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Abstract

We describe techniques for converting the intermediate

code representation of a given program, as generated by a

modern compiler, to another representation which produces

the same run-time results, but can run faster on a

superscalar machine. The algorithms, based on novel

parallelization techniques for Very Long Instruction Word

(VLIW) architectures, find and place together

independently executable operations that may be far apart

in the original code, i.e., they may be separated by many

conditional branches or belong to different iterations of a

loop. As a result, the functional units in the superscalar

are presented with more work that can proceed in parallel,

thus achieving higher performance than the approach of

using hardware instruction dispatch techniques alone.

While general scheduling techniques improve performance

by removing idle pipeline cycles, to further improve

performance on a superscalar with only a few functional

units requires a reduction in the pathlength. We have

designed a set of new algorithms for reducing pathlength

and removing stalls due to branches, namely speculative

load-store motion out of loops, unspeculation, limited

combining, basic block expansion, and prolog tailoring.

These algorithms were implemented in a prototype version

of the IBM RS/6000 XIC compiler and have shown

significant improvement in SPEC integer benchmarks on

the IBM POWER machines.
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Also, we describe a new technique to obtain profiling

information with low overhead, and some applications of

profiling directed feedback, including scheduling

heuristics, code reordering and branch reversal.
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INTRODUCTION

A great amount of attention is presently being paid to

improving the performance of RISC superscalar

processors, i.e., uniprocessors that can achieve a peak

execution rate of more than one instruction per cycle.

Such architectures execute a standard sequential instruction

set, such as one normally executed by RISC uniprocessors,

but are able to fetch and dispatch to their multiple

functional units a peXk of two or more instructions in each

cycle.

Most speedup measurements on superscalar machines,

tested on code generated by existing compilers, have been

disappointing. For example, Smith et al. [23] indicate that

practical speedups over an existing RISC processor would

be limited to a factor of about 2, even with aggressive

superscalar configurations. The purpose of this paper is

to describe some new global compiler optimization

techniques to help overcome the obstacles to speedup on

superscalar architectures.

One reason for poor performance of superscalar

uniprocessors on existing code, is the small Iookahead

window of the hardware, which limits the parallelism that

can be extracted. Another reason is the unpredictability

of branches, and the expense and difficulty of maintaining

the execution state on all possible paths in hardware, in

case one tried to avoid branch prediction, and execute

operations on all paths instead. A third reason is the

difficulty of maintaining a sustained execution rate of

several

degree

conditional branches per cycle, to achieve a high

of performance in commercial applications or
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system code; branches are very frequent in these types of

codes, so high branch throughput seems mandato~. The

scheduling techniques described here should help to solve

the first problem and part of the second problem. To solve

all three problems, and increase the issue rate without

complicating the hardware, requires (in our view) a VLIW

hardware implementation.

The techniques presented in this paper are inspired by the

new compilation techniques and architectural features that

have been incorporated in the compiler and architecture for

the IBM VLIW machine project at the IBM T.J. Watson

Research Center [7,9,20,10,22,18,21]. This project

consists of the design of a parallelizing compiler and an

architecture (an 8-ALU hardware prototype is currently

operational) for extracting parallelism from extremely

sequential, non-numerical code. Our compiler techniques

can bring together, into the same VLIW instruction,

independently executable operations and tests that may be

separated by many conditional branches in the original

code, or that may belong to different iterations of a loop.

(There have been some publications that have approached

inter-basic block scheduling for superscalars as a new

problem, e.g. [16, 14]. However, these authors dc~ not

appear to have done a thorough literature search on

previously published VLIW scheduling techniques.) The

resulting code can execute operations on all paths as soon

as their operands are ready if resources permit; register

renaming to maintain execution on multiple paths is

managed at compile time. Resources are conserved by

stopping execution of the remaining operations on a path,

as soon as it is known that the path will not be taken.

Also, the compiler merges redundant computations on

multiple paths into a single computation, to further

conserve resources. Advanced memory disambiguation

techniques (enhancements of those used in the Bulldog

compiler [11 ]) are used for determining if two memory

references can access the same location. The same

scheduling techniques can be applied to superscalars as

well, by imagining a VLIW with the same resources as the

superscalar, scheduling for that VLIW, but leaving the

resulting code in superscalar format, rather than in VLIW

format.

The program dependence graph (PDG) [13] has been

considered in scheduling superscalar code for extracting

fine-grain parallelism. A PDG for a procedure has two

parts, a control dependence graph and a data dependence

graph. The control dependence graph portion explicitly

indicates which tests in the program matter in whether a

given statement in the program is executed or not, and
what values these tests should have (true of false) to cause

this statement to be executed (these are the tests on which

the statement is control dependent). As a typical

application of the program dependence graph described in

[13], in the context of standard optimization, statements

(including complex ones, such as loops or diamonds) that

are control dependent on an identical set of test results can

be re-ordered, if data dependence permit. In the context

of scheduling, this re-ordering corresponds to code motion

of non-speculative operations that do not require

duplication (non-speculative, because if one statement

among a set of statements with identical control

dependence is executed, then all will be executed).

Bernstein and Rodeh [4] have described an application of

the program dependence graph to superscalar scheduling,

that includes re-ordering of non-branch instructions with

identical control dependence conditions within a given

loop body, as well as a limited speculative code motion

technique that allows an instruction to be moved above one

conditional branch. Gupta and Soffa [15] have applied the

program dependence graph for somewhat more aggressive

code motions. Their technique allows code motion of

operations above join points with duplication, motion of a

conditional branch above an operation, speculative motion

of operations above conditional branches, and loop peeling

and unrolling (but no software pipelining). However, in

the Gupta-Soffa approach, the unit of code duplication is

an entire region; thus, moving conditional branches above

join points requires more duplication than necessary. Also,

the technique is applied only as an intermediate step for

increasing parallelism of basic blocks and large regions

containing sub-regions, rather than for the actual

generation of machine code. Thus, it is difficult to define

it as a true finite-resource scheduling technique. The

parallel regions executed dynamically in a single cycle by

superscalars, and VLIWS with multi-way branching, tend

to cross basic block and structured region boundaries in

rather arbitrary ways.

Scheduling per se improves performance of a superscalar

by removing idle slots in the pipeline, or by keeping the

functional units busier. For superscalars with a small

number of resources, further performance gains can be

achieved by using compiler techniques beyond classical

optimization, aimed at reducing patlzlength. We have

developed a number of original pathlength reduction

techniques, including speculative load-store motion out of

loops, unspeculation, limited combining, expansion of

basic blocks, and prolog tailoring, which result in good

performance improvements, which we present in this

paper.

In the following we present some of the VLIW-inspired

scheduling and optimization techniques (we shall refer to
these collectively as “VLIW scheduling techniques”) and

their application to code generation for superscalars.

Examples are given which illustrate their use. Some of

these techniques have been incorporated into an
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experimental version of the RS/6000 XIC compiler,

contributing to significant performance enhancements on

RS/6000. The same compiler is used to generate code for

the PowerPC 601 and Power2 processors, with similar

performance gains. Experimental results for the SPEC

integer benchmarks, measured on RS/6000 hardware, are

presented.

Our VLIW scheduling techniques do not depend on branch

probabilities to generate efficient code, as opposed to trace

scheduling and its derivatives ([11 ,6]). Nevertheless,

profiling information should be used where it is available,

since it allows approaching traditional compiler

optimizations in a totally new light, making further

performance improvements possible. We describe our

current work on profiling directed feedback (PDF),

including a new technique for obtaining profiling

information with low overhead, and some applications of

PDF, such as scheduling heuristics, basic block

re-ordering, and branch reversal.

VLIW SCHEDULING TECHNIQUES

In the following we outline some of the novel components

of VLIW scheduling, which fit within the back-end of a

modern compiler, usually after classical optimizations have

been applied, but before register allocation is performed.

We ignore here the compiler front-end portion (which

parses the high level language input program and generates

intermediate code), since VLIW scheduling does not affect

its function.

Each component by itself contributes a small portion of the

overall performance improvement. But, the synergy

among them results in significant gains, as measured on

several benchmarks, including SPECint92.

We include here only those components which are original

work, These techniques include speculative load/store

motion out of loops, unspeculation, scheduling, limited

combining, and basic block expansion. Also mentioned is

the prolog tailoring technique. Other techniques, which

are adaptations of previously published work are not
presented in this paper.

Speculative Load/Store Motion Out of Loops

This technique is aimed at avoiding memory accesses from

within loops, specially loads from memory. These

instructions tend to introduce delays into the operation of

the processor, specially if the requested data does not

reside in the cache. In essence, this is a generalization of

the idea to move loop-invariant instructions out of loops

[1], with the additional capability of moving loads and

stores which are conditionally executed (i.e., part of if

statements), if they are considered “safe.” Although

non-memory operations have ordinarily been moved

speculatively out of loops by previous techniques, the

motion of memory operations has been very conservative

in the past. The code motion is done as follows:

A group of load and/or stores is a candidate to move out

of a loop if all the following conditions hold:

1.

2.

3.

4.

5.

Each load and/or store in the group: (a) uses the same

base register, (b) has the same displacement from this

base, and (c) identical operand length and data type.

The base register in question is not written in the loop.

The location accessed is not declared volatile (shared

variables or memory-mapped I/0) in the source

language.

There is no possibility for the operands in this group

of loads and/or stores to overlap with any other

memory references (loads, stores or calls) within the

same loop, or inside any inner loops contained in this

loop.

On every path to the loop entry point coming from

outside the loop (i.e., not counting any back edges

from inside the loop), there is either (a) a load of the

address constant of an external variable of sufficient

size, into the base register (the Table of Contents

(TOC.) in RS16000 software conventions is an area

that holds such address constants), or (b) a load or

store to the same location (base+displacement). This

last set of conditions ensures that this load/store group

is always “safe” to perform, i.e., it will never cause

an exception, even if it is only sometimes executed in

the original loop.

A simple example of load/store motion out of loops

follows. The original code shows:

L r4=. a(r2,0) [[ load from TOC (address of

// a), sizeof(a)>=16
. . .

CL.0: I I beginning of lOOP
. . .
BT CL.1 / / conditional inside 100P
L r3=a(r4,12) [ I candidate ~or motion
AI r3=r3, 1
ST a(r4,12)=r3 I I candidate for motion

CL.1:
. . .
BCT CL. O II end of looP

which becomes:

38



L r4=.a(r2,0)

. . .

L r10=a(r4,12) // r10 is a “register-

// cached” COPY of a(r4,12)
CL.0:

. . .
BT CL.1
LR r3.r10 II replaces L r3=a(r4,12)
AI r3=r3,1
LR r10=r3 II replacea ST a(r4,1z)=r3

CL.1:
. . .
BCT CL.O
ST a(r4,12)=r10 // needed at all exits

II from the loop
. . .

Notice that in the above example, both LR operations

inside the loop will eventually be eliminated by a later

coalescing or limited combining stage, leaving only an

AI rlo.rlo,l instruction in the loop. Clearly, the new

loop has fewer instructions, resulting in higher

performance. But, sometimes parts of an inner loop

containing loads and stores are infrequently executed, and

thus moving these loads and stores out of the loop may

potentially slow down an outer loop. Therefore, execution

projiles may be very helpful in deciding when this type

of optimization should be applied (see PDF below).

As a special case of load/store motion out of loops, for

certain I/O library procedures with known properties (e.g.,

storage modifications confined to parameters), loads and

stores are moved out of the loop even if there are calls to

such subroutines in the loop (this is an exception to point

4 above). Before each of these I/O procedure calls, those

memory locations for which loads and/or stores were

moved out of the loop (which the called procedure may

use) are updated from their “register-cached” copies before

the call, and reloaded into registers after the call. ‘This

seems justified because I/Oprocedures are either executed

infrequentlyor doalot ofwork anyway, sothat thestonng

and reloading overhead will not cause much degradation.

This strategy can be extended to general procedures, using

an inter-procedural analysis tool (that has access to library

routines as well) to extract the relevant information about

accesses to memory locations.

Unspeculation

Speculative operations (operations whose results do not

always contribute to the program’s final result) can appear

in the intermediate code due to various code hoisting

techniques that have been applied, or due to the fact that

such operations were present in the original program. A
sequence of operations becomes speculative if it is moved

above a conditional branch which determines whether they

should be executed to achieve the desired result of the

program. Thus, inthose cases when theconditional branch

leads away from the path where the instructions were

originally located, their execution may cause performance

degradation. The objective of unspeculation is to discover

and reduce the number of speculative operations, thus

avoiding the potential performance degradation, by

“pushing down” (groups of) speculative operations onto

one of the two targets of a conditional branch, making

them non-speculative there. (Groups of instructions refer

to possibly a number of basic blocks with a single entry

and exit. Single exit loops and nested if-then-else-endif

statements are examples of such groups.)

To perform unspeculation on a speculative (group of,)

instruction(s) 1, in the context

1

other instructions or groups of instructions

a conditional branch

the following conditions must be met:

1. The destination registers of I are all dead in one of

the targets of the conditional branch, but not on the

other branch.

2. Any of the instructions between I and the conditional

branch must not

a. set any source or destination registers fOr 1,

b. use any destination registers for 1, or

c. contain instructions with side effects on any

memory location(s) loaded from in 1.

3. None of the instructions in I has side effects (e.g.,

stores to memory, access to volatile variables).

If all of the above conditions are met, then I can be

deleted from its original place and moved to the branch

target edge where its destinations are live.

The instruction scheduler can later choose to make single

operations speculative again, when it can determine that

there is an otherwise idle resource to execute such

operations. This is in contrast to unspeculation, which

moves groups of instructions to avoid unnecessary

execution of speculative instructions.

Unspeculation can also remove inefficiencies the

programmer may have introduced for simplifying coding.

Here is a common example, using a C program:

flag=l; I* result not always used ‘1
if (cond) {. . . . flag= o;}

becomes the following after unspeculation:

if (cond) {. . . . fla9=O; }

else {flag= l;}
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The unspeculation algorithm proceeds with the following

steps:

1.

2.

3.

The basic blocks are physically re-ordered using a

reverse post-order enumeration of the flow graph

nodes. When two basic blocks were consecutive in

the original ordering, but are not consecutive in the

new ordering, a label is introduced at the beginning

of the second basic block if needed, and an

unconditional branch to this label is introduced at the

end of the first basic block, to retain the original

program semantics. The reverse post-order

enumeration places all basic blocks of a group of

instructions (e.g., a nested if-then-else-endtf construct)

consecutively in the program, so the construct can be

easily moved as a whole.

The hierarchy of single-ent~-single-exit groups of

instructions is identified in each loop and in the entire

procedure. Local data flow information (the registers

which are used and set in this group, etc.) is collected

for each group.

For ~ach conditional branch in the program (following

their order of occurrence in the program), each

instruction or group of instructions that precedes it is

examined in reverse program order, deciding if the

instruction or group of instructions stays in place,

goes to the left target edge of the conditional branch,

or goes to the right target edge of the conditional

branch, according to the conditions described above.

The backward traversal stops when a join point or

another conditional branch is encountered at the same

level in the group hierarchy. A speculative (group

of) instruction(s) can thus be pushed repeatedly under

successive conditional branches. Live variables and

other data flow information are incrementally

updated, as new instructions are pushed under

conditional jumps. Code is never pushed into loops

from the outside. Speculative code inside a loop can,

however, be pushed out of exits.

A similar technique, called revival transformation, was

independently discovered and reported in [12]. In contrast

with the revival transformation, our version of

unspeculation handles loops, and pushing speculative code

(including complex constructs) out of loops. Also, our

algorithm is applied to the control flow graph, rather than
the control dependence graph, thus legal serial code is

guaranteed after each code motion step. Furthermore, we

move all movable constructs down at once; pushing down

one speculative construct may enable further speculative

constructs above it to be pushed down as well.

Unrolling, Renaming, Global Scheduling, Software

Pipelining

The regions of the program are compacted through the

combination of global scheduling [10] and enhanced

pipeline scheduling [7], starting from the innermost regions

(loops) and ending with the outermost region (the whole

procedure). Global scheduling consists of choosing the

best operation from the set of operations that can move to

a point, moving all instances of the operation to that point,

making bookkeeping copies for edges that join the paths

of code motion but are not on them, and updating the data

flow attributes of basic blocks only on the paths that were

traversed by the instances of the moved operations. To

compact the loops, not just within an iteration, but also

across iterations, enhanced pipeline scheduling puts a fence

at the current scheduling point, and lets global scheduling

search for the best operation on all paths which can

possibly cross the loop back edges, but not the fence. The

loops are unrolled prior to scheduling and live range

renaming is performed, to increase scheduling

opportunities.

The VLIW compiler techniques developed by our group

are beyond the scope of this paper and have been described

in detail in [10,18,9,21]. They are different from other

VLIW and superscalar scheduling techniques, in features

that include the following:

1.

2.

3.

They operate on an entire program with arbitrary

control structure, rather than on a single most

probable path, as in trace scheduling. The code

motion technique is very general: whenever there is

a path from a point A to a point B in the program,

where there are no true data dependence for an

operation currently at B, that operation can be moved

from B to A on that path, even if there are other paths

from A to B where there are dependence. Multiple

instances of the same operation on different paths are

hoisted as one operation.

Conditional branches can be moved up above other

operations when dependence permit such an action.

While conditional branches are rarely on the critical

path, executing them early reduces the guesswork for

determining which speculative operations to execute.

Our software pipelining technique (enhanced pipeline

scheduling [9]) applies to loops with arbitrary flow

control, and allows generating schedules with a

variable iteration issue rate, depending on which path
is followed at run time (unlike Lam’s hierarchical

reduction technique and its derivatives, that respect

the worst case data dependence cycle across all paths

in the loop [17]).

The particular flavor of our VLIW scheduling techniques

used in the context of the XIC compiler will be described

in detail in [8]. We try to provide the gist of the

techniques with an example here (SPEC li “xlygetvalue”

subroutine). In the context of the RS/6000 code below, the



objective is to put one independent instruction between a loop, a “non-coalesceable” register copy operation LR r=r

load and the use of its destination register, and three is inserted at that exit edge before live range renaming.

independent instructions between a compare and a This technique increases scheduling opportunities.

dependent conditional branch. This is conceptually the

same as scheduling for a VLIW that can simultaneously

accommodate a maximum of one integer operation and one

branch per VLIW instruction, while respecting pipeline

latencies for compare and load operations.

r8.address of first list element

r3. item to match against

“L rl=(r8 ,4)” extracts the “car” field of list

element pointed to by r8

“L r2=(r8,8)” extracts the “cdr” field of list

element pointed to by r8

No. of cycles are shown next to each instr.

loop :

L r4=(r8,4) 1 (BB #l)

L r5=(r4,4) 2

c crO=r5,r3 2

BT found,crO.eq O if (car(car(r8))==r3)

goto found

L r8=(r8,8) 1 r8=cdr(r8) (BB #2)

c crl=r8,0 2

BF loop,crl.eq 3 if (r8!=NULL) goto 100P
endofchain:

. . .

found: # r4 is live here

SPEC li benchmark inner loop. Executes at

11 cycles per iteration.
—

loop :

L r4’=(r8,4)

L r5’=(r4’,4)

c crO’=r5’ ,r3

BT found’,crO’ .eq

L r8’=(r8,8)

c crl’=r8’,0

BT endofchain,crl’ .eq

L r4=(r8’ ,4)

L r5=(r4,4)

c crO=r5,r3

BT found,crO.eq

L r8=(r8’ ,8)

c crl=r8,0

BF loop,crl.eq

endofchain:

. . .

found’ : #non-coalesceable

LR r4=r4’ #coPY operation for detaching

#live ranges of r4 and r4’

#(can be copy-propagated later)

found: # r4 is live here

In what follows we can see aversion of the loop which

executes at 14 cycles for 2 iterations, obtained by code

motion within a loop body (global scheduling with no

software pipelining). When we combine global scheduling

with software pipelining, the loop executesat 10 cycles for

Hereis the loop after unrolling and live range renaming. 2iterations, as shown inthe next page.

For each register r that is live at an edge that leaves the

(unrolled original looP)
loop : loop :

L r4’=(r8,4) 1 L r4’=(r8,4)

L r8’=(r8,8) 1 (moved)<----------------- I

L r5’=(r4’ ,4) 1 IL r5’=(r4’,4)

c crl’=r8’,0 1 (moved)<--------------- I I

c crO’=r5’,r3 1 Ilc crO’=r5’,r3
L r4=(r8’,4) 1 (moved)<-------------l I I

L r8=(r8’ ,8) 1 (moved)<-----------l I I I

L r5=(r4,4) 1 (moved)<---------l I I I I

BT found’,crO’ .eq o I I I I I BT found’,crO’.eq

I I I I -<L r8’=(r8,8)

Iill--<c crl’=r8’,0

c crl=r8,0 1 (moved)<-------l I I I

BT endofchain,crl ’.eq O 1111 BT endofchain,crl ’.eq

I I I 1----< L r4=(r8’,4)

I 1-1------< L r5=(r4,4)

c crO=r5,r3 1 II c crO=r5,r3

BT found,crO.eq 3 II BT found,crO.eq

I 1------< L r8=(r8’ ,8)

1----------< c crl=r8,0

BF loop,crl.eq 1 BF loop,crl.eq

endofchain:
. . .

found’ :

LR r4=r4 ‘

found: # r4 is live here
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(loop from the previous figure)

loop : loop :

L r4’=(r8,4) 1-------< L r4’=(r8,4)

L r8’=(r8,8) 1-1-------< L r8’=(r8,8)

L r5’=(r4’ ,4) !-l-l-------< L r5’=(r4’ ,4)

c crl’=r8’,0 1-1-1-1-------< c crl’=r8’,0

loopl : (new loop starts here) 1111
c crO’=r5’ ,r3 1 1111 c

L

crO’=r5’ ,r3

r4=(r8’ ,4) 1 1111 L r4=(r8’ ,4)

L r8=(r8’ ,8) 1 1111 L r8=(r8’ ,8)

L r5=(r4,4) 1 1111 L r5=(r4,4)

BT found’,crO’ .eq o 1111 BT found’,crO’ .eq

c crl=r8,0 1 1111 c crl=r8,0

BT endofchain,crl’ .eq O 1111 BT endofchain,crl’ .eq

c crO=r5,r3 1 1111 c crO=r5,r3
L r4’=(r8,4) 1 <--- l-l-l-1

L r8’=(r8,8) 1 <---l-l-1
L r5’=(r4’ ,4) 1 <---l-1

BT found,crO.eq o I BT found,crO.eq

c crl’=r8’,0 1 <---1

BF loopl,crl.eq o BF loop,crl.eq

endofchain:

. . .

found’ :

LR r4.r41

found: # r4 is live here

Note that we have assumed that the first few bytes of page thestarting instruction in this sequence arereplaced by the

zero contains zeros in this example, as suggested in [5]. source (literal or register) for the starting instruction, and

This allows operations such as taking car(car(NIL)) to an unconditional branch to the instruction following the

proceed without causing an exception. last use is added. Any unreachable code left from this

transformation may be deleted by common “unreachable

Limited Combining code elimination” techniques. Combining as a dynamic

technique used on-the fly during scheduling is further

This technique scans the code looking for opportunities to

reduce path length by combining collapsible operations

suchas LR r4=r5 ; A r6=r4,r7 where rA isused for the

last time by the second operation, into A r6=r5,r7. This

is normally achieved by the value numbering optimization

[1], when both operations are inside the same basic block.

The limited combining technique can span a number of

basic blocks looking for collapsible operations, possibly

including join points, through code duplication.

This transformation will search asequence of instructions,

starting from a load immediate to register or register copy

instruction (’<register” means fixed point, floating point,
or condition code register), through unconditional

branches, until a “last use” of the destination register for

thestarting instruction is found. Neither thesource nor the

destination registers for this instruction should be set by

any instruction on the way to the last use. If the search
succeeds, the whole sequence of instructions (beginning

from the instruction following the starting one, and ending

discussed in [20].

For example:

LR r5. r4

. . . // instruction group (1)
B L3

. . .

L3 : // other paths meY join here
. . . // instruction group (2)

L r3=4(r5)

. . . // instruction group (3)
B L4

L4 :

. . . // instruction group (4)
L r7=8(r5) // this is the last use of r5

. . . // operation following last use

where neither rs nor rA are set in instruction groups (l),

at the last use instruction) replaces the original starting (2), (3) or (4), becomes:

instruction. All occurrences of the destination register for
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—
// LR r5=r4 deleted!!

. . . // instruction group (1)

. . . // instruction group (2)

L r3=4(r4) /1 uses r4 instead of r5

. . . // instruction group (3)

. . . // instruction group (4)

L r7=8(r4) // uses r4 instead of r5

B L1O // new branch closee duplicate

// sequence

L3 : // original sequence kept for

// other paths joining here

. . . // instruction group (2)
L r3=4(r5)

. . . // instruction group (3)

B L4

L4 :

. . . // instruction group (4)

L r7=8(r5) // end of original eequence

L1O : // join from duplicated code

. . . // operation following last

// use of r5
—

Basic Block Expansion

Some of the optirnizations, such as limited combining

above, create small basic blocks that end with an

unconditional branch. Moreover, the original program

itself may also naturally contain tiny basic blocks that end

with an unconditional branch. These branches are not

considered as resources in a VLIW environment, but

actually consume resources (and possibly cycles) in a

superscalar machine. For example, the RS/6000 can be

significantly slowed down ifan untaken conditional branch

is followed immediately by a(taken) unconditional branch.

Since conditional branches cannot be avoided, the basic

block expansion technique triesto minimize the occurrence

of unconditional branches on the execution trace, by

copying code from the target of abranch.

For a given unconditional branch, basic block expansion

determines how many cycles worth of non-branch

instructions we need to copy, by examining the code

immediately preceding the branch, using machine specific

rules. For example the RS/6000 requires 4-5 non-branch

instructions (cycles) between an integer compare, a

dependent (untaken) conditional branch, and an

unconditional branch, in order to avoid a stall. Then the

code at the target of the unconditional branch is examined,

to determine the stopping point for the copying process

(i.e., how many instructions to copy). The search fora

stopping point can go past conditional branches, CALLS,
or unconditional branches. For the latter case, searching

continues with the target of the unconditional branch.

Labels encountered on the way are not copied. As the

search passes a conditional branch or CALL, the objective

number of consecutive non-branch instructions to copy, is

re-calculated.

The search stops when enough consecutive non-branch

instructions have been gathered, or when an instruction

(inside a loop) is revisited. If a return from a procedure

is encountered (or a “branch on count” in the RS16000,

which ends inner loops), the search stops as well.

Obviously, there is a limit to the number of instructions

scanned in this process (the’’window size’’), and exceeding

this number aborts the search. In this case, the stopping

point that gives the minimal machine stall, among the ones

encountered so far, is chosen. Good candidates for

stopping points are instructions immediately preceding

(hopefully untaken) conditional branches.

Once a stopping point is chosen, code is copied, starting

from the target of the unconditional branch until the

stopping point. The original unconditional branch is

deleted and anew unconditional branch is inserted after the

copied code, branching to the instruction immediately

following the stopping point.

The net effect of basic block expansion, when successful,

is to remove an unconditional branch altogether from the

execution trace, push it outside an inner loop, or put

sufficiently many non-branch operations before it, so that

it can be executed concurrently with other operations on.
the RS16000, Power2 or PowerPC hardware.

Basic block expansion on the following code:

c crO=. . .

BF Ll, crO

Op 1

B L2

. . .
L2 :

c crl=. . .

BF L3, crl

op2

Op 3

BF L5

Op 5

Op 6

BCT loop

L3 :

//
//

//

//
//
//

//

//

//

set condition register O

branch conditional on crO

need 4 instruction here

other paths may join here

set condition register 1

reset objective to 5 inst.

potential stonping point

stopping point

code continues here

produces:
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c crO=. . . II set condition register O
BF Ll,crO // branch conditional on crO

Op 1

c crl=. . . // set condition register 1

BF L3, crl //

Op 2

Op 3 // potential stopping point

BF L5

Op 5

Op 6

BCT loop // etopping point

B L3 // rejoin code

Note that the original code starting at L2 will be deleted

as “unreachable code” if no other instructions branch to it.

Amilder formof basic block expansion was describedin

[14], where the process of adding instructions would stop

when any branch was encountered. A more aggressive

experimental code replication technique appears in [19],

which replicates all operations on the shortest path from

each unconditional branch to the end of the procedure, in

order to eliminate unconditional branches almost totally.

This technique entails a high degree of code expansion,

and can have an uncertain effect on the machine stalls of

superscalars like the RS/6000, due to the conditional

branches that are reversed to make the replicated path a

straight line. Our technique uses a window size constraint

to keep the code expansion reasonable, and makes

intelligent decisions on where to stop copying to minimize

the machine stall; and thus it seems more appropriate for

a practical commercial environment.

Prolog Tailoring

In the RS/6000 linkage conventions, a register belonging

to a particular subset of the machine registers must be

saved upon entry and restored upon exit in a procedure, if

that register is killed (overwritten) inside the procedure.

A prolog is the portion of code at the beginning of a

procedure which stores the values of registers that are

killed in the procedure, whereas the epilog restores these

registers at the end of the procedure. Our prolog tailoring

technique delays the execution of store instructions for

killed-registers as late as possible into the procedure, so

that each execution path therein contains a reduced number

of such store instructions. However, register save

operations are never pushed inside loops.

Some high level languages, like those in the PLA family,
require correctly unwinding the stack titer an interrupt, in

order to return to an exception handler established by a

procedure high up in the call chain. For example, assume

procedure A establishes an exception handler; then A calls

B, which saves some registers on the stack and calls C,

which saves some registers on the stack and then causes a

trap. The trap handler code must correctly unwind the

stack by first restoring the registers saved by C, then those

saved by B. Control must finally be transfemed to the

user’s exception handler in A. In the existing software

conventions, the set of registers to restore is found by the

exception handler in a traceback table at the end of a

procedure, and is fixed for a given procedure. If prolog

tailoring is applied, the set of registers to restore is no

longer constant, varying depending on the point of

execution in the procedure. This requires special handling

when a program interrupt occurs, to ensure proper

exception behavior of the program.

In order to ensure correct unwinding of the stack after

program interrupts, we enforce the rule that at any point

in the procedure, all paths reaching this point from the start

of the procedure have the same set of saved registers.

Thus, the registers to be restored on an exception can be

found by back-tracing any path from the point where the

exception occurred to the start of the procedure (a flow

graph must first be constructed from the binary code by the

exception handler for this purpose [22]), without having to

know what particular path was followed to reach the point

of exception.

In the following page we show an example of the

application of prolog tailoring.

The prolog tailoring algorithm has the following stages:

1.

2.

Identify outermost loops first and collapse them to

single nodes. Make a copy of each basic block that

ends with a return, for each edge that goes to it.

Straighten the flow graph, and do this once more, if

code size constraints allow. Then identify

hi-connected components in the undirected version of

the flow graph using Tarjan’s algorithm [2]. For

example, an outermost ij– then – else – endif

statement constitutes a hi-connected component in the

undirected version of the flow graph. Create a tree

from these hi-connected components where the root

is the component containing the special procedure

start node, and its children are the components that

share a node with the root. The children of a non-root

component c are the components other than the parent
of c, that share a node with c. For the purpose of

computing the registers killed in a hi-connected

component in the next step, the basic block shared

between a parent component and a child component

in the tree is considered to be inside the parent and
not the child.

Determine a data flow attribute at each node of the

tree, called the MustKill registers. These are the
registers that will be definitely killed (written into)

starting at this tree node, regardless of which path is
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WITHOUT TAILORED PROLOG WITH TAILORED PROLOG

(saves all registers that are killed

anywhere in the procedure)

PROC sub PROC sub

save r28,r29,r30,r31

. . . . . . (restore nothing on exception)

BT L1 BT L1

save r29,r31

L r29= L r29= (restore r29,r31 on
L r31. L r31. exception)

. . . . . .

restore r29,r31 restore r29,r31

return return

L1 : L1 :

save r28

L r28= L r28.

. . . . . . (restore r28 on exception)
BT L2 BT L2

save r30

L r30= L r30. (restore r28,r30 on exception)

L r28= L r28=

restore r30

L2 : L2 :

(r30 not used or set

after here) (restore r28 on exception)
. . . . . .

restore r28,r30 restore r28

return return

takenin the tree. The A4ustKill attribute ofatree node Experimental Results

n is computed as:

The performance of code generated by an experimental
MustKill(n) = [, ● ~cc(~)MustKill(s)] U KilledBy(n) version of the RS/6000 xlc compiler, using VLIW

scheduling, has been extensively tested on Power
where succ(n) is the set of the children of n, and (Rs/6ooo), Power2 and PowerPC 601 hardware.
KilledBy(n) is the set of registers that are killed by Followingis asnapshot ofthese measurements, using the
any basic block inside n. This data flow attribute can

be determined in one backward pass over the tree, in
6 SPEC ’92 integer benchmarks. (These do not represent

any official measurement by IBM.) In this case the
reverse topological order. resulting improvement is about 13Y0. Compared tothe-O

3. For each node following a forward topological order option of XIC, there was an average compile time increase

of the tree, if a register will definitely be killed

starting at this tree node, but has not yet been saved

on the path from the root, generate code to save that

register on every actual flow graph edge that connects

this node and its parent in the tree (multiple actual

flow graph edges may connect two nodes in the tree).

Consider maximal sequences entered only at the top,

consisting of non-branch instructions, z~-then-else-etzdif

constructs and single entry, single exit loops (a branchless

basic block is such a sequence). If a register is set for the

first time since the beginning of the program in such a

sequence, and is never used or set after the sequence, that
register can be saved on entry to the sequence, restored on

exit from the sequence, and then the entire sequence can

be treated as if it did not kill this register. This analysis

and insertion of the save and restore code for the register

should be done before stage 2 of the algorithm above.

of 36Y0, and an average code size increase of 8% using

static binding. The most time consuming transformation

is VLIW scheduling. Aggressive compiler techniques such

as the ones described here are thus appropriate for the-03

option of the XIC compiler, which is intended for

optimization that require longer compile time.

In the following table we present performance

measurements done on an RS/6000 model 580 machine,

using XIC version 1.2 and the KAP C Preprocessor from

Kuck & Associates. The columns labeled “xIc” show the

baseline measurement, with VLIWoptimizations disabled,
while the “VLIW’ columns show performance with the

new scheduling and optimization techniques, including the

effects of some AIX library routines that were rewritten

by the authors for better performance. The VLIW
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measurements were done on an RS/6000 model 980,

whose performance on SPECint92 is equivalent to that of

a model 580.

SPECint92 Measurements

Benchmark xl c xl c VLIW

Time SPECmark Time

espresso 41.70 54.44 38.30

li 99.00 62.66 81.90

eqnt ot t 13.60 80.88 10.70

compress 53.90 51.39 48.10

Sc 69.20 65.46 62.40

gcc 91.40 59.61 90.20

SPECint92 61.73

VLIW

SPECmark

59.27

75.82

102.80

57.59

72.60

60.53

69.93

PROFILING DIRECTED FEEDBACK

Profiling Directed Feedback {PDF) has been used in the

past for VLIW approaches based on trace scheduling and

its derivatives [11,6]. Whereas PDF is a fundamental

requirement in these techniques, our VLIW scheduling

techniques do not depend on the availability of branch

probabilities, and already generate good schedules when

there is no profiling directed feedback. Nevertheless,

profiling directed feedback provides the compiler with new

information, allowing traditional optimization to be

approached in a fashion heretofore considered too risky,

because ofpotential performance degradation, violation of

program semantics, or both. In the following, redescribe

our current work for using profiling directed feedback in

superscalar optimization. The optimizations described

below (consisting of scheduling heuristics, basic block

re-ordenng, and branch reversal) have been implemented

and result in a 4-5% additional improvement on SPECint92

(using the short SPEC inputs for generating profiling data,

where available).

Low Overhead Profiling Directed Feedback

Regardless of what profiling directed feedback is used for,

the collection of the profile information, in the form of

execution counts in the flow graph, should have low

overhead in order to make profiling more usable in a

commercial compiler environment. Therefore, we gather

exact counts for basic block execution, and derive from

them the edge counts which are used in the optimization.

Furthermore, we have devised techniques to reduce the

number of basic block counts required, to further decrease

the execution overhead of profiling.

For generating and using profiling code, we compile a

program twice, and run each version of it separately.

During the first pass of PDF, the compiler inserts run-time

counting code in a subset of the basic blocks. When the

program thus compiled is executed, it creates a file that

indicates the number of times each basic block that

contained counting code was executed. Counts from

multiple runs of the same program can be accumulated.

During the second pass of PDF, the compiler reads back

from this file the execution counts, at the same place in the

compiler where counting code was inserted in the jirst

pass, computes the complete set of edge counts and basic

block counts from the partial set of basic block counts that

were read back, and then uses these edge counts for

aggressive optimization. The flow graph edge counts are

maintained as compiler transformations occur, so

subsequent stages of the compiler can also use the profiling

feedback. Note that it is sometimes necessary to create

new (“dummy”) basic blocks during PDF, so that the edge

counts can be uniquely determined from the basic block

counts. In this case, the flow graph is modified in the same

way on both passes, so the state of the program at the point

the counting code is inserted in the first pass, and at the

point the counts are read back during the second pass, is

identical.

As we observed above, not all basic blocks need to have

runtime counting code for uniquely computing all the edge

counts. It is also possible to reduce the amount of counting

instructions in inner loops, and thus reduce the profiling

overhead, by moving out invariant loads and stores from

the loop, in a manner similar to our speculative load-store

motion described above. Following is an example on the

inner loop of the SPEC eqntott benchmark (the original

version, without the KAP/C preprocessor). Only the basic

blocks BB1, BB2, and BB4 inside the loop, and BB7 and

BB8 outside the loop, have been augmented by (profiling)

counting code. The reader can verify that all the remaining

basic block and edge counts for the flow graph of this loop

can be uniquely determined from the basic block counts

of the selected subset. Outside the inner loop (e.g., in

BB8), the counting code overhead is three instructions per

block (load the previous count for this basic block, add

one, and store back the updated count). The load and store

instructions related to counting code have been moved out

of the inner loop, since their operand addresses are loop

invariant, and thus the counting code overhead is one

instruction per basic block inside the loop. The profiling

code is inserted before scheduling, register allocation, and

other optimization, so further code improvements are

possible. These are not shown in the example, to preserve

its structure.

We use a constraint-propagation algorithm, inspired by

Artificial Intelligence techniques applied to electrical

networks (e.g., [24]), for finding (and possibly creating)

the basic blocks for counting code insertion. The idea is

to have “just enough” counts, so that all the remaining

edge and basic block counts in the flow graph can be

uniquely determined from the gathered counts. The details

of this algorithm are beyond the scope of this paper.
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/* =31= initialized tO addre~~ Of

global basic block counts table ‘/

I* moved loop invariant loads to preheader ‘*/

L rll.bbtable (r31,4004) counting code

L r12=bbtable(r31,4008) .

L r13=bbtable(r31,4012) .

(BB 1)

CL.0:

AI rll=rll,l counting for BB 1

LHAU r4,r3=a(r3,2) load hlfwrd / incr r3

LHAU r6,r5=b(r5,2)

c crO=r4,2

BP CL.l,crO.eq

(BB 2)

AI r12=r12,1 counting for BB 2

LI r4=0

(BB 3)

CL.1:

c crl=r6,2

BF CL.2,crl.eq

(BB 4)
AI r13=r13,1 counting for BB 4

LI r6.O

(BB 5)

CL.2:

c crO.r4,r6

ET CL.10,crO.eq

(BB 6)
BCT CL.O

(BB 7)

I* invariant storee Dushed to loop exit */

ST bbtable(r31,4004).rll counting code

ST bbtable(r31, 4008)=r12

ST bbtable(r31,4012) =r13 .

L rO.bbtable(r31,4016) counting code
AI rO=rO, 1 for

ST bbtable(r31,4016) =r0 BB 7

(other code for BB 7)
. . .

(BB 8)

CL.1O:

/* invariant etores pushed to loop exit ●I

ST bbtable(r31,4004) =rll counting code

ST bbtable(r31,4008)=r12 .

ST bbtable(r31,4012)=r13 .

L rO=bbtable(r31,4020) counting code

AI rO=rO, 1 for

ST bbtable (r31,4020)=r0 BB 8

(other code for BB 8)

Ball and Larus [3] have used a profiling technique that

inserts counting codeon asubset of the edges in the flow

graph. They apply their technique to a final executable

program, whereas in our case profiling code is insertedin

the compiler backend, allowing many sophisticated

optimizations, such as motion of profiling overhead code

out ofloops and scheduling, to be applied thereafter. Also,

the backends infrastructure provides us with better static
prediction knowledge, so that counting code can be placed

in less frequently executed locations in the program.

Further, we prefer placing counting codein existing basic

blocks where possible, rather than generating new

unconditional branches and extra tiny basic blocks that

result from placing counting code on edges. This

facilitates the application of subsequent optimization

phases.

Scheduling Heuristics, Basic Block Re-ordering,

Branch Reversal

The Profile directed feedback feature is currently used for

supplying branch probabilities to the VLIW scheduler.

This alters the view of the scheduler in terms of which

operations are speculative and which others are

non-speculative (if an operation is present only on a less

frequently executed path it is considered speculative).

Non-speculative operations are preferred over speculative

ones as usual, and there are no major modifications to the

scheduling otherwise. The true (not from profiling)

speculativeness of operations is still computed for

determining the safeness of loads. Similarly, scheduling

with duplication can be used on the most frequent path

only, but now without fear of slowing down the other

paths.

Also, just before final code generation, the basic blocks

are physically reordered following a depth-first

enumeration of the flow graph, using the basic block

ordering procedure that is already available in the context

of unspeculation, described above. Then standard code

straightening optimizations of the XIC compiler are applied

to eliminate any awkward branching that may have

resulted from the re-ordering.

During the depth-first enumeration, the flow graph edges

that are executed most frequently are followed first, unless

the target of the edge is already visited. That is, the

enumeration algorithm performs the following steps: First

it assigns the next number to the current node (basic

block), and marks it visited. Next it recursively visits the

most probable successor of the current node, if it is not

already visited. Lastly, it recursively visits each remaining

successor of the current node, if it has not been visited.

This causes themost frequently executed path tooccurfirst

in the enumeration, and thereforebe arranged in astraight

line, where almost all branches fall through.

By itself, this re-ordering technique will not cause all

conditional branches to fall through most of the time. For

example, the basic block that ends a critical loop may

occur last in the enumeration, and therefore the code may

end with a conditional branch that is taken most of the

time. Nevertheless, most Power and PowerPC hardware
work better when conditional branches fall through most

of the time, and additional performance benefits may be

obtained if unconditional branches are eliminated. To

achieve the latter goals, any conditional branches that are
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taken most of the time are reversed, so they are not taken

most of the time, as follows:

BT CL.l, crl. eq taken most of the time

becomes

BF CL.2, crl. eq untaken most of the time

B CL.1

CL.2: a new label

and then code is copied from the basic block(s) at the

target label CL.1, using the basic block expansion

technique described above.

Profiling directed feedback seems to offer many more

optimization for superscalars beyond the ones described

above, either in the form of new transformations, or

traditional optimization re-cast in a new light. This fertile

area is the current focus of our work in progress.
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