processor where the communica-

tion cost between different workers is small and hence,

using a task-stealing granularity of one is sufficient.

4. To reduce the idle-wait of the starving threads, a variant

of work-stealing [30] provisions actively giving tasks

to the starving threads when the amount of local tasks

exceed a given threshold. Since, in worst-case, this may

lead to congestion, we do not use this option.

For comparison purposes, we have also implemented

master-slave scheduling (MSS) method. The MSS algorithm

works as follows. It uses a single worker as the master and

the remaining workers are designated as slaves. In MSS, ini-

tially a single task is allocated to each slave. Afterwards,

each slaves works to finish its task and then requests a new

task from the master. When all tasks available at master are

finished, the algorithm is terminated. MSS achieves load-

balancing by always allocating the new task to a free slave.

The psuedo-code for MSS is ommitted for brevity.

5. Salient Features of Our Approach

In this section, we discuss the optimizations incorporated

and the salient features of our approach.

5.1 Enabling Legacy Code Reuse

For achieving high computation capabilities, HPC platforms

such as GPU (graphics processing unit) have also been used.

24

Table 1: Simulation time in seconds. P=1 refers to serial execution

C=500 C=1000 C=1500 C=2000

P Master-slave Work-stealing Master-slave Work-stealing Master-slave Work-stealing Master-slave Work-stealing

1 11140 11140 22551 22551 33006 33006 45115 45115

2 11252 5569 21541 10704 33336 16699 44729 22664

4 3841 2854 7242 5483 11303 8519 15081 11468

8 1683 1476 3361 2881 4977 4401 6631 5966

16 858 846 1772 1644 2629 2504 3346 3193

 0
 2
 4
 6
 8

 10
 12
 14

2 4 8 16

S
p
e
e
d
u
p
 V

a
lu

e
s

Number of Threads

Speedup values for 500 contingencies

MasterSlave WorkStealing

 0
 2
 4
 6
 8

 10
 12
 14

2 4 8 16

S
p
e
e
d
u
p
 V

a
lu

e
s

Number of Threads

Speedup values for 1000 contingencies

MasterSlave WorkStealing

Figure 3: Performance Scaling Results with master-slave scheduling and our approach

The limitation of GPU is that they do not share memory

with CPU and hence, use of GPU may lead to large over-

head of data transfer between CPU and GPU. Further, using

GPU may require significant remodeling and rewriting of

the code. Modern power-system control-centers use legacy

code with tens of thousands of lines of code and porting

them to GPU would incur high overhead. Also, given the

highly mathematical nature of code, porting may also in-

troduce bugs and would require significant testing. In con-

trast, our approach runs on conventional desktops and multi-

core processors and hence, our approach allows legacy code

reuse.

5.2 Optimizations For Achieving High Performance

We have X10, which can be compiled on a large number

of platforms, such as Linux, Windows, X86 machines, Ma-

cOS, supercomputer, cluster etc. Moreover, compared to the

languages such C/C++, X10 provides concurrent program-

ming facilities as the part of language itself, which leads

to portable implementation. X10 also provides several fea-

tures which are not present in Java. Compared to the thread-

creation in Java, X10 provides a much simpler way of cre-

ating asynchronous activities. Using async, a programmer

can create multiple activities, which perform arbitrary com-

putation, thus leading to a flexible design.

Currently, X10 compiler works by converting the X10

code into Java or C++ code3. Afterwards, using Java (resp.

C++) compiler, bytecode (resp. executable-binary) is cre-

ated. Since C++ code uses native execution, it is expected

to have higher performance and hence, we have compiled

X10 with x10c++ to use C++ backend. Note that the com-

pilation of X10 into C++/Java source code ensures porta-

bility and thus, our scheduler for contingency analysis can

be used on a wide variety of platforms (hardware/operating

systems). Moreover, this features enables utilizing platform-

specific optimization capabilities of classical C++/Java com-

pilers.

5.3 Difference from the Runtime Scheduler of X10

The runtime scheduler of X10 uses work-stealing scheduling

[13]. However, our work-stealing scheduler is completely

different from the X10 scheduler. Firstly, we did not uti-

lize the X10 work-stealing scheduler. Second, as mentioned

by Grove et al. [13], the X10 work-stealing scheduler uses

double-ended queue, however we use single-ended queue.

Further, the X10 work-stealing scheduler selects a victim in

random fashion, however, we use circular victim-selection

strategy. Our scheduler runs in user-space. Also, we compare

our work with master-slave scheduler and use the scheduler

3Other possibilities such as converting to CUDA code is outside the scope

of this work

25

 0
 2
 4
 6
 8

 10
 12
 14

2 4 8 16

S
p
e
e
d
u
p
 V

a
lu

e
s

Number of Threads

Speedup values for 1500 contingencies

MasterSlave WorkStealing

 0
 2
 4
 6
 8

 10
 12
 14
 16

2 4 8 16

S
p
e
e
d
u
p
 V

a
lu

e
s

Number of Threads

Speedup values for 2000 contingencies

MasterSlave WorkStealing

Figure 4: Performance Scaling Results with master-slave scheduling and our approach

in power systems to show the superiority and effectiveness

of our approach over existing methods.

6. Experimentation Platform and Results

We have tested our approach using a large power system

with 13029 buses, 12488 branches, 5950 loads and 431 gen-

erators. We have used multiple contingencies, as shown be-

low, which model different combinations of fault events

such as bus faults, branch faults, and branch-tripping. To

achieve high performance, we have compiled the code with

-optimize flag. To utilize multiple cores of the proces-

sor, we set X10 NTHREADS environment variable to the de-

sired number of threads. We present the wall-clock time of

simulation, since this represents a metric which is of most

importance for the power-system control center operators.

Table 1 shows the simulation time for different number of

contingencies and cores. To study the scaling behavior, we

define speedup quantity as follows.

S(C, P) =
T (C, 1)

T (C, P)
(2)

Here S(C, P) refers to the speedup for C contingencies
using P cores and T (C, 1) and T (C, P) refer to simulation
time using 1 (i.e. serial) core and P cores, respectively. The
serial simulation experiments were performed without using

the X10 scheduler, i.e. directly running the given number of

contingencies and observing the simulation time.

Figure 3 and 4 show the value of speedup for dif-

ferent number of contingencies and different number of

threads. We now analyze the results. Clearly, from Table

1, it is evident that for all contingencies, our work-stealing

based scheduling approach provides higher performance

than the master-slave scheduling method. For master-slave

scheduling method, one thread (the master) becomes busy in

scheduling and hence, performs no useful work. In contrast,

for work-stealing scheduling method, all threads perform

useful work.

For master-slave scheduling method, the simulation time

with 2 threads is more than double with its value with

4 threads. This, however, does not represent super-linear

speedup, since in going from 2 threads to 4 threads, the

number of actual workers (i.e. slaves) is more than doubled.

Similar argument also applies to the case with 8 and 16

threads.

When the number of threads is small, the speedup is

nearly linear. As the number of threads become high (e.g.

P = 16), the speedup value does not linearly increase with
number of threads. This is because, on increasing the num-

ber of threads although the computation capability is linearly

increased, other processor resources such as cache and mem-

ory bandwidth etc. do not increase linearly and this leads to

sub-linear performance scaling, as observed by prior work

also [11]. Further, for larger number of threads Scheduling

overhead is small.

With 16 threads, we obtain more than 14× speedup over
serial execution and with such speedup, a workload requir-

ing one day of execution time can be executed in less than 2

hours. This shows the effectiveness of our approach.

The results presented in this section clearly demonstrate

the performance benefits of our approach and its superiority

over conventional scheduling method. Further, as the varia-

tion in simulation time of different contingencies increases,

the load-balancing is increased which will further improve

the utility of our technique.

7. Conclusion and Future Work

As single-core performance becomes power limited and

multi-core processors with tens or even hundreds of cores

26

become widely available, use of parallel programming tech-

nique becomes a promising approach for achieving large

computational gains. In this paper, we presented an approach

for parallelization of power system contingency analysis us-

ing X10 parallel programming language. Using efficient

work-stealing based scheduling method, we achieve dy-

namic load-balancing. The experimental results performed

over a large test system show that our approach offers large

computational gains and outperforms conventional schedul-

ing technique. Our approach enables accelerating legacy

code and avoids incurring the overhead of migrating and

porting legacy code to new platforms. Our work has applica-

tions in analyzing power system stability which is extremely

important for supporting critical infrastructures which de-

pend on power systems.

Our future work will focus on analyzing even large num-

ber of contingencies and scaling our approach to larger num-

ber of cores using distributed computing approach. X10 is

still being developed and it is expected that future develop-

ments will improve its productivity and performance even

further.

References

[1] http://x10-lang.org/home/news6.html.

[2] The go programming language. http://golang.org/,

2012.

[3] A. Agrawal et al. Parallel pairwise statistical significance

estimation of local sequence alignment using message passing

interface library. Concurrency and Computation: Practice

and Experience, 2011.

[4] A. Alexandrescu. The D Programming Language. Addison-

Wesley Professional, 2010.

[5] G. Andersson et al. Causes of the 2003 major grid blackouts

in north america and europe, and recommended means to

improve system dynamic performance. IEEE Transactions on

Power Systems, 20(4):1922–1928, 2005.

[6] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall,

and Y. Zhou. Cilk: An efficient multithreaded runtime system,

volume 30. ACM, 1995.

[7] R. Blumofe and C. Leiserson. Scheduling multithreaded com-

putations by work stealing. In Foundations of Computer Sci-

ence, 1994 Proceedings., 35th Annual Symposium on, pages

356–368. IEEE, 1994.

[8] B. Chamberlain, D. Callahan, and H. Zima. Parallel pro-

grammability and the chapel language. International Jour-

nal of High Performance Computing Applications, 21(3):291–

312, 2007.

[9] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP:

portable shared memory parallel programming, volume 10.

MIT press, 2007.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,

K. Ebcioglu, C. Von Praun, and V. Sarkar. X10: an object-

oriented approach to non-uniform cluster computing. In ACM

SIGPLAN Notices, volume 40, pages 519–538. ACM, 2005.

[11] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,

L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil com-

putation optimization and auto-tuning on state-of-the-art mul-

ticore architectures. In Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, page 4. IEEE Press, 2008.

[12] T. Davis and K. Stanley. Klu: a” clark kent” sparse lu factor-

ization algorithm for circuit matrices. In 2004 SIAM Confer-

ence on Parallel Processing for Scientific Computing (PP04),

2004.

[13] D. Grove, O. Tardieu, D. Cunningham, B. Herta, I. Peshansky,

and V. Saraswat. A performance model for x10 applications.

X10, 11, 2011.

[14] S. Gupta et al. Guaranteed QoS with MIMO Systems for

Scalable Low Motion Video Streaming Over Scarce Resource

Wireless Channels. In International Conference On Informa-

tion Processing. IK International Pvt Ltd, 2008.

[15] D. Honbo, A. Agrawal, and A. Choudhary. Efficient pairwise

statistical significance estimation using fpgas. Proceedings of

BIOCOMP, 2010:571–577, 2010.

[16] Z. Huang, Y. Chen, and J. Nieplocha. Massive contingency

analysis with high performance computing. In IEEE Power

and Energy Society General Meeting 2009. IEEE, July 2009.

[17] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi. Large-scale tran-

sient stability simulation of electrical power systems on par-

allel GPUs. Parallel and Distributed Systems, IEEE Transac-

tions on, (99):1–1, 2011.

[18] S. Khaitan and J. McCalley. Dynamic load balancing and

scheduling for parallel power system dynamic contingency

analysis. High Performance Computing in Power and Energy

Systems, pages 189–209, 2012.

[19] S. K. Khaitan and J. D. McCalley. High Performance Com-

puting in Power and Energy Systems, POWSYS, pages 43–69.

Springer, 2012.

[20] B. Lewis, D. J. Berg, et al. Multithreaded programming with

Pthreads, volume 2550. Sun Microsystems Press, 1998.

[21] A. Mittal, J. Hazra, N. Jain, V. Goyal, D. Seetharam, and

Y. Sabharwal. Real time contingency analysis for power grids.

Euro-Par 2011 Parallel Processing, pages 303–315, 2011.

[22] S. Mittal, S. Gupta, and S. Dasgupta. FPGA: An efficient and

promising platform for real-time image processing applica-

tions. In National Conference On Research and Development

In Hardware Systems (CSI-RDHS), Kolkata, India, 2008.

[23] S. Mittal, A. Pande, L. Wang, and P. Kumar. Design explo-

ration and implementation of simplex algorithm over recon-

figurable computing platforms. In IEEE International Con-

ference on Digital Convergence, pages 204–209, 2011.

[24] S. Mittal and Z. Zhang. Integrating sampling approach with

full system simulation : Bringing together the best of both. In

IEEE International Conference On Electro/Information Tech-

nology (EIT), Indianapolis, USA, 2012. IEEE.

[25] M. Odersky, L. Spoon, and B. Venners. Programming in

Scala. Artima Incorporated, 2008.

[26] A. Pande et al. Baywave: Bayesian wavelet-based image esti-

mation. International Journal of Signal and Imaging Systems

Engineering, 2(4):155–162, 2009.

27

http://x10-lang.org/home/news6.html
http://golang.org/

[27] D. Sanchez, R. Yoo, and C. Kozyrakis. Flexible architec-

tural support for fine-grain scheduling. ACM Sigplan Notices,

45(3):311–322, 2010.

[28] V. Saraswat and R. Jagadeesan. Concurrent clustered pro-

gramming. CONCUR 2005–Concurrency Theory, pages 353–

367, 2005.

[29] R. Serban, C. Petra, and A. C. Hindmarsh. User documen-

tation for IDAS v1.0.0. https://computation.

llnl.gov/casc/sundials/description/

description.html, 2009.

[30] M.Wu and X. Li. Task-pushing: a scalable parallel gc marking

algorithm without synchronization operations. In IPDPS,

pages 1–10. IEEE, 2007.

28

https://computation.llnl.gov/casc/sundials/description/description.html
https://computation.llnl.gov/casc/sundials/description/description.html
https://computation.llnl.gov/casc/sundials/description/description.html

	Introduction
	Related Work and Background
	Power System Contingency Analysis
	HPC in Power Systems
	A Brief Background of X10
	Scheduling Techniques For Achieving Load-balancing

	System Architecture and Design
	Power System Simulation
	Parallelization Approach
	Using X10 For Parallelization

	Work-Stealing Based Load Balancing Algorithm
	Salient Features of Our Approach
	Enabling Legacy Code Reuse
	Optimizations For Achieving High Performance
	Difference from the Runtime Scheduler of X10

	Experimentation Platform and Results
	Conclusion and Future Work

