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Though graph coloring algorithms have been shown to work well when applied to register allocation problems, the 
technique has not been generalized for processor architectures in which some instructions refer to individual 
operands that are comprised of multiple registers. This paper presents a suitable generalization. 

1. Introduction 

Graph coloring, as applied to register allocation, is a pro- 
cess whereby a compiler attains a good mapping between 
the arbitrarily large demand for registers that an input pro- 
gram may have, and the few registers implemented in the 
target processor. Much of the demand is handled by map- 
ping several of the input program’s virtual registers with 
non-overlapping lifetimes onto a single physical register. 
This is done over each of the available physical registers. 
Excess virtual registers are handled by spilling them to 
secondary storage (i.e. usually memory; sometimes secon- 
dary registers). 

Hsu gives a good summary of graph coloring in his PhD 
dissertation (Hsu 87, pp 61-62): 

. ..graph coloring . . . was successfully developed and 
implemented by Chaitin. The global register alloca- 
tion is formulated as a graph coloring problem: Each 
node in the graph stands for a computed quantity that 
resides in a machine register, and two nodes are con- 
nected by an edge if two quantities interfere with 
each other, that is, if they are simultaneously live at 
some point in the program. The problem is to assign 
different colors (registers) to connected nodes. It is 
hard to obtain an optimal coloring, but the implemen- 
tation showed [that] a fast heuristic method for assign- 
ing colors to these graphs generally resulted in a very 
good assignment. When the compiler cannot color the 
register conflict graph, it must add code to spill some 
nodes. Spill decisions are made on the basis of the 
register conflict graph and cost estimates of the value 
of keeping the variable in a register rather than in 
memory.” 
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Chaitin et al developed register allocation by coloring in 
1980 (CACCHM 81). The following year, Chaitin refined 
the criterion for selecting which virtual registers to spill to 
secondary storage (Chai 82). Whereas in the first paper, 
selection of a spill candidate was ad hoc, the refinements 
were to base the selection on an estimate of which candi- 
date would cost the least. to spill and would have the 
greatest impact toward reducing the register pressure so 
that other virtual registers might not need to be spilled. 

In the SIGPLAN ‘89 Conference, Pinter et al and Briggs et 
al provided valuable refinements to graph coloring. Pinter 
(BGGKMNP 89) offered improved heuristics for the selec- 
tion of spill candidates. He also detailed “a specially tuned 
greedy heuristic for determining the order of deleting (and 
hence coloring) the unconstrained’ [nodes]” of the register 
interference graph. Programs tend to be colorable with 
fewer physical registers when Pinter’s heuristic is used in 
place of the earlier method, where unconstrained nodes 
were deleted in arbitrary order. Also, Pinter suggested an 
optimization he referred to as cleaning, in which an 
attempt is made to reduce the amount of spill co& pro- 
duced for a spilled entity. To do so, the compiler inserts 
only one load or store of the spilled entity per basic block, 
instead of a load or store at each reference to the entity. 

The contribution of Briggs et al (BCKT 89) was to modify 
graph coloring in such a way that less spilling is required, 
They observed that deleting a constrained node from the 
register interference graph does not have to condemn that 
node to being spilled. While unconstrained nodes are 
guaranteed to be colorable into the physical registers, some 
or all of the constrained nodes also might fit into the physi- 
cal registers. Therefore, pruning a constrained node from 
the interference graph should only set a flag on the node 
that indicates it may need to be spilled. It is left up to the 
coloring routine to either ratify or reset that flag. 

Briggs also suggested that if unconstrained nodes are 
pruned from the interference graph in ascending order of 

l A node is unconstrained when the number of coloring constraints 
imposed upon the node (termed the degree of the node) is less than the 
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degree, an improvement could be applied to the pruning 
function which would make it faster. While this is true, it 
is contrary to Pinter’s greedy pruning heuristic. In the 
question and answer session following Briggs’ presentation 
it was agreed that better implementations would prefer 
Pin&s greed over Briggs’ speed. 

None of these sources has dealt with the difficulties of 
applying the graph coloring technique to hardware archi- 
tectures in which some instructions accept individual 
operands that are comprised of multiple contiguous regis- 
ters. Chow and Hennessy (ChHe 84), who implemented a 
similar register allocation technique called priority-based 
coloring, reported, “The problem of allocating overlapping 
registers of different sizes [another way of saying multiple 
contiguous registers] have [sic] not been considered.... It 
would be interesting to see to what extent priority-based 
coloring [and, I submit, graph coloring] can be adapted to 
such situations.” 

This paper explains a set of extensions sufficient to solve 
the problem. It is assumed that the reader already has basic 
familiarity with register allocation by graph coloring. If 
this is not the case, the reader is encouraged to refer to the 
sources provided in the final section. 

2. Background 

2.1. Motivation 

Several int,l architectures have instructions in which one or 
more operands are each comprised of a contiguous cluster 
of registers. To address these operands, the identity of the 
cluster’s low-order register (referred to as the O-mate) is 
placed in the appropriate operand field of the instruction; 
the addresses of the other cluster-mates are inferred in the 
obvious way. 

In register allocation, the difficulty in dealing with register 
clusters stems from the fact that the clusters must be hosted 
by contiguous registers. It is a bad coloring that would, for 
example, assign the O-mate of a two word cluster to register 
r4, and the 1 -mate of the same cluster to register r9. 

It would be easier for compiler writers if the multi-register 
operands were handled by widening the instructions so that 
they explicitly address all the constituent registers. Then 
the existing register coloring algorithms could be 
employed, placing the cluster constituents in whatever 
registers were available in the region where the cluster is 
live. Both the added width of the instruction and the 
greater complexity of dereferencing the extra register 
addresses makes this suggestion unpalatable from a 
hardware design perspective. 

Another alternative is to eliminate the instructions that 
make use of multi-register operands, i.e. the RISC 
approach. The trade-off for doing this is that the instruc- 
tions that require multi-register operands become 
sequences of other less demanding instructions. These 
instruction sequences might be slower in their own right, 
and the loss of code density can slow the operation further. 

Therefore, in light of the realities of hardware design, com- 
pilers must be endowed with effective register allocators. 
If register coloring is done, one way to handle multi- 
register clusters is to “pre-color” them to contiguous physi- 
cal registers, then use the standard coloring algorithms on 
the remaining, single-register clusters (which, after all, tend 
to comprise the majority of the program’s register 
demand). A drawback of this approach is that it raises the 
priority of multi-register clusters to a level artilicially 
higher than the priority of single-register clusters. Another 
drawback is that it places an unnecessarily strong constraint 
on the locations to which the multi-register clusters must be 
assigned (i.e. to the specific registers that the pre-colorer 
assigns). As a further consequence, it places an unneces- 
sarily strong constraint on the locations to which the 
single-register clusters must nor be assigned. 

Another approach might be to “post-color” the multi- 
register clusters, basicly giving them what’s left after color- 
ing the single-register clusters. This method suffers similar 
drawbacks as the pre-coloring approach. 

This paper details an approach in which the multi-register 
clusters are colored simultaneously and harmoniously with 
coloring the single-register clusters. It turns out that this is 
not difficult to do. Only seven weeks of the author’s time 
were required to design and implement this approach. 

2.2. Hardware Characteristics 

As indicated above, the processor architectures of interest 
to the author require multi-register clusters to be assigned 
to contiguous registers. More specificaIly, clusters must 
also be aligned on “natural” boundaries. That is, when 
assigning a two-word cluster, the O-mate must be placed in 
an even-numbered register while the l-mate must be placed 
in the odd-numbered register immediately subsequent to 
the O-mate. 

Moreover, in the int,$ 80960 family of microprocessors 
(Intel 89), where three-word and four-word operand clus- 
ters are defined for some instructions, the O-mate of these 
clusters must be aligned to a register number divisible by 
four. The processor architecture imposes alignment con- 
straints upon multi-word clusters, because doing so 
simplifies the “scoreboard” logic (see Intel 89). 

number of colors (physical registers). 
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2.3. Software Characteristics 3. The Algorithm 

One might be content to model register cluster usage sub- 
ject to the assumption that the individual registers in a clus- 
ter all have exactly the same lifetimes. This would be 
entirely sufficient to model elementary types such as dou- 
ble precision floating point. It would also be feasible, 
though timid, to model aggregate data types, i.e. structs. 

Such a model would have the advantage of simplicity, 
since the compiler simply tracks whether one cluster inter- 
feres with another, instead of tracking what portions of the 
one interfere with what portions of the other. But this 
model has the disadvantage of being overly pessimistic 
with the assignment of the precious physical register 
resource. 

Figure 2-1A shows a sample code sequence that would 
benefit from the more aggressive model. In compiling this 
code, it is advantageous to fetch both elements of y with a 
single two-word load instruction, store the two words to n, 
and then maintain the integrity of the register containing 
y.a until it is stored to r. While keeping this register 
around, the register that contained y.b can be used for 
something else, such as the transfer of q to p. So, with this 
aggressive model, the source code shown in Figure 2-1A is 
compiled to the object code shown in Figure 2-lB, which 
uses only two registers. With the simpler model, three 
registers would be used instead. 

A -- Source Code: 

struct { 
int a; 
int b; 

I x, y: 
int p, 9, r; 

. . . 
x = y; 

p = 9; 
r = y.a; 

. . . 

B -- Object Code 

Id1 _y,GO # load Y into GO and Gl 
stl GO,-x # store GO and Gl to X 
Id -tit G1 9 load Q into Gl 
st Gl,-P # store Gl to P 
st GOP-r # store reg that still 

# has Y.A and X.A to R 

Figure 2-1 An example favoring aggressive model 

Register allocation is performed after all optimization 
phases and after the optional instruction scheduler phase. 
Register allocation attempts to fit (by graph coloring) the 
arbitrarily large number of virtual registers referred to in 
the intermediate program representation, to the few physi- 
cal registers in the actual hardware. 

Sometimes the register allocator cannot successfully fit the 
virtual registers into the limited number of physical regis- 
ters. When this happens, the register allocator inserts spill 
code into the intermediate program representation, and 
causes control to reiterate some of the earlier phases. In 
particular, the register allocator itself must be reiterated. 
But before doing so, it is probable that loop invariant code 
removal, for example, should be reiterated. Also, if code 
scheduling is being done, it should be reiterated. 

Chaitin (Chai 82) indicates the reason for reiterating the 
register allocator, as follows: 

Spilling a computation is not the same as eliminating 
its node from the graph, for it is still necessary to 
reload it at each use and to store it away at each 
definition point. So that what actually ought to happen 
is that one node corresponding to a globally live com- 
putation would have to be replaced by several new 
nodes corresponding to computations which are only 
live momentarily. However it is too expensive to 
proceed in this more exact manner. 

Thus after all spill decisions are made, it is necessary 
to insert spill code in the program [intermediate 
language form], rebuild the interference graph, and 
then reattempt to obtain a [coloring].... Convergence is 
usually quite rapid. 

Though reiterating the register allocator is required, reitera- 
tion of the earlier optimization phases is not. In fact, if the 
earlier phases are always reiterated, it may be possible to 
contrive a situation where the register allocator never 
succeeds in coloring the registers. On the other hand, if we 
never reiterate the earlier phases, the spill code is likely to 
noticeably damage the quality of the object code, beyond 
what is necessary. For example, we may be able to move 
the load of a loop-invariant spilled register out of a loop, 
but that is only possible if we reiterate the phase that does 
loop-invariant code removal. 

Pinter’s work (BGGKMNP 89) supports our decision to 
reiterate earlier optimizations. He applied a technique that 
he called “cleaning”, in which he limited spill code inser- 
tion to a single load or store per basic block. Moreover, he 
wrote “It is evident that limiting the action of the cleaning 
routine to the scope of single basic blocks is an artificial 
constraint, and that it could be extended to larger regions of 
the program, for example, the elimination of loads and 
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stores from loops and/or moving them out of a loop.” 

We have chosen to reiterate those optimization phases 
which will effect both the per-block cleaning that Pinter 
performed and the loop optimizations he suggested. We’ve 
also chosen to reiterate instruction scheduling. Empiri- 
cally, Pinter found that cleaning was best applied to the 
spill code resulting from the first two iterations of the regis- 
ter allocator and thereafter suppressed. At the time of this 
writing, we have not yet determined whether that empirical 
control is appropriate for the other optimizations we intend 
to reiterate. 

Aside from coloring the virtual registers into the physical 
registers, the register allocator performs an optimization 
called register subsumption (also called coalescing). The 
earlier phases of the compiler are encouraged to be quite 
loose and liberal about their use of virtual registers, includ- 
ing moving received parameters and called-function results 
out of physical registers and into virtual registers immedi- 
ately, and likewise moving arguments and current-function 
results into physical registers just before needed. The 
register allocator attempts to eliminate the copious register 
move operations by “subsuming” their source and destina- 
tion registers. 

Register subsumption has the negative effect of imposing 
greater constraints on the coloring of the virtual registers to 
the physical registers. Empirically, these negative effects 
are small compared to the gain obtained by the elimination 
of unnecessary moves. Chaitin’s (Chai 82, CACCHM 81) 
work suggests that most subsumption opportunities will be 
exploited in two or three iterations of the register allocator. 

The following steps are performed by the register allocator: 

(1) Build interference graph in matrix form. 
(2) Perform register subsumption. 
(3) Convert the interference graph from matrix form to 

vector form. 
(4) Prune the interference graph. 
(5) Color the interference graph, introducing spill code 

as necessary. 
(6) Return a status indicating whether reiteration is 

necessary. 

3.1. The Matrix Form of the Interference Graph 

Chaitin (CACCHM 81) suggested that the interference 
graph should be stored as both a bit matrix for random 
access operations and as segmented lists for sequential 
access. He pointed out that building the graph requires ran- 
dom access, the pruning and coloring operations require 
sequential access, and the subsumption optimization 
requires both kinds of access. 

Rather than keep both forms simultanwusly, our imple- 
mentation starts with the matrix form for building the 
interference graph and attempting the subsumption optimi- 
zations, then translates the matrix form to adjacency vec- 
tors for the pruning and coloring phase. This approach 
simplifies the graph-building step, because adding edges to 
the graph does not require updating a segmented or linked 
lists representation. Moreover, at the time the matrix is 
translated to lists, the number of edges emanating from 
each node of the graph is fixed, so the lists can be simple 
vectors. 

CasuaI conversation with other compiler implementors has 
indicated that others have done much the same thing. 
These same conversations indicate an awareness that (as 
Chaitin points out) the bit matrix “grows roughly as a qua- 
dratic function An, = 2116 bytes] of the number n of 
nodes in the interference graph, [and therefore] for large 
programs it would be better if hashing were used instead of 
direct addressing into a bit matrix.” (ibid) As many others 
have done, we’ve chosen to implement the bit matrix rather 
than the hashing method. 

Chaitin also points out that “[one] can take advantage of the 
fact that the adjacency matrix of the interference graph is 
symmetrical to halve the storage needed.” (ibid) In particu- 
lar, the major diagonal of the bit matrix divides the matrix 
into two reflexively equivalent triangles, so only one of 
them must be implemented. 

3.2. Building the Interference Graph 

The ability to allocate clusters of registers is an important 
issue for the iutJ80960 microprocessor, where the general 
registers sometimes are allocated in aligned pairs, triples, 
or quadruples, and for the int,l 80860 microprocessor 
where the floating point registers sometimes are allocated 
in aligned pairs or quadruples. 

Two examples are presented to visualize the problems with 
respect to allocating register clusters. In the first example, 
suppose that the physical register set consists of eight con- 
tiguous registers numbered 0 through 7. Clusters consist- 
ing of three cluster-mates (i.e. triples) must be aligned on 
four-word boundaries, (i.e. must start at register 0 or regis- 
ter 4). Clusters consisting of two cluster-mates (i.e. pairs) 
must start at any even register. Remaining registers of a 
cluster must be consecutively numbered from the first (the 
O-mate). 

Now suppose we are trying to fit two triples and a pair into 
the eight physical registers. Figure 3-1 shows the overlap 
between these clusters. 

Without the modifications to be explained subsequently, the 
interference graph for these clusters would look the same 
as it would for a program containing eight single, 
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overlapping registers. In particular, it would look like eight 
nodes with maximal edges, as shown in Figure 3-2. But 
while eight single overlapping virtual registers are color- 
able among the eight physical registers, two triples and a 
pair are not. Suppose, for example, that the triples are 
colored to their only possible places, namely r&r2 for one, 
and r4-r6 for the other. Only r3 and r7 are left for the 
two-word cluster, which is not an acceptable coloring. 

For the second example, consider trying to fit three two- 
word clusters into four registers. Figure 3-3 shows the 
overlap between these clusters. (Cluster X in this diagram 
is split; it comes alive toward the bottom of a loop and 
stays alive into the next iteration. Also, for clusters X and 
Z, the lifetimes of the two cluster-mates differ.) 

Again, without the modifications to be explained, the 
interference graph for these clusters would look the same 
as if the virtual registers were not clustered. But in the case 
where they are not clustered, the graph colors in four regis- 
ters. In the case of the example, four registers can’t color 

A0 Al 

A2 

Figure 3-2 Exarn~le 1: Maxi:; Conflict Edges 
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n 

Figure 3-3 Example 2: Liveness Overlap 

the graph. For instance, if YO (the O-mate of cluster Y) and 
Yl (the l-mate) color to physical registers r0 and rl 
respectively, and if ZO and Zl color to r2 and r3 respec- 
tively, then X0 can color to r2 only while Xl can color to 
rl only. But that’s unacceptable because r2 and rl aren’t 
an aligned pair. 

While one would be tempted to conclude that coloring 
register clusters requires more detailed information about 
the nature of interferences, the solution algorithm actually 
benefits from having less information. That is, where regis- 
ter interferences are implicit, these interferences are best 
left unexpressed in the interference graph. With small 
modifications to the graph coloring algorithm, the compiler 
makes easy and fast use of the reduced volume of informa- 
tion. 

While all edges in the graph indicate interference relations, 
not all interference relations require an edge. The fact that 
the cluster-mates of a single cluster cannot reside in the 
same register is implicit. For example, the O-mate of a 
two-word cluster must go into an even register, while the 
l-mate must go into an odd register. Likewise, the interfer- 
ence between the O-mate of one two-word cluster and the 
l-mate of another two-word cluster is implicit. Similar 
implications exist for other kinds of clusters. 

By omitting the implied edges, the resolution of the graph 
coloring problem begins to appear. In the first example 
above, the two three-word clusters and one two-word clus- 
ter would have an interference graph as shown in Figure 
3-4. 

In the unmodified algorithm, all eight virtual registers 
would be considered unconstrained, because none of them 
interfered with eight or more other virtual registers. In the 
modified algorithm, we don’t ask “does this node have 
fewer than 8 neighbors?” to decide whether a node is 
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unconstrained. Rather, we ask “Does this cluster have 
fewer neighbors than the number of places the cluster can 
be fitted into the register set?” So, the two neighbor edges 
of A0 are sufficient to mean that cluster A is constrained. 
Cluster B is constrained in the same way. And, though four 
suitable registers are available for Cl and that node only 
has two neighbors, nevertheless cluster C is constrained 
because there are only four suitable registers for CO and 
that node has four neighbors. 

In the second example above, elimination of the implicit 
interferences would cause the three pairs to have an 
interference graph as shown in Figure 3-5. 

Though X0, Xl, ZO, and Y 1 appear to be unconstrained 
because they have fewer than two neighbors, this is not the 
case. Yl is constrained because the cluster Y is con- 
strained; the interferences imposed on YO alone are 
enough to constrain the cluster as a whole. Likewise, ZO is 
constrained because cluster Z is constrained. This leaves 
X0 and Xl. While on the surface they seem unconstrained, 
they are in fact constrained. As I said above, the question 
is whether the cluster as a whole has fewer neighbors than 
places in which the cluster could be fitted. Since X0 inter- 
feres with YO, and Xl interferes with Zl, the cluster X 
interferes with Y and Z, the union of the clusters with 
which the individual cluster-mates interfere. 

So far, the complexity of the interference graph has been 
greatly reduced by omission of implicit interferences. As a 
result, the solution strategy has begun to appear. A further 
simplilication can be realized by recognizing the 
synonymous nature of some interference relations, and 
choosing to represent these synonyms in a single normal 
form. For example, if the lifetimes of the l-mates of two 
two-word clusters overlap, then there is an interference 
relation between them. Now even if the O-mates of these 

x0 Xl 

zo 
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21 

Figure 3-5 Example 2: Implicit Edges deleted 

clusters do not have overlapping lifetimes, they cannot be 
assigned to the same register r because that would imply 
that the l-mates would be assigned to r+l . 

Two benefits can be realized by using the normal form. 
The first benefit is that it eliminates redundancy, further 
reducing the volume of data in the interference graph. In 
particular, the first example’s conflict graph shows that A0 
interferes with BO, that Al interferes with BI, and that A2 
interferes with B2. These statements are redundant; any 
one of those interference relations implies the other two. 
This redundancy is eliminated by only depicting one of the 
relations. 

There is a cyclic nature to the synonymous interferences 
between clusters of differing sizes. For instance, between a 
two-word cluster P, and a four-word cluster Q, an interfer- 
ence relation between PO and QO is synonymously 
expressed as an interference relation between Pl and Ql. 
Likewise an interference between PO and 42 could alter- 
nately be expressed as an interference between Pl and 43. 
In the author’s implementation, one or both of the virtual 
registers connected by a normalized interference edge is 
the O-mate of its cluster. 

Figure 3-6 shows the interference graph for the tist exam- 
ple with the redundant interferences deleted. 

The second benefit realized by using the normal form, is 
shown in the second example. It benefits in a more impor- 
tant way: after normalization, the interference graph 
clearly depicts the fact that all three register-pairs are con- 
strained. This is shown in Figure 3-7. 

Figure 3-8 gives the algorithm in pseudo-code for building 
the interference graph. 

A0 A2 Al 
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Figure 3-7 Example?: Normalized Conj& Graph 
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For each pair of interfering registers ri and rj, with ri < rj I 

If any of these conditions exist, suppress the interference relation as implicit: 

1) ri and rj belong to the same cluster; or 
2) ri and rj are not alignable; or 
3) ri and rj are both physical registers: or 
4) ri [or rj] is a physical register in a cluster too small to host the cluster containing 

rj [or ri] 

Otherwise normalize the proposed interference relation, by expressing it in terms of an inter- 
ference with the O-mate of one cluster or the other (or both): 

While neither ri nor rj is the O-mate of its cluster ( 
ri := the index of the next lower cluster mate of ri’s cluster: 
rj := the index of the next lower cluster mate of rj’s cluster; 

If ri and rj are already marked as interfering, suppress the interference relation as redundant; 
otherwise record the interference relation between ri and rj. 

Figure 3-8 Algorithm to Collect Germune Conflicts 

3.3. Understanding the Interference Graph 

The normalized form of the interference graph is nearly 
what’s desired, but not quite. It must be coupled with a 
shift in perspective on the part of the reader. Readers fami- 
liar with the graph coloring technique, as applied to archi- 
tectures without register clustering, may operate under con- 
cepts that work for those architectures, but they do not 
work here. In particular, it becomes important to distin- 
guish between the number of interference relations (edges) 
in the interference graph, and the number of coloring con- 
straints they imply. 

Casual inspection of Figure 3-6 shows us that the cluster C 
has four interference edges, i.e. two of its interferences are 
with cluster A and two are cluster B. Generally, one might 
expect that this would imply that four coloring constraints 
are imposed upon C by its neighbors, i.e. two coloring con- 
straints imposed by A and two coloring constraints imposed 
by B. For instance, if A gets colored to registers {r4, r.5, 
r6), then C is precluded from being colored at {r4, r5J and 
at {r6, r7J. 

But Figure 3-6 also shows that the cluster A [and similarly 
B] has three interference edges, so one might expect that 
these edges imply there are three coloring constraints 
imposed upon A, i.e. two coloring constraints by C and one 
by B. Actually this is not the case. No matter where C is 
assigned, it cannot impose two coloring constraints upon A. 
That is, of the possible places to assign A, assigning C first 
can only reduce by one the number of places A can go. 

Therefore, Figure 3-6 accurately depicts the interference 
relations between A, B, and C. It even accurately depicts 
the coloring constraints imposed upon C, the smaller clus- 
ter. But it’s not a picture of the coloring constraints 
imposed upon the larger clusters, A and B. The picture 

suffices though, if one remembers that the consrraints 
imposed upon a larger cluster are not the sum of the con- 
straints imposed upon its cluster-mates, but rather are the 
union thereof. The interferences between A2 and CO and 
between A0 and CO are two constraints upon C, but only 
one constraint upon A. 

Accordingly, Chaitin’s assertion about the bit matrix being 
symmetrical is not really true of multi-register clusters, 
when seeking to count coloring constraints imposed upon a 
cluster. However, the asymmetry is not so great as to 
require the full bit matrix to be expressed. It still will be 
possible to extract accurate information from only one tri- 
angle of the matrix. 

Thus it has been shown that implied interference edges are 
not needed, and their deletion makes the graph pruning 
operation more apparent. In addition, fewer edges means 
visiting the triangular matrix less, and will reduce memory 
requirement when the matrix is converted to interference 
vector form. Traversal time through the graph is reduced 
as well. 

3.4. Portraying Register Clusters and Subsumed Regis- 
ters 

Each virtual register is distinguished from each other vir- 
tual register by a unique virtual register index. Because the 
size of the interference graph bit matrix is proportional to 
the square of the greatest virtual register index, best perfor- 
mance is obtained if these indices are as small as possible. 
The register allocator in int,l?s compiler receives a single 
data value associated with each virtual register index. This 
datum is an indication of how large the cluster is to which 
the virtual register belongs. In addition, the register 
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allocator is assured that the indices for a cluster are con- 
tiguous and are assigned in accordance with natural align- 
ment rules. For example, the O-mate of a three- or four- 
word cluster will always have an index divisible by four. 

From these data, the register allocator can form an associa- 
tion between the indices of all the virtual registers belong- 
ing to a cluster. The association takes the form of a list, in 
which the virtual register with the highest offset (the 
cluster-boss) must point to the second highest, etc., down to 
the O-mate. In addition, associated with each virtual regis- 
ter is a pointer directly back to the cluster-boss, and an 
indication of the virtual register’s offset within the cluster. 
An example of this is shown in Figure 3-9-A. 

As register clusters are successfully subsumed by other 
register clusters, the list of the subsumed cluster is 
appended to the list of the subsuming cluster. The index of 
the cluster boss recorded for each register in the subsumed 
cluster is updated to the index of the cluster boss of the 
subsuming cluster. Also, the cluster offsets of the registers 
in the subsumed cluster are modified by the amount they 
are shifted to align with the subsuming cluster. For exam- 
ple, if a two-word cluster is subsumed into the third and 
fourth words of a four-word cluster, the cluster offsets of 
the subsumed registers are changed from zero and one to 
two and three. (See Figure 3-9.) Thus it is possible to 
determine the subsumer of any register by simply going to 
the register’s cluster boss, and then skipping down the list 
until the first register with a matching cluster offset is 
found. 

Subsumption of clusters is subject to a few straight-forward 
rules. In register allocators that don’t deal with clusters, 
the two registers to consider subsuming must not both be 
physical registers, and they must not interfere. Analo- 
gously, when dealing with clusters, both clusters cannot be 
comprised of physical registers, and all the corresponding 

cluster-mates of the two clusters must not interfere. The 
latter condition can be checked simply by testing for the 
normalized interference relation. 

In addition, the cluster-mates of the potential subsumee 
must be alignable with the subsumer cluster-mates. In Fig- 
ure 3-9, a two-word cluster was successfully subsumed into 
the third and fourth words of a four-word cluster. They can 
also be subsumed into the first and second words of a four- 
word cluster. But they cannot be subsumed into the second 
and third words, because when the four-word cluster is suc- 
cessfully allocated to a four-word boundary, as it surely 
must be, access to the subsumed two-word cluster causes 
an alignment violation. 

When dealing with architectures that support clusters as 
large as four words, one case is rather tricky to support: 
subsuming the first word of a two-word cluster with the last 
word of a three-word cluster, resulting in a four-word clus- 
ter. This case is shown in Figure 3-10. To support this 
case, a fourth virtual register index has to be reserved with 
each three-word cluster just in case this subsumption 
opportunity arises. If there is no interference, the two-word 
cluster is subsumed into the three-word cluster by extend- 
ing the latter to a four-word cluster. There would be more 
similar cases for an architecture in which clusters larger 
than four words are supported. 

Now, with respect to register allocators that don’t deal with 
clusters, consider: When dealing with the subsumption of 
two virtual registers, the decision as to which one of the 
two is the subsumer and which is the subsumee is arbitrary. 
When dealing with the subsumption of a virtual register 
and a physical register, the virtual register should be the 
subsumee; i.e. if the subsumption succeeds, the use of the 
virtual register will be replaced by the use of the physical 
register throughout the program, and any moves of the phy- 
sical register from or to the virtual register will be deleted. 

A. Before subsurnption 

B. Aftersubsumiq (~4, VI-S) into (m-2, ~13) 

A. Before submmptim 

B. Afta subsuming (~4) into [vr2) 

VI3 VI2 vrl VI0 VI5 VT4 VI3 VI2 Vrl VI0 VI5 VA 

offset: 3 offsu: 2 offset: 1 offset: 0 offset: 3 offset: 2 offset: 3 offset: 2 offset: 1 offset: 0 offset: 3 offsot: 2 
3 + a +b -L + a +b +w +m 

boss:vr3 boss: vr3 boss: vr3 boss: VI? bo.wvr3 boss: vr3 boss: vr3 boss: w3 boss: vr3 bosxvr3 boss:vr3 boss: vr3 

Figure 3-9 Subsuming a Pair and a Quadruple Figure 3-10 Subsuming a Pair and a Triple 
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Analogously, when dealing with clusters, clusters of virtual 
registers may be subsumed by clusters of physical registers, 
but not the other way around. One important condition is 
that a physical register cluster must not be enlarged by a 
subsumption. To clarify, the int,l 80960 microprocessor’s 
32 registers are addressable as eight distinct four-word 
clusters. However, register G15 is not colorable because, 
by convention, it always contains the frame pointer. There- 
fore, we can never subsume a four-word virtual register 
cluster with {G12, G13. G14), because we can’t extend the 
latter with G15. 

When dealing with two clusters that are both comprised of 
virtual registers, if one of the clusters is larger, it will be the 
subsumer; when the clusters are the same size, the decision 
is arbitrary. 

Armed with these conditions, the subsumption routine con- 
siders whether subsumption candidates can indeed bc sub- 
sumed. Subsumption candidates arc identified by scanning 
the intermediate program form for moves from one cluster 
to another; the source and destination should be subsumed 
if possible. If they can be subsumed, then the clusters are 
joined as described above, the corresponding move opera- 
tions are deleted from the intermediate program form, and 
all the interferences recorded for the cluster-mates of the 
subsumee are transferred to the corresponding cluster- 
mates of the subsumer. The scanning of the program is 
done in depth-first order with respect to loops, because it is 
more desirable to delete move instructions from within 
lc~ps than from without. 

Figure 3-11 gives the algorithm in pseudo-code for sub- 
sumption. 

3.5. Convert Interference Graph from Matrix Form to 
Vector Form 

Up to now, the interference graph has been represented as a 
bit matrix. This form provides good support for the ran- 
dom accesses needed to install interference edges and to 
consider and apply subsumptions. After performing these 
operations, the remaining work of the register allocator is 
to actually color the interference graph. The operations 
that do this need to be able to iterate over the interference 
edges applicable to each cluster. This iteration does not 
benefit from the random access capability of the bit matrix 
form for the graph. Indeed, because the graph tends to be 
sparse, controlling the iterator by scanning the bit matrix is 
rather slow. 

To wit, the interference graph is converted to a list form, in 
which each node (except those that have been subsumed by 
other nodes) has a list of all the interference edges that 
apply to it. Since no interference edges can be added to or 
deleted from a node from this time forward, it is not neces- 
sary to implement a linked list or even a segmented list, as 

implemented by Chaitin et al (CACCHM 81). A simple 
vector suffices. 

3.6. Pruning the Interference Graph 

Traditionally, pruning removes nodes from the interference 
graph iteratively until the graph is empty. Coloring will 
assign registers to the removed nodes in reverse order from 
their removal. In each pruning iteration, it is preferable to 
remove a node that is “unconstrained”, i.e. has degree c k, 
where degree is the number of neighbors still in the graph, 
and where k is the number of physical registers available. 
Further, empirical methods have been used to determine 
that better results are attained by removing the most con- 
strained of the unconstrained nodes first (i.e. the node with 
largest degree c k). See Pinter (BGGKMNP 89) for a dis- 
cussion of these priorities. 

To deal with multi-register clusters, the traditional imple- 
mentation is altered as follows. First of all, pruning does 
not remove individual nodes, but clusters instead. To this 
end, the pruning initializer computes the initial degree 
values for each cluster as a whole, and the pruning iterator 
selects whole clusters based on this information. In the 
traditional implementation, the initial degree value for each 
node is the number of coloring constraints imposed upon 
the node by its neighbors, and this is equal to the length of 
its list of interference edges. But as has been pointed out in 
section 3.3, the number of coloring constraints imposed 
upon a cluster is not necessarily equal to the sum of the 
number of interference edges emanating from each node of 
the cluster. Recall that a smaller cluster imposes only one 
coloring constraint upon a larger cluster, whether there is 
one interference edge between the clusters, or more. 

Pruning in the presence of multi-word clusters also differs 
from traditional pruning in that for large clusters, the 
degree k at which they become unconstrained is a smaller 
value than for small clusters. For example, the int,l 80960 
microprocessor has 32 general purpose registers, address- 
able as 32 singletons, 16 two-word clusters, or 8 three- or 
four-word clusters. However, four of the registers (G15, 
RO, RI, and R2) are not colorable because they have 
reserved meanings. The four reserved registers are not 
contiguous and four-word aligned, so they interfere with 
two different four-word clusters. Consequently, the value 
of k is 28 for single-word clusters, 13 for two-word clus- 
ters, 7 for three-word clusters and 6 for four-word clusters. 

It is inconvenient to have four different “magic numbers” at 
which different size clusters become unconstrained. To 
alleviate this nuisance, a weighted-degree value is used, 
instead of actual degree. weighted-degree is calculated by 
multiplying actual degree by a weighting factor, and then 
adding a bias value. The weighting factors used are one, 
two, four, and four respectively for 1-, 2-, 3-, and 4-word 
clusters. The added bias values are such that clusters of all 
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Performing a depth-first scan of the intermediate program form, for each source register rs and 
destination register rd found in a move instruction, do 
( 

Because rs and/or rd may have already been subsumed by some other register: 

rs := subsumer-of (rs); 
rd := subsumer-of (rd): 

Call the subsumption attempt successful if rs and rd are now equal. 

Otherwise normalize the registers to check for the normalized interference relation. This is 
done the same way as in the recording of interferences: 

While neither ri nor rj is the O-mate of its cluster ( 
ri := the index of the next lower cluster mate of ri’s cluster; 
ri := the index of the next lower cluster mate of rj’s cluster; 

1 

Reject the subsumption attempt as a failure under the following conditions: 

1) if rs and rd interfere; or 
2) if rs and rd are both physical registers: or 
3) if rs or rd is a physical register, and the subsumption would enlarge its cluster; or 
4) if rs and rd cannot be aligned to the same register. 

Otherwise coalesce the clusters as depicted in the examples in Figure 3-9 and Figure 3-10; and 
call the subsumption attempt successful. 

Modify the program intermediate form to account for all successful subsumptions, by doing 

First, for all virtual register indices appearing in the program intermediate form, replace them 
by the corresponding active cluster mate of the same cluster. 

Then, delete all move instructions that move a register to itself. 
1 

Figure 3-11 Algorithm to Perform Subsumptions 

four sizes have the same “magic number” at which they 
become unconstrained. The bias values are also large 
enough to assure that the weighted-degree of a cluster with 
few or no interference relations is a value no less than zero. 

Figure 3-12 gives the algorithm in pseudo-code for com- 
puting the initial weighted-degree values and preparing for 
pruning. 

Subsequently, clusters are pruned from the interference 
graph in the normal way. As with graph coloring for tradi- 
tional register files, if the graph ever has only constrained 

nodes, one of them is selected for pruning. Pinter’s best- 
of-three selection heuristic (ibid), coupled with Briggs’ late 
spill decision technique (BCKT 89), yields an excellent 
implementation. For our implementation, the late spill 
decision is particularly valuable because, in the presence of 
large clusters, there tend to be more potential spills that end 
up being colorable after all. Consider that the worst possi- 
ble placement of eight single-word clusters among 32 phy- 
sical registers could preclude a four-word cluster from 
being colorable. But worst case placement of the single- 
tons is not likely, so the larger cluster will probably be 
colorable after all. 

For each cluster c of virtual registers ( 

Count the number of constraints imposed upon c by its neighbors. 

weighted-&gree = constraints * weightfactorCIW,e, riu ,=, + weigbt-biasC,Wer rLr,c, : 

I E weighted degree >= weighied degree below-which-elurters become-unconstrained, 
otherwise-mark c as unconstrained; 

mark c as constrained; 

Figure 3-12 Algorithm to Initialize for Pruning 
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Figure 3-13 gives the algorithm for pruning in pseudo- 
code. 

Calculation of the heuristic estimates for spill cosr, area, 
and degree (see BGGKMNP 89), is somewhat more com- 
plicated for our implementation. In particular, cost must 
estimate the number of loads and stores required for each 
cluster-mate, reduced by the savings available when adja- 
cent mates of a cluster can be loaded simultaneously. area 
for a cluster is simply the sum of the area calculated for 
each cluster-mate, and weighted-degree is used instead of 
actual degree. 

3.7. Coloring the Interference Graph 

Coloring the clusters in reverse order from how they were 
pruned is rather straight-forward. The technique intro- 
duced by Chaitin (Chai 82), refined by others, and espe- 
cially coupled with the late-spill-decision improvements by 
Briggs (BCIST 89) yields a high quality implementation. 
The three different spill heuristics applied in the pruning 
phase may yield three different orders for coloring. While 
Pinter suggested only coloring the one with the least overall 
cost, Briggs late-spill-decision (really a coloring-phase 
ratification of pruning-phase spill decisions) implies that all 
three colorings must be attempted. After each coloring, the 
overall costs of ratified spill decisions are compared, and 
the cheapest coloring is accepted, 

Of course, when the heuristics do not digress in how they 
would prune the graph, a single coloring is adequate. This 
is the usual case, since most programs color with no spills 
at all. 

One alteration peculiar to multi-word clustering is that, of 
course, the registers assigned to such clusters must be 
appropriately aligned. As with traditional coloring, if a 
cluster was unconstrained when it was pruned from the 
graph, it is certain an appropriate color can be found for it. 

For each heuristic h { 

While the graph G is not empty { 

If there is an unconstrained cluster 

It is also important to be careful about how clusters are 
spilled. It is tempting to be lazy and simply spill entire 
clusters. However, it is important to avoid restoring por- 
tions of a cluster that are not live. Consider trying to color 
the example in Figure 3-14 into exactly two physical regis- 
ters. (Ignore the fact that some simple reordering of the 
instructions might well avoid the problem altogether.) Fig- 
ure 3-14A shows the source code for the example, and Fig- 
ure 3-14B shows the intermediate object code as input to 
the register allocator. Figure 3-14C suggests a possible 
output code sequence, based on the supposition that the 
register allocator would choose to spill the cluster {vrO, 
vrl). 

The output code shown has a bug in it. In particular, at the 
points where {vtO, vrlJ are saved and restored, really only 
v# is live. The restoration of the whole cluster means that 
the wrong value will be stored to the variable t. 

Strictly speaking, the register allocator output shown in 
Figure 3-14C wouldn’t really occur. Instead, the spill code 
suggested would be inserted, and the register allocator 
would be reiterated. In the second iteration, it would 
become apparent that vr4 must be spilled as well. Spill 
code would be inserted, and the register allocator would be 
iterated a third time. This would result in a successful out- 
put. Unfortunately, it would include the spilling of both a 
two-word cluster and a one-word cluster, when all that is 
really necessary is for the first word of the two-word cluster 
to be spilkd. 

4. Future Work 

The techniques used here are directly applicable to graph- 
coloring environments in which it is desirable to support 
multi-register operands that are aligned and use contiguous 
registers. By relaxing the alignment restriction, the con- 
tiguity restriction, or both, these techniques could be 
applied to model other interesting resource management 
problems. 

Choose cluster c with largest weighted-degree (among the unconstrained clusters); 
Reduce appropriately the weighted-&gree of all unpruned neighbors of c 

(this may cause some to change from being constrained to unconstrained): 
Delete c from G and place on stack; 

Otherwise 
Choose cluster c with minimum h(c); 
Reduce appropriately the weighted-degree of all unpruned neighbors of c 

(this may cause some to change from being constrained to unconstrained); 
Delete c from G and place on stack, annotated that it may need to be spilled; 

} 

Figure 3-13 Algorithm to Prune Clusters 
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A -- Source Code: 

and storage resources of systolic architectures might also 
benefit from a generalization of the techniques presented. 

struct { 
int a; 
int b; 

1 x, y: 
int p, qt r, s1 t; 

. . . 
x - y: 
r=p+q; 
s = x.a; 
t = r; 

B -- Object Code, before register 
assignment 

ldl _y,{vrO,vrl) # load 2 words of y 
stl (vr0, vrl) ,-x # store 2 words of x 
Id 9, vr2 # 
Id -qr vr3 
addi vr2,vr3,vr4 : / r=p+q; 
St vr4, -r x / 
St vrO,-s # s = x-a; 
st vr4, -t X t = r; 

C -- after first register 
assignment attempt 

Id1 _y,GO 
stl GO,-x 
stl GO,spill-area # too much saved 
Id 9, Gl 
Id -crt GO 
addi Gl,GO,Gl 
st Gl, r 
ldl spill-area,GO # too much restored 
st GO,-s 
st Gl,-t # wrong value stored 

Figure 3-14 Must Spill Only the Live Cluster-Mates 

These other models might be more general than necessary 
for the problem of allocating processor registers, because 
alignment and contiguity are required on most processors 
that support multi-register operands. But they might be 
useful, for example, in distributing a base-load of real-time 
tasks over a network of processors. Consider a network of 
geographically scattered multi-processor supercomputers, 
where one user might decree “1 don’t cam what four pro- 
cessors my important real-time application is divided 
among, but the processors must be in one geographical 
location so that they can communicate quickly with each 
other.” Another user might say “I don’t care what six pro- 
cessors my real-time application is divided among, but to 
be fault tolerant with respect to meteor strikes, I want the 
processors far apart.” 

To generalize the model, one must revisit the issue of how 
to calculate the number of coloring constraints imposed 
upon a cluster from the set of interference relations incident 
upon the cluster. Likewise, complications would be 
expected to arise in the calculation of weighted degree 
from the number of coloring constraints. Finally, one 
would expect a reduced ability to regard interference rela- 
tions as implicit and so delete them. 

As a clarifying example, consider assigning only two-word 
clusters to a bank of thirty-two physical registers. If align- 
ment and contiguity are required, clusters with degree less 
than sixteen could surely be colored. But if the alignment 
restriction is relaxed, with the most pessimistic coloring, 
one can only be sure of successful coloring of clusters with 
degree less than eleven. Moreover an interference relation 
between the O-mate of one cluster and the l-mate of 
another is no longer implicit, and so must be expressed in 
the interference graph. 

5. Conclusion 

int,l’s 80960 architecture demands that the compiler’s 
register allocator deal well with clustered access of up to 
four words. Rather than resorting to non-graph-coloring 
techniques, or attaching pre-coloring or post-coloring 
phases to deal with clusters larger than a single word, we 
have pursued and found an integrated cluster coloring pro- 
cess. It was easier than we anticipated. 
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