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Abstract

High-level programming languages such as MATLAB are widely
used in scientific domains to implement prototypes based on math-
ematical models. These prototypes are finally often re-implemented
in low-level languages to reach execution times required for the op-
erational use. In order to exploit latest hardware architectures ad-
ditional effort is necessary to add parallelism to the applications.
This paper presents performance results of an automatic transla-
tion from a MATLAB subset into efficient parallelized C code for
different architectures: multicores, compute clusters, and GPGPUs.
We present the first compiler that generates native MPI code from
MATLAB source and thereby showing significant performance im-
provements. The evaluation is done for two stencil applications
which use different communication patterns, a Game-of-Life ap-
plication and a Tsunami simulation. For the Game-of-Life appli-
cation, the generated parallel code shows nearly optimal speedup.
The generated parallel code of the Tsunami simulation reaches the
performance of the available parallel reference implementations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Code generation, Compilers, Optimization, Retargetable
Compilers; D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms Languages, Performance, Measurement

Keywords MATLAB, source-to-source compiler, stencil applica-
tions, High Performance Computing, Message Passing Interface,
OpenMP, OpenACC

1. Introduction

High-level programming languages such as MATLAB are widely
used in scientific domains to implement prototypes based on math-
ematical models. Such languages provide straight-forward mathe-
matical syntax for complex operations (e.g. matrix and vector oper-
ations) which are tedious or complex in more low-level languages,
like C. Developed prototypes are often re-implemented in low-level
languages to reach execution times required for the operational
use. In order to exploit current hardware architectures additional
effort is necessary to add parallelism to the applications. This pa-
per presents performance results of an automatic translation from a

MATLAB subset into parallelized C code. Different parallelization
approaches were applied to utilize shared memory systems with
OpenMP, distributed memory systems with MPI, and accelerator
devices with OpenACC.

Applications often involve stencil computations, e.g. due to
the numerical methods applied in them (Christen et al. 2011b).
However, most of these computations are inherently data-parallel.
Thus, the focus of this paper is on the parallelization of such
applications. The evaluation of the prototype StencilPaC is done
for two stencil applications which use different communication
patterns, a Game-of-Life application and a Tsunami simulation.
The performance is not only compared against the given MATLAB
implementation, but also against hand-written parallel reference
implementations if available.

The next section presents the characteristics of the two stencil
benchmarks. Before StencilPaC generates parallel code, the MAT-
LAB code is translated into sequential C code which is described in
Section 3. The underlying concepts of the parallelization approach
are presented in Section 4, 5 and 6. Related work is surveyed in
Section 7. Finally, Section 8 concludes the paper.

2. Stencil Applications

In order to ensure the correctness and to evaluate the quality of
the compiler generated code, various benchmarks are performed
throughout the paper. This chapter introduces the characteristic
properties of the two stencil applications and their parallel refer-
ence implementations.

The two applications differ in their stencil (three-point versus 9-
point-stencil) and their memory demands. While the Tsunami sim-
ulation uses data from seven matrices to perform the stencil up-
date, the Cellular Automaton needs only one matrix. Therefore, the
Tsunami simulation shows a memory-bound behavior (Christgau
et al. 2015). The Cellular Automaton on the other hand is compute-
bound which results in a very good scaling for the parallel ver-
sion (Christgau et al. 2011). Further, the MATLAB code of the
Cellular Automaton makes use of MATLAB’s arrayfun function.

2.1 EasyWave

The first example is a real-world application called EasyWave that
is used in the field of early warning to simulate the generation and
propagating of tsunamis. The algorithm computes shallow water
equations in linear approximation allowing a prompt access to the
simulation results. EasyWave was developed at the German Re-
search Center for GeoSciences (GFZ) in Potsdam (Babeyko 2012).
The computation is based on a two-dimensional grid consisting of
multiple variables. These variables reflect the physical properties
of the grid cells which are updated over time according to a given
stencil pattern.
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while it <= time_limit
% height update
h(j,i) = h(j,i) - cR1(j,i) .*

( fM(j,i) - fM(j,i-1) + fN(j,i) .*
cR6(j+1,i) - fN(j-1,i) .*
cR6(j,i) );

hmax(j,i) = max(h(j,i), hmax(j,i));

% flux update
fM(j,i) = fM(j,i) - cR2(j,i) .*

( h(j,i+1) - h(j,i) );
fN(j,i) = fN(j,i) - cR4(j,i) .*

( h(j+1,i) - h(j,i) );

it = it + dt;
end

Figure 1. Main loop of EasyWave from the MATLAB implemen-
tation.

The computation carried out on the grid is repeated in a time-
loop and divided into two parts: update of wave heights and update
of reverse fluxes. Due to the employed numerical scheme the wave
and flux updates require a three-point stencil, i. e. the update of a
grid cell in a time step requires the current data of the grid cell
and other data of two of its eight neighbors (Moore neighborhood).
Additionally, the stencils differ in which cells are included in the
computation. For wave update, the upper and left neighbors are
used, whereas the flux update includes the lower and right neighbor
cells (see Figure 1).

There exist different EasyWave implementations which serve as
reference implementations: a sequential C++ version and different
parallel versions (OpenMP, MPI, CUDA, OpenACC). Algorithmic
details can be found in (Christgau et al. 2015) and (Christgau et al.
2014) including benchmark results on different hardware architec-
tures. Previous work in (Christgau et al. 2015) has shown that Easy-
Wave provides low operational intensity and thus is clearly memory
bound. The scaling of the parallel versions is therefore likely lim-
ited by the memory bandwidth. Although the manual implemen-
tations are carefully optimized, they do not involve the advanced
cache-aware algorithm presented in (Christgau et al. 2015).

The main loop of EasyWave from the MATLAB implementa-
tion, which consumes most of the compute time and which is par-
allelized by StencilPaC, is shown in Figure 1.

Two distinct scenarios are considered in the benchmarks of this
paper. Their grid size amounts to 2701 × 2446 which represents
a realistic input set for the application. The two scenarios differ
only in simulation time, which is between 60 and 180 minutes. The
runtimes of the MATLAB code for these two scenarios are 375 s
and 1180 s respectively.

2.2 Cellular Automaton

The second application which is considered simulates a Cellular
Automaton and is used for teaching MPI programming (Sanders
and Worsch 1997). It is based on a two-dimensional grid of binary
cells which are either set to 0 or 1. The state of a cell changes over
time according to a predefined update rule, which is implemented
with a lookup table. The update involves states of all cells from
the Moore neighborhood, i.e. from all eight surrounding cells and
the central cell (9-point-stencil). The sum of all neighboring cells
is used as an index to an array containing the next cell state.
The MATLAB code (see Figure 2) uses the arrayfun function
that applies a function to each element of an array. Further, the
application assumes cyclic boundary conditions which virtually
turn the grid into a torus.

while it <= its
% torus boundary exchange
grid(yall , 1) = grid(yall , xsize -1);
grid(yall , xsize) = grid(yall , 2);
grid(1, xall) = grid(ysize -1, xall);
grid(ysize , xall) = grid(2, xall);

% update
grid(y,x) = arrayfun(@lookup ,

grid(y-1,x-1)+ grid(y-1,x)+grid(y-1,x+1)+
grid(y, x-1)+ grid(y ,x)+grid(y, x+1)+
grid(y+1,x-1)+ grid(y+1,x)+grid(y+1,x+1));

it = it + 1;
end

Figure 2. MATLAB source code of Cellular Automaton’s kernel.

The default MATLAB implementation omits a data type spec-
ification for the grid cells. Thus, the current type deduction of the
compiler infers the grid cells to type int. However, since the cells
only store binary values, it is sufficient to use the smallest avail-
able type to represent the grid values, which is char. For this rea-
son, a slightly adapted MATLAB version is additionally considered
which explicitly forces type char for the underling grid. Reducing
the size of the grid data type leads to a four times smaller mem-
ory consumption at run-time and thus lowers the required memory
bandwidth significantly. In the following, only the char version of
the automaton is considered.

For comparison, a sequential version of the cellular automaton,
written in C, is available. In addition, this version was manually
parallelized with OpenMP.

3. Automatic Generation of C-Code

The StencilPaC compiler supports a subset of the MATLAB lan-
guage which it translates into the C language. The supported sub-
set includes basic language elements, such as boolean and numeric
scalar expressions, but also covers MATLAB specifics, like ranges,
vectors, matrices as well as index accesses that allow easy access
to vectors and (sub)matrices respectively. Besides control struc-
tures, user-defined functions and a selection of predefined MAT-
LAB functions are supported as well. To implement the proof-of
concept compiler, ANTLR (Parr 2007) is used in combination with
Xtext (Bettini 2013).

3.1 Sequential Code Generation

The code generation in general is based on a traversal of the abstract
syntax tree that is annotated with type attributes. In addition, a code
template is attached to each node of the tree. A template contains
placeholders for source code provided by the child nodes. During
tree traversal, the placeholders are resolved such that the final result
is the translated C source code of the MATLAB input program.

The dynamic typing of the MATLAB language requires the de-
duction of data types in order to perform a valid translation into
statically typed C code. Furthermore, the possibility that a MAT-
LAB variable may change its type at runtime must be overcome.
To achieve this, a source variable of the MATLAB code is uniquely
mapped to multiple target identifiers in the generated C code based
on the actual data type. However, the prototype implementation
of StencilPaC handles only one- and two-dimensional matrices.
Higher dimensional matrices are subject to future work.

While the generation of code is trivial for scalar assignments
and control structures, matrix expressions require more sophisti-
cated actions since C does not provide an according built-in data
type.
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As a result, the compiler defines internal data structures for
matrices that contain size information and the matrix data. Vectors
are considered as a special instance of matrices. The matrix data is
allocated dynamically in a column-major data layout using a one-
dimensional array of the matrix’ basic data type.

When a matrix expression is traversed in the abstract syntax
tree, the compiler emits C code that translates two-dimensional
matrix accesses from MATLAB into one-dimensional accesses on
the matrix’ data array. In addition, assignments or numerical matrix
operations are translated into nested for-loops. The loop boundaries
are based on the index expressions in the original MATLAB code
which can be constant or variable expressions. As a result, the
resulting C source code performs element-wise operations on each
element of a matrix as illustrated in Figure 3

The compiler also resolves data dependencies in the generated
C code. If overlapping accesses on matrix elements are detected
(or must be assumed if the index expressions are not constant) a
temporary copy of the accessed matrix is created and destroyed
after matrix access.

For the generation of sequential source code, the compiler also
performs critical optimizations to avoid overhead in the generated
C code. The applied techniques are well-known in the field of func-
tional array languages. Therefore, they are mentioned only briefly
for the sake of completeness. For example, a matrix assignment in
a loop with data-dependencies causes frequent temporary buffer al-
locations and releases. To avoid this, the compiler generates code
that allocates a temporary buffer in front of the loop in case of a
dependency.

In addition, a sequence of matrix assignments can be merged
into a single loop if the boundaries and properties of the generated
loops match. This can result in better cache utilization if matri-
ces reoccur in the sequence. Further, for constant matrices in the
MATLAB source code, the compiler generates according constant
C arrays.

3.2 Performance Results

Table 1 shows the results for EasyWave running a simulation of the
60 minutes scenario and the Cellular Automaton with a field of size
2
14 × 2

14 performing 250 iterations. The results were obtained on
the same environment as in Section 4.2.

For EasyWave, the automatically generated C version without
further optimizations delivers a speedup of 4.96 in comparison to
MATLAB. With optimizations enabled the execution time is even
further reduced leading to a total speedup of 7.59. This indicates the
importance of optimizations performed by StencilPaC. Compared
to the MATLAB runtime, the given C reference implementation of
EasyWave achieves a speedup of 7.18. Thus, the generated C code
can compete with the hand-written implementation. The runtime
difference between both versions is probably caused by deviating
optimizations applied by the underlying C compiler.

The lower half of Table 1 shows the performance of the Cellular
Automaton using the char data type for the cell state. Compared
to the MATLAB version, a reduction of the execution time by a
factor of 1319 resp. 1717 after optimizations is observed when the
code is compiled to C. The reason for this immense speedup lies
in the usage of arrayfun in the MATLAB code. Although it is a
convenient mean for programming, its performance impact on the
application is disadvantageous. In contrast, StencilPaC is able to
generate efficient code for the lookup.

3.3 Parallelization

As shown in the previous subsection, the compiler generates code
that runs significantly faster than in MATLAB. However, to take
advantage of parallel hardware architectures additional support has
to be provided by the StencilPaC compiler.

program version runtime/s speedup

EasyWave MATLAB (60 min.) 375.44 –
EasyWave StencilPaC C 75.75 4.96
EasyWave StencilPaC Optimized C 49.45 7.59
EasyWave C Reference 52.31 7.18

CA MATLAB 625440 –
CA StencilPaC C 473.98 1319.54
CA StencilPaC Optimized C 364.06 1717.95
CA C Reference 394.03 1587.29

Table 1. Runtime and speedups of the two example applications.

The element-wise matrix expressions from the original MAT-
LAB source provide inherent data-parallelism and are the primary
target of the parallelization approach. In addition, map functional-
ity on matrices is supported with MATLAB’s arrayfun function.
Scan and reduce operations, on the other hand, are subject to future
work. Furthermore, MATLAB loops, which are mainly used for
temporal iteration, are currently not considered for automatic par-
allelization. All supported data-parallel statements are converted
into code for the targeted parallel architectures. Regardless of the
programming model, other statements are not considered for fur-
ther optimizations or parallelization. As a result they are replicated
on each unit of execution. However, I/O operations, are executed
on only one of these execution units in the current prototype imple-
mentation. Within the next sections, the parallelization approaches
used by StencilPaC for different architectures are described in more
detail.

4. Shared Memory Parallelization

The first approach is based on the OpenMP standard (OpenMP
Architecture Review Board 2013) which defines a collection of
compiler directives, library routines, and environment variables to
utilize multiple threads on shared memory systems. The standard
enables a portable implementation for different hardware architec-
tures and supports data parallelism. It therefore offers a high-level
method that is well suited for the parallelization of matrix expres-
sions.

With OpenMP, an application follows the fork-join model and
is executed by a single master thread. Multiple threads are spawned
(fork) whenever a parallel region is opened, and terminated (join) at
the end of such region. Parallel code regions are annotated by com-
piler directives. For data parallelism, for-loops can be annotated
accordingly. At runtime, the loop body is assigned to the started
threads having each thread computing individual iterations. Thus,
OpenMP is used to divide the element-wise operations of a matrix
expression over the available threads.

4.1 Concept

As described in Section 3, matrix expressions are translated into
nested loops. The sequential code generation already ensures that
the loop iterations are independent of each other and can be exe-
cuted in any order. A temporary buffer is introduced if necessary
to guarantee the correctness of the results like it is required for the
Cellular Automaton. In order to obtain a parallel execution it is then
sufficient that StencilPaC inserts an OpenMP directive in front of
the loop structure as shown in Figure 3. This instructs the underly-
ing C compiler to parallelize the loop iterations.

With the shared memory paradigm, all variables which are de-
clared outside of a parallel region are shared by all threads, except
the outer loop index (tmp x in Figure 3). Writing these variables
in parallel leads to race conditions and unpredictable results. In or-
der to avoid such undefined behavior local copies of internal vari-
ables (generated by the StencilPaC compiler) are provided for each
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#pragma omp parallel for \
private( tmp_y ) firstprivate( lvi )

for( tmp_x = 1; tmp_x <= xdim ; tmp_x ++ ) {
for( tmp_y = 1; tmp_y <= ydim ; tmp_y ++ ) {

/* Operate on single values. */
}

}

Figure 3. Example of a generated OpenMP code fragment for a
matrix operation.
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Figure 4. Scaling of the OpenMP version for an EasyWave simu-
lation of 180 minutes.

thread. To achieve this, it is sufficient to specify them in an automat-
ically generated private clause within the parallel directive.
Each thread can then safely modify these variables independently
without causing race conditions.

Nevertheless, read-only access on shared variables may de-
crease the performance due to dereferenced pointer accesses and
cache conflicts (Sun Microsystems, Inc 2004). Therefore, Stencil-
PaC generates local copies even for read-only variables lvi. Since,
their initial value (from the original MATLAB code) has to be re-
tained, the firstprivate clause has to be emitted for every vari-
able accessed inside the loop (see Figure 3).

4.2 Evaluation

The performance of the generated parallel OpenMP code was eval-
uated for the two benchmark applications. The experiments were
conducted on a dual-socket Intel Xeon E5520 (2.26 GHz) machine
with a total of eight cores and 48 GB of RAM. HyperThreading was
disabled in all experiments. The code was compiled using the GCC
4.9.1 C compiler with optimization enabled (O2). Programs were
executed with the libgomp OpenMP runtime under a Linux kernel
2.6.18. OpenMP threads were bound to the CPU cores, such that
thread migration was avoided.

The results are shown in Figure 4 and 5 for up to 8 threads uti-
lizing the entire node. As apparent from the diagrams, the scaling
of the generated versions is similar to that of the manual implemen-
tations. The speedups shown in the figures are relative to the single
threaded runtime of each version to illustrate the possible scaling
of the individual approaches.

In case of EasyWave, a maximal speedup of 3 is reached when
utilizing all cores of the node. However, the reason for the poor
scaling is given by the low operational intensity as explained in
Section 2.1. Regarding the Cellular Automaton, the scaling is much
better and close to the ideal speedup for both of the compared
versions. The automatically generated code remains faster with an
overall improvement of 5%. The runtime could finally be reduced
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Figure 5. Scaling of the OpenMP version for the Cellular Automa-
ton using data type char.

from 363.34 to 47.80 seconds using 8 threads. This corresponds to
a speedup of 7.60.

The results show that the generated C code containing shared-
memory parallelism can again compete with the hand-written coun-
terparts.

5. Parallelization for Distributed Systems

The Message Passing Interface (MPI) (Message Passing Interface
Forum 2015) is a specification especially designed for distributed
memory systems like compute clusters. The programming model
follows the Single Program, Multiple Data concept. That is, a sin-
gle MPI program is executed by multiple processes which operate
on separate address spaces. During execution, each MPI process is
identified by a unique numerical rank. Its value is used to assign dif-
ferent workloads to processes, e.g. to compute different subsets of a
compute domain. To exchange data, the MPI standard defines mul-
tiple methods, like sending and receiving messages or one-sided
communication.

5.1 Concept

For MPI parallelization of data-parallel MATLAB code, the Sten-
cilPaC compiler has to a) distribute the data structures (domain de-
composition) and b) must add communication to the application
where required. However, this affects only the data-parallel matrix
statements. On the other hand, the generated C code of the remain-
ing statements can be reused and is not required to be parallelized.

The implementation of StencilPaC uses a one-dimensional de-
composition along the x-dimension to distribute the elements of
a matrix. In particular, each process gets a continuous block of
columns assigned as outlined in Figure 6 for three parallel pro-
cesses. Each block corresponds to a contiguous memory region
since matrix elements are stored column-wise. The size of the
blocks is determined dynamically depending on the number of
started MPI processes. The benefit of a one-dimensional decompo-
sition compared with a two-dimensional decomposition is that the
communication overhead is reduced since every process has only
two communication partners.

Besides the local portion of a matrix, each process has to pro-
vide additional memory in order to load external columns from re-
mote processes. This memory is divided in two ghost zones repre-
senting remote columns to the left and to the right of the local part
of the matrix. Each ghost zone can have an arbitrary size but needs
to cover a continuous block of columns as outlined in Figure 6.
The size of the ghost zone is derived from the MATLAB source
code. If this is not possible, space for the entire compute domain is
allocated by each process.
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Figure 6. Ghost zone handling for a distributed matrix.

Matrix expressions can then be parallelized based on the funda-
mental concepts presented above. First of all, a base matrix needs
to be determined which serves as a reference in the translation pro-
cess. The choice is arbitrary, such that it is sufficient to take the
first matrix found in the parse tree of a data-parallel expression.
This corresponds to the destination matrix in case of a matrix as-
signment. Afterwards, each rank is responsible to process its local
portion of the selected base matrix. This yields a parallel execution
of the entire expression since the parts of the matrix are evenly dis-
tributed over the processes. A process must then ensure that exter-
nal data, which is required to perform operations on the local part,
is loaded into the local memory before processing the elements.
This requires communication with other processes due to the sepa-
rate address spaces. This communication step is called ghost zone
exchange. After that, all ranks iterate their local parts and execute
the embedded statements as usual.

For the ghost zone exchange, StencilPaC uses the one-sided
communication API (Message Passing Interface Forum 2015,
Chapter 11) of the MPI standard. It allows communication pa-
rameters, e.g. size, destination and addresses of the communication
buffers, to be specified by only one side of the communicating
processes. By using this API, the generated source code of Stencil-
PaC is able to retrieve the required ghost zone data with GET opera-
tions without involving the two neighbor processes that provide the
ghost zone data. This relieves the generated code to redundantly
calculate the communication parameters in all communicating pro-
cesses which would increase the overhead.

However, the ghost zone exchange must be performed at the
right time, i.e. when the required source data of the ghost zone was
updated but not overwritten by the producing process’ computation.
For that purpose, the fence synchronization scheme of MPI is
employed. It synchronizes the processes at the beginning and at the
end of the exchange. In consequence, the accessing process knows
when ghost zone data is ready and all other processes know when
the access was performed.

5.2 Evaluation

According to the programming model, the evaluation of the MPI
parallelization was carried out on a cluster computer. It consists of
the same nodes used in Section 4.2. These are connected with a
20 Gb/s InfiniBand Network via an Mellanox MTS3600R-1UNC
switch. Open MPI 1.8.2 was used in the experiments as the under-
lying MPI implementation. The remaining parameters are identical
to Section 4.2. However, no shared memory parallelization (using
OpenMP) was performed.

Figure 7 shows the results for the EasyWave example in com-
parison to the manual MPI implementation, which is based on ex-
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Figure 7. Measurement results for the MPI/OSC approach applied
to EasyWave (180 min).
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Figure 8. Measurement results for the MPI/OSC approach applied
to the Cellular Automaton.

plicit point-to-point communication. With the automatic version,
the sequential runtime could be reduced from 206.28 to 7.16 sec-
onds while utilizing a maximum of 96 cores. This corresponds to
an overhead of only 8% compared to the best manual runtime. Even
though the compiler generated version cannot completely reach the
performance of the manual counterpart, the scaling is quite similar.

The measurements for the Cellular Automaton are illustrated
in Figure 8. The automatic implementation scales almost linearly
for up to 24 processes reaching an efficiency of more than 97%.
However, the scalability slightly decreases for a larger number of
processes. Thus, a maximum speedup of 84.97 is obtained using all
96 cores. This still corresponds to an efficiency of 88.5%.

6. OpenACC

A further extension of the StencilPaC compiler covers the utiliza-
tion of accelerator cards such as GPUs. This approach is based on
the OpenACC Application Programming Interface to enable the of-
floading of compute intense regions to an accelerator device. Com-
piler directives are used to mark code sections for automatic paral-
lel execution on an attached device similar to OpenMP. The Ope-
nACC (OpenACC-Standard.org 2013) standard offers a portable
way to address various types of accelerators. Compared to CUDA,
this high-level approach simplifies the implementation but limits
the control over the generated device code. Therefore, the quality
of the final executable depends on the capabilities of the underly-
ing C compiler. However, upcoming hardware architectures may
automatically be supported without adaptations to the StencilPaC
compiler. Further, different groups report good or even the same
performance for the OpenACC application compared with a native
CUDA implementation of their application (Wienke et al. 2012;
Christgau et al. 2014).

51



6.1 OpenACC Approach

An accelerator device usually consists of separate memory and has
no direct access to the host memory. Therefore, it is necessary
to copy required data into the memory of the accelerator before
running a task on the device. The results must be transferred back
after the computation is completed in order to access them on the
CPU again. Thus, the presented approach has to manage the data
flow between CPU and accelerator. To this end, the host and device
memories are considered in a symmetric memory model.

With the OpenACC approach, a statement is either executed on
the CPU (host statement) or offloaded to the accelerator (device
statement). Thus, matrix elements may be updated both on the host
and the device which results in potential inconsistencies between
the memory regions. The application must therefore take care of
synchronizing the host and device regions of a matrix. To keep
track of inconsistencies, the matrix structure is extended by a sync
attribute which states whether the elements are consistent or out-
dated on one side. The field can attain one of the values listed in
Table 2 to reflect the current synchronization state.

MEM INIT The matrix was not yet used on the device.
MEM SYNC The matrix values are consistent.
MEM DEVICE The matrix was updated on the accelerator

since last synchronization.
MEM HOST The matrix was updated on the host

since last synchronization.

Table 2. List of possible synchronization states.

The compiler must ensure that the state is updated properly dur-
ing program execution. To achieve this, synchronization code is in-
serted in front of each statement. With this approach inconsisten-
cies are resolved as late as possible. Therefore, matrices can be kept
on the accelerator as long as no host accesses occur. This eliminates
expensive memory transfers whenever possible. Matrices which are
never used inside a device statement even occupy no device mem-
ory at all.

In contrast to matrices, scalar variables get no explicit device
memory assigned. They are kept in host memory only and are
always passed to the device on entry of a parallel region. The copy
overhead should be negligible and can even be beneficial since
the values may directly be placed into registers. Scalar variables
are either used read-only or exclusively inside a device execution
and thus need not be transfered back to the host. Thus, no explicit
allocation of device memory is required.

The current implementation supports offloading of matrix ex-
pressions to the accelerator. Since a matrix expression is translated
into a nested loop structure, the entire loop construct is marked for
offloading. This is achieved by automatically inserting a parallel
loop directive in front of the outer for loop as illustrated in List-
ing 9. Thus, the loop iterations are executed in parallel on the de-
vice. Scalar variables are implicitly private for an executing thread
and need not be specified in a private clause in contrast to the pre-
sented OpenMP solution. However, the accessed matrices and their
associated memory pointers must be passed in a present clause to
omit a memory exchange at region entry. The collapse clause in-
structs the OpenACC compiler to parallelize the inner loop as well.
This is useful to fully utilize devices like GPUs which contain thou-
sands of cores.

A special treatment is required to handle function calls in a de-
vice statement. In particular, a function must be compiled for the
accelerator in order to make it accessible inside of a parallel re-
gion. This can be achieved with the routine directive in front of
the function definition (OpenACC-Standard.org 2013). All user-
defined functions are marked for offloading to allow function in-
vocations within the matrix expressions.

#pragma acc parallel loop collapse (2) \
present( M1 , ..., Mn )

for( tmp_x = 1; tmp_x <= xdim ; tmp_x ++ ) {
for( tmp_y = 1; tmp_y <= ydim ; tmp_y ++ ) {

/* Depends on language entity. */
}

}

Figure 9. Offloading of matrix expressions to the accelerator de-
vice.

6.2 Evaluation on GPU

The experiments were run on a NVIDIA Tesla K40m GPU with
2880 Cores. A 64 Bit Linux with base kernel 3.0.101 is installed
on the GPU systems. The PGI compiler in version 15.10 is used to
build the OpenACC implementations.

First, we present results for EasyWave. We compare the per-
formance of the automatically generated OpenACC version with a
hand-written GPU version from (Christgau et al. 2014). The hand-
written GPU version of EasyWave is compiled with the CUDA
toolkit which is available in version 7.0.

While the given MATLAB code runs about 1180 seconds, the
automatically generated OpenACC code needs only 6.30 seconds.
The hand-written CUDA code for EasyWave yields the fastest exe-
cution with 5.38 seconds, but this performance gain is neglectable
compared with the impressive performance boost achieved by us-
ing StencilPaC.

The same performance benefit was observed for the cellular
automaton. While the given MATLAB code has a runtime of about
625440 seconds, the automatically generated OpenACC code needs
only 9.04 seconds to execute. A hand-written version for GPUs was
not available for this benchmark.

7. Related Work

Christen et al. presented PATUS, a framework to utilize stencil
computations on multicore CPUs and CUDA-capable GPUs (Chris-
ten et al. 2011b,a). PATUS is based on a domain specific language
which can be used to define custom stencil kernels in a C-like
syntax. Different strategies are available to automatically optimize
and parallelize these kernels. However, there is no support for the
MATLAB language.

Bispo et al. developed a MATLAB-to-C Compiler named MA-
TISSE (Bispo et al. 2013), targeting embedded systems. MATISSE
was further enhanced and optimized in (Bispo et al. 2015b). For the
evaluation, the authors compare the speedup of the C code gener-
ated by MATISSE and by MEGHA, the underlying MATLAB-to-C
compiler from (Prasad et al. 2011), against the MATLAB code for
9 benchmarks. Their approach delivers a geometric-mean speedup
of 8.1.

While there exist other approaches from the field of functional
array languages, see for example SAC (Grelck and Scholz 2006)
or Obsidian (Svensson et al. 2011), which also generate C or even
CUDA code in case of Obsidian, these are hardly comparable, since
our focus is to support the more prominent MATLAB language.

In the following, we will summarize prior work on automatic
generation of parallel C code for MATLAB.

7.1 Parallel Code for Distributed Memory Systems

Kim et al. introduce two libraries in (Hahn Kim, Julia Mullen and
Jeremy Kepner) that enable the parallel programming with MAT-
LAB. The code is developed at the Massachusetts Institute of Tech-
nology and freely available. The first library, called MatlabMPI,
implements a subset of the MPI standard in pure MATLAB and
makes it available to the MATLAB environment. This allows to run

52



multiple MATLAB instances in parallel which can communicate
with each other using that library. The communication is performed
through the file system with basic I/O functionality. The MPI func-
tions can be used to apply a manual parallelization which requires
the coordination of processes as well as an explicit communication
handling. This results in expensive rewriting of existing applica-
tions. To address this problem, the authors present a second library
named pMatlab that provides an abstraction layer to MatlabMPI al-
lowing a higher-level parallelization. Although the effort in porting
existing applications is significantly reduced, manual adaptations
are still required. Hence, there are two substantial differences to the
approach presented in this paper. In particular, neither MatlabMPI
nor pMatlab provide a full automatic parallelization. Furthermore,
both libraries are built on top of the MATLAB environment and do
not allow a native execution.

Quinn et al. present an approach for C code generation that ex-
ploits data parallelism with MPI (Quinn et al. 1998). They pro-
vide a runtime library including parallelized C code and translate
source expressions into library calls. But embedded parallel code
is only generated for element-wise matrix operations. Apparently,
element-wise operations are restricted to entire matrices and single
values. Subdomains, which are required to define stencil patterns
for grid-based applications, are not taken into account.

7.2 Automating GPU Computing

There exist GPU libraries for MATLAB that hide the complexity
of programming GPUs (see for example (ArrayFire; Ryoo et al.
2008)). In order to make use of such libraries, the MATLAB pro-
gram has to be adapted accordingly.

Shei et al. present an approach where this task is done auto-
matically (Shei et al. 2011). MATLAB code is automatically trans-
lated into MATLAB code which makes use of the GPU library
GPUmat (GPUmat) for MATLAB.

In contrast, the approach presented in this paper depends not on
additional libraries.

Bispo et al. also generate code for GPUs from MATLAB
code (Bispo et al. 2015a). Again the drawback of their approach
is that the MATLAB code has to be adapted since it has to be
annotated to generate C and OpenCL code.

7.3 Commercial Products

MathWorks itself distributes a series of commercial products which
are related. The Parallel Computing Toolbox (The MathWorks, Inc.
2015c) provides different high-level concepts that can be used to
add parallelism to existing MATLAB applications. The toolbox of-
fers MPI support and enables, along with the MATLAB Distributed
Computing Server (The MathWorks, Inc. 2015b), the utilization
of clusters and grids. Furthermore, GPU-execution is available for
CUDA-capable devices. The Parallel Computing Toolbox covers a
broad subset of the MATLAB language supporting over 240 func-
tions. However, manual modifications are again required to utilize
multiple processes. In addition, except of the GPU code, the appli-
cation is still executed in the MATLAB environment.

Another product line of MathWorks offers the MATLAB Coder
(The MathWorks, Inc. 2015a) that automatically generates readable
C/C++ code based on a MATLAB program. It supports a large set
of functions but is incompatible with the Parallel Computing Tool-
box and thus does not provide MPI functionality. Altogether, there
is no known commercial product that offers a fully automated par-
allelization into efficient C code. Nor does any of the tools support
OpenACC to address dedicated and upcoming architectures auto-
matically (i.e. offloading to a XeonPhi).

8. Conclusion

We presented the underlying concepts of the StencilPaC compiler
which automatically translates a given MATLAB program into
parallel C code for different architectures. The approach supports a
MATLAB subset important for stencil applications which are based
on matrix operations. The benefit of the presented approach is that
the original MATLAB source code serves as input. No adaptations
or annotations of the MATLAB code are necessary.

Over the last years, several efforts have been made to facilitate
programming of parallel hardware architectures, such as multicores
and graphic cards. Interfaces like OpenMP and OpenACC use
annotations to give compiler hints for the parallelization. We have
shown that using these parallelization APIs also MATLAB code
can gain an enormous speedup. For GPGPUs, the runtime of the
Tsunami simulation EasyWave was reduced from 1180 seconds
in MATLAB to 6.3 seconds for the generated OpenACC code.
On a multicore system with 8 cores, the runtime of the generated
OpenMP code is about 60 seconds.

StencilPaC also supports distributed memory architectures like
compute clusters. For these systems, the de facto standard MPI was
chosen as API for the parallelization. An automatic distribution of
matrix elements and a dynamic data exchange, on the other hand,
are key concepts of the MPI approach. For communication, the
one-sided communication approach was chosen since it reduces
the administration overhead required to manage the dynamic data
exchange automatically at runtime and simplifies code generation.

For the Tsunami simulation, the runtime was reduced from
1180 seconds in MATLAB to 7.16 seconds for the generated MPI
code on a 96 core compute cluster.

Further, the scaling of the parallel code was investigated for the
shared and the distributed memory approaches. The speedups of
hand-written parallel reference implementations and the automati-
cally generated parallel codes are very close. This shows that there
is no additional parallelization overhead introduced by the auto-
matic approach of StencilPaC.

The results of this work have shown that an automatic compi-
lation and parallelization based on a MATLAB-related source lan-
guage can successfully accelerate a wide range of applications with
common stencil patterns.

Future work will focus on enhancements of the StencilPaC pro-
totype. These include, for example, the support for higher dimen-
sional matrices and common generic operations such as scan and
reduce.
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