
Verification of a Cryptographic Primitive: SHA-256 (Abstract)

Andrew W. Appel
Princeton University
appel@princeton.edu

Abstract
A full formal machine-checked verification of a C program: the
OpenSSL implementation of SHA-256. This is an interactive proof
of functional correctness in the Coq proof assistant, using the Ver-
ifiable C program logic. Verifiable C is a separation logic for the
C language, proved sound w.r.t. the operational semantics for C,
connected to the CompCert verified optimizing C compiler.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness proofs; E.3 [Data Encryption]: Stan-
dards; F.3.1 [Specifying and Verifying and Reasoning about Pro-
grams]

General Terms Verification

Keywords Coq

1. Introduction
[C]ryptography is hard to do right, and the only way

to know if something was done right is to be able to ex-
amine it. . . . This argues very strongly for open source cryp-
tographic algorithms. . . . [But] simply publishing the code
does not automatically mean that people will examine it for
security flaws. Bruce Schneier, 1999

Be suspicious of commercial encryption software . . .
[because of] back doors. . . . Try to use public-domain en-
cryption that has to be compatible with other implementa-
tions. . . . ” Bruce Schneier, 2013

That is, use widely used, well examined open-source implemen-
tations of published, nonproprietary, widely used, well examined,
standard algorithms—because “many eyes make all bugs shallow”
works only if there are many eyes paying attention.

To this I add: use implementations that are formally verified with
machine-checked proofs of functional correctness, of side-channel
resistance, of information-flow properties. “Many eyes” are a fine
thing, but sometimes it takes them a couple of years to notice the
bugs. Verification can guarantee program properties in advance of
widespread release.

Formal verification is not necessarily a substitute for many-eyes
assurance. For example, in this case, I present only the assurance of
functional correctness (and its corollary, safety, including absence

of buffer overruns). With respect to other properties such as timing
side channels, I prove nothing; so it is comforting that this same C
program has over a decade of widespread use and examination.

SHA-256, the Secure Hash Algorithm with 256-bit digests, is
not an encryption algorithm, but it is used in encryption protocols.
The methods I discuss in this paper can be applied to the same is-
sues that appear in ciphers such as AES: interpretation of standards
documents, big-endian protocols implemented on little-endian ma-
chines, odd corners of the C semantics, storing bytes and loading
words, signed and unsigned arithmetic, extended precision arith-
metic, trustworthiness of C compilers, use of machine-dependent
special instructions to make things faster, correspondence of mod-
els to programs, assessing the trusted base of the verification tools.

This paper presents the following result: I have proved func-
tional correctness of the OpenSSL implementation of SHA-256,
with respect to a functional specification: a formalization of the
FIPS 180-4 Secure Hash Standard. The machine-checked proof is
done using the Verifiable C program logic, in the Coq proof assis-
tant. Verifiable C is proved sound with respect to the operational
semantics of C, with a machine-checked proof in Coq. The C pro-
gram can be compiled to x86 assembly language with the Com-
pCert verified optimizing C compiler; that compiler is proved cor-
rect (in Coq) with respect to the same operational semantics of C
and the semantics of x86 assembly language. Thus, by composition
of machine-checked proofs with no gaps, the assembly-language
program correctly implements the functional specification.

In addition, I implemented SHA-256 as a functional program in
Coq and proved it equivalent to the functional specification. Coq
can execute the functional program on real strings (only a million
times slower than the C program), and gets the same answer as stan-
dard reference implementations. This gives some extra confidence
that no silly things are wrong with the functional spec.

c© 2015 ACM. This is an abstract of the work published in TOPLAS 37(2). ACM
2015. http://dx.doi.org/10.1145/2701415

PLDI’15, June 13–17, 2015, Portland, OR, USA
ACM. 978-1-4503-3468-6/15/06
http://dx.doi.org/10.1145/2737924.2774972

153

