
Data Specialization

Todd B. Knoblock and Erik Ruf

Microsoft Research

One Microsoft Way, Redmond, WA 98052 USA

{toddk, erikruf}@microsof t.com

Abstract

Given a repeated computation, pad of whose input context
remains invariant across all repetitions, program staging im-

proves performance by separating the computation into two

phases. Anearly phase executes only once, performing corn-

putations depending only on invariant inputs, while a late

phase repeatedly performs the remainder of the work given

the varying inputs and the results of the early computations.

Common staging techniques based on dynamic compi-

lation statically construct anearly phase that dynamically

generates object code customized for a particular input con-

text. In effect, theresults of the invariant computations are
encoded as the compiled code for the late phase.

This paper describes an alternative approach in which
the results of early computations are encoded as a data
structure, allowing both the early and late phases to be

generated statically. By avoiding dynamic code manipu-

lation, we give up some optimization opportunities in ex-
change for significantly lower dynamic space/time overhead

and reduced implementation complexity.

1 Introduction

Program staging transformations capitalize on the fact that
the inputs to a computation often become known in a partic-

ular order, or vary at differing frequencies. If we can estab-
lish that a particular portion of the input context remains

invariant over multiple executions of the comput at ion, then
we can use this information to execute invariant subcompu-
tations only once, and repeat only those subcomputations

that depend on varying inputs. Doing so improves perfor-

mance when the time savings from repeated execution of

the optimized computation exceed the cost of performing

the optimization dynamically.

In simple cases of staging, such as loop invariant code
motion [ASU86], a compiler can automatically recognize the
frequency with which the inputs (variable definitions) to a

computation (loop body) are altered, determine which sub-
computations depend only on invariant inputs, and hoist
them to an appropriate location. In more complex situ-
ations, some degree of programmer assistance is required.

Permissionto make digitabhard copy of part or all of this work for paraonaI
or olassroomuse is ranted without fee provided that copies are not made

ior distributed for pro t of commercial atvanfa e the copyright notice, the
i’”title of the publication and its date appear, an noboe is given that

oopying is by permission of ACM, Inc. To copy otherwise, to republish, to
poet on servers,or b risdisfributeto lists, requires prior spedfio permission
@or a fee.

PLDI ’96 W6 PA, USA
01996 ACM 0-69791-795-296/0005...$3.50

Typically, the programmer statically partitions the input

context into fixed and varying subparts, and invokes the
staging transformation to obtain code for the early (invari-
ant subcomputations) and late (varying subcomputations)

phases. During program execution, the program invokes the
early phase when the fixed inputs become known, and the

late phase whenever the varying inputs change. It is the pro-

grammer’s responsibility to enforce the invariant that fixed

inputs will not change across invocations of the late phase;
the early phase must be reinvoked whenever the fixed inputs

are altered.

A number of staging techniques [MP89, KEH93, LL94,
EP94, CN96, APC+96] are based on dynamic compilation.
These approaches range from runtime instantiation of manu-
ally generated machine-code templates to runtime execution
of full-blown optimizers and code generators, with a variety
of template- and compilation-based mechanisms lying be-

tween these two extremes. Despite their differences, these

systems share a fundamental characteristic: they all express
the output of the early phase as object code, an approach

we will call code specialization. A typical code specialization.-
architecture has the following type signature:

Fragment x Input-Partition +

dynamically generated code

(Fixed-Inputs -+ ~).

statically generated dynamic optimizer

The programmer selects a program fragment to
timized. and Partitions its inrmts into those which

be op-

are to

be held’ fixed ~cross invocatio& of the optimized code, and
those which may vary. Statically applying the compiler to a

program fragment and an input partition yields object code
for a runtime optimizer. 1 This optimizer is dynamically in-

voked on the fixed subset oft he fragment’s inputs, producing
optimized object code. This optimized code is then (repeat-
edly) invoked on the remaining input, achieving the same

effect as the original program fragment, but more quickly.
Allowing the runtime optimizer to generate arbitrary object
code can achieve a high degree of optimization; code spe-
cializes often eliminate branches, unroll loops, and produce
improved instruction schedules in addition to folding oper-

at ions involving fixed input values. Aggressive opt imizat ion

lIn some template-based systems, this step is performed manually
by the programmer, who uses the input partition to construct a set
of templates and code to instantiate them at runtirne.

215

may require that the optimized code be executed many times

to repay the cost of generating it.
In this paper, we describe a more limited approach, data

specialization, in which the dynamic optimizer does not emit
object code, but instead emits a cache of specialized data

values. Along with the fragment’s inputs, this cache is then
(repeatedly) passed as input to statically-generated code
that performs the remainder of the fragment’s computation

and returns the final value:

dotprod(xl, yl, z1, x2, y2, 22, scale)
{

if (scale != O)
return (xl*x2 + yl*y2 + 21*22) / scale;

else
return ERROR;

}

Figure 1: A dot product program.

Fragment x Input-Partition +

(Fixed-Inputs + Cache) x

statically generated cache loader

(Cache x VaTymg-Inputs --+ Result).

statically generated cache reader

Statically applying the compiler yields two object codes:
an optimizer, or cache loader, that computes the cache, and
an execution engine, or cache reader, that uses the cache

to compute the final output, Because the cache loader and
reader are generated directly from the fragment and input
partition without knowledge of the fixed data values, data

specialization cannot, in general, achieve the same degree of
optimization as code specialization. For example, it cannot

eliminate branches or unroll loops, unless the same elimina-

tion/unrolling can be used for all possible values of the fixed

inputs. Data specialization trades this generality for several

other other desirable characteristics:

● Rapid payback: Cache loading is very inexpensive, and
is typically amortized away after only two executions
of the cache reader.

● Low space overhead: Caches are typically quite small

(tens of bytes), allowing data specialization to be used

in applications requiring very large numbers of special-

izations,

● Simple implementation: Data specialization can be

implemented entirely via source-to-source program
transformation, all of which can be performed stati-

cally given only the program and input partition. The
transformation is thus completely portable, and the

transformed code requires no additional runtime sup-
port.

The remainder of this paper describes the implementa-
tion and use of an instance of data specialization based on
caching the values of certain invariant expressions. Other

implementations are possible, as the signature above merely

requires us to construct the late phase statically. We envi-
sion placing other kinds of useful information in the cache

(cf., Section 7.2).

We begin, in Section 2, by giving a small example. Sec-
tion 3 describes basic algorithms for constructing cache
loader and reader code from an arbitrary program fragment,
while Section 4 treats some more advanced aspects of this
transformation, In Section 5, we describe our prototype data
specialize for a subset of C and show its performance and

overhead on a family of graphics programs. We conclude
with discussions of related and future work.

cache loader:

dotprod-load(xl, yl, z1, x2, y2, 22, scale, cache)
{

if (seals != O)
return ((cache-> slotl = xI*x2 + yl*y2) + 21*22)

/ scale;
elss

return ERROR;
}

cache reader:

dotprod-read(xl, yl, ZI, x2, y2, 22, scale, cache)
{

if (scale != O)
return (cache- >slotl + zI*z2) / scale;

else
return ERROR;

3

Figure 2: Cache loader and readsr programs for {.s1, Z2} varying.

2 Example

Consider the simple program fragment shown in Figure 1.
If we expect to repeatedly execute this code while varying
only the .s coordinates, we may benefit by precomputing and
caching the values of computations not depending on z 1 or

22, namely (scale ! =0) and (xl*x2+yl*y2).
For the sake of efficiency, our implementation constructs

a loader and reader with signatures that differ slightly from

those in the introduction in that (1) the loader and reader

both receive all of the fragment’s inputs as parameters, and

(2) the loader returns both a cache and a result value:

Fragment x Input-Partition +
(All-Inputs +- Cache x Result) x

(Cache x All-Inputs -+ Result).

Case (1) allows the optimization of not caching information
that can be cheaply recomputed from the fixed inputs, while
(2) reduces overhead by allowing some computations in the
loader to be used both for cache construction and result
generation. Thus, the loader is essentially an instrumented
version of the original fragment, while the reader is an op-

timized version. We also make use of heuristics; e.g., the

loader does not cache (stale ! =0) , as the relational opera-
tion is likely to be cheaper than a memory reference, but
does cache the result of (xl*x2+yl*yz) ; the reader then ref-
erences the cached value instead of repeatedly computing
(xl*x2+yl*y2) .

Invoking our data specialize on the fragment of Figure 1
produces the loader and reader code of Figure 2. These frag-
ments illustrate two features of data specialization. First,
because the loader and reader are constructed solely from
the input partition by a process which does not have access
to the value of scale, the conditional cannot be folded out,

216

and appears in the reader. Second, the cache is small, con-

taining only one value, and its initialization is very simple,

adding only one assignment expression to the original pro-

gram, A code specialize could eliminate the conditional,

but would generate a larger specialization containing not

only the value of (xl*x2+yl*y2), but also opcodesfor addi-

tion, multiplication, and division.

For this trivial program, we achieve a modest speedup

(11% when scale is nonzero, O% otherwise) by trading two
multiplications and an addition for a memory reference. Had

the basic operations been more expensive (e.g., matrix mul-
tiplications), the speedup would have been higher. Equally

import ant ly, the startup cost is low (5.5% when scale is
nonzero, 0~0 otherwise). Thus, we achieve breakeven when-

ever the original fragment is executed at least twice.

3 Specialization

In this section, we describe an algorithm for data special-

ization based on precomputing and caching the values of
invariant expressions. This algorithm constructs the cache

loader and cache reader from an imperative program frag-

ment expressed as an abstract syntax tree and an input par-
tition describing which variables are fixed on entry to the
fragment. Specialization begins with analyses that anno-

tate every term in the fragment with one of the following
labels.

Statzc: the term only needs to be evaluated in the loader.

Cached: the loader must evaluate this term and load the
resulting value into the cache. The reader does not

evaluate this term, but instead reads the value from

the cache.

Dynanuc: both the loader and reader must evaluate this

term (although its subterms may be recursively trans-

formed).

The intuition behind these labels is that a term must be
dynamic (i. e., appear in the reader) if its value depends in
any way upon a “varying” input, or if its effects are visible
to another dynamic term. A term is cached if it is not

dynamic, but has a dkect dynamic consumer. If neither
of these applies, then a term is static, and is omitted from
the reader, The cached terms represent the maximal non-

dynam~c terms. All of the dynamic terms are separated from

the static terms by a frontier of cached terms. The loader

and reader communicate only via these cached terms.
The conditions of this intuitive specification can be sep-

arated into two categories: (1) dependence upon the values

of varying inputs and (2) consumption by dynamic terms.
Our algorithm separates these conditions into two separate
passes called dependence analysis and caching analysis. A
third consideration, the efficient use of cache space, interacts

with caching analysis, but will be deferred until Section 4.3
to avoid complicating the discussion. Once these analyses
are complete, a simple splitting transformation is used to

construct the cache loader and reader.

3.1 Dependence Analysis

Dependence analysis determines, for each program term,
whether its result value (and, in the case of side-effecting
terms, its effects), may depend upon the value of any of
the varying inputs. Such dependent terms will have to be

evaluated each time the reader is executed, while it may be

possible to evaluate independent terms only once and cache
their results. Dependence cannot be computed precisely; our

approximation will (safely) err on the side of overestimating
the set of dependent terms.

Given standard data dependence and control dependence
information, computing our dependence relation is straight-

forward. A term is dependent if

1. it is a member of the varying part of the input parti-
tion,

2. it has a dependent operand,

3. it is reached by a dependent definition, or

4. it is conditionally reached by a definition along a path
that is control dependent on a dependent predicate.

Cases (1) through (3) are straightforward: if a term di-

rectly or indirectly consumes the value of a varying input,
it is dependent. Case (4) handles the situation in which

a variable is conditionally set to one of multiple indepen-

dent values, but the condition governing the choice cannot

be evaluated given only the fixed input. This case is easy
to recognize in a language having only structured control

constructs because each join point corresponds to a single

conditional, enabling us to force the appropriate variables
(those modified in the single-entry, single-exit region as-

sociated with the join) to become dependent at the join
point. In unstructured code, this problem becomes signifi-

cantly more difficult; Auslander et al. [APC+ 96] handle thk

case by performing a reachability analysis concurrently with

dependence analysis.
Our implementation of dependence analysis is a straight-

forward, worst-case quadratic-time solution based on ab-
stract interpretation. We initially assume that all terms

other than the varying inputs are independent, then itera-

tively propagate the dependence constraints listed above.

Other techniques for binding time analysis of imperative
programs such as program slicing [DRH95J and type infer-

ence [And94] could also be applied here.
In the example program of Figure 1, the references to

variables z 1 and 22 are marked as dependent, as are the

multiplication z I*Z2 and the surrounding addition and di-
vision. All other terms are marked as independent.

3.2 Caching Analysis

Caching analysis determines the structure of the cache loader

and cache reader by annotating each program term as static,
cached, or dynamic. This annotation is partially determined
by the dependence analysis, which identifies terms whose
value or effects may be influenced by the varying inputs.

Since the execution of such dependent terms must be de-
layed until the values of the varying inputs are available,

all dependent terms must appear in the cache reader; t bus,
the caching analysis annotates them as dynamic. The an-

notation is not completely determined by the dependence
analysis due to two concerns:

● Structural concerns: terms in the reader may require

the values or effects of other, possibly independent,
terms, in order to execute. The caching analysis en-
sures that the requisite context will be available by
caching the value or delaying the effects of such refer-
enced terms, This concern is similaz to the congruence

criterion in offline partial evaluation [JGS93].

Any consistent cache labeling must satisfy the following system of constraints, where the functions Dependent, Static,

Cached, and Dynamic are predicates on terms. Other predicates will be defined in the text accompanying each rule.

1. Dependent(t) + Dynamic(t)

2. Has GlobalEffect (t) + Dynamic(t)

3. UnderDependent Control(t) + Dynamic(t)

Rules 1–3 are base cases that force certain terms to be labeled as dynamic; all three rules depend only on the program
fragment and the dependence analysis. Terms whose value or effect depends on the varying portion of the input must be

dynamic (Rule 1), as must those that read or write global state such as input/output or volatile storage (Rule 2). To avoid
hoisting that could cause the loader to perform unnecessary computations, Rule 3 requires that any term whose execution

is guarded by a dependent predicate be dynamic. Implementations willing to tolerate such speculation may choose to

weaken this rule.

4. IsRef(t) A Dynamic(t) + Vt’ G Defs(t) Dynamic(t’)

5. Dynamic(t) + Vt’ c Guards(t) Dynamic(t’)

Rules 4 and 5 handle cases where forcing a term t to appear in the reader (by labeling it as dynamic) requires that other
terms defining the execution context of t also appear in the reader. If a variable reference appears in the reader, all

definitions reaching the reference must also appear (Rule 4). Similarly, all control constructs guarding a dynamic term

must also be dynamic (Rule 5).

6. Dynamzc(t) -+ W’ E Value Operands(t) (lDynamic(t’) A Single Valued(t’) A ~ Trivial(t’) --+ Cached (t’))

7. Dynamic(t) + Vt’ G Value Operands(t) (~ Cached(t’) +- Dynamic(t’))

Rules 6 and 7 construct the frontier of cached terms that defines the interface between the loader and reader. The basic idea

is that, if a term appears in the reader, then it needs to obtain reader-time values for all of its value-producing operands,

either by executing those operands or by retrieving their values from the cache. Operands executed solely for their effects

can be ignored, as Rules 1 and 4 will add them as necessary. Rule 7 permits any operand to be annotated as dynamic,
while Rule 6 permits caching any operand that meets three restrictions:

● It isn’t already dynamic.

. It returns a single value during the execution of the fragment. This category includes all expressions not inside loops,
and all expressions that are invariant in all enclosing loops. This restriction ensures that a single cache slot will

correctly summarize the value of the operand.

● It is sufficiently nontrivial. For example, constants and expressions with very low execution costs are not cached.

8. ~(Dynamic(t) V Cached(t)) -+ Static(t)

Rule 8 ensures that all terms are labeled. Nodes that are neither dynamic nor cached become static, and need not appear

in the reader.

Figure 3: Consistency constraints for caching analysis

● PolicY concerns: not all independent terms need to be

cached. For example, a t erm’s value may not be used
by the reader, or reevaluating the term may cost less

than a memory reference to the cache. The caching

analysis avoids these cases while ensuring that the

structural concerns are satisfied.

Our caching analysis works by representing these con-
cerns as a system of constraints limiting the possible label-
ings of the program terms. We then find a solution to these
constraints under the criterion that the reader contain as few
computations as possible. Figure 3 gives a system of con-
sistency constraints for caching annotations. The idea is to
find a basis set of terms that must appear in the reader, then
ensure that all of the (transitive) data and control depen-
dence predecessors of such terms will be represented in the
reader (either by themselves or some cached value). Rules

1–3 identify the basis set: namely, dependent terms, terms
with global side-effects, and terms whose execution in the

reader would lead to speculation. The closure over depen-
dence is implemented ~y Rules 4–7. Rule 4 ensures tha{any
definitions reaching a dynamic term are dynamic, Rule 5 en-

sures that any control constructs guarding a dynamic term

are dynamic, and Rules 6 and 7 ensure that the operands

to any dynamic term are either cached or dynamic. By only

caching terms with dynamic consumers, we satisfy the struc-

tural requirement that a fringe of cached terms separate all
static and dynamic terms, and the policy requirement every
data value in the cache have at least one consumer in the
reader.

The distinction between the dependent and dynamic an-
notations is an important one because it allows us to force
a computation into the reader while still making use of it
in the loader. Consider the case of an independent assign-
ment statement which reaches multiple variable uses, some
of which are dependent. The assignment must appear in the

reader so that the dependent use will access the proper value.
If we were to implement this by making the assignment

218

statement dependent, the definition of dependence would

force all of its uses to become dependent, and we would

be required to evaluate the independent variable uses (and

any independent computations enclosing those uses) in the

reader.

We find a solution to the constraints of Figure 3 by treat-

ing them as rewrite rules. We use Rule 8 to initially label
all terms ae static. Rules 1–3 rely only on dependence infor-

mation and can be executed once. Rules 4–7 are executed
on a demand-driven basis (whenever we label an expression

as dynamic, we check to see which of these rules apply). We

resolve conflicts between rules 6 and 7 by always attempting

to apply rule 6 first; this gives us our preference for caching

terms over executing them in the reader.

This algorithm requires time proportional to the size of

the program, since each term can be labeled at most three

times. If we consider the annotations as elements of an

ordering dynamic > cached > static, then the algorithm is

monotonic. This makes the algorithm restartable, in that
we can at any time relabel any expression with label 1 with
a new label 1’ >1, continue the execution of Rules 5–7, and

obtain the same result as if the expression initially had label

1’. We employ this observation in Section 4.3 where we use it

in an algorithm that limits the amount of memory consumed
by the cache.

In the example of Figure 1, the term (xl*x2+yl*y2) is

marked as cached, with all of its subterms marked as static.
Everything else is marked as dynamic ((scale! =0) is dy-
namic because it is trivial).

3.3 Splitting Transformation

Once the caching analysis is complete, we traverse the an-
notated fragment and emit the cache loader and the cache
reader, The splitting transform proceeds via a simple case

analysis based upon the caching annotation at each term.

Stattc: the recursively split term is added to the loader.
Nothing is added to the reader for this term.

Cached: the recursively split term is added to the loader,
along with an assignment to the corresponding cache

slot. The reader receives a term that reads from the

corresponding cache slot.

Dynamic: the recursively split term is added to both the

loader and the reader.

If the cache frontier contains n terms, the size of the
loader is that of the original fragment plus n assignments

used to load the cache. The reader is smaller than the origi-

nal fragment, as n terms of the fragment have been replaced
by references to cache slots. In practice, the sum of the

loader and reader sizes has been less than twice the size of

the fragment.

In the example of Figure 1, the cached term

(x1*x2 +YI*Y2) is wrapped with a cache assignment in the
loader, and is replaced by a cache access in the reader. The

static terms x1*x2 and y1*y2 appear only in the loader. The
remaining terms are dynamic, and appear in both phases.

4 Advanced Specialization

In this section we describe a number of optimizations and re-
finements to the specialization algorithms described in Sec-
tion 3. Most of the worked described in this section is aimed

x = f(1)

if (p)
x = g(2);

if (q)
h(x) ;

z=~;

Figure 4: Example code where caching both references of variable
x would be redundant. The predicates p and q are assumed to
be independent, the expressions f (i) and g(2) are marked inde-

pendent and static, h(x) k dgnarnic, and the two uses of x are
marked cached.

cache loader:

x = f(l);

if (p)
x = g(2);

if (q)
h(cache->slotl=x) ;

z = (cache-> slot2=x) ;

cache reader:

if (q)
h(cache->slotl) ;

z = cache-> slot2;

Figure 5: Unoptimized cache loader and cache reader fragments.

at minimizing the size of the cached data. This is important
to the practical applicability of data specialization.

4.1 Using SSA to Improve Caching of Variables

The analysis described above determines which expressions
should be cached. The splitting transformation then substi-
tutes load and cache read instructions at the location of the

expression in the original program. Consider the special case

where the expression is a simple variable reference. Notice

that if the same variable with the same reaching definitions

occurs twice, and is marked as cached in both instances, the

result would be to cache that value twice. In the example
of Figure 4, naively applying the previous algorithm would
result in a redundant cache slot being assigned to the second

use of x as shown in Figure 5.
If slot 1 is filled at all, it is filled with the same value

as is slot 2. To avoid this problem, we preprocess the pro-

gram to produce unique definitions at the join points of the
control flow graph. The result is analogous to static single

assignment (SSA) form {CFR+91]. In particular, we sh~e

the property with SSA that every variable reference except

for those in the introduced assignments (our analog of the
“phi” nodes of SSA) have exactly one reaching definition.

We produce this form via a source to source transform on

the program before performing the specialization analyses.
Starting at each control flow split, we analyze the branches
for possible effects to variables. At the join point, we insert
statements of the form V=V for each variable that may have

been affected within the control term. We then disallow
caching of individual variables except those introduced via

219

cache loader:

x = f(l);

if (p)

x = g(2);

x = (cache-> slotl=x) ;

if (q)
h(x) ;

2=X;

cache reader:

x = ~a~he->~l~tl ;

if (q)
h(x) ;

~=~;

Figure 6: Improved cache loader and cache reader fragments.

the transformation (i.e., the phi nodes). The result for our

example code fragment is shown in Figure 6.

In practice, this optimization typically has only minor

effects. However, in a few programs, it has reduced the size

of the cached data to as little as half the original size.

4.2 Associative rewriting

Consider the expression (xl*x2+yi*y2+zl* z2) where xl and
x2 are dependent. If the addition operator associates to the

left, both additions will be dependent, while if it associates
to the right, only the first one will be. Our implementation

optionally reassociates expressions to maximize the size of

independent terms, increasing the number of comput at ions

that can be performed in the loader. 2 This operation is

similar to “binding time improvement” techniques used in
offline partial evaluation, and to the rank-ordered reassoci-

ation used in code motion optimizations [ASU86, BC94].

4.3 Cache size limiting

Each program term annotated as cached represents an inter-
mediate result value that will be computed by the loader,
placed in the cache, and later used by the reader instead

of executing the term. Thus, caching a term exchanges the

time cost of executing the term for the space cost of storing

its result value. The analysis described in Section 3.2 avoids
caching terms that are inexpensive to execute, but treats
space as an infinite resource; any nontrivial term that can
usefully be cached will be. This is unrealistic; we must en-

sure that the caches of all simultaneously live specializations
fit in physical memory, as paging in a cached value is almost
certainly slower than recomputing it.

The goal of cache limiting is to minimize the amount of

computation in the reader given a bound on the size of the
cache. We approximate the cost of not caching each cached
term, and relabel the lowest-cost cached term to dynamic,
repeating this process until the cache size falls below the

specified bound:

20f course, computer arithmetic does not obey the usual math-
ematical associatlvity rules. However, in many applications, this is
not significant. In those where it is, this feature may be turned off.

while (cache size > bound) do
compute cost of not caching each cached term

let victim = the minimum-cost cached term

label victim as dynamic

reestablish constraints 4-7 of Figure 3

Relabeling a term as dynamic requires that we reestab-

lish constraints 4–7 of Figure 3 to ensure that the reader
will contain the necessary execution context for the newly
dynamic term. This may widen the cache frontier, increas-
ing the amount of cache space required. Even though the

total cache size does not necessarily decrease on each itera-
tion of the loop, the loop will eventually terminate because
each term is relabeled at most twice (from static to cached,

or cached to dynamic).

The central task is choosing the “victim” term from the
frontier of cached terms. We would like to keep cache el-

ements that are expensive to compute, and make dynamic

those with the least utility (perhaps weighted by size). Fur-
ther complicating this decision is that the cost and utility of

the cache elements are not independent, but depend upon

what is already being cached versus computed dynamically.

Our heuristic begins by statically approximating the execu-
tion cost of every program term (cf., [WMGH94]), combin-

ing the following factors:

●

●

●

●

a static cost value for the term’s operator (for example,
the cost of + is 1, the cost of / is 9),

the sum of the costs of computing all subterms,

for terms in loops, a multiplier (5),

for terms guarded by conditionals, a divisor (2).

Given execution cost estimates for each term, we ap-
proximate the cost of not caching a given term on the cache

frontier as the term’s execution cost plus the transitive ef-

fect from rules 4–7 of Figure 3. These costs include those

of definitions of variables referenced by the term, and of re-
quired guards that are not already dynamic (the marginal

cost of computing an already dynamic guard is zero). After
the minimum-cost term has been relabeled as dynamic, we
efficiently reestablish the consistency constraints by restart-

ing the constraint solver of Section 3.2, and check to see if
the desired bound has been achieved.

Although this algorithm is decidedly approximate, it ap-

pears, in practice, to preserve the most important elements

on the cache frontier. Sample results of this cache limiting
algorithm are presented in Section 5.4.

5 Results

In this section, we present empirical results obtained with
our data specialize. This system processes a subset of the

C language without pointers or goto, and assumes that the
fragment to be specialized is a single nonrecursive proce-
dure. These restrictions simplify the computation of con-
trol and data dependence, and eliminate the need for an

alias analysis, but otherwise do not impact the specializa-
tion algorithms. All measurements were conducted using
the Microsoft Visual C++ compiler version 4.0 on an Intel
Pentium/ 100 CPU with 64 megabytes of physical memory.

Our benchmarks are shading procedures, or shaders, be-
longing to the interactive graphics rendering system de-
scribed in [GKR95]. A shader computes the color value for

220

120

[

—-.--”..*-.-F. _

B~

+ Speedup

100 w B u Median Speedup

+ ●

123456789 10

Shader

Figure 7: Speedup for all input partitions of ten sample shading
procedures. Each shader is specialized on multiple input par-
titions (one per control parameter); these are displayed in the
y direction above each shader number. Note that multiple in-
put partitions having the same speedup are displayed as a single
point.

60

r

+-.————”-.—-—.”...

+ Cache Size n
%Median Cache Siza

I

12345678 9 10

Shader

Figure 8: Single-pixel cache sizes for all input partitions of ten

sample shading procedures, Note that multiple input partitions

having the same cache size are displayed as a single point.

an image pixel given the pixel coordinates, various rendering

information specific to the pixel, and shader-specific control
parameters provided by the user via a graphical interface.

The graphical interface restricts the user to modifying a sin-
gle control parameter at a time, allowing us to specialize a
shader on all of its inputs except for the control parameter
being modified, and reuse the specialization (array of per-

pixel caches) so long as the user continues to modify the
same parameter. Because the fixed inputs include per-pixel
rendering data, we may construct as many as 106 simulta-

neously live caches for a single image, but we require only
one loader/reader code pair per input partition. A typical
shader has on the order of 10 cent rol parameters, requiring

10 loader/reader pairs. We construct, compile, and link this
code statically at the time a shader is installed, an operation

that takes only a few seconds per input partition.

In the sections that follow, we present results for ten
shading procedures (some derived from examples in [Ups89,

Smi90, GKR95], the remainder written by the authors) rep-
resenting a variety of styles and complexity levels. These

range in size from 50 to 15(I lines of C code, and invoke a

small mathematical library that supports vector and ma-

trix operations as well as noise functions. We ported these

shaders to our system as directly as possible without opti-

mizing them for specialization.

5.1 Speedup

Figure 7 graphically depicts the asymptotic speedup

achieved by specializing each of the 10 shaders with respect
to input partitions holding all but one control parameter

at a time fixed, yielding a total of 131 distinct input part i-
tions, These values represent the average of multiple runs

on a single image, with varying control parameter values.
The speedups vary widely both between shaders and be-

tween input partitions of a single shader, but are alway at

least 1.OX.

The high variance can be explained by the fact that the
number and complexity of computations depending on the

varying parameter (and thus the amount of work that must
be performed by the reader) is different for each input parti-

tion. For example, shaders 3, 4, and 5 invoke expensive frac-
tal noise functions; if the varying control parameter does not
affect the input to the noise function, the noise value can be

cached, and speedups as high as 100x are achieved. If, how-
ever, the noise function input is affected, the reader is forced
to repeat this expensive computation every time the control

parameter is altered, lowering the achievable speedup by ap-

proximately 50%. Simpler, non-iterative shaders such as 1,

6, 7, and 8 contain fewer expensive computations and thus

exhibit lower speedups. However, their speedups still vary

across input partitions: for example, changing the ambient
light parameter (a simple scaling factor applied to the final
color value) typically requires only a few multiplications,
while altering the location of the light source affects virtu-

ally all of the shader’s computations, including a number

of coordinate transformations. Thus, a higher speedup is

achieved for the ambient light parameter than for the light
position parameters.

5.2 Overhead

The speedups described in the previous section are asymp-
totic, and do not reflect the additional cost of the extra

cache loading operations that must be executed each time
a new cache is required. For the user to benefit in practice,
the loading cost must be amortized over multiple uses of the

cache (i. e., several successive changes to a single shading
parameter). Fortunately, this overhead is extremely 10W—

of the 131 loader/reader pairs we constructed, 127 (97Yo)
reached breakeven at two uses,3 3 required three uses, and
1 required 17 uses. It is also worth noting that our speedup
and overhead figures are truly per-pixel statistics; we are

not relying on a large image size to amortize costs.

3This means that the total time to shade a pixel twice using the
loader/reader paradigm was no more than that required to shade that
pixel twice using the original shading code.

221

70 --

T
60

t r-’-’’’”:

10

I

.*L-
OY

-..””f
I , , I I

048 12 16 20 24 28 32 36 40

Cache Size (bytes)

Figure 9: Speedup factor versus cache size for input partitions of
shader 10.

100%

90%

80%

g 70%
u
$ 60%

: 50~o

“~ 40%

1? 30%

20%

1o%

o%

L-1
--M-&eo
*bluel
-+- nngscale
— roughness
— ks

, kd
ambient
tighlx

~.. . I,ghty
+4 Ilghlz

~mean

I
(, , I , I 1 I

,

04 8 12 16 20 24 28 32 36 40

Cache Size (bytes)

Figure 10: Percentage of maximum speedup achieved versus
cache size for input partitions of shader 10.

5.3 Memory Usage

Figure 8 shows the number of bytes of cache space required
for each pixel under each specialization of our sample shad-
ing procedures. As with the speedup figures, the cache size
varies widely from specialization to specialization even for
a single shading procedure. The overall mean and median

cache sizes were 22 and 20 bytes, respectively. In every

case, multiplying the cache size by the number of caches
constructed (307,200 caches for a 640-by-480 image), yields

a total space usage well within the physical memory size of
a typical workstation.

5.4 Reducing Memory Usage

The cache limiting algorithm of Section 4.3 allows us to
trade decreased cache size for decreased speedup by forcing

more computations into the reader. Figure 9 demonstrates
the absolute speedup factors achieved for various cache size
limits applied to all 14 input partitions of shader 10. Fig-

ure 10 displays the same information where each input par-
tition’s maximum speedup is normalized to 100%. As the

cache size limit is reduced from 40 bytes to O bytes, the
speedups are reduced,4 but a large fraction of the speedup

is achieved even when the cache is greatly reduced in size.

Overall, 70% of the performance is retained when the cache
is limited to 2070 of the maximum, while 90% is achieved
when the limit is raised to 3070.

Two effects contribute to this result. First, many of the
input partitions require fewer than 40 bytes of cache space,
so they are not affected until the limit is moved to below

their “natural” cache size. Second, some cacheable compu-
tations are more expensive than others; often, once the most

critical computations have been cached, additional caching

yields only a minor improvement. For example, the first 4-

byte floating-point value cached by the specialization for the

input partition wit h parameter 1 ight x varying accounts for

65% of that specialization’s speedup, even though maximum
speedup requires 40 bytes. Our heuristic attempts to cap-
ture this second effect. This gradual degradation cannot al-

ways be achieved; for example, in the specialization in which

ring scale is varying, reducing the cache size limit from 16
bytes to 12 bytes leads to a 95% reduction in speedup inde-
pendent of which values are cached.

6 Related Work

Data specialization can be viewed as a staging transforma-

tion [JS86] that moves computations to contexts where they

will be executed less often. In this section, we describe two
other staging strategies: runtime code generation and in-

cremental program execution. We also relate several of our

implementation techniques to their counterparts in partial
evaluation.

6.1 Runtime Code Generation

Several approaches to dynamic optimization rely on the

fast instantiation of precomputed object code templates.

Massalin and Pu [MP89] used hand-generated assembly

templates; Consel and Noel [CN96] automatically gener-
ate portable templates at the source code level and ex-

tract them from the resulting compiled code using machine-
specific techniques. Auslander et al. [APC+96] present a

template-based compiler for an annotated version of C; this

system uses analyses similar to ours to construct an early

phase that fills in a “run-time constants table” similar to
our cache. Our systems differ in that we construct a single
reader that references the cache, while Auslander et al. use
the cached data to instantiate immediate values in dynami-
cally generated code.

Non-template systems optimize and generate code from

an intermediate form at runtime. Tools for this purpose in-
clude DCG [EP94] and (C [EHK96], which have achieved
speedups as high as 50x, but require tens to hundreds of
dynamic instructions to emit a single optimized instruction.
Leone and Lee [LL94] used partial evaluation to “compile
out” the intermediate form, generating a custom optimizer

4The few small increases in speedup as cache size is decreased have
been verified to be due to timing imprecision and processor cache ef-

fects rather than poor choices made by the heuristic, as the generated

code was identical. The error appears artificially large for parameters

lightx, lighty, and lightz in Figure 10 because their speedup range

is smaller than those of other parameters.

222

that directly emits object code. Keppel et al. [KEH93] com-

pared assembly-level and compiler intermediate representa-

tion (IR) level template compilers for a variety of workloads,

and computed conservative amortization intervals of 10-1000

uses for assembly templates and 1000-infinite uses for IR

templates,

General partial evaluators [JGS93, Ruf93, And94, Osg93]

can yield highly specialized code, but existing systems are

impractical for runtime use due both to their slowness and
to the cost of dynamically compiling the high-level code

they generate, Other dynamic compilation systems [DS84,

Cha92] concentrate more on optimizing language features
such as dynamic dispatch than on staging user-level compu-
tations.

An alternate formulation of partial evaluation known as

mixed computation [Ers77, Bu184] has a signature somewhat

similar to that of data specialization, in that the transfor-
mation emits both specialized code and specialized data.
The difference is that our approach emits code statically

and data dynamically, while systems based on mixed com-
putation emit both simultaneously, requiring them to pay

the cost of dynamic code generation if used at runtime.

6.2 Incremental Program Execution

Incremental program execution techniques effectively stage
programs by caching intermediate results for re-use in sub-

sequent executions. Systems that cope with arbitrary in-
put changes by dynamically checking dependence [PT89,

Ho092] avoid more computations than data specialization
does, but they lose the efficiency we gain from “compiling

away” the dependence in advance.
Liu and Teitelbaum [LT95a, LT95b] present algorithms

for statically deriving an incremental version of a pure func-
tional program under some input change, The basic idea is

to identify computations in a program whose values can be
profitably reused when the program is reexecuted under the

input change, and to cache these values instead of recom-
puting them. By using a programmatic description of the

input change and taking advantage of algebraic identities,
this method can support forms of reuse which our purely
dependence-based algorithm cannot. For example, using

the cached value of the expression jibonacci (z – 1) in place

of the expression jibonacci (z — 2) under the input change
(kc.z + 1) yields a form of finite differencing.

Sundaresh and Hudak [SH91] derive incremental versions

of functional programs by expressing the program as the

composition of a number of residual program fragments,

each of which depends on a different projection of the pro-
gram’s inputs. When an input is changed, the system re-

builds the corresponding fragment, merges the code for all
fragments, and executes the result. This is a form of code
specialization as it requires the dynamic construction (and
compilation) of code whenever an input is changed.

6.3 Partial Evaluation

Several aspects of the implementation of data specialization
described in Section 3 are similar to techniques used in mr-

tial evaluation. Our dependence annotat~on is simil~ to

the binding time attribute computed by offline partial eval-
uators [JGS93], in that both involve transitive data depen-

dence on distinguished inputs. The approaches differ in that
we ..parate ..mantic (dependence) information from policy

(caching) information, while binding time analyzers typi-

cally mix both in the binding time attribute. We have found

that the latter approach can introduce false dependence.

For example, our caching analysis can label a term as dy-

namic without forcing its consumers to be dynamic, while

a BTA-based approach (in which dependent z dynamic)

would unnecessarily force all of the term’s consumers into

the reader. We believe that current partial evaluators for im-

perative languages [Osg93, “And94] have not yet experienced
this problem because they do not perform flow-sensitive

binding time analysis.

Program bifurcation [Mog89, DNBDV91] factors each of
a program’s functions into two new functions: (1) a function
which takes as input only independent values, and produces

the independent portion of the result, and (2) a function

which takes both independent and dependent inputs and

produces only the dependent portion of the result. An effect

similar to data specialization could be obtained by caching

certain intermediate results of type (1) functions and using

the corresponding values in the type (2) functions.

Our splitting pass, which traverses the annotated pro-
gram fragment and emits the loader and reader code, can
be viewed as two nonstandard semantic interpretations of

an action tree [CD90, CN96]. Consel’s “evaluate” action

denotes maximal-sized independent subtrees and thus cor-

responds (in the absence of speculation avoidance and cache
size limiting) to our cached annotation, Because we require
that a single reader suffice for all potential values of the

nonvarying inputs, all three of Consel’s “rebuild,” “reduce, ”
and “identity” annotations correspond to the dynamic an-
notation in our system.

7 Future Work

We foresee a number of ways to extend this work, both in

terms of the present implementation and the broader frame-
work. We are also actively seeking other applications that
will benefit from our approach.

7.1 Extending the Implementation

Expressing our transformation in terms of expressions (ab-
stract syntax trees) is convenient for expository purposes

but difficult to implement, particularly in the face of side

effects and nonlocal control transfers. We expect to move
to a control flow graph representation in the near future.

We would like to explore the costs/benefits of allow-
ing speculation in the loader. Because the load-time over-
head is presently very low, we can probably afford the time

overhead of extra, potentially-unused computations in the

loader; other potential problems include the additional cache
space required to store the result values and the extra work
required to trap and handle exceptions.

In our current architecture, we perform staging offline
as a source-to-source transformation; this limits the number
of distinct input partitions we can handle, By computing

the necessary control and data dependence information of-

fline (e.g., manually staging our staging transformation!),
we may be able to perform our analyses and transforma-

tions (including code generation) dynamically.

7.2 Extending the framework

Reifying the result of the early phase of a staged program as
a data structure need not limit us to caching intermediate

223

results. For example, we might choose to combine the result

of several control transfers into a single index into a lookup
table, and cache only the index value. We could also specu-
latively construct multiple specialized cache readers targeted
to particular fixed input values and select among them using

a dispatch code passed in the cache.
We might also find it fruitful to explore points in the

spectrum between data specialization (which emits no code

at runtime) and code specialization (which expresses all early
results as runtime-generated code). This would allow us the

optimization benefits of code specialization for long-lived,
often-reused contexts, while retaining the low space/time

overhead of data specialization for more ephemeral contexts.

7.3 New Applications

To date, we have only experimented with programs from a

single domain, namely local (per-pixel) shading comput a-

tions in graphics rendering, which have the characteristics:

1.

2.

3.

4.

a repeated computation him an input context whose
components vary at different rates,

a sufficient fraction of the computation depends only

on a subset of the inpute,

the invariant portion of the computation can be use-
fully encoded in the form of cached intermediate result

values, and

the s~ace/time overhead recmirements of the applica-
tion ~rec~ude the use of the more general code sp~cial-

ization staging technique.

We expect that other applications also meet these cri-

teria, and will benefit from our technique. In particular,

item (3) suggests that we concentrate on numeric applica-

tions where significant effort goes into the production of a

small number of values, rather than on interpreter-like ap-

plications where the early computation primarily performs

dispatch rather than computing values. Item (4) suggests

applications that either require a large number of simul-

taneous specializations, such as image processing, or those

where the repetition count is likely to be low, such as those

where the fixed parameters are derived from interactive user

input.

8 Conclusion

We have presented a new technique, data specialization, for
improving the performance of program fragments by auto-

matically restaging them into an optimizer and an execution

engine that communicate via a cache of data values. This

approach complements existing techniques based on runtime
code generation; although it achieves a somewhat lower de-

gree of optimization, its very low overhead in time and space
make it attractive in applications where existing techniques
cannot be profitably applied.

Acknowledgements

Brian Guenter first suggested that we apply this technique
to shading, and collaborated on the implementation of the
interactive shading system described in Section 5. Bruce
Duba, Linda O’Gara, Thomas Reps, Daniel Weise, and the
anonymous referees provided helpful comments on drafts of
this paper.

References

[And94]

[APC+96]

[ASU86]

[BC94]

[Bu184]

[CD90]

[CFR+91]

[Cha92]

[CN96]

[DNBDV91]

[DRH95]

[DS84]

[EHK96]

Lars Ole Andersen. Program Analysis and Spe-
cialization for the C Programming Language. PhD
thesis, DIKU, University of Copenhagen, Denmark,

1994. DIKU Research Report 94/19.

Joel Auslander, Matthai Phillipose, Craig Cham-

bers, Susan J. Eggers, and Brian N. Bershad.

Fast, effective dynamic compilation. In Proceedings
of the SIGPLAN ’96 Conference on Programming

Language Design and Implementation. ACM, May
1996. This volume.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Unm-

an. Compilers; princzplesj techniques, and tools.
Addison-Wesley, Reading, MA, 1986.

Preston Briggs and Keith D, Cooper. Effective par-

tial redundancy elimination In Proceedings of the

SIGPLAN ’94 Conference on Programming Lan-
guage Design and Implementation, pages 159–170,

June 1994.

M.A. Bulyonkov Polyvariant mixed computation
for analyzer programs. Acts Informatica, 21:473-
484, 1984.

Charles Consel and Olivier Danvy. From interpret-

ing to compiling binding times. In N. Jones, ed-
itor, Proceedings of the 3rd European Symposnsrn
on Programming, pages 88–105. Springer-Verlag,

LNCS 432, 1990

Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Ef-

ficiently computing static single assignment form
and the control dependence graph. ACM 71-ans-

actions on Programmmg Languages and Systems,

13(4):451-490, October 1991.

Craig Chambers. The Deszgn and Implementation
of the Self Compder, an Optimizing Compiler for

Object-Or~ented Programming Languages. PhD the-
sis, Stanford University, March 1992, Published as

technical report STAN-CS-92-1420.

Charles Consel and Francois Noel. A general ap-
proach to run-time specialization and its applica-

tion to C. In Proceedings 23rd ACM SIGPLAN-
SIGA CT Symposium on Pr~nciples of Programming

Languages, pages 145–156, ACM, January 1996.

Anne De Niel, Eddy Bevers, and Karel De Vlam-
inck. Program bifurcation for a polymorphically
typed functional language. In Partzal Evaluation
and Semantics-Based Program Manipulation, New

Havenj Connecticut (Stgplan Noihces, vol. 26, no. 9,

September 1991), pages 142–153. New York: ACM,
1991.

Manuvir Das, Thomas Reps, and Pascal Van Hen-
tenryck. Semantic foundations of binding time anal-
ysis for imperative programs. In Partial Evalua-
tion and Semantics-Based Program Manipulation,

La Jolla, Caltforrua, June 1995. New York: ACM,
1995.

L. Peter Deutsch and A. M. Schiffman. Efficient
implementation of the Smalltalk-80 system. In Pro-
ceedings of the Eleventh Annual ACM Symposium
on Principles of Programming Languages, pages
297–302. ACM, 1984.

Dawson Engler, Wilson C, Hsieh, and M. Frans

Kaashoek. ‘Cl a language for high-level, efficient,
and machine-independent dynamic code genera-
tion. In Proceedings 23rd ACM SIGPLAN-SIGA CT

Symposzum on Principles of Programming Lan-
guages, pages 131–144. ACM, January 1996.

224

[EP94]

[Ers77]

[GKR95]

[Ho092]

[JGS93]

[JS86]

[KEH93]

[LL94]

[LT95a]

[LT95b]

[Mog89]

[MP89]

[osg93]

[PT89]

Dawson R. Engler and Todd A Proebsting. DCG:

An efficient, retargetable dynamic code generation
system. In Proceedings of the Sizth Interrwtional

Conference on Architectural Support for Pr-ogram-
ming Languages and Operating Systems, pages 263–

272, October 1994.

Andrei P, Ershov. Onthepartial computation prin-

ciple. Information Processing Letters, 6(2):38-41,
April 1977.

Brian Guenter, Todd B. Knoblock, and Erik Ruf.

Specializing shaders, In ACM SIGGRAPH’95

(Computer Graphics Proceedings, Annual Confe~-
ence Series), pages 343–349, 1995,

Roger Hoover. Alphonse: incremental computation
as a programming abstraction, In Proceedings oj the

SIGPLA N ’92 Conference on Programming Lan-
guage Design and Implementation, pages 261–272,

San Francisco, CA, June 1992.

Neil D. Jones, Carsten K. Gomard, and Peter Ses-
to ft. Partial Evaluation and Automatic Program

Genemtzon. Englewood Cliffs, NJ: Prentice Hall,
1993.

Ulrik J@rring and William L. Scherlis. Compilers
and staging transformations. In Thirteenth ACM

Symposium on Principles of Programming Lan-
guages, St. Petersburg, Florida, pages 86-96. New
York: ACM, 1986.

David Keppel, Suean J. Eggers, and Robert R,

Henry. Evaluating runtime-compiled value-specific
optimization. Technical Report UWCSE 93-11-02,

University of Washington Department of Computer
Science and Engineering, 1993.

Mark Leone and Peter Lee. Lightweight run-
time code generation. In Partial Evaluation and
Semantics-Based Program Manipulation, Orlando,
Florida, June 1994 (Technical Report 94/9, De-

partment of Computer Science, University of Mel-
bourne), pages 97–106, 1994.

Yanhong A. Liu and Tim Teitelbaum. Caching inter-
mediate results for program improvement. In Par-
tial Evaluation and Semantics-Based Program Ma-

nipulation, La Jollaj California, June 1995, pages

190-201. ACM, 1995.

Yanhong A. Liu and Tim Teitelbaum. System-

atic derivation of incremental programs. Science of

Computer Programming, 24:1-39, 1995.

Torben Mogensen. Separating binding times in lan-
guage specifications. In Fourth International Con-
ference on Functional Programming Languages and

Computer Architecture, London, England, Septem-
ber 1989, pages 14–25. Reading, MA: Addison-

Wesley, 1989.

Henry Massalin and Calton Pu. Threads and in-

put/output in the Synthesis kernel. In Proceedings

of the 12th ACM Symposium on Operating Systems
Principles, pages 191-201, December 1989.

Nathaniel David Osgood. PARTICLE: an automatic
program specialization system for imperative and
low-level languages. Master’s thesis, MIT, Septem-
ber 1993.

William Pugh and T. Teitelbaum. Incremental com-
putation via function caching. In Proceedings of the
Sixteenth Annual ACM Symposium on Principles
of Programming Languages, pages 315–328, Austin,

TX, January 1989.

[Ruf93] Erik Ruf. Topics in Online Partial Evaluation. PhD

thesis, Stanford University, California, April 1993.

Published as technical report CSL-TR-93-563.

[SH91] R.S. Sundaresh and Paul Hudak, A theory of incre-
mental computation and its application. In Proceed-
ings of the Eighteenth Annual ACM Symposium on

Principles of Programming Languages, pages 1-13,

January 1991,

[Smi90] Alvy Ray Smith. Unpublished notes. 1990.

[Ups89] Steve Upstill. The RenderMan Companion,

Addison-Wesley, 1989.

[WMGH94] Tim A. Wagner, Vance Maverick, Susan Graham,

and Michael A. Harrison. Accurate static esti-
mators for program optimization. In Proceedings
of the SIGPLA N ’94 Conference on Programming

Language Design and Implementation, pages 85-96,

June 1994.

225

