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Abstract 
Partitioning and scheduling techniques are necessary to 

implement parallel languages on multiprocessors. 
Multiprocessor performance is maximized when parallelism 
between tasks is optimally traded off with communication and 
synchronization overhead. We present compile-time 
partitioning and scheduling techniques to achieve this trade- 
Off. 

1. Introduction 
One of the biggest challenges facing compiler writers is to 

efficiently implement programming languages on 
multiprocessors. We need to find compilation techniques for 
general-purpose parallel languages; these techniques should 
be adaptable to a wide range of multiprocessor architectures. 

There are three fundamental problems to be solved when 
compiling a program for parallel execution on a 
multiprocessor: 

1. Identifying potential parallelism 
2. Partitioning the program into sequential tasks. 
3. Scheduling the concurrent execution of these tasks. 

We address the latter two problems and suggest that they 
be solved at compile-time instead of run-time for applications 
with fairly predictable execution times. In these cases the 
benefits are tremendous. A global, compile-time analysis 
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reduces communication overhead for the entire program; such 
an analysis cannot be done on the fly at run-time. Compile- 
time partitioning and scheduling also eliminates task 
scheduling overhead and load balancing overhead at run-time. 

A compile-time partitioner-cum-scheduler has been 
implemented to process program graphs in the intermediate 
language, IF1 [21]. IF1 represents computation as dataflow 
graphs, as described later in Section 6. A list of target 
parameters (e.g. number of processors, communication 
overhead, inter-processor distances) drives the partitioning for 
a given multiprocessor architecture. Using a !Yont-end from 

SISAL[15] to IFl, we apply this system to different 
benchmark programs written in the single-assignment 
language SISAL. Like other functional languages, SISAL is 
implicitly parallel; this eliminates the need to extract 
parallelism from the program. However, our approach is 
applicable to any environment where a program graph 
representation can be obtained. 

2. Overview of our approach 
Our approach is to expose enough parallelism in the “main 

program” function graph and then assign computations to 
processors so as to minimize the parallel execution time, 
while considering communication overhead. As shown in 

Figure 2-1, there are four basic steps in this process: 

1. Cost Assignment: Traverse the program graph and 
assign execution time costs to nodes and 
communication size costs to edges. 

2. Graph Expansion: Expand the graph so that the main 
function contains sufficient parallelism to keep all 
processors busy. Nodes in the expanded program 
graph are mapped to tasks. 

3. Internalization: Decide which tasks must go together 
on the same processor, even if other processors are 
available. This internalizes their communication and 
eliminates its overhead, at the expense of 
sequentializing the tasks. 

4. Processor Assignment: Assign tasks to processors so 
as to minimize parallel execution time. Tasks in the 
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same block of the internalized partition must be 
assigned to the same processor. 
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Figure 2-1: Overview 

Note that we rely heavily on compile-time estimates of 
communication and computation costs. These costs drive the 
expansion, internalization and scheduling of parallel tasks. 
We have found that our cost estimates yield good partitions 
for a range of programs and input data. 

These four phases for compile-time partitioning and 
scheduling are described in later sections. We begin with a 
discussion of multiprocessor models and real multiprocessors. 

3. Multiprocessor Scheduling Theory 
Let’s start by examining the traditional model for 

multiprocessor scheduling, which consists of: 

l P identical, independent processors. 
l A set of N tasks, T = {T,, . . . . TN} with execution times 

tl , -a*, LN’ 
l A partial order + on T. 

The partial order describes precedence constraints on the 

tasks, so that Ti + Tj forces Tj to start only after Ti has 
completed execution. 

The problem is to find a valid schedule with the smallest 
completion time. This problem (along with several restricted 
versions) has been shown to be NP-complete [14]. Efowever, 
there exist efficient scheduling algorithms that generate 
schedules with a worst-case performance bound of 2, relative 
to an optimal schedule [l 11. Thus the NP-completeness of the 
scheduling problem is not an impediment to achieving linear 
speed-up in multiprocessors. 

This model is inadequate for our purpose because it ignores 
the overhead of inter-processor synchronization and 
communication. Most schemes for considering 
communication overhead do so by separately maximizing 
parallelism and minimizing communication. We believe that 
these parameters should be combined into a single objective 
function. The next section shows how we extend this model 
to incorporate communication costs. 

4. Modelling Communication Costs 
Communication costs are represented by a communication 

matrix. C[i,j] is the size of communication (in bytes, say) 
from task Ti to Tj. For simplicity, we assume that 
communication only occurs along precedence edges, though 
all precedence edges need not have an associated 
communication. The data along a communication edge is 
only available to the consumer after the producer has 
completed execution. We also define an inter-processor 
distance matrix; D[k,l] gives the communication distance 
(number of hops) between processors k and 1. This is a 
property of the multiprocessor rather than the tasks. 

Communication overhead in a multiprocessor has two 
components: 

1. Processor component - the duration for which a 
processor participates in its communication. 

2. Delay component - the fraction of communication 
time during which the producer and consumer 
processors are free to execute other tasks. 

Let x(i) be the processor to which task Ti is assigned. The 
communication overhead for each non-local edge from Ti to 
Tj (i.e. n(i) #n(j)) is modeled as: 

1. Processor component - add o(C[i,j], D[n(i),x(i)]) to 
the execution time of task Ti, and 
p(C[ij], D[z(i),n(j)]) to the execution time of Tj. 

2. Delay component - require that Tj not be able to start 
till s(C[i.j], D[rt(i),rt(j)]) time has elapsed after Ti 
completed execution. 

p, o and d are simple functions for the costs of reading 
inputs, writing outputs and communication delay respectively. 
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They convert communication size to execution time units for 
the target multiprocessor. So far, we have used functions of 
the form K, + KaxC[ij]xD[rr(i),n(j)], where K, and K, are 
collstants . 

We ignore the effect of communication demand on 
communication overhead in this model. This is valid when 
the demand is less than the available bandwidth. If contention 
for communication resources is to be considered, it can be 
approximated by using average overhead values. 

Synchronization between tasks is modeled by a 
synchronization relation (boolean matrix) S. The pair <i,j> is 
in S if task Tj must synchronize and wait for task Ti’s 
completion. It would be safe to make S the same as the 
precedence relation +, but would be inefficient because + is 
a partial order and contains transitive edges which lead to 
unnecessary synchronizations. The communication matrix 
does not entirely determine the synchronization relation, 
because some synchronizations are due to control 
dependencies. Besides, the communication matrix can also 
have transitive edges. So, for efficiency and generality, we 
represent synchronization by a separate relation. 

Each pair eij> in S adds to the execution times of tasks Ti 
and Tj due to sigtrul and wait operations respectively. The 
execution cost used for a wait is actually the cost of a 
successful wait. Time spent spinning in a busy-wait loop is 
considered to be idle time and is not added to the task’s 
execution time. 

5. Real Multiprocessors 
Multiprocessors are general-purpose, asynchronous, MIMD 

parallel machines. They can be classified as being “tightly 
coupled” or “loosely coupled”. Tightly coupled 
multiprocessors (e-g. Sequent 1191, Encore [PI, 
Ultracomputer [ 101, Cm* [ 121) communicate through a shared 
memory. Loosely coupled multiprocessors (e.g. the Cosmic 
Cube [18]) communicate by exchanging messages. Our 
model is designed to be tractable on this wide class of 
architectures and we discuss how some of these machines are 
modeled in our system. 

Machines like the Sequent and Encore communicate 
through a single bus connected to a shared memory and 
individual processor caches. The communication overhead 
consists entirely of its processor component, since the 
processors are directly involved in accessing the shared 
memory. Also, the distance matrix is uniform, so that D[k,l] 
= 1 for all pairs of processors. Functions p and o for the 
processor component represent the time taken to respectively 
read from or write to the shared memory. Both machines use 
write-through caches and invalidating snoopy caches. 

Because they use invalidation, the value of p is the cost of a 
cache miss (i.e. a main memory access - on the order of 5-10 
cycles). Because writes are buffered and a write-through 
cache is used, writes will cost one cycle when there is no 
contention. Thus, the value of w depends primarily on bus 
and main memory traffic. Bus contention increases the cost 
to read shared memory because cache misses take longer to 
satisfy; it increases the cost to write shared memory, because 
delays may cause write stalls. 

Synchronization costs differ on these machines because 
they use different hardware mechanisms for synchronization. 
The Sequent has 64 hardware “gates” that can be used to 
ensure mutual exciusion, making synchronization cheap. The 
Encore has a test-and-set instruction. The difficulty in 
accurately modeling such machines is that the cost of various 
operations (reading and writing shared data and 
synchronization) depends on the amount of contention for 
shared resources. 

A single bus architecture is feasible for only a small 
number of processors. Interconnection networks are used to 
support more processors in shared-memory machines like the 
Ultracomputer. Communication and synchronization 
overhead is modeled in basically the same way as single bus 
architectures. There are two important differences: the time to 
access shared memory increases with the Processor count 
(because of the interconnection network delay), and the 
communication costs are less affected by contention. 

Another important class of machines are those using point- 
to-point communication. These include the Cosmic Cube, the 
Intel Advanced Scientific Processor and the NCube machine. 
All of these machines use a boolean N-cube interconnect, 
which defines the distance matrix. Since these machines use a 
“message passing” approach we can easily model their 
communication properties. Assuming that communication 
contention is negligible, the following table summarizes the 
properties of the Cosmic Cube and Intel cube. The processor 
component is for the initiating processor and is given as X + 
Y, where X is the start-up and Y is the cost per 100 bytes, 
both in milliseconds. The delay component is in milliseconds 
per hop for each 100 bytes. Packetization introduces a 

nonlinearity in communication costs, but we ignore this 
effect. 

Processor Delay 
Machine Component Component 

cosmic cube 1.5 + 0.4 
Intel Cube 6.0 + 0.08 &ii 

As we have indicated, the primary limitation of this model 
is its inability to deal with contention for communication or 
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synchronization resources. As we measure more problems 
running on real machines, we believe that we can refine the 
model to realisticalIy accommodate such issues. 

Having discussed the target architectures, let’s now 
examine the intermediate language used in our system. 

6. IF1 Program Graphs 
Our compilation system operates on a graphical 

representation of programs, namely IF1 [21]. IF1 is an 
intermediate form for applicative languages. It is strongly 
based on the features of single-assignment languages 
SISAL [15] and VAL 111. 

An IF1 program is a hierarchy of acyclic dataflow 
graphs [7]; the nodes denote operations and the edges carry 
data. Nodes are either simple or compound. A simple node’s 
outputs are direct functions of its inputs. IF1 has about 50 
simple nodes, e.g. Plus, ArrayCatenate. FunctionCaR A 
compound node contains subgraphs and its outputs depend on 
the interaction between these subgraphs. The following table 
lists the five compound nodes available in IFl. These 
compound nodes obviate the need for labels, goto’s and 
cycles in the program graph. 

Compound No& Subgraphs 

Select Selector, Alternatives 
TagCase Alternatives (for Union) 

Forall Generator, Body, Results 
While, Until Init, Test, Body, Returns 

Nodes have numbered ports connected by edges. An edge 
contains the node and port numbers of its producer and 
consumer. It also contains an optional type number, which is 
used for strongly typed languages like SISAL. Literals are 
special edges used for constant values. A literal has no 
producer - its value is given by a string. All data is carried by 
edges. No variables or memory locations are used. 

Basic types include boolean, character, integer, real and 
double. Arrays, streams, records and unions are used to 
construct more complex types. Arrays are dynamically 
extendible. Nodes and edges in IF1 can use pragmas to carry 
additional information. We use pragmas to store profile- 
based frequency counts, communication and computation 
costs, graph partitions and processor assignments. 

This program graph representation is well suited for 
compile-time partitioning and scheduling. However, 
generation of sequential machine code is more complicated 
than from traditional, sequential intermediate languages. It is 
Imperative to avoid unnecessary copying when an update-in- 
place is possible. This effectively coalesces data on input and 

output edges to be the same “variable”. A few research 
projects are under way to address this problem. The 
SISAL [ 151 project includes code generation from IF1 for the 
VAX 780 and Cray-2 architectures. A project is under way at 
Stanford to translate SAL [6] graphs (similar to IFl) to 
U-code [20]. Our partitioner wiIl benefit from alI advances in 
this field, as sequential code generation and optimization 
techniques can be applied to intra-task computations. 

7. Cost Assignment 
The first step in compile-time partitioning and scheduling 

is to estimate computation and communication costs in the 
program. Communication costs are determined by examining 
the data type of an edge and assessing its size in an 
appropriate unit (e.g. bytes). Estimation of node execution 
times is more difficult and is undecidable in general. The 
unknown parameters are: 

l The frequency distribution of subgraphs in a compound 
node (e.g. number of iterations for a While Body, 
probability distribution of Alternatives in a Select) 

l Array size for nodes that operate on entire arrays. 
l Recursion depth for recursive function calls. 

Average node execution times are determined by using 
average values for these frequency parameters. These 
frequency values can be estimated using simple rules of 
thumb, can be provided by the programmer through pragmas, 
or can be derived from profile information. Our current 
implementation uses profile data. 

Given these parameters, it is a straightforward task to 
compute the cost of a node from the cost of its components 
via a depth-first traversal of the program graph. The cost of a 
function call is determined by the cost assigned to the callee. 
The strongly connected components (SCC’s) in the call graph 
reveal groups of mutually recursive functions. The recursion 
depth estimate is used to evaluate the costs of functions in the 
same SCC. The reduced inter-SCC graph is acyclic and is 
traversed in topological order so that the callee’s costs are 
assigned before processing the caller. 

8. Graph Expansion 
Given execution time costs, the next step is to create a set 

of parallel tasks. This phase begins by considering the body 
of the “main program” function to be a single task and 
proceeds by recursively expanding the current tasks to reveal 
more parallelism. A task containing an entire acyclic 
dataflow graph can be replaced by a set of new tasks - one for 
each node in the graph. A task corresponding to a function 
call node can be replaced by tasks for nodes in the callee’s 
function body, as in conventional procedure integration. 
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A Forall node is special because we know that all its 
iterations can be executed in parallel. Thus a task for a Forall 
node can be replaced by S+2 new tasks - a Scatter task, S 
sub-Forall tasks and a Gather task. The value of S is 
determined in part by F, the number of iterations in the 
original Forall. Assuming that all iterations take the same 
time, the smallest S that yields an optimal completion time on 
P processors is rF / [F/Pi 1. This makes s = P for large F. 

A task for a non-Forall compound node is replaced by a 
task for each of its subgraphs. These subgraphs are totally 
ordered by control dependencies, according to the semantics 
of the compound node. This ordering avoids the possibility of 
wasted work through eager evaluation of (say) Alternative 
subgraphs in a Select node. Instead, the Alternative will only 
start after the Selector has been evaluated, at which time it is 
known which Alternative should be evaluated. It’s possible to 
perform a Parafrase-style [13] dependency analysis on While 
expressions and try to convert them to Forall’s. This would 
be a compatible pre-pass to our partitioning system We have 
not pursued that approach because we assume that the 
programs were written with a view to parallelism, and leave it 
to the programmer to use Forall’s where appropriate. 

We’d like the final task system to: 

l Contain sufficient parallelism for the given number of 
processors, 

l Not have an impractically large number of tasks (e.g. 
one task per instruction is too many!). 

Both objectives can be conveniently quantified using costs. 
The task system will have sufficient parallelism if no task is a 
bottleneck. Task Ti is a bottleneck when all tasks that can be 
executed in parallel with it together contain insufficient work 
to keep P-l processors busy during Ti’s execution, i.e. 

ql parallel to T, CoStcrj) < (P-l) X cOSt(Ti) 

Only bottleneck nodes are considered for further expansion. 

The problem of determining parallel tasks is equivalent to 
finding the transitive closure of the graph’s adjacency matrix. 
Transitive closure algorithms have a worst-case execution 
time between O(N2.5) and O(N3) making them impractical 
for large programs [Sj. We ;se a divide-and-conquer 
approach on the hierarchical structure of IF1 program graphs 
to compute the path relation more efficiently. It is only 
necessary to use the O(N3) algorithm on dataflow graphs at 
each level. Their path relations arc then efficiently combined 
in a depth-first traversal of the entire hierarchy. This 

corresponds to the notion of path-preserving homomorphic 
graph structures 1173, and makes it practical to determine the 
path relation for a large program graph. 

To enforce a reasonable limit on the number of tasks. we 
employ a Granularity Threshold Factor, E. Any computation 

with execution time less than 0 x (Total Program Cost) I P is 
considered not worthwhile for further expansion. This 
threshold value controls task granularity - 0.001 is a typical 
value for E. A smaller value of E usually increases the number 
of tasks and hence the execution time for compile-time 
partitioning. Programs with sufficient coarse-grain 
parallelism are unaffected by o; a few expansions remove all 
bottleneck nodes causing the expansion process to terminate 
before tasks reach the granularity threshold size. 

After task expansion, there is scope for further economy on 
the number of tasks by merging small tasks when their total 
cost is less than the threshold value. These small tasks arc 
usually simple nodes (e.g. Plus, ArrayBuild) that were 
exposed along with larger computations during task 
expansion. By merging tasks, we map a set of IF1 nodes to a 
single task. This set must: 

l IIave a total execution time that’s smaller than the 
threshold value. 

l Form a convex subgraph of the original precedence 
graph so that the reduced precedence graph with the 
single merged task will still be acyclic. A simple way 
to form convex subgraphs is by pick&rg intervals on any 
linear completion of the precedence graph. 

l Form a connected subgraph so that it does not destroy 
any parallelism outside the merged task. 

Task expansion and task merging partition the program 
graph nodes into tasks. Each task should either be a non- 
bottleneck or have a smaller execution time than the threshold 
value. A task that satisfies neither property is expanded. if 
possible. Tasks are merged if their total cost is still less than 
the threshold value. Both expansion and merging can be 
incorporated in a single depth-first traversal of the program 
graph. At each level, all s&computations are fit recursively 
processed, which determines the expanded nodes. A second 
pass at the same level performs the merging, and then returns 
to the parent level. 

9. Internalization Pre-pass 
Once the task boundaries have been established, the 

problem is represented in terms of OUT model for 
multiprocessor scheduling with communication. We have 
tasks with execution times and communication edges. A 
single pass scheduling algorithm is unsuitable for handling 
communication costs. For example, in Figure 9-1, if tasks A 
and B are assigned to different processors, a single pass 
algorithm is later on forced to make one of C, or C, non- 
local, and incur its overhead. This is inevitable no matter how 
large C, or C, may be. It could be avoided by backtracking 
on previous assignments, but that would be too inefficient. 
Instead, we first perform an Internalization pass that partitions 



tasks into blocks, so that all tasks in the same block must be 
assigned to the same processor. After Internalization, a single 
pass Processor Assignment algorithm can be used to assign 
internalized task blocks to processors. 

Figure 9-1: Counter-example for one-pass scheduling 

The Internalization problem is to find a partition that 
minimizes the critical path length of the task system, i.e. 
minimizes the completion time of the task system on an 
unbounded number of processors. If we ignore 
communication overhead, this optimal completion time can be 
simply achieved by assigning each task to a different 
processor. This is not so with communication costs, since the 
optimal critical path may only occur when some parallel tasks 
am assigned to the same processor. It is a harder problem and 
is in fact NP-complete. 

So, we &signed a greedy approximation algorithm to solve 
this problem. It begins with the trivial partition that places 
each task in a separate block. It also maintains a table 
DeltaCPL[ij], which represents the decrease in the critical 
path length obtained by merging blocks i and j. The 
algorithm then iteratively merges the best pair of blocks - the 
pair that yields the largest decrease in the critical path length - 
and terminates when no remaining merger could possibly 
reduce the critical path length (i.e. all entries in DeltaCPL are 
negative). 

In computing the critical path length, we force all tasks in 
the same block to execute sequentially since they will be 
assigned to the same processor. There could be several 
possible task sequences consistent with the precedence 
constraints, and it’s for that very reason that the problem is 
NP-complete. An algorithm that tries all possible sequences 
will have a worst-case exponential time. Instead we just use 
an arbitrary topological order (priority list) to provide a 
sequence for tasks in the same block. Figure 9-2 outlines the 
body of procedure DetermineComplctionTime, used to 
compute the completion time for a given partition. Because 

of step 3, it has an O(N+E) worst-case execution time, for N 
tasks and E synchronization and communication edges. 

Inputs: Tasks, costs, partition, priority list. 

Outnut: Completion time. 

Algorithm: 

1. for each task T, do 
Add non-local synchronization and communication 
costs to Ti’s execution time. (Use processor 
component for communication) 
end for 

2. for each block B do 
BlockTime[B] t 0 
end for 

3. for each task Tj in priority list order do 
StartTime c 
max( BlockTime[Block(Tj)], 

CompletionTime[i] V 4,jz E S, 
CompletionTime[i] + delay component of C[ij] 
V non-local input communication C[ij]) 

CompletionTimeb] t StartTime + ExecutionTimelj] 
BlockTime[Block(Tj)] c CompletlonTime~] 
end for 

4. return max(CompletionTimelj] V tasks Ti) 

Figure 9-2: Procedure DetermineCompletionTime 

The internalization algorithm has an O(N2x(N+E)) 
execution time because there are O(N2) entries in DeltaCPL. 
In the worst case, E = O(Nz), making this an O(N4) algorithm. 
Just like the path relation in the previous section, the critical 
path can be obtained by combining critical path values of 
subgraphs. The algorithm incurs an O(N4) worst-case 
execution time at each level, but is practical for large 
programs. Most programs have a small number (c 100) of 
tasks at each level. We have seen programs with over 5000 
nodes containing fewer than 20 tasks per level. This is 
because there’s not much computation that can be expressed 
without using compound nodes. Even if there are several 
simple nodes at the same level, they often get merged into a 
small number of tasks, due to the granularity threshold value. 

Though this is an approximation algorithm, we have shown 
that it finds the optimal partition for a restricted class of 
communication graphs, namely series-parallel graphs. 
Further, we have shown that this algorithm has a worst-case 
performance bound of 2, relative to the optimal critical path. 
The proofs of these results are beyond the scope of this paper. 

10. Processor Assignment 
With the internalization pm-pass completed, the ground is 

finally set for the actual assignment of tasks to processors. 
Tasks in the same internalized block must be assigned to the 
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same processor. We use a mod&&d Priority List scheduling 
algorithm [11] to perform the processor assignment. An 
outline of this algorithm is given in Figure 10-l. 

Innuts: Tasks, costs, internalized partition, priority list. 

Output: Processor assignment for each task. 

Algorithm: 

1. for each task Ti do 
Processor[i] t 0 
end for 

2.forproct 1 toPdo 
ProcessorBlock[proc] c 0 
end for 

3. for each task Tj in priority list order do 
if Processor[j] = 0 then 

aforprocc 1 toPdo 
Call procedure DetermineCompletionTime for 
partition that merges blocks Block(T$ and 
PmcessorBlock[proc]. 
Set BestProc to the value of prw with the 
smallest completion time. 
end for 

b. Merge blocks Block(Tj) and 
ProcessorBloc~BestProc] . 

c. ProcessorBlock[BestProc] t Block(Tj) 
d. for each task Ti with Block(Ti) = Block(Tj) do 

Processor[i] + BestProc 
end for 

end if 
end for 

4. return Processor 

Figure 10-I: Procedure Schedule 

The algorithm visits tasks in priority list order, so that a 
task is only scheduled after all its predecessors have been 
scheduled. F’rocessor[i] stores the processor number for task 
Ti. It is initialized to zero and is set when visiting the first 
task in Ti’s block. Like the Internalization algorithm 
processor Assignment proceeds by merging blocks in the 
partition. It terminates when there are at most as many blocks 
as processors. At that time, all tasks T, in 
ProcessorBlock[proc] will have Processor[i] set to Proc. 
Once again, we use Procedure DetermineCompletionTime to 
compute the completion time for a given partition. 

This algorithm has a worst-case O(Bx(N+E)) execution 
time, where B is the number of internalized blocks. The 
scheduling problem does not lend itself to an efficient divide- 
and-conquer algorithm, as the path relation and critical path 
problems, because all sub-computations share the same set of 
processors. Instead, its efficiency lies in being able to assign 
an entire block of tasks to a processor at a time. 

11. Code Generation Issues 
The output of the processor assignment phase consists of P 

task sequences for P processors. Each task’s computation is 
translated to sequential code, as in uuiprocessor compilation. 
However, synchronization primitives and communication 
code for any non-local synchronizations and communications 
must be appropriately placed in a prologue and epilogue for 
each task. These non-local synchronizations and 
communications are barriers that must not be crossed when 
optimizing and reordering instructions. Their rearrangement 
could form a cycle in inter-processor synchronization and lead 
to deadlock during execution. Even if it avoided deadlock, 
the schedule would be different from the one chosen by our 
algorithm, and could have a larger parallel execution time. 
However, the code generator is free to reorder and optimize 
instructions that do not cross an external synchronization or 
communication. There should be a large scope for such 
conventional code optimizations, since we exploit outer-level 
parallelism and each task can have a lot of computation buried 
inside it. 

12. Preliminary Results 
As mentioned earlier, a partitioner-cum-scheduler based on 

these techniques has been implemented to process IF1 
program graphs. We have instrumented the Livcrmore IF1 
interpreter to provide statistics for a multiprocessor 
simulation. The simulation uses processor assignments 
generated by the partitioner. Execution time values are based 
on actual run-time frequencies and data sizes. 

Figure 12-1 shows the speed-up obtained for the following 
SISAL programs: 

1. Towers of Hanoi. A program to solve the puzzle for a 
tower of height 10. Graph expansion unwound the 
recursive function calls to get a binary tree with rig ~1 
levels. Hence the non-linearity when the number of 
processors is a power of 2. 

2. Batcher’s iterative merge-exchange sorting algorithm 
[4] on 100 integers. This is an excellent algorithm for 

parallel sorting. It consists of two nested While loops, 
each with log N iterations, and an inner Forall with N 
iterations. Graph expansion successively expanded 
the While bodies and finally the Forall, which contains 
the parallelism. 

3. Eight Queens - a recursive program to generate all 
solutions to the 8 queens problem. A recursion depth 
value of 8 directed the graph expansion algorithm to 
expand the recursive call to 8 levels. The Forall at 
each level was then expanded. 

4. Multi-precision multiplication. A divide-and-conquer 
solution to the problem of multiplying two N-bit 
numbers [2]. The algorithm breaks each number into 
halves, recursively finds 3 sub-products and combines 
them to get the full product. Using 3 (instead of 4) 
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recursive multiplications makes this an O(N’J~ 3, = 
O(Nl.5q algorithm (instead of N*). 

These speed-up curves show that compile-time processor 
assignment can be successfully used to exploit parallelism. 
We’d like to make similar speed-up measurements on real 
machines, e.g. Sequent, Encore, iPSC. That will be possible 
when the translator from IF1 to U-code is ready. Another 
approach is to translate IF1 to C. We have already hand-coded 
the partitioned merge-exchange sort program in C and 
observed linear speed-up on the Sequent (12 processors) and 
Encore (20 processors). 

Figure 12-2 illustrates the match between a partition and its 
target multiprocessor parameters. These measurements were 
taken for the Towers of Hanoi program, using two sets of 
target parameters that represent low and high communication 
overhead. The four curves show all four combinations of the 
two partitions with the two targets. Naturally, the low 
overhead target curves show a better speed-up than the high 
overhead target. But, for a given target, the partition that was 
generated for it performed better than the other partition. 

Figure 12-3 shows the effect of the Internalization phase on 
partitioning. The SISAL program used was a simple matrix 
multiplication of two 20x20 integer matrices. The program 
was partitioned and simulated for three sets of target 
parameters representing low, medium and high 
communication overhead. Two partitions were generated in 
each case - one with and one without using the Internalization 
phase. As seen in the figure, the partition with Internalization 
performed better, especially for high communication 
overhead. 

13. Related Work 
As mentioned in the introduction, a compiler system for 

parallel machines must deal with the problems of extracting 
parallelism, partitioning the program into tasks and 
scheduling tasks. The major effort so far has been in solving 
the first problem. Kuck’s Parafrase [ 131, [ 161 and the Rice 
vectorizer [3] have been successful in extracting parallelism 
from Fortran programs. They have been used for vector 
machines, where partitioning and scheduling is not an issue. 
This parallelism is typically local, since global parallelism 
(say between subroutines) is difficult to automatically extract 
from a sequential language. Both these systems could be used 
to produce an IFI-like graph representation that serves as 
input to our partitioner. Whether such an approach would be 
effective depends on the ability of these systems to recognize 
larger-grain parallelism. 

The Bulldog compiler [9] extracts local parallelism and 
schedules operations for VLIW (Very Long Instruction Word) 

architectures. Loop unrolling and trace scheduling are among 
the techniques used to get more parallelism than that available 
within basic blocks. This is similar in spirit to our task 
expansion, except that we start at the outermost level and 
move inwards looking for parallelism at the macro level. The 
Bulldog approach attempts to generate a set of synchronous, 
fme-grained parallel operations that can be “packed” into a 
single wide inslzuction word. The primary technique used to 
fmd parallelism is local expansion of basic blocks. Our 
partitioner is targeted to asynchronous multiprocessors, which 
perform most efficiently with coarse-grain parallelism. 

In the Hughes Data Flow Machine compiler [SJ, dataflow 
nodes (actors) are statically allocated to processing elements. 
The allocation is based on heuristics to minimize 
communication and maximize parallelism. The heuristic 
functions use inter-processor distances and a count of parallel 
actors; they do not consider the frquency count of individual 
actors or the communication size of data. Static allocation of 
an actor causes all its invocations to be sequential, since they 
are executed on the same processing element. This can 
reduce parallelism for an actor in the body of a Forall or in a 
function called more than once in parallel. We address the 
problem by task expansion, so that different sub-Forall’s or 
different calls to the same function can be executed on 
different processors. It is necessary to do a transitive closure 
of the dataflow graph to determine parallel actors. Their 
“local allocatoi’ uses an O(N3) transitive closure algorithm 
and took 3 VAX CPU hours to schedule 415 actors. Because 
of this high cost, they use a “global allocator” to approximate 
the heuristics by partitioning the graph and set of processing 
elements into separate pieces that can be individually handled 
by the local allocator. Transitive closure is done more 
efficiently in our partitioner, because we exploit the program 
graph hierarchy to determine the path relation, e.g. it took 
only 10 VAX CPU seconds for a program graph with over 
1500 nodes. 

14. Conclusions 
We have demonstrated that the problem of partitioning and 

scheduling parallel programs can be solved at compile-time. 
Our techniques are practical and have been implemented to 
process IF1 program graphs. They sly on estimates of 
frequency parameters, which we obtain from execution profiIe 
data. 

These techniques do not assume any particular 
multiprocessor architecture. Instead, they are driven by a 
table of parameters that describe the target multiprocessor. 

The central issue in partitioning and scheduling is the 
trade-off between parallelism and the overhead of 
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synchronization and communication. We use costs to 
incorporate these overheads in our model for multiprocessor 
scheduling. 

The implementation has already been used to partition 
many benchmark programs, and the simulation results are 
very encouraging. As more multiprocessors become 
available, we will use this implementation as a basis to 
compare alternative architectures and their interaction with 
different application programs. 
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