
Applying Flow-sensitive CQUAL to Verify
MINIX Authorization Check Placement

Timothy Fraser Nick L. Petroni Jr. William A. Arbaugh
University of Maryland Department of Computer Science

{tfraser,npetroni,waa}@cs.umd.edu

Abstract
We present the first use of flow-sensitive CQUAL to verify the place-
ment of operating system authorization checks. Our analysis of
MINIX 3 system servers and discovery of a non-exploitable Time-
Of-Check/Time-Of-Use bug demonstrate the effectiveness of flow-
sensitive CQUAL and its advantage over earlier flow-insensitive ver-
sions. We also identify and suggest alternatives to current CQUAL
usability features that encourage analysts to make omissions that
cause the otherwise sound tool to produce false-negative results.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.4.6 [Operating Systems]:
Security and Protection—Access controls

General Terms Security

Keywords CQUAL, MINIX, static analysis, type qualifiers

1. Introduction
We present the first use of flow-sensitive CQUAL to verifying the
placement of authorization checks in an operating system. We
used CQUAL to verify the placement of authorization checks in
the MINIX 3.1.1 Data Store (DS), Process Manager (PM), and File
System (FS) system servers. These system servers are privileged
user-space processes running on top of the MINIX microkernel
and are responsible for making most of the authorization checks
commonly expected in a UNIX system. The purpose of the analysis
was to verify that all the checks were in place and could not be
bypassed by an adversary exploiting an unexpected control flow.
Our effort discovered a non-exploitable Time-Of-Check/Time-Of-
Use (TOCTOU) bug in PM.

Our experiment had three primary results: First, the new flow-
sensitive CQUAL accomplished its task without the complex work-
arounds required in similar previous efforts using flow-insensitive
versions. Second, the structure of MINIX authorization checks
caused our task to require more manual annotation than earlier
efforts to verify different security properties with CQUAL. Finally,
the fact that CQUAL permits unqualified types makes it “insecure
by default”, encouraging analysts to omit annotations, causing the
otherwise sound tool to report false-negatives.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’06 June 10, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-374-3/06/0006. . . $5.00.

We describe our experiment in section 2, present our results in
section 3, and propose a new “secure by default” CQUAL mode in
section 4 to address some of the problems found. We discuss related
work in section 5 and present our conclusions in section 6.

2. Experiment
The goal of verifying authorization check placement in a server is to
verify the absence of control-flow paths where a client can ask the
server to perform some security-relevant operation (for example,
write a file) without that request first passing an authorization check
(for example, checking to see if the client is permitted to write the
file according to the file’s access control list).

For example, in the following annotated C code the function
service operates on object * handles on behalf of clients. The
use function encapsulates some security-relevant operation on han-
dles. The check function encapsulates an authorization check in-
tended to guard the use function: check returns a handle in cases
where use is authorized and NULL when it is not.

01 int use(object * $checked);
02 object * $checked check(object *);
03
04 int service(object * $unchecked h, int skip) {
05 if(!skip)
06 if(!(h = check(h))) return -1;
07 return use(h);
08 }

Note that along the control flow path where skip is false (lines
05, 06, 07 sequentially), control must pass check, ensuring that
an adversarial client cannot misuse the use function. However,
along the control flow path where skip is true (jumps from line 05
to 07), there is no call to check. Consequently, an adversarial client
can misuse the use function simply by ensuring that the program
always takes the skip path. We used CQUAL to discover such paths.

CQUAL is a static analysis tool that uses type qualifier infer-
ence to detect inconsistencies in a large program based on a small
number of type qualifier annotations placed by an analyst [5, 6].
Analysts state facts about a C program by annotating its types with
CQUAL type qualifiers that are similar to C’s const qualifier.

We applied one of two qualifiers to handles like object *’s in
the above example: $checked or $unchecked. In our approach,
the object * $checked type is a handle that has passed an au-
thorization check. The object * $unchecked type is one that
has not. For example, the $checked annotation on line 01 states
that use function’s input handle must be $checked. Similarly, the
$checked annotation on line 02 states that handles returned by
check are $checked. Finally, line 04’s $unchecked annotation
on the service function’s h parameter states that h is initially
$unchecked.

3

When CQUAL analyzes this code statically, it determines that
line 06’s call to check along the !skip path changes h’s type to
object * $checked. However, CQUAL also notes that the skip
path avoids this call, allowing h’s type to remain object * $un-
checked upon reaching line 07. Being unable to predict the value
of skip statically, CQUAL conservatively decides that h may be ei-
ther $checked or $unchecked at line 07. The call to use states that
hmust definitely be $checked, contradicting the “either $checked
or $unchecked” fact inferred from previous lines. This contradic-
tion indicates the check authorization check is misplaced because
a least one path misses it. Moving it out of the if(!skip) body
would correct this problem.

Section 4 describes previous efforts to verify security properties
using earlier flow-insensitive versions of CQUAL. Due to their lack
of flow-sensitivity, these versions could not permit functions like
check to change the type of a variable—a variable’s type could
be set only once. Changing types from $unchecked to $checked
is essential to representing the effects of authorization checks; the
lack of this feature was a significant limitation on previous efforts
to verify authorization check placement with CQUAL.

To prevent CQUAL from reporting contradictions in certain
harmless cases, we defined $checked to be a subtype of $un-
checked, allowing a $checked handle to be used in places where
an $unchecked one was expected. We took information from the
System Interfaces Volume of the Single Unix Specification ver-
sion 3 [15] and man pages to form our list of checks to verify .

3. Results
MINIX checks required more annotation. We analyzed approx-
imately 25,000 lines of preprocessed C code, adding 873 annota-
tions by automatic string-replacement and 198 annotations man-
ually. Total CQUAL runtime was less than 3 seconds on a typical
laptop. During the experiment, it became apparent that the autho-
rization check structure of some services permitted better uses of
CQUAL than others in terms of manual annotation labor saved. Ta-
ble 1 provides code fragments demonstrating various cases.

Section 2’s code fragment represents an imaginary ideal situ-
ation for saving annotation labor. Both authorization checks and
security-relevant operations are neatly encapsulated in functions.
Once the analyst has annotated their prototypes, CQUAL can reason
about their calls throughout the program without further help from
the analyst. This ideal situation is similar to that encountered by
some earlier efforts to apply CQUAL to different security properties
described in section 5. Unfortunately, the actual MINIX code never
had such convenient encapsulation.

The example in table 1A contains a highly-simplified represen-
tation of the PM code for sending a signal to one or more processes
on behalf of an authorized client. Because a client can signal many
processes with a single request to PM, PM must iterate through
its array of process structures (procs, line 17), check if the client
wants to signal a given entry (line 19) and authorize the send to
that entry’s process individually (line 20). CQUAL is of consider-
able help in verifying authorization check placement in compli-
cated control flow structures such as this signal-sending loop.

Unlike the previous example, the authorization check on line 20
is not encapsulated in a function that returns a handle. Instead, it is
implemented with a C comparison operator. Finding no authoriza-
tion check function to annotate, the analyst must manually locate
the authorization check and place a CQUAL change type operator
to change the formerly $unchecked handle’s type to $checked
on the lines following a positive authorization outcome (line 21).
CQUAL operators like change type affect CQUAL’s analysis but
do not result in executable code.

Placing change type operators requires a much larger amount
of manual code examination than was required to simply annotate

A: simplified PM/signal.c:check sig()

11 void sig_proc(proc * $checked, int);
12
13 void check_sig(proc *sender, pid_t who,
14 int sig) {
15 proc * $unchecked p;
16
17 for(p = &procs[0]; p < &procs[LAST]; p++) {
18 change_type(p, proc * $unchecked);
19 if(who != p->pid) continue;
20 if(sender->euid != p->euid) continue;
21 change_type(p, proc * $checked);
22 sig_proc(p, sig);
23 }
24 }

B: simplified FS/protect.c:do chmod()

31 int do_chmod(proc *caller, char *path,
32 mode_t mode) {
33 inode * $unchecked i = namei(path);
34
35 if(caller->euid != i->uid) return -1;
36 change_type(i, inode * $checked);
37 assert_type(i, inode * $checked);
38 i->mode = mode;
39 return 0;
40 }

C: imaginary annotation omission example

51 void use(object * $checked);
52
53 object * $unchecked h;
54 h = 42;
55 use(h);

Table 1. Example annotation cases

authorization check function parameters in the previous example.
Fortunately, in this example the security-relevant operation is still
encapsulated in a function—sig proc. Although this case is still
more work than the previous imaginary optimal example, the an-
alyst can still save considerable labor by annotating sig proc’s
prototype (line 11). Four out of 23 services annotated in the exper-
iment were of this sub-optimal but relatively convenient form.

The example in table 1B contains a highly-simplified represen-
tation of the FS code for changing inode access control settings on
behalf of authorized users. In this case, neither the authorization
check nor the security relevant operation are encapsulated in func-
tions. Instead, they are implemented with C comparison and as-
signment operators (lines 35 and 38). In this case, the analyst must
insert both a CQUAL change type operator after the authoriza-
tion check to reflect a positive authorization (line 36) and a CQUAL
assert type operator before the security-relevant operation to de-
mand that the handle be checked at that point (line 37).

This no-encapsulation case represents the worst-case scenario
for manual annotation effort and was unfortunately common in the
experiment, representing 19 out of 23 annotated services. In sim-
ple functions like table 1B’s example, the two CQUAL operators
wound up on adjacent lines, suggesting that the function’s correct-
ness might be just as easily verified by hand. However, in more
complex functions, these operators were separated by intervening
instructions, putting CQUAL to better use. In 11 of the 19 worst-
case services, the annotations fell in simple functions resulting in
change type and assert type appearing on adjacent lines.

4

CQUAL is insecure by default. Table 1C contains an imaginary
example code fragment designed to explain how the fact that
CQUAL permits unqualified types encourages analysts to mistak-
enly omit annotations, leading the otherwise sound CQUAL tool to
report false-negatives.

In the 1C code fragment, the analyst has already annotated
all object * handles as $unchecked using automatic string-
replacement, including the local variable h on line 53. The an-
alyst has also manually annotated the use function—a function
that encapsulated a security-relevant operation—indicating that it
demands a $checked input handle as a parameter (line 51). As
he has not yet used the CQUAL change type operator to anno-
tate any checks, upon running CQUAL the analyst may expect to
find all calls to use—since all actual parameters to use will be
$unchecked, CQUAL should report type errors on every call.

This expectation would be wrong, however. In response to the
assignment of an unqualified value on line 54, CQUAL will consider
the handle h to have no qualifiers from that point in the program
on, forgetting its earlier $unchecked annotation. Upon reaching
line 55, CQUAL will see that use states the constraint that h must
be $checked and, finding no contradicting qualifier on h at that
point, will infer that h is indeed $checked. As a result, CQUAL
will not report the call to use, the analyst will not examine it
for authorization checks, and a false-negative due to analyst error
will result if an authorization check is indeed missing. If CQUAL
insisted that the analyst cast the literal 42 to an annotated type like
object * $unchecked or automatically applied such a default
annotation itself, this problem would be avoided.

During the early part of the experiment, we missed the call to
sig proc in table 1A’s check sig example for precisely this reason,
later discovering it only through manual analysis. Note that to avoid
such mistakes, an analyst must take great care to search through
the source for intervening assignments such as those in the for
statement on line 17 of table 1A’s check sig example.

We characterize the fact that CQUAL permits unannotated types
rather than insisting on or providing default annotations chosen to
avoid false-negatives as “insecure by default” in comparison to the
“secure by default” alternative we propose in section 4. However,
this aspect of CQUAL stems from a deliberate and reasonable de-
cision to support usability by reducing typical manual annotation
burdens. The usability of our potential alternative remains an open
question.

PM had a TOCTOU bug. The analysis revealed a classic UNIX
filesystem TOCTOU bug of the kind described by Bishop and
Dilger [2] in the MINIX 3.1.1 PM. Note that on MINIX, PM is a
user process like any other outside the microkernel.

91 /* make my effective uid that of my client */
92 if(access("filename", rx_mask)) return EACCES;
93 /* return effective uid to superuser status */
94 open("filename", flags);

On line 91 the PM impersonates its client, dropping privileges
so that it may call access on line 92 to determine whether or
not the client is authorized to open the file named “filename” for
execution. This done, on line 93 the PM regains its full privileges
and proceeds to open the file on line 94. With its full privileges
restored, PM can open any file.

Unfortunately, on a traditional UNIX system, “filename” does
not necessarily refer to the same file at the time of the open as
it did at the time of the check. An adversarial user can ask PM
to execute an allowable file with a symbolic link in its “filename”
path. Once this file passes the access check, a quick adversary can
then change the symbolic link so that the same “filename” points to
a prohibited file by the time PM reaches open. PM will then open
the prohibited file and allow the adversary to execute it.

Fortunately, MINIX 3.1.1 does not yet implement symbolic
links, so this TOCTOU bug is not currently exploitable. The MINIX
developers noted that the bug’s discovery was timely, however, be-
cause symbolic links are scheduled for implementation in the next
release [7].

If the PM’s authorization check was structured like the imagi-
nary optimal example in section 2, CQUAL might have detected the
TOCTOU bug and directed our attention to it. However, this was
not the case. Instead, we discovered the bug manually while try-
ing to decide where to place CQUAL operators as in the example in
table 1B.

4. Future work
It is not hard to imagine a new CQUAL mode specialized for verify-
ing authorization check placement in which a mistakenly omitted
annotation could not produce a false-negative result. The current
version of CQUAL will report no type errors when given an un-
annotated but otherwise correct input. Following the “secure by de-
fault” principle of Saltzer and Schroder [12], the specialized mode
might report a maximum number of type errors when given an un-
annotated input.

An analyst uses the current CQUAL by first adding annotations
to alert CQUAL to potential problems (“this handle is unchecked
and that operation demands a checked handle”) and then adds fur-
ther annotations to resolve these problems (“this statement makes
the handle checked”). Omitting a potential-problem annotation can
lead to false-negatives. With the specialized mode, CQUAL would
assume problems were everywhere, and the analyst would add an-
notations only to resolve them. Omissions would cause CQUAL to
err on the side of caution with false-positives.

This specialized mode might be implemented by modifying
CQUAL’s parser to give un-annotated variables, literals, and func-
tion signatures special treatment: It might automatically annotate
them in a manner designed to indicate potential problems, free-
ing the analyst from this critical error-prone task. Alternately, a
high-level annotation-placement language similar to the one used
in MECA [17] might be developed to achieve the same end.

5. Related work
There have been a number of prior static analyses of proper-
ties similar to authorization check placement. Zhang and oth-
ers used an earlier flow-insensitive version of CQUAL to verify
the placement of Linux Security Module (LSM) [16] authorization
hooks in the Linux kernel, finding one exploitable bug [18]. Be-
cause authorization check placement is a flow-sensitive property
and Zhang’s version of CQUAL was flow-insensitive, Zhang was
unable to change type a variable from $unchecked to $checked
on successful completion of an authorization check as done in this
work. Instead, whenever she desired to change the type of a variable
foo from $unchecked to $checked, she inserted a new $checked
variable bar into the code, added a statement to assign it the value
of foo, and replaced subsequent uses of foo with bar. Zhang re-
lied on an argument outside of CQUAL to show that there were no
flows bypassing checks inside functions.

Ashcraft and Engler developed a technique called Metacom-
pilation in which an analyst applies knowledge of the purpose
and meaning of the constructs of a given program (function se-
mantics, naming conventions, patterns) to extend a version of the
GNU Compiler Collection with new static analysis functionality
designed to verify a specific security property [1]. They used this
technique to verify that untrusted input is validated before being
used by security-relevant functions—a property similar to autho-
rization check placement—finding 125 bugs in a then-current ver-
sion of Linux and 12 in OpenBSD. Although Ashcraft and Engler

5

cite their approach as an alternative to type annotation schemes
where omitted annotations can lead to false-negatives, the sound-
ness of Metacompilation results are not guaranteed.

Schwarz and others have applied the MOPS model-checker to
checking an entire GNU/Linux distribution for security violations,
including the same kind of TOCTOU bugs discovered by our own
work [13]. Although they did not verify the placement of authoriza-
tion checks, their method of expressing desired security properties
as finite state automata seems capable of doing so and deserves
investigation. The use of function pointers and signals can cause
MOPS to report false-negatives. Nevertheless, their analysis found
108 exploitable bugs.

Jensen and others developed a model-checking approach to
verifying whether or not a Java 1.2 program’s security checks
are sufficient to support some program-wide security property—an
analysis capable of both verifying authorization check placement
and detecting redundant checks [8]. Their approach to modeling
programs involved eliminating all details except function calls and
checks. To apply it to MINIX, one would have to adjust it both to
allow for the C language and to avoid discarding the many security-
relevant operations not encapsulated in functions.

Prior uses of CQUAL for security properties other than autho-
rization check placement have generally required less annotation.
Johnson and Wagner used a flow-insensitive version of CQUAL to
find 17 exploitable User/Kernel bugs in the Linux kernel [9]. These
bugs included cases where the kernel functions copy to user and
copy from user were incorrectly used with user-space addresses
when kernel-space addresses were expected, or with kernel-space
addresses when user-space addresses were expected.

Shankar and others used a flow-insensitive version of CQUAL
to detect 3 format-string vulnerabilities in a collection of popular
daemons written in C [14]. These vulnerabilities occur in cases
where an adversarial user can control the format strings used by
C library functions like sprintf.

In contrast to the verification of authorization check place-
ment, the security properties investigated by both of these efforts
did not require variables to change their type annotations (as in
$unchecked to $checked) once initially set. In further contrast,
all annotations were on operators and function prototypes, allowing
CQUAL’s type qualifier inference to eliminate the kind of extensive
manual search and annotation effort described in section 3.

CQUAL compares well with process-oriented alternatives. Man-
ual software engineering processes such as code reviews mandated
by criteria schemes [10, 3] can be applied to authorization check
placement, but unlike CQUAL’s automated analysis, they cannot be
easily repeated whenever a program changes due to maintenance.
Cumbersome historical approaches like the Hierarchical Develop-
ment Methodology (HDM) could produce formal specifications of
programs with properties proven by non-interactive automated the-
orem provers [11]. However, CQUAL is sufficient to produce our de-
sired result with much less effort. On the other hand, CQUAL bears
some resemblance to the historical Gypsy Verification Environment
(GVE)—in both systems, the analyst encodes both the program and
logical assertions about its behavior in the same source code and
then debugs the result with the help of a compiler that is essentially
a highly-specialized interactive automated theorem prover [4].

6. Conclusion
We have described the first use of flow-sensitive CQUAL to verify
the placement of operating system authorization checks—an anal-
ysis of the MINIX 3.1.1 DS, PM, and FS system servers. Our analy-
sis uncovered a non-exploitable TOCTOU bug in PM. We demon-
strated that CQUAL’s new flow-sensitive features avoided the com-
plex workarounds employed by similar efforts with an earlier flow-

insensitive version of CQUAL. We described how the structure of
MINIX authorization checks required a larger manual annotation
burden than earlier CQUAL efforts to verify different properties. Fi-
nally, we identified cases in which CQUAL’s provision for unanno-
tated types led to “insecure by default” behavior in which an ana-
lyst could easily cause CQUAL to produce false-negative results by
mistakenly omitting annotations and suggested improvements.

Acknowledgments
The authors would like to thank Professors Jeffrey S. Foster and
Michael W. Hicks for their invaluable advice and review.

References
[1] Ken Ashcraft and Dawson Engler Using Programmer-Written

Compiler Extensions to Catch Security Holes. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, 2002.

[2] Matt Bishop and Michael Dilger. Checking for Race Conditions in
File Accesses. In USENIX Computing Systems, vol. 2, no. 2, 1996.

[3] Common Criteria for Information Technology Security Evaluation
v2.3 ISO/IEC 15408:2005, August, 2005.

[4] M. Cheheyl and M. Gasser and G. Huff and J. Millen. Verifying
Security. In Computing Surveys vol. 13, no. 3, September 1981.

[5] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A Theory
of Type Qualifiers. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 1999.

[6] Jeffrey S. Foster and Tachio Terauchi and Alex Aiken. Flow-Sensitive
Type Qualifiers. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02), 2002.

[7] Ben Gras. In personal E-mail communication, 23 February 2006.

[8] T. Jensen and D. Le Metayer and T. Thorn. Verification of control
flow based security properties. In Proceedings of the 1999 IEEE
Symposium on Security and Privacy, pages 89–103, 1999.

[9] Rob Johnson and David Wagner. Finding User/Kernel Bugs
With Type Inference. In Proceedings of the 13th Usenix Security
Symposium, 2004.

[10] National Computer Security Center. Department of Defense Trusted
Computer System Evaluation Criteria. Dod 5200.28-STD, 1985.

[11] P. Neumann and R. Feiertag and L. Robinson and K. Levitt. Software
Development and Proofs of Multi-Level Security In Proceedings of
the 2nd International Conference on Software Engineering, 1976.

[12] J. H. Saltzer and M. D. Schroder. The Protection of Information in
Computer Systems. In Proceedings of the IEEE Vol. 63(9), 1975.

[13] Benjamin Schwarz and Hao Chen and David Wagner and Jeremy
Lin and Wei Tu. Model Checking An Entire Linux Distribution for
Security Violations. In Proceedings of the 21st Annual Computer
Security Applications Conference, 2005.

[14] Umesh Shankar and Kunal Talwar and Jeffrey S. Foster and David
Wagner. Detecting Format String Vulnerabilities with Type Qualifiers.
In Proceedings of the 10th USENIX Security Symposium, 2001.

[15] The Open Group. Single UNIX Standard: System Interfaces Volume.
The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004.

[16] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman.
Linux Security Modules: General Security Support for the Linux
Kernel. In Proceedings of the 11th Annual USENIX Security
Symposium, 2002.

[17] Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson Engler.
MECA: an Extensible, Expressive System and Language for
Statically Checking Security Properties. In Proceedings of the 10th
ACM conference on Computer and Communications Security, 2003.

[18] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using CQUAL
for Static Analysis of Authorization Hook Placement. In Proceedings
of the 11th Usenix Security Symposium, 2002.

6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

