
Determining Average Program Execution Times

and their Variance

Vive k Sarkar
IBM Research

T. J. Watson Research Center
P. 0. Box 704, Yorktown Heights, NY 10598

Abstract

This paper presents a general framework for de-
termining average program execution times and
their variance, based on the program’s interval
structure and control dependence graph. Average
execution times and variance values are computed
using frequency information from an optimized
counter-based execution profile of the program.

1 Introduction

It is important for a compiler to obtain estimates

of execution times for subcomputations of an input

program, if it is to attempt optimizations related to

overhead values in the target architecture. In earlier

work [SH86a, SH86b, Sar87, Sar89], we used estimates

of execution times to facilitate the automatic partition-

ing and scheduling of programs written in the single-

assignment language, SISAL, for parallel execution on

multiprocessors.

In this paper, we present a general framework for

estimating average execution times in a program. This

approach is based on the interval structure [ASUSS]

and the control dependence relation [FOW87], both of

which can be derived from an arbitrary reducible control

flow graph. Therefore, this framework supports general,

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear. and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-89791-306-X/89/0006/0298 $1.50

unstructured programs, rather than the special case of

structured programs that was addressed earlier when

dealing with SISAL. Average execution times are derived

from frequency values, and from estimated execution

times of primitive operations on the target architecture.

Besides showing how average execution times can

be computed, we also introduce the notion of execution

time variance which corresponds to the statistical mean-

ing of variance (or standard deviation). We show how

variance values can be computed in a manner similar to

average execution times. Variance information can be

used, for example, to help determine the chunk size of

parallel loops [KW85].

In our framework, frequency values are obtained

from a counter-based execution profile of the program.

Rather than using the naive approach of incrementing

a counter once per basic block, the control dependence

relation is used to increment a counter once for each

distinct control dependence branch condition. We use

frequency information to estimate average execution

times and variances, but this approach to execution

profiling based on control dependence and counter

variables would be useful for any code optimization

that needs frequency information e.g. register allocation

[WalSS], trace scheduling [FERN84], optimization of

delayed branches [MH86].

This framework for estimating execution times has

been implemented as part of the PTRAN (Parallel

298

Translation) project at IBM Research [ABC*87]. The

PTRAN system contains a program database which can

be conveniently used to store the frequency, execution

time and variance information. Currently, the primary

use of execution time information in PTRAN is in

automatically partitioning the input program into tasks

for parallel execution.

2 Program Representation

This section describes the program representations used

for estimating execution times. These representations

are used in PTRAN [ABC*87], and the approach

described here is based on the PTRAN implementation.

The initial representation is assumed to be the

traditional control flow graph [ASU86]. The nodes of

the control flow graph may represent arbitrary units of

computation - basic blocks, statements, operations or

instructions. The only requirement is that the control

flow graph should contain all control flow relations of

interest. As in other code analysis and optimization

techniques, we assume that the control flow graph is

reducible. Node splitting [ASU86] is astandard approach

that can be used to transform an irreducible control flow

graph into a reducible control flow graph.

A reducible control flow graph has a unique depth-

first spanning tree and hence a unique interval structure

which can be easily computed from the control flow

graph [Bur87, SS79]. The intervals identify the loops in

the program. The other program representation we use

is the forward control dependence graph [Hsi88, CHH89]

based on the control dependence relation defined in

FOWS?].

Definition 1 A controlflow graph CFG = (N,, E,, T,)

consists of

l Nc, a set of nodes

l E, C N, x N, x L, a set of labelled control flow

edges, where L is the set of all possible labels.

. To a node type mapping. T,(n) identifies the

type of node n as one of the following values -

START, STOP, HEADER, PREHEADER,

POSTEXIT, OTHER.

Since there can be multiple edges with different

labels between the same pair of nodes in E,, CFG is

in general a multi-graph. The classification into node

types specified by T, is only used to help identify the

interval structure in the forward control dependence

graph computed later. The node type mapping does

not change the semantics of the control flow graph in

any way.

Figure 1 shows a Fortran code fragment along with

the corresponding statement-level control flow graph,

CFG. The labels T and F are used to identify the

true and false branches respectively, for an IF statement.

The label U is used to identify an unconditional branch

from a node. All nodes in the original control flow graph

have type = OTHER.

We first determine the interval structure of CFG

[Bur87, SS79]. The intervals are summarized in a

mapping called HDR, where HDR(n) = h indicates

that node h is the header of the interval containing

node n. Interval nesting is stored in a mapping called

HDRPARENT, where HDR_PARENT(hl) = ha

indicates that the interval with header node hl is

an immediate subinterval of the interval with header

node ha. HDR-PARENT(h) = 0 indicates1 that the

interval with header node h is the outermost interval (we

assume that there is exactly one such interval - the one

containing nfirstr the first node to be executed in CFG).

HDRPARENT defines a directed tree on all header

nodes in CFG. HDR-LCA(hl, h2) = h3 indicates that

header node ha is the least common ancestor of header

nodes hl and hs in this tree.

After determining the interval structure, the next

step is to build an e&ended control flow graph,

‘Assume that all nodes are numbered from 1 onwards.

299

ECFG = (N, , E, , T,), as follows:

1. Initialize, N, + N,; E, + E,;T, + T,

2. For each header node h in CFG:

(a) Create a new preheader node, ph, add it to Ne,

and mark it as h’s preheader

(b) For each control flow edge (‘II, h, 1) in CFG

if HDR,LCA(HDR(u), h) # h then (we have

an interval entry):

i. Replace (u, h, 1) by (ph, u, 1) in ECFG

(c) Add an unconditional branch from ph to h

3. For each control flow edge (u, V, 1) in CFG

if HDR-LCA(HDR(u), HDR(v)) # HDR(u)

then (we have an interval exit,):

(a) Create a new postexit node, pe, and add it to

Nt?

(b) Replace edge (u, v,I) by edges (zl,pe,l) and

be, 21, u>

(c) Add a pseudo control flow edge from the

preheader node of node u’s interval, to the new

postexit node pe

4. Add a special START node with an unconditional

branch to njirst, the first node to be executed in

CFG

5. Add a special STOP node with an unconditional

branch from nl,,t, the last node to be executed in

CFG

6. Add a pseudo control flow edge from START to

STOP

Figure 2 shows the extended control flow graph,

ECFG, corresponding to the control flow graph from

Figure 1. The pseudo control flow edges introduced

in steps 3.c and 6 have a special label (21 or 22 in

Figure 2) to indicate that the corresponding branch can

never be taken in the original program. However, the

insertion of these pseudo edges provides a convenient

structure to the control dependence graph, as described

later. For convenience, we assumed that CFG has a

unique first node (njirst in step 4) and a unique last

node (nlasl in step 5. If there is more than one “first,”

node (e.g. due to multiple entry points) then step 4

should be modified to insert, an edge from START to

each such node. Similarly, if there is more than one

“last” node (e.g. due to RETURN statements), then

step 5 should be modified to insert an edge from each

such node to STOP.

We now turn to the notion of control dependence as

defined in [FOW87]:

Definition 2 Let x and y be nodes in a control flow

graph. y is control dependent on x with label 1 if and

only if

1. y does not post-dominate x

8. there exists a directed path P from x to y with all

intermediate nodes post-dominated by y

9. there exists an edge with label 1 from node x to the

second node in path P

In other words, there is some edge from x that definitely

causes y to execute, and there is also some path from x

to STOP that avoids executing y.

Baaed on this definition, we can build a control

dependence graph, CDG, containing exactly the edges

of the form (x, y, I) that satisfy the above conditions

[FOW87, CF87, CFR*89]. However, we will find it,

more convenient to use an acyclic form of the control

dependence graph obtained by ignoring all back edges

in CDG. This is the forward control dependence graph

[Hsi88, CHH89].

Figure 3 shows the forward control dependence

graph, FCDG, corresponding to the extended control

flow graph, ECFG, shown in Figure 2. The tuples

enclosed in < . . . > and [...I brackets provide frequency

and execution time values, which are discussed later.

The pseudo control flow edge inserted from START to

STOP caused all nodes in ECFG, except STOP, to

be directly or indirectly control dependent on START.

300

Therefore, the forward control dependence graph is Many execution profilers are based on run-time

rooted and connected. Similarly, the pseudo control

flow edges introduced from the PREHEADER node

to the POSTEXIT nodes caused all nodes in the

corresponding interval (and subintervals) to be directly

or indirectly control dependent on the PREHEADER

node. The pseudo control flow edges were inserted in

ECFG so as to obtain this nested structure of intervals

in FCDG.

3 Automatic Run-time Profiling

In this section, we define the execution frequency of

a control dependence edge in FCDG. Execution

frequencies include conditional branch probabilities as

well as loop frequencies. These frequency values may

be determined by program analysis, or may be obtained

from an execution profile of the input program. We

believe that program analysis is feasible for only a few

restricted cases (e.g. a Fortran DO loop with constant

bounds and no conditional loop exits, an IF condition

that can be computed at compile-time, etc.), and should

be complemented by execution profile information wher-

ever compile-time analysis is unsuccessful.

Definition 3 Given an edge (u, v,l) in the forward

control dependence graph, FCDG = (Ne, Ef , T,), the

execution frequency of the edge is defined as:

I. (when u is a preheader node and I is the label

connecting u to its header node in ECFG)

FREQ(u, 1) = average number of times u’s header

node is executed in one execution of u’s inlerval.

In this case, FREQ(u, 1) > 0 represents the loop

frequency for u’s interval.

2. (all other cases)

FREQ(u, 1) = average number of times that node u

takes the branch labelled 1 in one,execution of node

u. In this case, 0 5 FREQ(u, 1) 5 1 represents the

branch probability of label 1 in node u.

sampling of the program counter, typically done by

the operating system. The output of a sampling-

based profiler is of the form “Procedure P was found

executing 2% of the time”, which gives an approximate

but realistic measure of the relative execution time

spent in each procedure, for that particular execution

run. However, the coarse granularity of the sampling

interval makes this approach unsuitable for determining

execution frequencies of individual statements, or even

small procedures. So, we propose using a counter-

based profiler instead, where counter variables are

incremented in the compiled code and recorded in a

program database at the end of each program exe-

cution. The output of a counter-based profiler is of

the form “Statement S was executed n times”, which

gives an exact measure of the execution frequency of

each statement. This approach is very flexible, in

that the frequency information can be generated on

any machine, and can be used to estimate execution

times for different optimizations/transformations of the

program on different target architectures.

An important efficiency advantage of the counter-

based approach is that the profiling code is directly

compiled in with the program, without requiring any

calls to the operating system. However, the potential

overhead of counter-based profiling is still a concern

if the counter variables need to be incremented too

frequently. The naive approach would be to maintain

one counter per basic block. In this section, we outline

three optimizations for counter-based profiling, based

on the interval structure and control dependence graph.

With these optimizations, we believe that counter-

based profiling is a practical approach. This belief is

supported by experimental results presented at the end

of this section. Throughout the following, we assume

that the program completes execution with no abnormal

termination, so that all procedure calls are followed by

301

corresponding returns.

Let {(u,I)\(u,~, I) E Ef} be the set of control

conditions in FCDG. The first optimization is to

maintain one counter per control condition, rather than

one per basic block. This optimization is based on

the observation that identically control dependent nodes

must have the same execution frequency. In this way,

one counter could serve for several identically control

dependent basic blocks. For example, in the following

Fortran code fragment, the I=1 and K=3 statements are

identically control dependent on the Cl=true condition,

though the statements belong to different basic blocks

in the control flow graph. Therefore, only one counter

is needed to track the execution frequency of both

statements.

IF (Cl) THEN

I=1

IF (C2 > THEN

J I =

ELSE

J=2

ENDIF

K=3

ENDIF

L=4

The second optimization applies to any node, u,

that has at least one edge (u,v,/) in FCDG for each

branch labelled 1 out of u in CFG. Of course, it is

not necessary for every branch label from u to appear

as a control condition in FCDG. For example, in the

above Fortran code fragment, the L=4 statement is not

control dependent on the Cl condition, so there will be

no edge in FCDG corresponding to Cl=fulse. However,

if all the branch labels from node u (say n of them) are

present as control conditions in FCDG, then we observe

that the sum of the total execution frequencies of all n

labels must equal the total execution frequency of node

U. Therefore, we only need to maintain counters for

(n - 1) of the n labels. This represents a 50% savings

when n = 2. This optimization can also be applied to

loops by making the following observations:

1.

2.

The sum of the total execution frequencies of all

loop exits must equal the total execution frequency

of the loop preheader (i.e. the total number of times

the loop is entered from outside).

The sum of the total execution frequencies of

all control conditions (u, r) that transfer control

back to the loop header must equal the difference

between the total execution frequencies of the

preheader and header nodes.

The two optimizations discussed above are purely

syntactic, in that they are derived from the structure

of the control flow graph without examining the nodes’

contents. If we limit ourselves to syntax-based schemes

for counter-based profiling, then these two optimiza-

tions will yield the minimum possible number of counter

variables and operations. To do better, one would

have to use semantic information which could involve

exhaustive symbolic analysis of all branch conditions

and other parts of the program.

Our third optimization uses limited semantic in-

formation, and has been chosen because it provides a

large payoff for little effort! The optimization applies

to a DO loop with no loop exits, where the number

of iterations can be added to the counter variable once

at the start of the loop, instead of incrementing the

counter by 1 in each iteration. Further, if the number

of iterations is known to be a compile-time constant,

then it is not necessary to maintain a counter variable

at all. In the absence of interval structure information,

the best we can do is to perform this optimization only

when the DO loop body consists of straight-line code.

However, with interval structure information, we can

check if any branch in the body of the DO loop is

targetted to a node that is not contained (directly or

indirectly) in the DO loop’s interval. If so, the branch

302

represents a loop exit and the optimization cannot be

applied. This is a simple test to do in FCDG, where

we can just look for an edge to a POSTEXIT node,

since the interval structure information was already

incorporated in ECFG by adding the PREHEADER

and POSTEXIT nodes.

For each control condition (u,l) in FCDG, the

output of execution profiling is TOTAL-FREQ(u, I),

the tot&number of times the branch labelled 1 was taken

from node u. The relative frequency values, FREQ(u, I)

from Definition 3, can be computed from the total

frequency values by a single top-down pass over FCDG.

First, we know that TOTAL,FREQ(START, U) gives

the total execution frequency of the procedure or sub-

routine containing CFG, since it is the total num-

ber of times the START node was executed. Let

NODEJ’REQ(u) be the average execution frequency

of node u, for a single execution of ‘u’s subroutine. Then,

all FREQ(u,l) 1 va ues can be computed in a single top-

down pass of FCDG by using the following recurrence

equations2 :

1. NODE-FREQ(START) = 1

2. FREQ(u,I) =
TOTALmFREQ(u,l)

TOTAL-FREQ(START,U)xNODE_FREQ(u)

3. NODE-FREQ(v) =

CC u,,,,l)~E, NODE-f’REQ(u) x FREQ(u, 0

Since the only use of TOTALJREQ values is

as a rulio in equation 2, we can just as well use

TOTAL-FREQ values that are accumulated over sev-

eral program runs. In fact, it is a good idea to

accumulate the TOTALJ’REQ values (as a sum or

average) from different program executions in the pro-

gram database, so as to get a more representative set of

frequency values.

‘One must take care to avoid a division by zero in qua,
tion 2. It can only happen if TOTAL-FREQ(START,U) =
0 or NODE-FREQ(u1 = 0. in which case the numerator.

-\ I

TOTALEREQ(u, I) must also = 0, so we can correctly set
FREQ(u, 1) = 0 without performing the division,

The < . . . > tuples in Figure 3 contain FREQ and

TOTAL-FREQ values respectively, for each edge in

FCDG. These values correspond to an execution of

the code in Figure 1, in which the IF statement with

label 10 is executed 10 times, and the loop is exited by

taking the IF(N.LT.0) branch. Note that the pseudo

edges with labels Zl and 22 have zero frequencies.

We end this section with some execution time mea-

surements for the overhead of counter-based profiling.

Table 1 gives the CPU time in seconds for the following

cases:

1.

2.

3.

Original code - time taken for a complete execu-

tion of the original program

Smart profiling - time taken for a complete ex-

ecution of the original program, augmented with

counter-update operations as dictated by our opti-

mized approach

Naive profiling - time taken for a complete ex-

ecution of the original program, augmented with

counter-update operations for the naive approach

of one counter per basic block, with the DO loop

optimization applied only when the body consists

of straight-line code by our optimized approach

These measurements were made on an IBM 3090,

using the VS Fortran compiler, Version 2, Release 3.

The “Compiler optimization ON” heading stands for

full optimization and vectorization, and the “Compiler

optimization OFF” heading stands for no optimization

or vectorization. The benchmark programs used are:

l LOOPS - a program that executes all 24 Liver-

more Loops [McM86].

l SIMPLE - a benchmark for computational fluid

dynamics and heat flow [CHR78]. The problem

size used was 100 x 100, with NCYCLES = 10.

The execution times in Table 1 show that the overhead

of counter-based profiling is small compared to the per-

formance difference between optimized and unoptimized

303

code, and that “smart profiling” is noticeably more

efficient than “naive profiling”.

4 Computation of Average
Execution Times

In this section, we describe how average execution times

can be computed for all nodes in the forward control

dependence graph. Having obtained frequency values

as described in the previous section, the other impor-

tant set of values is the execution times of primitive

operations on the target architecture. We will not

discuss in detail the possible techniques for obtaining

the costs of primitive operations, as they vary widely for

different architectures. A simple approach is to simply

count the number of instructions required to implement

a primitive operation. A more careful estimation

is required when considering pipelined architectures,

vector instructions or the effects of cache usage. For the

purpose of this work, it is assumed that the (average)

local execution time of each node, u, in FCDG has

already been estimated, and is stored as COST(u).

This section describes the computation of node u’s total

execution time, TIME(U), which includes COST(u)

and the frequency-weighted execution times of all of

node u’s descendants in the forward control dependence

graph.

The computation of TIME(u) is based on two

simple rules:

1. TIME(u) =

COSw4 + C(“,V,I)EE, FREQ(u, 1) x TIME(v)

This rule assumes that the node V’S execution time

is independent of which conditional branch caused

it to execute. With this assumption, we can use the

same average value, TIME(V), for all predecessors

of node v in FCDG.

2. If node u is a procedure or function call, then

COST(u) = TIME(START), where START is

the start node from the callee function’s forward

control dependence graph. This rule assumes that

the execution time of a procedure call is indepen-

dent of the call site, so that the same average

execution time of the procedure, TIME(START),

is used as the average execution time of each call

to that procedure. This assumption is commonly

made in execution profilers e.g. the Unix profiler

[GKM82].

Rules 1 and 2 implicitly dictate how the execution time

values should be computed. Rule 2 requires that the

procedures be visited in a bottom-up traversal of the

call graph, so that the root procedure (main program)

is visited last. We do not address the issue of cost esti-

mation for recursive procedures in this paper. In [Sar87,

Sar89] we described an approach for handling recursive

procedures in structured programs, which can easily be

extended for use with the forward control dependence

graph for unstructured programs. Analogous to rule 2,

rule 1 requires that the nodes be visited in a bottom-up

traversal of FCDG.

The first two values in the [,..] tuples in Figure

3 contain the COST and TIME values respectively,

for each node in FCDG. These values were obtained

assuming COST = 0 for the START, CONTINUE,

PREHEADER and POSTEXIT nodes, COST = 1

for the IF nodes, and COST = 100 for the CALL node.

The entire program has an estimated execution time of

TIME(START) = 920.

5 Computation of Variance

This section generalizes the computation of average

execution times to the computation of variance. An

interesting application of variance information is in

determining the optimal chvnlc size [KW85] for the

execution of parallel loops on multiprocessors. In-

tuitively, when the execution time of the loop body

has zero variance, we would prefer to use a chunk

size of [N/P1 for N t i erations on P processors, since

304

that provides perfect load balancing with the smallest

overhe ad. However, when the variance is large, we

have to move to smaller chunk sizes to get better load

balancing, at the cost of increased overhead due to a

larger number of chunks. The techniques presented

in this section show how variance can be estimated at

compile-time, allowing the compiler to choose smaller

chunk sizes only when it is really necessary (when the

variance is large).

To define variance precisely, let T be the ran-

dom variable corresponding to the execution time of

node v (say). In the previous section, we computed

TIME(v) = E(T), the expected value of T. Vari-

ance is defined according to the well-known equation,

VAR(v) = E(T2) - E(T)‘, and the standard deviation

is STD,DEV(v) = dm.

The computation of average execution times in the

previous section freely used the rules

E(A + B) = E(A) + E(B), and

E(A x B) = E(A) x E(B).

Computing variance is more complicated because

VAR(A x B) # VAR(A) x I/AR(B) in general, though

VAR(A + B) = VAR(A) + VAR(B) is always true.

To compute VAR(A x B), we instead need to use the

identities

E(A2 x B2) = E(A’) x E(B2)

VAR(A) = E(A2) - E(A)’

to obtain

VAR(A x B) = VAR(A) x VAR(B) +

E(A)2 x V/AR(B) +

E(B)2 x VAR(A)

The relationship between node execution times in

FCDG was stated in the previous section as:

TIME(u) = COST(u)

+ c FREQ(u,I) x TIME(v)

(vJWj

Based on this relationship between average execution

times, TIME(u) and TIME(v), we now derive the

relationship between the variance values, VAR(u) and

I/AR(v).

Let L(u) = {I[(u, v,Z) E FCDG) be the set of

labels from node u in FCDG, and

C(u, I) = {vl(u, v, I) E FCDG} be the set of u’s children

in FCDG with label 1. Then the relationship between

average execution times can be rewritten as

TIME(u) = COST(u) +

c F REQ(u, 1) x c TIME(v)
&L(u) UEC(U,l)

We consider two cases:

Case 1: u is a preheader node

There is only one label 1 from u that is of interest

- the label of the FCDG edges connecting u to nodes

in the loop body (which includes the header node). All

other labels from u go to postexit nodes and have zero

execution frequencies. For simplicity, we also assume

that COST(u) = 0, since preheader node u is a special

node with no local computation. Therefore, the above

expression for TIM E(u) becomes

TIME(u) = FREQ(u,I) x c TIME(v)
VEC(%l)

Using the identity for VAR(A x B) discussed above, we

iset

VAR(u) = FREQ(uJ2 x (c VARW) +
VEC(U,l)

VAR(FREQ(u,I)) x (c TIME(v))’
VEC(U,l)

+VAR(FREQ(u, 1)) x (c VA%))
vEC(u,l)

In this case, FREQ(u,Z) represents the average

number of iterations in the interval, and the correspond-

ing variance, VAR(FREQ(u, I)), can be determined by

assuming an appropriate distribution for the number

305

of iterations. If we do not wish to assume a par-

ticular distribution for the number of loop iterations,

the variance term can also be computed by obtaining

E(FREQ(u, Z)2) f rom execution profile information.

If we decide to ignore the variance in FREQ(u,I)

and consider VAR(FREQ(u, I)) = 0, then the above

equation simply becomes

VAR(u) = FREQ(uJ)~ x c VAR(w)
UEC(U,l)

Case 2: u is nod a preheader node

In this case, FREQ(u, Z) represents a branch prob-

ability from node u. For convenience, we assume that

VAR(COST(u)) = 0, i.e. the local execution time

at a node has zero variance, though a sophisticated

approach to estimating the execution time of primary

operations may provide a variance value (e.g. dependent

on a cache miss ratio). Similarly, we also assume that

VAR(FREQ(u, I)) = 0 for all branch probabilities,

otherwise we would have to deal with the complication

of computing variance when the probability values

themselves are random variables with non-zero variance!

Let

TIMEc(u) = c FREQ(u,Z) x c TIME(w)
lEL(u) UEC(U,l)

be the total cost of u’s children.

Therefore, TIME(u) = COST(u) + TIM&(U)!

and

,

VAR(u) = VAR(COST(u)) + VAR(TIMEc(u))

= VAR(TIMEc(u))

= E[TIMEc(u)2] - E[TIMEc(u)]2

But E[TIM&(u)~] can be computed as follows:

= c F-Q(d) x E[(c TIME(v))~]
rE L(u) UEC(U,I)

306

= c FREQ(u,Z) x VAR(c TIME(V))
ICL(u) uECfu,l)

+E[(c UEC(U,l) TIM-w)] ‘>
= c FREQ(u, 0 x c VAW

IEL(u) uG(u,l)

VEC(U,l) /

The dependence between VAR(u) and VAR(v) is

similar to that of average execution times, in that it

requires a bottom-up traversal of FCDG. The last

three values in the [...I tuples in Figure 3 contain

the E[TIME(v)~], VAR(v) and STD,DEV(V) values

for our examples. For simplicity, we assumed that

VAR(FREQ(u, 1)) = 0 for the loop frequency as well.

Therefore, the only contribution to variance arises from

the conditional branches. The estimated standard

deviation in execution time for the entire program is

STDBEV(START) = 300 (the average execution

time was 920).

6 Related Work

There has been a long-standing interest in measuring

execution frequencies, and using the information as

feedback to the programmer. An early study of ex-

ecution frequencies in Fortran program was reported

in [Knu’ll], which discusses both the sampling-based

and counter-based approaches to execution profiling.

[CK74] presented an approach for determining average

execution frequencies from transition probabilities in a

control flow graph. It is only recently that automatic

program optimizations have been proposed that use

frequency information e.g. trace scheduling [FERN84],

register allocation [WalSS], optimization of delayed

branches [MH86], partitioning and scheduling of parallel

programs [SH86a, SH86b]. Given its growing impor-

tance, execution profile information ought to become

an indispensable component of future programming sys-

terns, and the availability of the frequency information call graph is required to be acyclic with possible self-

will no doubt motivate its use in new optimizations. loops to permit only direct recursion. The approach

Previous efforts in obtaining execution frequencies works reasonably well for simple Lisp functions like

were typically extended to estimate the total program REVERSE and UNION, but it appears that it would

execution time as the sum, be too restrictive to be useful for larger programs.

TOTAL-TIME = C freq(B) x time(B)
basic block B

To the best of our knowledge, our work is the first to

extend this approach to estimate each statement’s t&al

execution time by considering the contribution of all

statements “contained” within it. For the structured

SISAL programs considered in [Sar89], “containment”

was defined by lexical nesting; in this paper, we con-

sidered unstructured programs where “containment” is

defined by the control dependence relation. Also, to the

best of our knowledge, this work is the first to define

the notion of execution time variance and to provide an

algorithm for computing variance.

A far more ambitious approach than the methods

presented in this paper is to automatically perform a

symbolic complexity analysis of the program, and thus

estimate execution times without relying on execution

profile information. The complexity analysis problem is,

of course, undecidable in general, but there have been a

few efforts to solve the problem for restricted cases.

[Weg75] describes Metric, a prototype system that

analyzes simple Lisp programs and produces closed-

form symbolic expressions for execution times as a

function of the length of the arguments, costs of prim-

itive operations, and branch probabilities. Recursion

is handled by mapping each recursive procedure into

a recursive cost expression, which is mapped into a

set of recursive equations, which in turn are mapped

into a set of difference equations, which are then finally

solved for the integer-valued complexity measures of

interest. The approach enforces several approximations

and restrictions at each step e.g. all branch probabilities

are assumed to be statistically independent, and the

[FS87] and [HC88] discuss approaches for auto-

matic average-case analysis of special classes of pro-

grams. The work in [FS87] is applicable to recursive

descent procedures over recursively defined data struc-

tures that can be expressed in their language PL-tree

e.g. tree matching, binary search. [HC88] describes

approaches for simple probabilistic programs and a

simple functional programming language.

An interesting question that arises with symbolic

complexity analysis is how will the information be used,

even if it can be derived for real programs? There is a

danger of flooding the programmer or compiler with too

much information, when providing symbolic expressions

with several variables. The most common usage of

complexity analysis in program optimization would be

a less-than or greater-than comparison between two

different symbolic expressions. Such a comparison is

hard to resolve when the expressions contain more

than one variable. Even if all symbolic expressions are

somehow rewritten in terms of a single variable, some

range information is necessary to answer questions like

“Is 100 x N < N’?” or “Is N > (logzN)3?“. The

range information would somehow have to represent a

“typical” program input, making the whole approach

come closer to that of using execution profiles. It seems

that automatic symbolic analysis is better suited to

asymptotic analysis where constants can be ignored,

than to compiler optimixations where real numbers are

needed.

7 Conclusions

We have presented a general framework for the estima

tion of average execution times and variance in a pro-

307

gram. Our approach is based on the control dependence

relation, and can be used for unstructured programs.

Execution profile information is used to obtain the

frequency values necessary for cost estimation. The

cost of primitive operations is assumed to be a function

of the target architecture, so that the same frequency

information can be used to estimate execution times on

different architectures. The average execution times and

variance values can be computed in a single, linear time,

bottom-up traversal of the forward control dependence

graph.

This framework has been implemented in the

PTRAN system, where the execution time and variance

values will be used to guide the automatic partitioning

of the input program into parallel tasks. We believe that

several new optimizations that use average execution

times will naturally evolve, now that the information is

available in the program database.

Acknowledgements

The author would like to thank members of the PTRAN

group - Fran Allen, Michael Burke, Ron Cytron,

Jeanne Ferrante and Dave Shields - for their comments

and suggestions on the paper, and their assistance in

the implementation of this work. The author especially

thanks Ron Cytron for suggesting the use of control

dependence for efficient profiling. Finally, the candid

comments of the reviewers served as valuable feedback

in improving the paper and its coverage of related work.

References

[ABC*871 Frances Allen, Michael Burke, Philippe

Charles, Ron Cytron, and Jeanne Ferrante.

An overview of the ptran analysis system for

multiprocessing. Proceedings of the 1987 In-

ternational Conference on Supercomputing,

1987. Also published in The Journal of

Parallel and Distributed Computing, Oct.,

[A!3~86]

[Bur87]

[CF87]

[CFR*89]

[CHH89]

[CHR78]

[CK74]

[FERN841

1988, Vol. 5, No. 5, pp. 617-640.

A.V. Aho, R. Sethi, and J.D. Ullman. Com-

pilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

Michael Burke. An Interval-Based Approach

to Exhaustive and Incremental Interprocedu-

ral Data Flow Analysis. Technical Report,

IBM Research, August 1987. Research re-

port RC12702, submitted to ACM Transac-

tions on Programming Languages and Sys-

tems.

Ron Cytron and Jeanne Ferrante. An

Improved Control Dependence Algorithm.

Technical Report, IBM, 1987. Tech. Report

RC 13291.

Ron Cytron, Jeanne Ferrante, Barry K.

Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. An efficient method for computing

static single assignment form. Sixteenth An-

nual ACM Symposium on Principles of Pro-

gramming Languages, 25-35, January 1989.

Ron Cytron, Michael Hind, and Wilson

Hsieh. Automatic generation of dag paral-

lelism. Proceedings of the 1989 SIGPLAN

Conference on Programming Language De-

sign and Implementation, 1989. To appear.

W. P. Crowley, C. P. Hendrickson, and T. E.

Rudy. The SIMPLE code. Technical Re-

port, Lawrence Livermore Laboratory, 1978.

UCID 17715.

John Cocke and Ken Kennedy. Profitabil-

ity Computations on Program Flow Graphs.

Technical Report, IBM, 1974. Tech. Report

RC 5123.

J. A. Fisher, J. R. Ellis, J. C. Ruttenberg,

and A. Nicolau. Parallel processing: a smart

compiler and a dumb machine. Proceedings

308

[FOW87]

[FS87]

[GKM82]

[HC88]

[Hsi88]

[Knu71]

[KW85]

[McMS6]

[MH86]

of the ACM Symposium on Compiler Con-

struction, 37 - 47, June 1984.

J. Ferrante, K. Ottenstein, and J. Warren.

The program dependence graph and its use

in optimization. ACM Transactions on Pro-

gramming Languages and Systems, 319-349,

July 1987.

Philippe Flajolet and Jean-Marc Steyaert. A

complexity calculus for recursive tree algo-

rithms. Math. Systems Theory, 19:301-331,

1987.

Susan L. Graham, Peter B. Kessler, and

Marshall K. McKusick. Gprof: a call

graph execution profiler. ACM SIGPLAN

‘82 Symposium on Compiler Construction,

17(6):12@-126, June 1982.

Timothy Hickey

and Jacques Cohen. Automating program

analysis. JACM, 35(1):185-220, 1988.

Wilson C. Hsieh. Extracting Parallelism

from Sequential Programs. Technical Re-

port, Massachusetts Institute of Technology,

May 1988. Master’s thesis.

D. E. Knuth. An empirical study of fortran

programs. Software - Practice and Experi-

ence, 1:105-133, 1971.

Clyde Kruskal and Alan Weiss. Allocating

independent subtasks on parallel processors.

IEEE Transactions on Software Engineer-

ing, SE-ll(lO), October 1985.

F. H. McMahon. L.L.N.L. FORTRAN

Kernels: MFL OPS. Technical Report,

Lawrence Livermore National Laboratory,

March 1986.

S. McFarling and J. Hennessy. Reducing the

cost of branches. Proceedings of the Sigplan

‘86 Symposium on Compiler Construction,

[SarS7]

[SarS9]

[SHS6a]

[SHS6b]

[SS79]

[WalSS]

ww51

21(7), July 1986.

Vivek Sarkar. Partitioning and Scheduling

Parallel Programs for Execution on Multi-

processors. PhD thesis, Stanford University,

April 1987. Tech. Report CSL-TR-87-328.

Vivek Sarkar. Partitioning and Scheduling

Parallel Programs for Multiprocessors. Pit-

man, London and The MIT Press, Cam-

bridge, Massachusetts, 1989. In the series,

Research Monographs in Parallel and Dis-

tributed Computing.

V. Sarkar and J. Hennessy. Compile-time

partitioning and scheduling of parallel pro-

grams. Proceedings of the Sigplan ‘86 Sym-

posium on Compiler Construction, 21(7):17-

26, July 1986.

V. Sarkar and J. Hennessy. Partitioning

parallel programs for macro-dataflow. ACM

Conference on Lisp and Functional Pro-

gramming, 202-211, August 1986.

J. T. Schwartz and M. Sharir. A De-

sign for Optimizations of the Bitvectoring

Class. Technical Report, Courant Institute

of Mathematical Sciences, New York Uni-

versity, September 1979. Courant Computer

Science Report No. 17.

D. W. Wall. Global register allocation

at link time. Proceedings of the Sigplan

‘86 Symposium on Compiler Construction,

21(7), July 1986.

Ben Wegbreit. Mechanical program analy-

sis. CACM, 18(9):528-539, 1975.

309

Compiler optimization ON Compiler optimization OFF
Program Original code Smart profiling Naive profiling Original code Smart profiling Naive profiling
LOOPS 0.05 0.06 0.08 0.24 0.24 0.26

d SIMPLE 3.8 4.2 4.4 17.0 17.8 18.6

Table 1: Sequential execution times with and without profling

10 IF (M .GE. 0) THEN
IF (N .LT. 0) GOT0 20

ELSE
IF (N .GE. 0) GOT0 20

ENDIF
CALL FOO(M,N)
GOT0 10

20 CONTINUE

Figure 1: Original Control Flow Graph, CFG

310

STEXIT)c-

1 u

CONTINUE

U
v

STOP

Figure 2: Extended Control Flow Graph, ECFG

311

[0,920,936400,90000,300]

[0,920,936400,90000,300]

[1,92,9364,900,30] [
v

IF (M .GE.O)

cFREQ,TOTALJREQ~ = edge frequency values

[A,B,C,D,E] = node execution times as follows:
A = local node execution time, COST(n)
B = expected total node execution time, E(T) = TIME(n)
C = expected value of time squared, E(T*T)
D = VAR(n) = E(T*T - E(T)*E(T) = C - B*B
E = STD-DEV(n) = J VAR(n) = dD

Figure 3: Forward Control Dependence Graph, FCDG

312

