
Compile-time Partitioning and Scheduling
of Parallel Programs

Vivek Sarkar and John Hennessy
Computer Systems Laboratory

Stanford University

Abstract
Partitioning and scheduling techniques are necessary to

implement parallel languages on multiprocessors.
Multiprocessor performance is maximized when parallelism
between tasks is optimally traded off with communication and
synchronization overhead. We present compile-time
partitioning and scheduling techniques to achieve this trade-
Off.

1. Introduction
One of the biggest challenges facing compiler writers is to

efficiently implement programming languages on
multiprocessors. We need to find compilation techniques for
general-purpose parallel languages; these techniques should
be adaptable to a wide range of multiprocessor architectures.

There are three fundamental problems to be solved when
compiling a program for parallel execution on a
multiprocessor:

1. Identifying potential parallelism
2. Partitioning the program into sequential tasks.
3. Scheduling the concurrent execution of these tasks.

We address the latter two problems and suggest that they
be solved at compile-time instead of run-time for applications
with fairly predictable execution times. In these cases the
benefits are tremendous. A global, compile-time analysis

Tbts work has been su
::
ported b y the National Science Foundation

under grant # DCR8351 69 and by the Defense Research Projects
Agency under contract # MDA 903-83-C-0335.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1986 ACM 0-89791-197-O/86/0600-0017 75c

reduces communication overhead for the entire program; such
an analysis cannot be done on the fly at run-time. Compile-
time partitioning and scheduling also eliminates task
scheduling overhead and load balancing overhead at run-time.

A compile-time partitioner-cum-scheduler has been
implemented to process program graphs in the intermediate
language, IF1 [21]. IF1 represents computation as dataflow
graphs, as described later in Section 6. A list of target
parameters (e.g. number of processors, communication
overhead, inter-processor distances) drives the partitioning for
a given multiprocessor architecture. Using a !Yont-end from

SISAL[15] to IFl, we apply this system to different
benchmark programs written in the single-assignment
language SISAL. Like other functional languages, SISAL is
implicitly parallel; this eliminates the need to extract
parallelism from the program. However, our approach is
applicable to any environment where a program graph
representation can be obtained.

2. Overview of our approach
Our approach is to expose enough parallelism in the “main

program” function graph and then assign computations to
processors so as to minimize the parallel execution time,
while considering communication overhead. As shown in

Figure 2-1, there are four basic steps in this process:

1. Cost Assignment: Traverse the program graph and
assign execution time costs to nodes and
communication size costs to edges.

2. Graph Expansion: Expand the graph so that the main
function contains sufficient parallelism to keep all
processors busy. Nodes in the expanded program
graph are mapped to tasks.

3. Internalization: Decide which tasks must go together
on the same processor, even if other processors are
available. This internalizes their communication and
eliminates its overhead, at the expense of
sequentializing the tasks.

4. Processor Assignment: Assign tasks to processors so
as to minimize parallel execution time. Tasks in the

17

same block of the internalized partition must be
assigned to the same processor.

Program Graph

Program Graph + Costs

+,

*
Expanded Program Graph (Tasks)

1

Y
Internalized Partition

rzi+Eq

+
E anded Program Graph
wi Processor Assignments “51

Figure 2-1: Overview

Note that we rely heavily on compile-time estimates of
communication and computation costs. These costs drive the
expansion, internalization and scheduling of parallel tasks.
We have found that our cost estimates yield good partitions
for a range of programs and input data.

These four phases for compile-time partitioning and
scheduling are described in later sections. We begin with a
discussion of multiprocessor models and real multiprocessors.

3. Multiprocessor Scheduling Theory
Let’s start by examining the traditional model for

multiprocessor scheduling, which consists of:

l P identical, independent processors.
l A set of N tasks, T = {T,, TN} with execution times

tl , -a*, LN’
l A partial order + on T.

The partial order describes precedence constraints on the

tasks, so that Ti + Tj forces Tj to start only after Ti has
completed execution.

The problem is to find a valid schedule with the smallest
completion time. This problem (along with several restricted
versions) has been shown to be NP-complete [14]. Efowever,
there exist efficient scheduling algorithms that generate
schedules with a worst-case performance bound of 2, relative
to an optimal schedule [l 11. Thus the NP-completeness of the
scheduling problem is not an impediment to achieving linear
speed-up in multiprocessors.

This model is inadequate for our purpose because it ignores
the overhead of inter-processor synchronization and
communication. Most schemes for considering
communication overhead do so by separately maximizing
parallelism and minimizing communication. We believe that
these parameters should be combined into a single objective
function. The next section shows how we extend this model
to incorporate communication costs.

4. Modelling Communication Costs
Communication costs are represented by a communication

matrix. C[i,j] is the size of communication (in bytes, say)
from task Ti to Tj. For simplicity, we assume that
communication only occurs along precedence edges, though
all precedence edges need not have an associated
communication. The data along a communication edge is
only available to the consumer after the producer has
completed execution. We also define an inter-processor
distance matrix; D[k,l] gives the communication distance
(number of hops) between processors k and 1. This is a
property of the multiprocessor rather than the tasks.

Communication overhead in a multiprocessor has two
components:

1. Processor component - the duration for which a
processor participates in its communication.

2. Delay component - the fraction of communication
time during which the producer and consumer
processors are free to execute other tasks.

Let x(i) be the processor to which task Ti is assigned. The
communication overhead for each non-local edge from Ti to
Tj (i.e. n(i) #n(j)) is modeled as:

1. Processor component - add o(C[i,j], D[n(i),x(i)]) to
the execution time of task Ti, and
p(C[ij], D[z(i),n(j)]) to the execution time of Tj.

2. Delay component - require that Tj not be able to start
till s(C[i.j], D[rt(i),rt(j)]) time has elapsed after Ti
completed execution.

p, o and d are simple functions for the costs of reading
inputs, writing outputs and communication delay respectively.

18

They convert communication size to execution time units for
the target multiprocessor. So far, we have used functions of
the form K, + KaxC[ij]xD[rr(i),n(j)], where K, and K, are
collstants .

We ignore the effect of communication demand on
communication overhead in this model. This is valid when
the demand is less than the available bandwidth. If contention
for communication resources is to be considered, it can be
approximated by using average overhead values.

Synchronization between tasks is modeled by a
synchronization relation (boolean matrix) S. The pair <i,j> is
in S if task Tj must synchronize and wait for task Ti’s
completion. It would be safe to make S the same as the
precedence relation +, but would be inefficient because + is
a partial order and contains transitive edges which lead to
unnecessary synchronizations. The communication matrix
does not entirely determine the synchronization relation,
because some synchronizations are due to control
dependencies. Besides, the communication matrix can also
have transitive edges. So, for efficiency and generality, we
represent synchronization by a separate relation.

Each pair eij> in S adds to the execution times of tasks Ti
and Tj due to sigtrul and wait operations respectively. The
execution cost used for a wait is actually the cost of a
successful wait. Time spent spinning in a busy-wait loop is
considered to be idle time and is not added to the task’s
execution time.

5. Real Multiprocessors
Multiprocessors are general-purpose, asynchronous, MIMD

parallel machines. They can be classified as being “tightly
coupled” or “loosely coupled”. Tightly coupled
multiprocessors (e-g. Sequent 1191, Encore [PI,
Ultracomputer [101, Cm* [121) communicate through a shared
memory. Loosely coupled multiprocessors (e.g. the Cosmic
Cube [18]) communicate by exchanging messages. Our
model is designed to be tractable on this wide class of
architectures and we discuss how some of these machines are
modeled in our system.

Machines like the Sequent and Encore communicate
through a single bus connected to a shared memory and
individual processor caches. The communication overhead
consists entirely of its processor component, since the
processors are directly involved in accessing the shared
memory. Also, the distance matrix is uniform, so that D[k,l]
= 1 for all pairs of processors. Functions p and o for the
processor component represent the time taken to respectively
read from or write to the shared memory. Both machines use
write-through caches and invalidating snoopy caches.

Because they use invalidation, the value of p is the cost of a
cache miss (i.e. a main memory access - on the order of 5-10
cycles). Because writes are buffered and a write-through
cache is used, writes will cost one cycle when there is no
contention. Thus, the value of w depends primarily on bus
and main memory traffic. Bus contention increases the cost
to read shared memory because cache misses take longer to
satisfy; it increases the cost to write shared memory, because
delays may cause write stalls.

Synchronization costs differ on these machines because
they use different hardware mechanisms for synchronization.
The Sequent has 64 hardware “gates” that can be used to
ensure mutual exciusion, making synchronization cheap. The
Encore has a test-and-set instruction. The difficulty in
accurately modeling such machines is that the cost of various
operations (reading and writing shared data and
synchronization) depends on the amount of contention for
shared resources.

A single bus architecture is feasible for only a small
number of processors. Interconnection networks are used to
support more processors in shared-memory machines like the
Ultracomputer. Communication and synchronization
overhead is modeled in basically the same way as single bus
architectures. There are two important differences: the time to
access shared memory increases with the Processor count
(because of the interconnection network delay), and the
communication costs are less affected by contention.

Another important class of machines are those using point-
to-point communication. These include the Cosmic Cube, the
Intel Advanced Scientific Processor and the NCube machine.
All of these machines use a boolean N-cube interconnect,
which defines the distance matrix. Since these machines use a
“message passing” approach we can easily model their
communication properties. Assuming that communication
contention is negligible, the following table summarizes the
properties of the Cosmic Cube and Intel cube. The processor
component is for the initiating processor and is given as X +
Y, where X is the start-up and Y is the cost per 100 bytes,
both in milliseconds. The delay component is in milliseconds
per hop for each 100 bytes. Packetization introduces a

nonlinearity in communication costs, but we ignore this
effect.

Processor Delay
Machine Component Component

cosmic cube 1.5 + 0.4
Intel Cube 6.0 + 0.08 &ii

As we have indicated, the primary limitation of this model
is its inability to deal with contention for communication or

19

synchronization resources. As we measure more problems
running on real machines, we believe that we can refine the
model to realisticalIy accommodate such issues.

Having discussed the target architectures, let’s now
examine the intermediate language used in our system.

6. IF1 Program Graphs
Our compilation system operates on a graphical

representation of programs, namely IF1 [21]. IF1 is an
intermediate form for applicative languages. It is strongly
based on the features of single-assignment languages
SISAL [15] and VAL 111.

An IF1 program is a hierarchy of acyclic dataflow
graphs [7]; the nodes denote operations and the edges carry
data. Nodes are either simple or compound. A simple node’s
outputs are direct functions of its inputs. IF1 has about 50
simple nodes, e.g. Plus, ArrayCatenate. FunctionCaR A
compound node contains subgraphs and its outputs depend on
the interaction between these subgraphs. The following table
lists the five compound nodes available in IFl. These
compound nodes obviate the need for labels, goto’s and
cycles in the program graph.

Compound No& Subgraphs

Select Selector, Alternatives
TagCase Alternatives (for Union)

Forall Generator, Body, Results
While, Until Init, Test, Body, Returns

Nodes have numbered ports connected by edges. An edge
contains the node and port numbers of its producer and
consumer. It also contains an optional type number, which is
used for strongly typed languages like SISAL. Literals are
special edges used for constant values. A literal has no
producer - its value is given by a string. All data is carried by
edges. No variables or memory locations are used.

Basic types include boolean, character, integer, real and
double. Arrays, streams, records and unions are used to
construct more complex types. Arrays are dynamically
extendible. Nodes and edges in IF1 can use pragmas to carry
additional information. We use pragmas to store profile-
based frequency counts, communication and computation
costs, graph partitions and processor assignments.

This program graph representation is well suited for
compile-time partitioning and scheduling. However,
generation of sequential machine code is more complicated
than from traditional, sequential intermediate languages. It is
Imperative to avoid unnecessary copying when an update-in-
place is possible. This effectively coalesces data on input and

output edges to be the same “variable”. A few research
projects are under way to address this problem. The
SISAL [151 project includes code generation from IF1 for the
VAX 780 and Cray-2 architectures. A project is under way at
Stanford to translate SAL [6] graphs (similar to IFl) to
U-code [20]. Our partitioner wiIl benefit from alI advances in
this field, as sequential code generation and optimization
techniques can be applied to intra-task computations.

7. Cost Assignment
The first step in compile-time partitioning and scheduling

is to estimate computation and communication costs in the
program. Communication costs are determined by examining
the data type of an edge and assessing its size in an
appropriate unit (e.g. bytes). Estimation of node execution
times is more difficult and is undecidable in general. The
unknown parameters are:

l The frequency distribution of subgraphs in a compound
node (e.g. number of iterations for a While Body,
probability distribution of Alternatives in a Select)

l Array size for nodes that operate on entire arrays.
l Recursion depth for recursive function calls.

Average node execution times are determined by using
average values for these frequency parameters. These
frequency values can be estimated using simple rules of
thumb, can be provided by the programmer through pragmas,
or can be derived from profile information. Our current
implementation uses profile data.

Given these parameters, it is a straightforward task to
compute the cost of a node from the cost of its components
via a depth-first traversal of the program graph. The cost of a
function call is determined by the cost assigned to the callee.
The strongly connected components (SCC’s) in the call graph
reveal groups of mutually recursive functions. The recursion
depth estimate is used to evaluate the costs of functions in the
same SCC. The reduced inter-SCC graph is acyclic and is
traversed in topological order so that the callee’s costs are
assigned before processing the caller.

8. Graph Expansion
Given execution time costs, the next step is to create a set

of parallel tasks. This phase begins by considering the body
of the “main program” function to be a single task and
proceeds by recursively expanding the current tasks to reveal
more parallelism. A task containing an entire acyclic
dataflow graph can be replaced by a set of new tasks - one for
each node in the graph. A task corresponding to a function
call node can be replaced by tasks for nodes in the callee’s
function body, as in conventional procedure integration.

20

A Forall node is special because we know that all its
iterations can be executed in parallel. Thus a task for a Forall
node can be replaced by S+2 new tasks - a Scatter task, S
sub-Forall tasks and a Gather task. The value of S is
determined in part by F, the number of iterations in the
original Forall. Assuming that all iterations take the same
time, the smallest S that yields an optimal completion time on
P processors is rF / [F/Pi 1. This makes s = P for large F.

A task for a non-Forall compound node is replaced by a
task for each of its subgraphs. These subgraphs are totally
ordered by control dependencies, according to the semantics
of the compound node. This ordering avoids the possibility of
wasted work through eager evaluation of (say) Alternative
subgraphs in a Select node. Instead, the Alternative will only
start after the Selector has been evaluated, at which time it is
known which Alternative should be evaluated. It’s possible to
perform a Parafrase-style [13] dependency analysis on While
expressions and try to convert them to Forall’s. This would
be a compatible pre-pass to our partitioning system We have
not pursued that approach because we assume that the
programs were written with a view to parallelism, and leave it
to the programmer to use Forall’s where appropriate.

We’d like the final task system to:

l Contain sufficient parallelism for the given number of
processors,

l Not have an impractically large number of tasks (e.g.
one task per instruction is too many!).

Both objectives can be conveniently quantified using costs.
The task system will have sufficient parallelism if no task is a
bottleneck. Task Ti is a bottleneck when all tasks that can be
executed in parallel with it together contain insufficient work
to keep P-l processors busy during Ti’s execution, i.e.

ql parallel to T, CoStcrj) < (P-l) X cOSt(Ti)

Only bottleneck nodes are considered for further expansion.

The problem of determining parallel tasks is equivalent to
finding the transitive closure of the graph’s adjacency matrix.
Transitive closure algorithms have a worst-case execution
time between O(N2.5) and O(N3) making them impractical
for large programs [Sj. We ;se a divide-and-conquer
approach on the hierarchical structure of IF1 program graphs
to compute the path relation more efficiently. It is only
necessary to use the O(N3) algorithm on dataflow graphs at
each level. Their path relations arc then efficiently combined
in a depth-first traversal of the entire hierarchy. This

corresponds to the notion of path-preserving homomorphic
graph structures 1173, and makes it practical to determine the
path relation for a large program graph.

To enforce a reasonable limit on the number of tasks. we
employ a Granularity Threshold Factor, E. Any computation

with execution time less than 0 x (Total Program Cost) I P is
considered not worthwhile for further expansion. This
threshold value controls task granularity - 0.001 is a typical
value for E. A smaller value of E usually increases the number
of tasks and hence the execution time for compile-time
partitioning. Programs with sufficient coarse-grain
parallelism are unaffected by o; a few expansions remove all
bottleneck nodes causing the expansion process to terminate
before tasks reach the granularity threshold size.

After task expansion, there is scope for further economy on
the number of tasks by merging small tasks when their total
cost is less than the threshold value. These small tasks arc
usually simple nodes (e.g. Plus, ArrayBuild) that were
exposed along with larger computations during task
expansion. By merging tasks, we map a set of IF1 nodes to a
single task. This set must:

l IIave a total execution time that’s smaller than the
threshold value.

l Form a convex subgraph of the original precedence
graph so that the reduced precedence graph with the
single merged task will still be acyclic. A simple way
to form convex subgraphs is by pick&rg intervals on any
linear completion of the precedence graph.

l Form a connected subgraph so that it does not destroy
any parallelism outside the merged task.

Task expansion and task merging partition the program
graph nodes into tasks. Each task should either be a non-
bottleneck or have a smaller execution time than the threshold
value. A task that satisfies neither property is expanded. if
possible. Tasks are merged if their total cost is still less than
the threshold value. Both expansion and merging can be
incorporated in a single depth-first traversal of the program
graph. At each level, all s&computations are fit recursively
processed, which determines the expanded nodes. A second
pass at the same level performs the merging, and then returns
to the parent level.

9. Internalization Pre-pass
Once the task boundaries have been established, the

problem is represented in terms of OUT model for
multiprocessor scheduling with communication. We have
tasks with execution times and communication edges. A
single pass scheduling algorithm is unsuitable for handling
communication costs. For example, in Figure 9-1, if tasks A
and B are assigned to different processors, a single pass
algorithm is later on forced to make one of C, or C, non-
local, and incur its overhead. This is inevitable no matter how
large C, or C, may be. It could be avoided by backtracking
on previous assignments, but that would be too inefficient.
Instead, we first perform an Internalization pass that partitions

tasks into blocks, so that all tasks in the same block must be
assigned to the same processor. After Internalization, a single
pass Processor Assignment algorithm can be used to assign
internalized task blocks to processors.

Figure 9-1: Counter-example for one-pass scheduling

The Internalization problem is to find a partition that
minimizes the critical path length of the task system, i.e.
minimizes the completion time of the task system on an
unbounded number of processors. If we ignore
communication overhead, this optimal completion time can be
simply achieved by assigning each task to a different
processor. This is not so with communication costs, since the
optimal critical path may only occur when some parallel tasks
am assigned to the same processor. It is a harder problem and
is in fact NP-complete.

So, we &signed a greedy approximation algorithm to solve
this problem. It begins with the trivial partition that places
each task in a separate block. It also maintains a table
DeltaCPL[ij], which represents the decrease in the critical
path length obtained by merging blocks i and j. The
algorithm then iteratively merges the best pair of blocks - the
pair that yields the largest decrease in the critical path length -
and terminates when no remaining merger could possibly
reduce the critical path length (i.e. all entries in DeltaCPL are
negative).

In computing the critical path length, we force all tasks in
the same block to execute sequentially since they will be
assigned to the same processor. There could be several
possible task sequences consistent with the precedence
constraints, and it’s for that very reason that the problem is
NP-complete. An algorithm that tries all possible sequences
will have a worst-case exponential time. Instead we just use
an arbitrary topological order (priority list) to provide a
sequence for tasks in the same block. Figure 9-2 outlines the
body of procedure DetermineComplctionTime, used to
compute the completion time for a given partition. Because

of step 3, it has an O(N+E) worst-case execution time, for N
tasks and E synchronization and communication edges.

Inputs: Tasks, costs, partition, priority list.

Outnut: Completion time.

Algorithm:

1. for each task T, do
Add non-local synchronization and communication
costs to Ti’s execution time. (Use processor
component for communication)
end for

2. for each block B do
BlockTime[B] t 0
end for

3. for each task Tj in priority list order do
StartTime c
max(BlockTime[Block(Tj)],

CompletionTime[i] V 4,jz E S,
CompletionTime[i] + delay component of C[ij]
V non-local input communication C[ij])

CompletionTimeb] t StartTime + ExecutionTimelj]
BlockTime[Block(Tj)] c CompletlonTime~]
end for

4. return max(CompletionTimelj] V tasks Ti)

Figure 9-2: Procedure DetermineCompletionTime

The internalization algorithm has an O(N2x(N+E))
execution time because there are O(N2) entries in DeltaCPL.
In the worst case, E = O(Nz), making this an O(N4) algorithm.
Just like the path relation in the previous section, the critical
path can be obtained by combining critical path values of
subgraphs. The algorithm incurs an O(N4) worst-case
execution time at each level, but is practical for large
programs. Most programs have a small number (c 100) of
tasks at each level. We have seen programs with over 5000
nodes containing fewer than 20 tasks per level. This is
because there’s not much computation that can be expressed
without using compound nodes. Even if there are several
simple nodes at the same level, they often get merged into a
small number of tasks, due to the granularity threshold value.

Though this is an approximation algorithm, we have shown
that it finds the optimal partition for a restricted class of
communication graphs, namely series-parallel graphs.
Further, we have shown that this algorithm has a worst-case
performance bound of 2, relative to the optimal critical path.
The proofs of these results are beyond the scope of this paper.

10. Processor Assignment
With the internalization pm-pass completed, the ground is

finally set for the actual assignment of tasks to processors.
Tasks in the same internalized block must be assigned to the

22

same processor. We use a mod&&d Priority List scheduling
algorithm [11] to perform the processor assignment. An
outline of this algorithm is given in Figure 10-l.

Innuts: Tasks, costs, internalized partition, priority list.

Output: Processor assignment for each task.

Algorithm:

1. for each task Ti do
Processor[i] t 0
end for

2.forproct 1 toPdo
ProcessorBlock[proc] c 0
end for

3. for each task Tj in priority list order do
if Processor[j] = 0 then

aforprocc 1 toPdo
Call procedure DetermineCompletionTime for
partition that merges blocks Block(T$ and
PmcessorBlock[proc].
Set BestProc to the value of prw with the
smallest completion time.
end for

b. Merge blocks Block(Tj) and
ProcessorBloc~BestProc] .

c. ProcessorBlock[BestProc] t Block(Tj)
d. for each task Ti with Block(Ti) = Block(Tj) do

Processor[i] + BestProc
end for

end if
end for

4. return Processor

Figure 10-I: Procedure Schedule

The algorithm visits tasks in priority list order, so that a
task is only scheduled after all its predecessors have been
scheduled. F’rocessor[i] stores the processor number for task
Ti. It is initialized to zero and is set when visiting the first
task in Ti’s block. Like the Internalization algorithm
processor Assignment proceeds by merging blocks in the
partition. It terminates when there are at most as many blocks
as processors. At that time, all tasks T, in
ProcessorBlock[proc] will have Processor[i] set to Proc.
Once again, we use Procedure DetermineCompletionTime to
compute the completion time for a given partition.

This algorithm has a worst-case O(Bx(N+E)) execution
time, where B is the number of internalized blocks. The
scheduling problem does not lend itself to an efficient divide-
and-conquer algorithm, as the path relation and critical path
problems, because all sub-computations share the same set of
processors. Instead, its efficiency lies in being able to assign
an entire block of tasks to a processor at a time.

11. Code Generation Issues
The output of the processor assignment phase consists of P

task sequences for P processors. Each task’s computation is
translated to sequential code, as in uuiprocessor compilation.
However, synchronization primitives and communication
code for any non-local synchronizations and communications
must be appropriately placed in a prologue and epilogue for
each task. These non-local synchronizations and
communications are barriers that must not be crossed when
optimizing and reordering instructions. Their rearrangement
could form a cycle in inter-processor synchronization and lead
to deadlock during execution. Even if it avoided deadlock,
the schedule would be different from the one chosen by our
algorithm, and could have a larger parallel execution time.
However, the code generator is free to reorder and optimize
instructions that do not cross an external synchronization or
communication. There should be a large scope for such
conventional code optimizations, since we exploit outer-level
parallelism and each task can have a lot of computation buried
inside it.

12. Preliminary Results
As mentioned earlier, a partitioner-cum-scheduler based on

these techniques has been implemented to process IF1
program graphs. We have instrumented the Livcrmore IF1
interpreter to provide statistics for a multiprocessor
simulation. The simulation uses processor assignments
generated by the partitioner. Execution time values are based
on actual run-time frequencies and data sizes.

Figure 12-1 shows the speed-up obtained for the following
SISAL programs:

1. Towers of Hanoi. A program to solve the puzzle for a
tower of height 10. Graph expansion unwound the
recursive function calls to get a binary tree with rig ~1
levels. Hence the non-linearity when the number of
processors is a power of 2.

2. Batcher’s iterative merge-exchange sorting algorithm
[4] on 100 integers. This is an excellent algorithm for

parallel sorting. It consists of two nested While loops,
each with log N iterations, and an inner Forall with N
iterations. Graph expansion successively expanded
the While bodies and finally the Forall, which contains
the parallelism.

3. Eight Queens - a recursive program to generate all
solutions to the 8 queens problem. A recursion depth
value of 8 directed the graph expansion algorithm to
expand the recursive call to 8 levels. The Forall at
each level was then expanded.

4. Multi-precision multiplication. A divide-and-conquer
solution to the problem of multiplying two N-bit
numbers [2]. The algorithm breaks each number into
halves, recursively finds 3 sub-products and combines
them to get the full product. Using 3 (instead of 4)

23

o Towers of Hanoi
x Merge-exchange sort
o Eight queens
0 Multi-precision multiplication

I

0 1
I I 1

2 3 4 5 6 7 8 9 10

Figure J2.1: Speed-up vs. Number of Processors
Number of Processors, P

go-
-b 9.
8
c2 8.

7.

6.

5.

4.

3-

2-

l-

0 Low partition - low target
x High partition - low target
q High partition - high target
0 Low partition - high target

It “‘1 * “I’ I”” e “‘I’

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Number of Processors, P Number of Processors, P

Figure 12.2: Partition Overhead and Target Overhead Figure 12.3: Effect of Internalization phase

p-

+
8

9-

Cna 8-

7-

6-

s-

4-

3-

2-

l-

o Low overhead with internalization
x Low overhead without internalization
q Medium overhead with internalization
0 Medium overhead without internalization
0 High overhead with internalization
++I High overhead without internalization

/

24

recursive multiplications makes this an O(N’J~ 3, =
O(Nl.5q algorithm (instead of N*).

These speed-up curves show that compile-time processor
assignment can be successfully used to exploit parallelism.
We’d like to make similar speed-up measurements on real
machines, e.g. Sequent, Encore, iPSC. That will be possible
when the translator from IF1 to U-code is ready. Another
approach is to translate IF1 to C. We have already hand-coded
the partitioned merge-exchange sort program in C and
observed linear speed-up on the Sequent (12 processors) and
Encore (20 processors).

Figure 12-2 illustrates the match between a partition and its
target multiprocessor parameters. These measurements were
taken for the Towers of Hanoi program, using two sets of
target parameters that represent low and high communication
overhead. The four curves show all four combinations of the
two partitions with the two targets. Naturally, the low
overhead target curves show a better speed-up than the high
overhead target. But, for a given target, the partition that was
generated for it performed better than the other partition.

Figure 12-3 shows the effect of the Internalization phase on
partitioning. The SISAL program used was a simple matrix
multiplication of two 20x20 integer matrices. The program
was partitioned and simulated for three sets of target
parameters representing low, medium and high
communication overhead. Two partitions were generated in
each case - one with and one without using the Internalization
phase. As seen in the figure, the partition with Internalization
performed better, especially for high communication
overhead.

13. Related Work
As mentioned in the introduction, a compiler system for

parallel machines must deal with the problems of extracting
parallelism, partitioning the program into tasks and
scheduling tasks. The major effort so far has been in solving
the first problem. Kuck’s Parafrase [131, [161 and the Rice
vectorizer [3] have been successful in extracting parallelism
from Fortran programs. They have been used for vector
machines, where partitioning and scheduling is not an issue.
This parallelism is typically local, since global parallelism
(say between subroutines) is difficult to automatically extract
from a sequential language. Both these systems could be used
to produce an IFI-like graph representation that serves as
input to our partitioner. Whether such an approach would be
effective depends on the ability of these systems to recognize
larger-grain parallelism.

The Bulldog compiler [9] extracts local parallelism and
schedules operations for VLIW (Very Long Instruction Word)

architectures. Loop unrolling and trace scheduling are among
the techniques used to get more parallelism than that available
within basic blocks. This is similar in spirit to our task
expansion, except that we start at the outermost level and
move inwards looking for parallelism at the macro level. The
Bulldog approach attempts to generate a set of synchronous,
fme-grained parallel operations that can be “packed” into a
single wide inslzuction word. The primary technique used to
fmd parallelism is local expansion of basic blocks. Our
partitioner is targeted to asynchronous multiprocessors, which
perform most efficiently with coarse-grain parallelism.

In the Hughes Data Flow Machine compiler [SJ, dataflow
nodes (actors) are statically allocated to processing elements.
The allocation is based on heuristics to minimize
communication and maximize parallelism. The heuristic
functions use inter-processor distances and a count of parallel
actors; they do not consider the frquency count of individual
actors or the communication size of data. Static allocation of
an actor causes all its invocations to be sequential, since they
are executed on the same processing element. This can
reduce parallelism for an actor in the body of a Forall or in a
function called more than once in parallel. We address the
problem by task expansion, so that different sub-Forall’s or
different calls to the same function can be executed on
different processors. It is necessary to do a transitive closure
of the dataflow graph to determine parallel actors. Their
“local allocatoi’ uses an O(N3) transitive closure algorithm
and took 3 VAX CPU hours to schedule 415 actors. Because
of this high cost, they use a “global allocator” to approximate
the heuristics by partitioning the graph and set of processing
elements into separate pieces that can be individually handled
by the local allocator. Transitive closure is done more
efficiently in our partitioner, because we exploit the program
graph hierarchy to determine the path relation, e.g. it took
only 10 VAX CPU seconds for a program graph with over
1500 nodes.

14. Conclusions
We have demonstrated that the problem of partitioning and

scheduling parallel programs can be solved at compile-time.
Our techniques are practical and have been implemented to
process IF1 program graphs. They sly on estimates of
frequency parameters, which we obtain from execution profiIe
data.

These techniques do not assume any particular
multiprocessor architecture. Instead, they are driven by a
table of parameters that describe the target multiprocessor.

The central issue in partitioning and scheduling is the
trade-off between parallelism and the overhead of

25

synchronization and communication. We use costs to
incorporate these overheads in our model for multiprocessor
scheduling.

The implementation has already been used to partition
many benchmark programs, and the simulation results are
very encouraging. As more multiprocessors become
available, we will use this implementation as a basis to
compare alternative architectures and their interaction with
different application programs.

References

1. Ackerman, W. B. & Dermis, J. B. VAL -- a value-oriented
algorithmic language. Preliminary reference manual.
MIT/LCS/TR-218, Laboratory for Computer Science, MIT,
June, 1979.

2. Aho, A. V., Hopcroft, J. E., Ullman, J. D.. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

3. Allen, J. R. & Kennedy, K. PFC: A Program to Convert
Fortran to Parallel Form. The Proceedings of the IBM
Conference on Parallel Computers and Scientific
Computations, March, 1982.

4. Batcher, K. E. “Sorting networks and their applications”.
1968 Spring Joint Computer Conf.., AF’IPS Proc. 32 (1968),
307-314.

5. Campbell, M. L Static Allocation for a Dataflow
Multiprocessor. Proc. 1985 Int. Conf. Parallel Processing,
1985, pp. 51 l-517.

6. Celoni, J. R. & Hennessy, J. L. SAL: A Single-
Assignment Language for Parallel Algorithms.
ClaSSiC-83-01, Center for Large Scale Scientific
Computation, Stanford University, Sept., 1983.

7. Davis, A. L. & Keller, R. M. “Data Flow Program
Graphs”. IEEE Computer 15,2 (Feb. 1982).

8. Using the Encore Multimax Argonne National
Laboratory, Mathematics and Computer Science Division,
ANUMCS-TM-65,1986.

9. Fisher, J. A. et al. “Parallel Processing: A Smart Compiler
and a Dumb Machine”. SIGPLAN Notices 19,6 (June 1984).

10. Gottlieb, A. et ul. “The NYU Ultracomputer - Designing
an MIMD Shared Memory Parallel Computer”. IEEE Tram.
Computers C-32.2 (Feb. 1983).

11. Graham, R. L. “Bounds on Multiprocessing Timing
Anomalies”. SIAM J. Appl. Math. X7,2 (March 1969).

12. Jones, A. K., Gehringer, E. F. The Cm* Multiprocessor
Project: A Research Review. CMU-CS-80-131. Computer
Science Department, Carnegie-Mellon University, 1980.

13. Kuck, D. J. ef al. Dependence Graphs and Compiler
Gptimizations. Proc. 8th ACM Symp Principles
Programming Languages, Jan., 1981, pp. 207-218.

14. Len&a, J. K. & Rinnooy Kan, A. H. G. “Complexity of
Scheduling under Precedence Constraints”. Operations
Research 26,l (Jan-Feb 1978).

15. McGraw, J. et al. SISAL Streams and Iteration in a
Single Assignment Language, Language Reference Manual,
Version 1.2. M-146, LLNL, March, 1985.

16. Padua, D. A., Kuck, D. J. & Lawrie, D. H. “High-Speed
Multiprocessors and Compilation Techniques”. IEEE Tram.
Computers C-29,9 (1980).

17. Pfaltz, J. L.. Computer Data Structures. McGraw-Hill,
Inc., 1977.

18. Seitz, C. L. *‘The Cosmic Cube”. CACM 28,l (Jan.
1985).

19. Using the Sequent Balance 8000. Argonne National
Laboratory, Mathematics and Computer Science Division,
ANUMCS-TM-66,1986.

20. Sites, R. et al. Machine-independent Pascal Optimizer
Project: Final Report. UCSD/CS-791038, University of
California at San Diego, Nov., 1979.

21. Skedzielewski, S. & Glauert, J. IF1 -- An Intermediate
Form for Applicative Languages, Version 1 .O. M- 170,
LLNL, July, 1985.

26

