
Security Completeness: Towards

Noninterference in Composed Languages

Andreas Gampe

The University of Texas at San Antonio

agampe@cs.utsa.edu

Jeffery von Ronne

The University of Texas at San Antonio

vonronne@cs.utsa.edu

Abstract

Ensuring that software protects its users’ privacy has become

an increasingly pressing challenge. Requiring software to be

certified with a secure type system is one enforcementmech-

anism. Protecting privacy with type systems, however, has

only been studied for programs written entirely in a single

language, whereas software is frequently implemented us-

ing multiple languages specialized for different tasks.

This paper presents an approach that facilitates reasoning

over composed languages. It outlines sufficient requirements

for the component languages to lift privacy guarantees of

the component languages to well-typed composed programs,

significantly lowering the burden necessary to certify that

such composite programs safe. The approach relies on com-

putability and security-level separability. This paper defines

completeness with respect to secure computations and for-

mally establishes conditions sufficient for a security-typed

language to be complete. We demonstrate the applicability

of the results with a case study of three seminal security-

typed languages.

Categories and Subject Descriptors D.2.4 [Software/Pro-

gram Verification]: Formal methods; Correctness proofs

General Terms Languages, Security, Verification

Keywords Security; noninterference; type systems; com-

position

1. Introduction

In contemporary software engineering practice, it is becom-

ing more common to use several languages while imple-

menting large systems. This ranges from using separate lan-

guages in different files (e.g., configuration files in XML or

libraries coded in different languages) to using code in one

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’13, June 20, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2144-0/13/06. . . $15.00

language being directly embedded in the code of another lan-

guage. As an example, one commonly embedded language

is SQL, which is used to declaratively retrieve data. Such

languages are common even in the mobile app space: both

Android and iOS expose bindings for SQL systems (e.g.,

SQLite) to applications written primarily in Java and Ob-

jective C, respectively.

At the same time, privacy is becoming an increasingly

important property of software. Mobile platforms like smart-

phones and tablets, for example, are built around “app

stores”, where users can download new applications. These

applications can gain access to private information that is

stored on the device, like contacts, phone logs, location in-

formation, etc. In the mobile space, major vendors have cho-

sen two ways to help users: either, a simple form of static

permissions, as used on the Android platform, or a review

of every application, as in the case of iOS. Neither approach

is very satisfying: several cases of apps that violate the pri-

vacy of the owner’s device have become known recently for

both platforms. A formal and sound mechanism that can

be applied to formally verify such software against privacy

policies would greatly improve this situation. Type systems

enforcing noninterference can provide such a mechanism.

Noninterference [5] ensures that any compliant program

cannot leak private information to public channels. Type sys-

tems are a common method to guarantee noninterference,

e.g., [1, 6, 12, 16, 17], for an overview see [15], and the

approach has been extended to cover entire distributed sys-

tems [9]. In all of this work, however, exactly one language

is treated.

The question then is: How can we (statically) guarantee

the safety of programs that are composed from elements in

different languages such that a client can check a program

for compliance with security policies? The solution we pro-

pose is to compose security-typed languages into composed

languages, such that well-typed programs in a composed

language can be guaranteed to comply with noninterference.

Focusing on the more general end of the language composi-

tion spectrum, we will consider the case where a composed

language is created by extending a host language so that

27

code from an embedded language can replace certain con-

structs in otherwise valid host language programs.

This paper describes an approach (in Section 3) where,

under certain assumptions, it is possible to leverage proofs

of non-interference of well-typed host language and well-

typed embedded language programs to prove noninterfer-

ence of well-typed composed language programs. In order

to generalize this composition over security-typed host and

security-typed embedded languages that use different proofs

that well-typed programs are noninterferent, our approach

relies on host languages being complete with respect to be-

ing able to compute any noninterferent function over its data

types. This allows us to establish that executing noninterfer-

ent code does not introduce any behaviors that could not be

observed in the host language. Our initial conjecture is that

all non-trivial security type systems will satisfy this require-

ment.

Suppose one has a noninterferent function f(x, y) that

produces a public output from public input x and secret input

y. To obtain a typeable version f ′ of f , one can first define

a function g to be the same function as f , but type both of

g’s inputs as public, and its output also as public. Intuitively,
assuming that the underlying language is Turing complete,

and that any function that involves only a single security

level is typeable, g can be expressed and typed. Now, one

can define f ′(x, y) = g(x, c), for some suitable constant c,
which is well-typed since, usually, constants are public. A

typical noninterference theorem guarantees that f(x, y1) =
f(x, y2), for all y1, y2, which ensures that f = f ′.

This basic argument may seem trivial; actually showing

that it holds for classes of languages providing operations

over certain classes of data types (rather than a specific lan-

guage with integer data) brings up several issues. Our ba-

sic approach for establishing this property is first described

in Section 4 and formalized in Section 5. We then, in Sec-

tions 6 and 7, show how more complex data types and refer-

ences can be supported, which adds additional requirements

on the host language that would generally be expected to be

satisfied by languages that support such entities. Note that

the current work does not support extending the types of in-

puts and outputs to functions. Finally, in Section 8, we show

that the requirements placed on host languages are reason-

able by showing how three languages, the system of [16],

FlowML [13], and work in [1] satisfy the requirements.

The contributions of this paper include

• identifying a general framework for leveraging the proofs

of the noninterference of security-typed languages to es-

tablish the noninterference of their composition,

• showing how arbitrary noninterferent functions can be

computed in certain classes of security-typed languages,

and

• showing that the classes of languages are reasonable

2. Background

2.1 Language Definition

We assume languages provide values, programs and states,

and are associated with a semantics such that a program

and a state get reduced to a value and a state. We only

consider deterministic languages here, that is, the semantics

can be considered a (partial) function. We use p to range

over programs, and f , g over functions represented by such

programs.

Type systems assign types to values, programs and states

in a judgment. If a type system makes a judgment, a cer-

tain property is guaranteed. For example, traditionally type

systems enforce that programs cannot go wrong, that is, get

stuck or end with an error.

Most security-typed languages can be seen as annotated

versions of a ground typed language. These annotations may

be on programs, values and states, as well as on types. The

annotations are used to maintain local security invariants

that allow judgments to guarantee security properties for the

whole program.

2.2 Security

Our work is in the realm of lattice-based security [2], with

security information taken from a lattice of security “levels”.

The simplest non-trivial lattice is {L,H} with the obvious

ordering, but many more complicated lattices have been

proposed. Flows can be formulated by the partial order of

levels in the lattice. Informally, (1) computations that involve

private=high information need to be classified private, (2)

we cannot allow direct assignments of private information to

public storage and (3) we cannot allow indirect leaks, that is,

assignments to public storage in a private context. Examples

for violations of these cases are

(1) d{H} * 3{L} => 15{L}

(2) var tmp{L} = salary{H}

(3) if age{H}>65 then

tmp{L}=1 else tmp{L}=0 end

In the first case, one can deduce that the private input d must

have been 5. In the second case, we declassified formerly

private information and store it in a public field. In the third

case, we gain one bit of information about the private age

information by case analysis of the value of tmp.

Noninterference can be generalizedwith the help of an in-

distinguishability relation that defines which parts of values

may be distinguishable (and thus should not be influenced).

3. Approach to Composition

Our ultimate goal is to prove safe the composition of practi-

cal languages. For example, we are interested in the embed-

ding of SQL into JIF [12], which would allow us to write

code like the following, executing a SQL statement and re-

trieving the result in the host language.

i n t { h igh } age = SELECT age FROM employees

28

WHERE name=$name ;

In this fragment, the (confidential) age of the employee with

the name given in the Java variable name, embedded into

the SQL statement by $name, is retrieved from the database

table employees.

We now assume that SQL is secure by use of a security-

type system. For example, we could assign security types

to each column in each table of the database to trace flows

through queries. In the example, this might derive that the

result of the query should better be confidential.

Embedding can be formalized by extending the host lan-

guage with an evaluation construct, maybe named eval. We

would add evaluation and typing rules that connect the host

and embedded language. For example, eval could be re-

solved by computing its parameters, translating them to the

embedded language, running the embedded program, and

translating the result back to the host. For typing purposes,

we need a translation of types between the languages the pre-

serve security properties. This translation needs to be mono-

tonic and round-trip non-decreasing to not leak information.

Furthermore, indistinguishable input must be translated to

indistinguishable output. With such rules in place, and as-

suming that the type systems for both JIF and SQL are se-

cure, we would like to prove that the composed language is

also secure.

3.1 Limitations of Proof Manipulation

A strawman approach to proving noninterference for well-

typed composed programs is by defining a mechanical pro-

cedure for directly manipulating the proofs of noninterfer-

ence of programs in the host and embedded languages. How-

ever, this seems to be tied closely to the format and details

of the noninterference proof of the host language. For ex-

ample, if that proof was done syntactically via a subject re-

duction theorem, as for example in [13], that theorem would

need to be extended. Subject reduction is usually shown by

some inductive argument, for example over the input typing.

As such, we could extend the case analysis of the induction

with a specific argument for eval that is derived from the

typing constraints, and hope to get a well-formed proof for

the composed language.

However, the picture is not that simple. While adding a

case to subject reduction is simple and (mostly) indepen-

dent from the other constructs, other cases may use their own

nested inductive arguments, auxillary lemmas, or inversions.

[13], for example, uses auxillary lemmas for weakening,

projection, and substitution, with all lemmas ranging over

all constructs in the language. Without a detailed knowledge

of the proof and the statements necessary, it seems impossi-

ble to generically prove correctness by manipulating an (in

details) unknown proof.

3.2 Computability

We instead try to reuse the existing proofs completely and

without modifications, by focussing on computability in a

three-step process:

1. Embedded-language programs can be simulated in the

host

2. The simulation is noninterferent and can be typed

3. Replace embeddings with the simulation; the now pure-

host program is typable, implying noninterference of the

composed program

Assume that the embedded language is Turing-computable,

that is, every program computes a Turing-computable func-

tion. Furthermore assume that the host language is Turing-

complete, that is, there is a program for every Turing-

computable function. Then the host language is able to func-

tionally simulate any embedded language program (frag-

ment). Since the original program was noninterferent - the

eval forces a typing, which guarantees noninterference -

the simulation is also noninterferent. Note that this argument

requires compatible notions of noninterference. For exam-

ple, if the embedded-language fragment was termination-

sensitive noninterferent, then it will be termination-sensitive

or termination-insensitive noninterferent in the host lan-

guage.

However, not all termination-insensitive noninterferent

programs are termination-sensitive noninterferent. In that

case a totally faithful representation is impossible.We sketch

the following solution. We can change the semantics of the

embedded program to be total by selecting an arbitrary in-

distinguishable result in the nonterminating cases, which al-

lows representation in the host. The resulting program is an

overapproximation, but ensures that the original semantics

with nontermination is now termination-insensitive nonin-

terferent.

It remains to show that there is a legal program, that is,

a typable host language program that computes the simula-

tion. If such a program exists and the host language allows

us to substitute the eval with our typed simulation, we end

up with a pure host-language program that is typed and com-

putes the same function as the composed-language program.

The host language security-type system now guarantees this

program to be noninterferent, which means that the func-

tionally equivalent composed-language version is noninter-

ferent, too.

Note that step 3 is specific to each host language, but can

be reused for all compositions of that language. In general, a

proof of this step is similar to a standard substitution lemma.

One has to show that the program remains typed, and retains

its meaning.

In this paper, we focus on step 2. We try to answer this

key question: if a function is computable (there is a, not

necessarily typable, program) and noninterferent, is there

29

a security-typable program that computes the (exact) same

function? This is formulated in the following definition.

Definition 1 (Security Completeness). A security-typed lan-

guage L is security-complete if and only if for every (not

necessarily typable) program p that computes a function f ,
where f is noninterfering with respect to security signature

S, there exists a program p′ that also computes f and is ty-

pable corresponding to S.

Our working conjecture here is the following.

Conjecture 2. All non-trivial security-typed languages are

security-complete.

Note that, while the conjecture might seem obviously

valid, “the devil is in the details.” This statement is rather

strong. While it is easy to show that it holds for simple for-

malizations of noninterference with primitive input and out-

put types (e.g., int), it actually does not hold for all compu-

tations in all non-trivial languages when we consider more

complex datastructures - noninterference and indistinguisha-

bility do not always provide enough context for a typable

program. It remains to be seen what requirements on L, T
and f are sufficient to prove a corresponding theorem.

3.3 Applicability

One might ask if embedding a less powerful language is use-

ful at all, and thus if our approach is realistic in practice. For

one, in practice many embedded languages are only pow-

erful in certain domains (i.e., domain specific languages).

Most embedded languages show their advantages in the con-

ciseness and expressivity in just this limited domain. For

example, SQL is a query language for databases and is (in

its basic incarnation) not Turing-complete, but can describe

a complex set of relational queries with a relatively small

amount of code. The SQL semantics could be simulated pre-

cisely in a general-purpose language, albeit with simulation

overhead. Thus, SQL can clarify the meaning and intention

of some part of a program, improving that and only that

part over a general-purpose implementation. Also, most host

languages are general-purpose languages that are Turing-

complete and thus as powerful as realistically possible.

Second, we would like to stress that any simulation over-

head is not relevant in practice. The simulation is a tool

for guaranteeing noninterference of the extended semantics

of the composed language. Thus, the size of the simulation

would not matter, since it would not be used in practice.

Another relevant question is whether our requirements

are too strong. While we require noninterferent input pro-

grams, type systems are still important once one already

knows that a function is noninterferent. For example, a typ-

ing can act as a certificate for a program, such that remote

clients can check for actual noninterference. Also, our over-

arching goal is to formally establish the safety of a composed

language from its components. Typing for a known nonin-

terferent embedded program still needs to be liftable to the

overall language, which our approach provides.

4. Approach

The section details our approach in the simplified case of

output indistinguishability being output equivalence, as used

in the previous section. This is for example the case if the

output is just a single integer value that is assumed to be

public, which is a common form to formalize noninterfer-

ence (e.g., [13]). We will formalize this setting in the next

section, and the following sections will detail generaliza-

tions to more complicated values. A subsection treats the

differences between termination-sensitive and termination-

insensitive noninterference.

4.1 Basic Approach

If a function f is computable, then there exists a program p
that computes f , that is, the output of p agrees with f under

the same inputs for the right meaning of inputs and output.

Noninterference is a dependency problem, If a program is

noninterferent, then the (low) result does not depend on high

inputs. This means that, for any high inputs, the low out-

put value will be the same. We are thus able to substitute

arbitrary constants for those inputs when computing only

low outputs. However, we need to prove the existence or

wellformed-ness of said program. We approach this from a

computability direction, where constant functions and func-

tion composition are guaranteed by primitive recursion.

We prefer a composition requirement over more direct

manipulations because it abstracts the exact syntax and se-

mantics of the language involved. Note that we do not need

to inspect programs at all, as required by, for example, a

slicing approach. Instead, we show the existence of some

separate program that is typable and computes an equiva-

lent function. This allows us a generalization that can accept,

for example, both imperative and functional languages. Note

that it is important to find an equivalent function: for our

simulation argument, it is not enough to compute correctly

up to indistinguishability.

The final step is showing typability of this intuitive con-

struction. We observe that, trivially, every function is nonin-

terferent if all inputs are considered public - noninterference

resolves to determinism (or some similar notion in the case

of nondeterministic languages). This generalizes to any sin-

gle security level. It seems reasonable to require that a non-

trivial security-type system should be able to type a program

with a security typing assigning a single level to everything.

This is our first requirement for a security-typed language.

Next, projection and constant functions should be typable

at the respective levels. Under projection we understand here

functions of multiple inputs that return one of those inputs.

For example, projection π1(x, y) = x should be typable as

ℓx × ℓy 7→ ℓx for any ℓx and ℓy . The constant function is

noninterferent no matter the security typing, since the output

is always the same and does not depend on the inputs. Our

30

a := (x + y)− (y− x); [x : L, y : H, a : L]

tx1 := x; ty1 := y; to1 := tx1 ; [tx1 : L, ty1 : H, to1 : L]
to1 = π1(x, y)

tx2 := x; ty2 := y; to2 := 0; [tx2 : L, ty2 : H, to2 : L]
to2 = c0(x, y)

tx3 := to1; t
y
3 := to2; [tx3 : L, ty3 : L, to3 : L]

to3 := (tx3 + ty3)− (ty3 − tx3); to3 = pL(to1, t
o
2)

a := to3;

Figure 1. Simple Program with Security Context

requirement is that it can be typed with any result level,

including public.

Last, we require that composition is typable if the com-

ponents are typable and agree on input and output types. By

construction, the input types of the composition agree with

the security typing for the original program, and the output

type with the output type of said program. Then a typing

states the same (or extended) noninterference property that

we intended for the original program, and the construction

guarantees functional equivalence.

A demonstration is shown in Figure 1 for program p = a
:= (x + y) − (y − x) computing f(x, y) = 2x. The result
is shown below the double lines. The first block projects x,
the second block is the constant 0 function, the third block

represents the original program in a low-typable version,

and the fourth block is the final result. The overhead comes

from the necessity to rename variables when composing in

imperative languages to prevent side effects. The original

program is not typable under the signature that assumes x
low and y high, because the assignment cannot be typed.

The new construction, however can be typed and computes

essentially the same function.

4.2 Termination Sensitivity

The development in the previous subsection only holds if we

consider termination-sensitive noninterference. In that case,

two runs on indistinguishable inputs have to agree on their

termination behaviour, that is, the first run terminates if and

only if the second run terminates. Termination-insensitive

noninterference, on the other hand, only makes a statement

over two terminating runs, considering that an attacker might

not be able to observe (non-)termination, or at most gain one

bit of knowledge from it. In that case, the approach outlined

in the previous subsection cannot be guaranteed to simulate

correctly only up to termination, because termination may

depend on the high input, and thus the choice of constants.

Our solution imposes further requirements that allow the

application of a standard technique in computability: dove-

tailing (interleaving computations). If we require the set of

values valid for the high inputs to be recursively enumerable,

we can test the function on all possible inputs. For this test

to succeed, we have to be able to simulate the function in a

stepwise manner, e.g., as in a small-step semantics. We will

interleave the simulations of the different input values, such

that if there is at least one value that forces termination, we

will find that case. As an example, assume that fk(x) denotes
a computation of f(x : N) for k steps. Then an interleaving

could be f1(0), f2(0), f1(1), f3(0), f2(1), f1(2), If for
any x, f(x) = v is defined, there is a k such that fk(x) = v,
and the interleaving contains this computation.

Such an interleaving will terminate if there is at least one

terminating high value. To complete correctness with respect

to the original, we compute the original function in a high

setting in sequence. This will ensure that the simulation does

not terminate when it should not.

We demonstrate this approach in Figure 2. The first three

blocks iteratively compute the values of the program for in-

creasing values of y, where sim simulates the given program

for tn steps and assigns ts = 0 if the program finished. If the

loop terminates, a result for some y will be in to2. Note that
the loop only involves L variables and can thus be typed as

L. The following three blocks compute an H version of the

program for termination correctness. The last block assigns

the result of the low simulation as the overall result.

5. Formalization

In this section we formalize the approach and requirements

outlined in the previous section. We start by introducing

generic notation for the security-typed language and its

security-type system, and formally defining our require-

ments in the first subsection. In the second subsection, we

formally show how these requirements lead to our revised

hypothesis.

5.1 Definitions & Requirements

We assume a security-typed languageL and its security-type

system T with associated lattice S. The languages provides
a set of values, ranged over by v, a set of programs, ranged

over by p, and state or input, ranged over by µ. The language
has associated semantics that reduces a program and state to

a value and state. We denote the semantics by (p, µ) s

(v, µ′). We define ⇓ to include nontermination, such that

(p, µ) ⇓ (v, µ′) if (p, µ) s (v, µ′), and (p, µ) ⇓ (⊥,⊥), if
there is no such (v, µ′).

We connect the semantics to a functional interpretation

through two predicates defined by the language. A pro-

gram p computes function f(x1, . . . , xn), if for all µ such

that inp,f(x1, . . . , xn, µ), and (p, µ) ⇓ (v, µ′), we have

f(x1, . . . , xn) = resp,f (v, µ
′), where in and res abstract

how a language defines input and output in program p with

respect to function f 1. We denote this by comp(p, f).

1 For an example, recall how in the example of Figure 1 the inputs were

bound to variables x and y and the output to variable a.

31

a := x; while y 6= 10 do [x : L, y : H, a : L]
{ a := x; y := y + 1; }

tx1 := x; ty1 := y; to1 := tx1 [tx1 : L, ty1 : H, to1 : L]
to1 = π1(x, y)

ti := 0; ts := 1; [ti : L, ts : L]

while ts > 0 do {
cantor1(t

i, ty2); [ty2 : L, tn : L]
cantor2(t

i, tn); ti 7→ 〈ty2 , t
n〉

tx2 := to1; [tx2 : L, to2 : L]
sim(pL, tx2, t

y
2 , t

n, to2, t
s); pL(tx2, t

y
2) →

(tn) to2 ?

ti := ti + 1;
}

tx3 := x; ty3 := y; to3 := tx3; [tx3 : L, ty3 : H, to3 : H]
to3 = π1(x, y)

tx4 := x; ty4 := y; to4 := ty4 ; [tx4 : L, ty4 : H, to4 : H]
to4 = π2(x, y)

tx5 := to3; t
y
5 := to4; [tx5 : H, ty5 : H, to5 : H]

to5 := tx5; while t
y
5 6= 10 do to5 = pH(x, y)

{ to5 := tx5 ; t
y
5 := ty5 + 1; }

a := to2;

Figure 2. Example Pair-Result Program

The type system provides a set of types, ranged over by

τ , and type judgements of the form Γ ⊢s p : τ , Γ ⊢s v : τ
and Γ ⊢s µ. Note that for our purposes, it is not necessary to
explicitly include a program counter in the notation. Security

completeness is about whole programs, at which point low

side effects are permissible. We can extract a type level

l ∈ S from a type τ through the function top. We use

two predicates to connect a type judgment and function

signature, similar to the semantic connection. A judgment

Γ ⊢s p : τ is typed according to f with signature τ1 × · · · ×
τn 7→ τr , if in

t
p,f(Γ, τ, τ1, . . . , τn) and τr = restp,f (Γ, τ).

We denote this as typed(p, f,Γ, τ).
We define noninterference ni for a function f with re-

spect to (security) signature τ1 × · · · × τn 7→ τ in the fol-

lowing way:

ni(f, τ1 × · · · × τn 7→ τ) ⇐⇒

∀l ∈ S.top(τ) ⊑ l =⇒
∀x1

1, x
2
1 : τ1, x

1
2, x

2
2 : τ2,

(∀i.top(τi) ⊑ l =⇒ x1
i = x2

i) =⇒
f(x1

1, . . .) = f(x2
1, . . .)

A program p is noninterferent with respect to f and a signa-

ture τ1 × · · · × τn 7→ τ , if p computes f and f is noninter-

ferent. The type system guarantees that a typable program is

noninterferent with respect to all functions it computes and

is typed accordingly2:

Γ ⊢s p : τ ∧ comp(p, f)∧
typed(p, f : τ1 × · · · × τn 7→ τr,Γ, τ) =⇒

ni(f, τ1 × · · · × τn 7→ τr)

Associated with the security-typed versionswe expect ground-

typed versions, denoted by a g subscript or by ⌊•⌋ (which

can be seen as an erasure function removing all security an-

notations), that is, the security-typed language is based on

a regular language and type system with regular soundness

guarantees, that is, ground-typed programs do not go wrong.

We require the following manipulation functions for an-

notations.

Requirement 3 (Erasure & Lift). There exist an erasure

function ⌊•⌋ and a lift function ⌈•⌉l such that

∀p, v, µ ∈ L,Γ, τ ∈ T .⌊p⌋ ∈ ⌊L⌋, ⌊v⌋ ∈ ⌊L⌋, . . .
∀pg, vg, µg ∈ ⌊L⌋,Γg, τg ∈ ⌊T ⌋, l ∈ S.⌈pg⌉l ∈ L, ⌈vg⌉l ∈ L, . . .
∀τg, l ∈ S.top(⌈τg⌉l) = l

We define a complete relabeling [•]l = ⌈⌊•⌋⌉l. The identity

τ = [τ]
top(τ)

is required to hold.

We use the requirements on relabeling to form a partial

order on types lifted from their security levels.

τ1 ⊑ τ2 ⇐⇒ ∃τ, l1 ⊑ l2.τ1 = [τ]l1 ∧ τ2 = [τ]l2

Security and ground languages are suitably related:

Requirement 4 (Security to Ground.).

∀p, v, µ, µ′,Γ, τ.
Γ ⊢s p/v/µ : τ =⇒ ⌊Γ⌋ ⊢g ⌊p/v/µ⌋ : ⌊τ⌋
(p, µ) s (v, µ

′) =⇒ (⌊p⌋, ⌊µ⌋) g (⌊v⌋, ⌊µ′⌋)

Furthermore, it holds that

typed(p, f : τ1 × · · · × τn 7→ τ,Γ, τ) =⇒
typed(⌊p⌋, f : ⌊τ1⌋ × · · · × ⌊τn⌋ 7→ ⌊τ⌋, ⌊Γ⌋, ⌊τ⌋)

and comp(p, f) =⇒ comp(⌊p⌋, ⌊f⌋).

2The notion that a program might compute multiple functions might be

surprising. But computation here is defined with respect to what parts of the

output state are of interest. For example, consider projection π1(x, y) = x

in a WHILE language.

32

Furthermore, we can gain security-type system judg-

ments from ground-type judgments for any security level

from S.

Requirement 5 (Single-Level.).

∀l ∈ S.Γg ⊢g pg/vg/µg : τg =⇒
⌈Γg⌉l ⊢s ⌈pg/vg/µg⌉l : ⌈τg⌉l

∀l ∈ S.(pg , µg) g (vg, µ
′
g) =⇒

(⌈pg⌉l, ⌈µg⌉l) s (⌈vg⌉l, ⌈µ′
g⌉

l)

Furthermore, it holds that

typed(pg, fg : τ1 × · · · × τn 7→ τ,Γg, τg) =⇒
typed(⌈pg⌉l, fg : ⌈τ1⌉l × · · · × ⌈τn⌉l 7→ ⌈τ⌉l, ⌈Γg⌉l, ⌈τg⌉l)

and comp(pg, fg) =⇒ comp(⌈pg⌉l, fg).

We need programs that compute projection and constants.

Requirement 6 (Projection). Let πn
i (x1, . . . , xn) = xi be

the i-th projection function of n inputs. Let πn
i : τ1 × · · · ×

τn 7→ τi be a signature of πn
i . Then there exists a program

pni , a Γ and τ such that

Γ ⊢s p
n
i : τ ∧ comp(pni , π

n
i)∧

typed(pni , π
n
i : τ1 × · · · × τn 7→ τi,Γ, τ)

Requirement 7 (Constant Function). Let cx,li (x1, . . . , xn) =
x be the x-constant function of n inputs. We have τ1 × · · · ×
τn 7→ τr a signature of cx,li , that is x : τr and τr = [τi]

l
.

Then there exists a program px, a Γ and τ such that

Γ ⊢s p
x : τ ∧ comp(px, cx)∧

typed(px, cx,li : τ1 × · · · × τn 7→ τr,Γ, τ)

Note that this requirement is necessary. While it may

seem that erasure and lifting of an arbitrary value of τi may

fulfill the requirements, it does not guarantee the existence

of a program that creates the value. This is important, since

only programs need to be able to be composed. This restric-

tion allows us to easily include imperative languages into the

framework.

Finally, we want to compose typed programs.We decided

to formulate a general composition requirement, instead of a

special-cased one.

Requirement 8 (Composition).

∀p•, p.
(

∀i.Γi ⊢s pi : τ
i ∧ comp(pi, fi)∧

typed(pi, fi : τ1 × · · · × τn 7→ τ ir ,Γi, τ
i)

)

∧
(

Γ ⊢ p : τp ∧ comp(p, f)∧
typed(p, f : τ ′1r × · · · × τ ′mr 7→ τr,Γ, τ

p)

)

∧

∀i.τ ir ⊑ τ ′ir
=⇒

∃pc,Γc, τc.
Γc ⊢s pc : τc ∧ comp(pc, f ◦

−→
fi)∧

typed(pc, f ◦
−→
fi : τ1 × · · · × τn 7→ τr,Γc, τc)

where (f ◦
−→
fi)(x1, . . . , xn) = f(f1(x1, . . . , xn), . . . ,

fm(x1, . . . , xn)).

5.2 Revised Theorem & Proof

Theorem 9 (Security-Typability Completeness). Assume a

language L and corresponding ground language that fulfill

the requirements in the previous subsection. Such language

is security-complete.

Proof. Assume p a program that computes noninterferent

f : τ1 × · · · × τn 7→ τ . Since p is ground-typable, we have

pg = ⌊p⌋ such that there is a ground typing Γg ⊢g pg : τg ,
such that typed(pg, f : ⌊τ1⌋× · · · × ⌊τn⌋ 7→ ⌊τ⌋,Γg, τg) by
requirement 4. Let l = top(τ). Define g• as

gi =

{

πn
i : τ1 . . . τn 7→ τi if top(τi) ⊑ l

cxi,l
i : τ1 . . . τn 7→ [τi]

l
else, with arbitrary xi : [τi]

l

which exist by requirements 6 and 7. Noninterference of f
with respect to signature τ1×· · ·× τn 7→ τ and level l states
that

∀x1
1, x

2
1 : τ1, . . . , x

1
n, x

2
n : τn.

(∀i.top(τi) ⊑ l =⇒ x1
i = x2

i) =⇒
f(x1

1, . . .) = f(x2
1, . . .)

Take any set of inputs x• for f . Let y• be defined as yi =
gi(x1, . . . , xn). Then ∀i.top(τi) ⊑ l =⇒ xi = yi by
construction. Now, by noninterference, we have

f(x1, . . . , xn) = f(y1, . . . , yn) = f(g1(x1, . . . , xn), . . . ,
gn(x1, . . . , xn))

By requirements 6 and 7, there exist p•, Γ• and τ
f
• such that

∀i.Γi ⊢s pi : τ
g
i ∧ comp(pi, gi)∧

typed(pi, gi : τ1 . . . τn 7→ τ i,Γi, τ
g
i).

Furthermore, by construction we have ∀i.τ i ⊑ [τi]
l
, by

requirements 3 and 7.

By the Single-level requirement, we can lift the typing

of pg such that ⌈Γg⌉l ⊢s ⌈pg⌉l : ⌈τg⌉l and comp(⌈pg⌉l, f)

and typed(⌈pg⌉l, f : [τ1]
l×· · ·×[τn]

l 7→ [τ]l , ⌈Γg⌉l, ⌈τg⌉l).
This allows us to use the Composition requirement, compos-

ing p• into ⌈pg⌉l, which is functionally equivalent to com-

posing g• into f . This results in a program pc and typing

Γc ⊢s pc : τc such that comp(pc, f ◦ −→gi) and typed(pc, f ◦
−→gi : τ1 × · · · × τn 7→ [τ]

l
,Γc, τc). Previous deductions and

identity requirement on relabeling permit us to simplify this

to comp(pc, f) and typed(pc, f : τ1×· · ·×τn 7→ τ,Γc, τc).
Thus, the program pc is typable with the required signature

and computes f , which concludes the proof.

5.3 Sufficient vs. Necessary Conditions

Our derivation in the previous subsections concludes that

the requirements established are sufficient for a language to

be security-complete. However the reverse is not generally

true. The leeway that the definition of security completeness

allows us, i.e., that another equivalent program exists that is

typable, makes a reverse deduction impossible in general.

33

6. Datatypes

We can extend the formalization of the previous section to

data types. For security, compound values imply the pos-

sibility of more complicated indistinguishability relations,

e.g., different parts of a value may have different security

levels and need to be treated differently. A statement of non-

interference may then use this complex indistinguishability

both for inputs and outputs. That is, noninterferent programs

create outputs that agree on low parts if the low input parts

are equivalent. A simple case for demonstration follows.

Assume that the language in questions supports pairs. Let

f(x, y) = 〈x, y + 1〉, where x and the first component of

the output pair are public, and y and the second component

of the output pair are confidential. A sample noninterference

statement for this function is

∀x, y1, y2, x′
1, x

′
2, y

′
1, y

′
2.

f(x, y1) = 〈x′
1, y

′
1〉 ∧ f(x, y2) = 〈x′

2, y
′
2〉 =⇒

〈x′
1, y

′
1〉 ∼ 〈x′

2, y
′
2〉 ≡ x′

1 = x′
2.

Notice that the construction in the previous subsection re-

quired the whole output to be equivalent, whereas now only

the public part is. Also, the confidential output may depend

on the confidential input, as in the given example function.

6.1 Assumptions

We assume some structure of complex values. First, complex

values can be described as algebraic, that is, are of the form

v = c v1, . . . , vn for an n-ary constructor c. Note that we

require values to be made up of sub-values. To ensure termi-

nation of our recomputation, we require all treated values to

be finite. We require typing to structurally match values: if a

value v = c v1, . . . , vn can be typed as τ under Γ, then there
are types τ1, . . . , τn such that v1, . . . , vn are typed under Γ,
and for all v′1, . . . , v

′
n typable in that way, c v′1, . . . , v

′
n can

be typed as τ . This is a standard consequence in rule-based

type systems.

Furthermore, we need functions to decompose values to

their components. To unify product and variant treatment,

we assume a matching construct in the language. Formally,

if a type system can type values vi = ci vi1, . . . , v
i
ni

with

ci 6= cj (for i 6= j) as τ , where vij can be typed with τ
i
j , then

there exist matching functions with the signature match :
τ 7→ (τ11 × · · · × τ1n1

7→ τ ′) 7→ . . . 7→ τ ′ for all τ ′, with
the semantics that match(ci vi1, . . . , v

i
ni
, f1, . . . , fm) =

fi(v
i
1, . . . , v

i
ni
). This is standard for pattern-matching lan-

guages, and can be simulated in languages without explicit

pattern matching (e.g., by branching on tag values encoding

variants). We will use the common syntax, that is, “λx . . . ”
for functions and “match x with . . . ” for matching. Note

that this existential requirement is very weak: to compute

with datatypes, one form or another of matching is required.

We assume that each type τ involved has one immediate

security-level annotation, which we denote by tp(τ). Multi-

ple immediate annotations can be handled by complex secu-

rity lattices. For matching, we require match to be typable,

if tp(τ) ⊑ tp(τ ij) for all i and j, tp(τ) ⊑ tp(τ ′), and all fi
are typable according to the signature ofmatch. This might

seem restrictive, but is powerful enough to capture all cases

outside the limitations outlined in the following subsection.

We also need to make minimum requirements on what

indistinguishability means for values of a type τ and ob-

server level φ. Our single requirement is that if two values

v1 and v2 of type τ are indistinguishable at level φ, and
tp(τ) ⊑ φ, then both values have the same root construc-

tor, and all immediate sub-values are indistinguishable with

respect to their corresponding types at level φ.

6.2 Limitations

It turns out that Conjecture 2 is not provable in the general-

ized context anymore. As an example, take a language with

pairs which have three security annotations: one for each

component and one to signal the security level of the iden-

tity of the pair. Now take a pair that has a public and a pri-

vate component, and is itself private. This leads to the public

component not being accessible by an attacker (cf. [1, 12,

13]). Indistinguishability might thus be defined as:

〈x1, y1〉 ∼ 〈x2, y2〉 at 〈φ1, φ2〉φ3 ⇐⇒

φ3 = H ∨

(

(φ1 = L =⇒ x1 = x2)∧
(φ2 = L =⇒ y1 = y2)

)

With this, the following computation is noninterferent:

i f h > 0 t h en 〈3, 5〉 e l s e 〈4, 5〉 : H 7→ 〈L,H〉H

However, this computation has a dependency between high

input h and the low output component. In our companion

technical report [4] we formally show that FlowML, a practi-

cal non-trivial language, cannot type any program that com-

putes this function. We thus limit the theorems to security

types such that levels of sub-types are at least as high as

those of enclosing types.

6.3 Approach

The intuition behind our approach is to split computations

by output level, allowing a level-separated computation. The

final result then needs to be composed from the parts. Sepa-

rability is a known result for trace-based security. We re-use

and extend it to complex datastructures.

In a language-based environment, directly separating by

security level is complicated. Since levels are connected to

types, which are connected to the structure of values, we in-

stead separate structurally, which implies a level separation.

E.g., with the example above, we will find a program that

represents f(x, y) as a composition of computations for each

pair component:

f(x, y) = match fL(x, y) with 〈xt, yt〉 ⇒ 〈f1(x, y), f2(x, y)〉

where f1(x, y) = π1(f(x, y)) and f2(x, y) = π2(f(x, y)).
Intuitively, the matching will compute a single (sub-)value

34

if y = 0 then a := 〈x, y〉 [x : L, y : H, a : L×H]
else a := 〈x + 0, y + 1〉;

tx1 := x; ty1 := y; to1 := tx1 [tx1 : L, ty1 : H, to1 : L]
to1 = π1(x, y)

tx2 := x; ty2 := y; to2 := 0; [tx2 : L, ty2 : H, to2 : L]
to2 = c0(x, y)

tx3 := to1; t
y
3 := to2; [tx3 : L, ty3 : L, to3 : L×L]

if ty3 = 0 then to3 := 〈tx3, t
y
3〉 to3 = pL(to1, t

o
2)

else to3 := 〈tx3 + 0, ty3 + 1〉;

to4 := π1 t
o
3; [to4 : L]

tx5 := x; ty5 := y; to5 := ty5 ; [tx5 : L, ty5 : H, to5 : H]
to5 = π2(x, y)

tx6 := to1; t
y
6 := to5; [tx6 : H, ty6 : H, to6 : H×H]

if ty6 = 0 then to6 := 〈tx6, t
y
6〉 to6 = pH(to1, t

o
5)

else to6 := 〈tx6 + 0, ty6 + 1〉;

to7 := π2 t
o
6; [to7 : H]

a := 〈to6, t
o
7〉;

Figure 3. Example Pair-Result Program

at the level of the immediate annotation of that type. Non-

interference will enforce that at least the variant chosen is

correctly computed at this level. The correspondingmatched

case will re-compute all sub-values, at their correct levels,

and reconstruct the correct value in a typable fashion.

An example of this construction is given in Figure 3. The

program p on top computes f(x, y) = 〈x, y + 1〉, but is not
typable. In the transformed program, for brevity we use π to

extract components of a pair. The first four blocks compute

the low component, while the next three blocks compute

the high component, and finally the pair is reconstituted.

Note the conceptual similarity to [3]. They perform a similar

process at runtime to enforce noninterference, compared

to our approach of showing typability in the case when

noninterference is given.

6.4 Nonrecursive Datatypes

For nonrecursive datatypes, a type τ can be matched stati-

cally to any value v it types. We will recompute a (sub-)value

corresponding to the structure of its (sub-)type, ensuring ty-

pability along the way.

We can recursively generate a function for this whole

computation. Note that underlined functions are meta-level

functions defining a language-level construct - in a sense

they are macros to construct the language-level computation.

Assume that f is noninterferent with respect to signature

τ i 7→ τ . Here, we assume τ i is not complex to simplify

the presentation. Also, let fφ denote the function that results

from single-level typing as outlined in the previous section.

We start with the actual computation, modeled withmatch:

match(p, τ) = λx : τ i. extract(p, τ) f tp(τ ′)(x)
/ / i f τ ′ i s n o t a d a t a t y p e

match(p, τ) = λx : τ i.

match (extract(p, τ) f tp(τ ′)(x)) with
...

ci t
i
1, . . . , t

i
ni

⇒ ci (match(p++(i, 1), τ) x), . . . ,
(match(p++(i, ni), τ) x)

/ / e l s e

Here, p is a path the a sub-value/sub-type, which is encoded

by a list of pairs for the choice of constructor and immediate

sub-value. We denote the type in τ relative to path p by τ ′.
Note that the concept of paths is purely meta-level, since

nonrecursive types can be fully statically described - we only

need it to describe the computation recursively.

The key point of match is the recomputation of f at the

level of the currently inspected sub-value denoted by p. To
avoid inspection of f , we do a full recomputation, which

then requires to extract the sub-value in question - this is

the job of extract. With the restrictions on τ and indis-

tinguishability, it follows that this recomputation is correct

up to the choice of constructor, but not necessarily the sub-

values ti1, . . . , t
i
ni
. We thus recompute the sub-values recur-

sively by extending the path formatch.
Extraction itself does not need to recompute at each step.

To be typable as needed, extract refers to a default value

vdef for type τ ′ when the given path does not lead to such a

case (we use “default” to stand for the finite number of other

cases).

extract((), τ) = λx : τ. x
extract((i, j) :: p, τ) = λx : τ. match x with

ci t
i
1, . . . , t

i
ni

⇒ extract(p, τ ij) tij
d e f a u l t ⇒ vdef

We can now formalize our conjecture for nonrecursive

datatypes.

Theorem 10 (Nonrecursive Datatypes). Assume a language

L and corresponding ground language that fulfill all the re-

quirements of the previous section, as well as the require-

ments in this section. This language is security-complete

with the mentioned restrictions.

The proof proceeds by induction over the structure of

types and paths and can be found in [4].

35

6.5 Recursive Datatypes

The approach of the previous section can be extended to

recursive datatypes, but for space reasons we only sketch

our solution. The key difference is that now the path in a

value needs to be handled dynamically. We can model the

path with a list of integers, which is a recursive type and

thus allowed by the language in question. We use µ types

to guide the construction of the corresponding code. µ types

allow a binding construct µx.τ , where x may appear in τ .
For each binder a recomputation function is generated

that assumes that the current path leads to a place in the value

that corresponds to the binder. Furthermore, to minimize

typing requirements, e.g., not require polymorphism, we

create extraction functions for each start and end binder, e.g.,

extractx 7→y assumes a value corresponding to binder x, and
a path that will lead to binder y.

With this setup we can state a theorem corresponding to

Theorem 10. The details of the construction, exact statement

and proof are available in [4].

7. References

References introduce additional constructs that need to be

handled. This complicates matters and requires further re-

strictions on languages that our technique can support. For

one, most languages with references only allow limited in-

teractions with references. Allocation of new locations can

usually not be influenced directly on the language level. This

makes exact recomputation impossible. Our technique can

thus only simulate correctly up to renaming of heap loca-

tions. This also means that computations exhibiting identity

behaviour cannot be simulated correctly. We see this as a

minor disadvantage. We want to use the simulation to re-

place an embedded program that is cleanly separated from

the host. It seems reasonable to require that any objects re-

turned from the embedded program are independent of the

inputs. This is usually the case when the embedded program

cannot “call back” into the host program.

Any recomputation in parts will repeatedly invoke the

original computation at certain levels. This may create

several temporary locations polluting the heap, which, of

course, do not appear in the original computation. Our tech-

nique is thus only correct up to locations reachable from the

result of the function.

Also, computation with references allows side effects. In

this case, a side effect may change the input values. We

can contain side effects if we can create temporary “clones”

of the relevant inputs and use those for computations. This

means that the language needs to guarantee that two suit-

ably related inputs, e.g., clones, compute suitably related

outputs.We formalize this as the shape of the part of the heap

reachable from the inputs, which corresponds to the first re-

striction. This, however, forbids any reflective language con-

structs.

7.1 Heaps

We formalize state through the concept of heaps. Heaps,

denoted by H, are mappings of locations, denoted by ℓ,
to values. Values are extended to include locations. nil is
a special value that is not mapped by any heap. Typings

may contain a heap typing that assigns types to locations.

Reference types are composed of the type of values that

can be stored at the location, as well as the security level

of location value itself.

7.2 Reachability, Equivalence & Indistinguishability

As outlined above, we restrict our attention to languages

that restrict computation to reachable values. We formalize

reachability as a set parameterized over a heap and starting

location in said heap. The reachable set R of H and ℓ is the
smallest set closed under the following rules: (1) ℓ ∈ R and

(2) if ℓ ∈ R and H(ℓ) = o a value of a type τ , then for all

location-typed sub-values o′ of o we have o′ ∈ R. For our

treatment, we requireR to be finite.

We define two pairs of heap and start locations to be

equivalent if there exists a bijection ρ between the locations

of the reachable sets such that non-reference values in re-

lated locations are identical, and reference values are related

by the bijection. We denote equivalence by ≡.

If two locations are indistinguishable with respect to bi-

jection ρ and level φ and their level is at most φ, then they

are in relation with respect to ρ. This is standard. Now, along
the lines of datatypes we require that if two references to val-

ues of type τ are indistinguishable with respect to φ and ρ,
and the security annotation is at most φ, then the potential

variants of both objects are identical. We require that indis-

tinguishability for heaps is with respect to its reachable part.

That is (H∞, o1) is indistinguishable to (H∈, o2) at level φ
if there exists a bijection ρ between the reachable sets and o1
and o2 are indistinguishable with respect to ρ.

7.3 Computation

We define as a computation a function from a heap H and

location in the heap, to a result heap H′ and result object. A

program computes f if reduction of the main fragment with

variables bound to the input object and given heap results

in the result heap and result object. As mentioned above,

we assume correct executions. Thus we will leave typing

constraints implicit here. All definitions are predicated on

heaps and input objects correct with respect to f , that is H
etc. range only over valid input states for f .

We formalize our requirements on the treated programs

in the following way. A function f is ok, if:

• ∀H,H′, o, o′.f(H, o) = (H′, o′) =⇒ RH,o ∩RH′,o =
∅

• ∀H1, o1,H2, o2.(H1, o1) ≡ (H2, o2) =⇒ f(H1, o1) ≡
f(H2, o2)

A simulation g is correct for f , if ∀H, o.f(H, o) ≡ g(H, o).

36

7.4 Approach

Treatment of references generalizes the approach of recur-

sive data types. In this case, a heap walking approach is used.

At each location in the heap, inputs need to be duplicated.

Note that this is typable due to the single level necessary for

the current computation. Non-location values can be imme-

diately computed when a location is reached. Otherwise, ref-

erences are resolved recursively, extending the current path

from the starting location. Since the reachable part of the

heap is required to be finite, the workload is finite.

A complication arises from the potential for cyclic paths

in the heap. The process is complicated by the fact that the

original result will be recomputed in every step. Our solution

is to store a list of objects seen when extracting the current

object from the result along the current path. This list can be

typed with a single level, since the result object and heap are

typed at a single level. A “back edge” is detected when the

current extracted object is present in the list. To also detect

“cross edges”, we must also walk all completed paths again.

This can be implemented through a deterministic process-

ing order of fields in objects. To break the cycle, we return

the object constructed earlier. This is the main reason why

the treatment of datatypes (value is created late) differs from

references (value is created early). Retrieval can be encoded

with single-level integer lists describing paths to stored ob-

jects. If we update locations early, that is, a child adds itself

to its parent, and have access to the root, we can use the path

to retrieve the recomputed object in a typable way.

For space reasons, we omit a formalization of the con-

struction, which can be found in the technical report, and

only state the resulting theorem.

Theorem 11 (References). Assume a language L and cor-

responding ground language that fulfill all the requirements

of the previous sections, as well as the requirements in this

section. Such a language is security-complete with the men-

tioned restrictions.

8. Example Languages

This section briefly describes three case studies which

demonstrate that our formalization and requirements per-

mit such different paradigms as imperative, functional and

object-oriented languages. A more detailed analysis can be

found in the technical report.

8.1 Volpano, Smith & Irvine

VSI [16] is based on a simple WHILE language based on in-

tegers. It fits the development in Section 5. Erasure and lift-

ing functions are straightforward for VSI, since only types

are annotated. Requirement 5 follows from the polymorphic

setup of the type rules and can be formally proved by induc-

tion on the ground typing. Variable assignment represents

the projection function of requirement 6, typable by the as-

signment rule. Assignment of an integer literal represents the

constant function of requirement 7, and can be typed at the

output variable level.

The only complicated requirement is composition. In

a WHILE language, composition is basically sequencing

the components, with possible assignments to connect the

components. Composition actually necessitates renaming of

variables and connecting assignments to allow typing, but

satisfies the requirements.

8.2 FlowML

FlowML [13] is based on a core functional ML fragment

including references, pairs, sums and exceptions. For sim-

plicity of the functional interpretation we do not treat ex-

ceptions and references here. FlowML fits the development

in Section 6.4. Lifting, erasure and single-level typing fol-

low from the polymorphic setup of the rules. Projection is

provided by a simple variable, while constants can be freely

formed. Composition is provided by variable substitution,

which may be combined with renaming and weakening to

fulfill the requirements. Extraction for pairs is provided by

typed projection, and a case construct allows to distinguish

variants. However, basic noninterference cannot be lifted to

abstractions, so that we cannot support arrow types (c.f. [6]).

8.3 Banerjee & Naumann

It is easy to extend the work in Section 7 to a class-based

setting. We study the work in [1]. Additional treatment over

pure references is necessary for encapsulation, which we

solve by making all fields accessible through accessor meth-

ods. This does not change the computation. Single-level re-

quirements can be ensured by complete copies of all classes

and setting all annotations at the requested level. Projection,

constant functions, and composition can be handled as in

VSI. Furthermore, we need a matching construct to match

objects to their respective classes. This can be realized with

instanceof and dynamic casts provided by the language.

Note that these constructs have the same security level as

their inputs, so that they are typable as required.

9. Related Work

Completeness To the best of our knowledge, this is the first

work to formally investigate completeness in the context of

security-typed languages. Kahrs [7, 8] studied completeness

for basic type systems, where the question is if all com-

putable functions that are “well-going” can be typed. Kahrs

formalized languages and type systems as transition systems

and used the product and reachability to define soundness.

In comparison, our goal is to permit easy adoption of ex-

isting languages, which usually have rule-based designs for

both semantics and type systems. As demonstrated, the re-

quirements usually easily follow from the modular nature of

judgments, and can be derived for both imperative and func-

tional security-typed languages.

Traditional work in security-typed languages attempts to

broaden the permissibility of the type system, that is, accept

more programs as typed and thus certified secure. For an

overview we refer to [15]. Our work is orthogonal to such

efforts. We show that, under certain constraints formulated

37

in our requirements, there are always programs that compute

a given noninterferent function.

Language Composition To the best of our knowledge,

this is the first work to consider composing two different

security-typed languages. Composition has been studied in

the security field for trace-based systems (e.g., [11]), in

the setting of process algebras ([14] for an overview), and

security-typed languages ([10] for an overview). In all these,

multiple programs (or fragments) of one formal system are

composed, and the question is if all programs are secure,

is the composition secure. In contrast, our fragments are

derived from different security-typed languages, exhibiting

different semantics that are interfaced through an additional

host statement.

Approach Our approach of level separation to establish

security completeness is similar to the runtime effort in [3].

Devriese and Piessens enhance the semantics of a language

to allow for level-separated computation to ensure noninter-

ference at runtime, potentially changing the meaning of a

program. We achieve typing through the use of single-level

typing and also separating computations, without changing

semantics or meaning of a program. Furthermore, we study

the approach also for complex datatypes, nondeterminism

and termination-insensitive noninterference, whereas De-

vriese and Piessens only speculate on the first and avoid the

second and third.

10. Conclusion & Future Work

In this paper we have shown an approach, under certain re-

strictions, to show security of a language composition if the

composed components themselves are secure. The approach

is based on a simulation of component behavior, and ac-

companying proof that the noninterference of the compo-

nent computation guarantees that there exists a typable pro-

gram for the simulation, thus deducing noninterference for

the composed language from noninterference for the host

language.

This result allows us to develop separate type systems for

languages, and lift the results to compositions. It thus sig-

nificantly reduces the burden of showing security in modern

programs that employ many programming languages for dif-

ferent tasks like data retrieval and modification.

Acknowledgments We would like to thank our shepherd

Nikhil Swamy and the anonymous referees for their helpful

comments improving the presentation of this paper.

This work was supported by the National Science Foun-

dation under grants CCF-0846010 and CNS-0964710.

References

[1] A. Banerjee and D. A. Naumann. Stack-based access control

and secure information flow. J. Funct. Program., 15(2):131–

177, Mar. 2005.

[2] D. E. Denning. A lattice model of secure information flow.

Commun. ACM, 19:236–243, May 1976. ISSN 0001-0782.

[3] D. Devriese and F. Piessens. Noninterference through secure

multi-execution. In Proceedings of the 2010 IEEE Symposium

on Security and Privacy, SP ’10, pages 109–124, Washington,

DC, USA, 2010. IEEE Computer Society.

[4] A. Gampe and J. Von Ronne. Towards noninterference in

composed languages. Technical Report CS-TR-2012-014,

Department of Computer Science, The University of Texas at

San Antonio, 2012.

[5] J. A. Goguen and J. Meseguer. Security Policies and Security

Models, volume pages, pages 11–20. IEEE, 1982.

[6] N. Heintze and J. G. Riecke. The slam calculus: programming

with secrecy and integrity. In Proceedings of the 25th ACM

SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’98, pages 365–377, New York, NY, USA,

1998. ACM.

[7] S. Kahrs. Limits of ml-definability. In Proceedings of the

8th International Symposium on Programming Languages:

Implementations, Logics, and Programs, PLILP ’96, pages

17–31, London, UK, UK, 1996. Springer-Verlag.

[8] S. Kahrs. Well-going programs can be typed. In Proceedings

of the 6th international conference on Typed lambda calculi

and applications, TLCA’03, pages 167–179, Berlin, Heidel-

berg, 2003. Springer-Verlag.

[9] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C.

Myers. Fabric: a platform for secure distributed computation

and storage. In SOSP ’09: Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles, pages 321–

334, New York, NY, USA, 2009. ACM.

[10] H. Mantel, D. Sands, and H. Sudbrock. Assumptions and

guarantees for compositional noninterference. In Proceed-

ings of the 2011 IEEE 24th Computer Security Foundations

Symposium, CSF ’11, pages 218–232, Washington, DC, USA,

2011. IEEE Computer Society.

[11] D. McCullough. Specifications for multi-level security and a

hook-up. Security and Privacy, IEEE Symposium on, 0:161,

1987.

[12] A. C. Myers. Jflow: Practical mostly-static information flow

control. In In Proc. 26th ACM Symp. on Principles of Pro-

gramming Languages (POPL), pages 228–241, 1999.

[13] F. Pottier and V. Simonet. Information flow inference for

ML. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages,

pages 319–330, New York, NY, USA, 2002. ACM.

[14] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-

interference. J. Comput. Secur., 9(1-2):75–103, Jan. 2001.

[15] A. Sabelfeld and A. Myers. Language-based information-flow

security. Selected Areas in Communications, IEEE Journal

on, 21(1):5 – 19, Jan. 2003. ISSN 0733-8716. doi: 10.1109/

JSAC.2002.806121.

[16] D. Volpano, C. Irvine, and G. Smith. A sound type system for

secure flow analysis. J. Comput. Secur., 4:167–187, January

1996.

[17] S. Zdancewic and A. C. Myers. Secure information flow

and cps. In ESOP ’01: Proceedings of the 10th European

Symposium on Programming Languages and Systems, pages

46–61, London, UK, 2001. Springer-Verlag.

38

