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Abstract 

This paper presents a general framework for de- 
termining average program execution times and 
their variance, based on the program’s interval 
structure and control dependence graph. Average 
execution times and variance values are computed 
using frequency information from an optimized 
counter-based execution profile of the program. 

1 Introduction 

It is important for a compiler to obtain estimates 

of execution times for subcomputations of an input 

program, if it is to attempt optimizations related to 

overhead values in the target architecture. In earlier 

work [SH86a, SH86b, Sar87, Sar89], we used estimates 

of execution times to facilitate the automatic partition- 

ing and scheduling of programs written in the single- 

assignment language, SISAL, for parallel execution on 

multiprocessors. 

In this paper, we present a general framework for 

estimating average execution times in a program. This 

approach is based on the interval structure [ASUSS] 

and the control dependence relation [FOW87], both of 

which can be derived from an arbitrary reducible control 

flow graph. Therefore, this framework supports general, 
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unstructured programs, rather than the special case of 

structured programs that was addressed earlier when 

dealing with SISAL. Average execution times are derived 

from frequency values, and from estimated execution 

times of primitive operations on the target architecture. 

Besides showing how average execution times can 

be computed, we also introduce the notion of execution 

time variance which corresponds to the statistical mean- 

ing of variance (or standard deviation). We show how 

variance values can be computed in a manner similar to 

average execution times. Variance information can be 

used, for example, to help determine the chunk size of 

parallel loops [KW85]. 

In our framework, frequency values are obtained 

from a counter-based execution profile of the program. 

Rather than using the naive approach of incrementing 

a counter once per basic block, the control dependence 

relation is used to increment a counter once for each 

distinct control dependence branch condition. We use 

frequency information to estimate average execution 

times and variances, but this approach to execution 

profiling based on control dependence and counter 

variables would be useful for any code optimization 

that needs frequency information e.g. register allocation 

[WalSS], trace scheduling [FERN84], optimization of 

delayed branches [MH86]. 

This framework for estimating execution times has 

been implemented as part of the PTRAN (Parallel 
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Translation) project at IBM Research [ABC*87]. The 

PTRAN system contains a program database which can 

be conveniently used to store the frequency, execution 

time and variance information. Currently, the primary 

use of execution time information in PTRAN is in 

automatically partitioning the input program into tasks 

for parallel execution. 

2 Program Representation 

This section describes the program representations used 

for estimating execution times. These representations 

are used in PTRAN [ABC*87], and the approach 

described here is based on the PTRAN implementation. 

The initial representation is assumed to be the 

traditional control flow graph [ASU86]. The nodes of 

the control flow graph may represent arbitrary units of 

computation - basic blocks, statements, operations or 

instructions. The only requirement is that the control 

flow graph should contain all control flow relations of 

interest. As in other code analysis and optimization 

techniques, we assume that the control flow graph is 

reducible. Node splitting [ASU86] is astandard approach 

that can be used to transform an irreducible control flow 

graph into a reducible control flow graph. 

A reducible control flow graph has a unique depth- 

first spanning tree and hence a unique interval structure 

which can be easily computed from the control flow 

graph [Bur87, SS79]. The intervals identify the loops in 

the program. The other program representation we use 

is the forward control dependence graph [Hsi88, CHH89] 

based on the control dependence relation defined in 

FOWS?]. 

Definition 1 A controlflow graph CFG = (N,, E,, T,) 

consists of 

l Nc, a set of nodes 

l E, C N, x N, x L, a set of labelled control flow 

edges, where L is the set of all possible labels. 

. To a node type mapping. T,(n) identifies the 

type of node n as one of the following values - 

START, STOP, HEADER, PREHEADER, 

POSTEXIT, OTHER. 

Since there can be multiple edges with different 

labels between the same pair of nodes in E,, CFG is 

in general a multi-graph. The classification into node 

types specified by T, is only used to help identify the 

interval structure in the forward control dependence 

graph computed later. The node type mapping does 

not change the semantics of the control flow graph in 

any way. 

Figure 1 shows a Fortran code fragment along with 

the corresponding statement-level control flow graph, 

CFG. The labels T and F are used to identify the 

true and false branches respectively, for an IF statement. 

The label U is used to identify an unconditional branch 

from a node. All nodes in the original control flow graph 

have type = OTHER. 

We first determine the interval structure of CFG 

[Bur87, SS79]. The intervals are summarized in a 

mapping called HDR, where HDR(n) = h indicates 

that node h is the header of the interval containing 

node n. Interval nesting is stored in a mapping called 

HDRPARENT, where HDR_PARENT(hl) = ha 

indicates that the interval with header node hl is 

an immediate subinterval of the interval with header 

node ha. HDR-PARENT(h) = 0 indicates1 that the 

interval with header node h is the outermost interval (we 

assume that there is exactly one such interval - the one 

containing nfirstr the first node to be executed in CFG). 

HDRPARENT defines a directed tree on all header 

nodes in CFG. HDR-LCA(hl, h2) = h3 indicates that 

header node ha is the least common ancestor of header 

nodes hl and hs in this tree. 

After determining the interval structure, the next 

step is to build an e&ended control flow graph, 

‘Assume that all nodes are numbered from 1 onwards. 
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ECFG = (N, , E, , T,), as follows: 

1. Initialize, N, + N,; E, + E,;T, + T, 

2. For each header node h in CFG: 

(a) Create a new preheader node, ph, add it to Ne, 

and mark it as h’s preheader 

(b) For each control flow edge (‘II, h, 1) in CFG 

if HDR,LCA(HDR(u), h) # h then (we have 

an interval entry): 

i. Replace (u, h, 1) by (ph, u, 1) in ECFG 

(c) Add an unconditional branch from ph to h 

3. For each control flow edge (u, V, 1) in CFG 

if HDR-LCA(HDR(u), HDR(v)) # HDR(u) 

then (we have an interval exit,): 

(a) Create a new postexit node, pe, and add it to 

Nt? 

(b) Replace edge (u, v,I) by edges (zl,pe,l) and 

be, 21, u> 

(c) Add a pseudo control flow edge from the 

preheader node of node u’s interval, to the new 

postexit node pe 

4. Add a special START node with an unconditional 

branch to njirst, the first node to be executed in 

CFG 

5. Add a special STOP node with an unconditional 

branch from nl,,t, the last node to be executed in 

CFG 

6. Add a pseudo control flow edge from START to 

STOP 

Figure 2 shows the extended control flow graph, 

ECFG, corresponding to the control flow graph from 

Figure 1. The pseudo control flow edges introduced 

in steps 3.c and 6 have a special label (21 or 22 in 

Figure 2) to indicate that the corresponding branch can 

never be taken in the original program. However, the 

insertion of these pseudo edges provides a convenient 

structure to the control dependence graph, as described 

later. For convenience, we assumed that CFG has a 

unique first node (njirst in step 4) and a unique last 

node (nlasl in step 5. If there is more than one “first,” 

node (e.g. due to multiple entry points) then step 4 

should be modified to insert, an edge from START to 

each such node. Similarly, if there is more than one 

“last” node (e.g. due to RETURN statements), then 

step 5 should be modified to insert an edge from each 

such node to STOP. 

We now turn to the notion of control dependence as 

defined in [FOW87]: 

Definition 2 Let x and y be nodes in a control flow 

graph. y is control dependent on x with label 1 if and 

only if 

1. y does not post-dominate x 

8. there exists a directed path P from x to y with all 

intermediate nodes post-dominated by y 

9. there exists an edge with label 1 from node x to the 

second node in path P 

In other words, there is some edge from x that definitely 

causes y to execute, and there is also some path from x 

to STOP that avoids executing y. 

Baaed on this definition, we can build a control 

dependence graph, CDG, containing exactly the edges 

of the form (x, y, I) that satisfy the above conditions 

[FOW87, CF87, CFR*89]. However, we will find it, 

more convenient to use an acyclic form of the control 

dependence graph obtained by ignoring all back edges 

in CDG. This is the forward control dependence graph 

[Hsi88, CHH89]. 

Figure 3 shows the forward control dependence 

graph, FCDG, corresponding to the extended control 

flow graph, ECFG, shown in Figure 2. The tuples 

enclosed in < . . . > and [...I brackets provide frequency 

and execution time values, which are discussed later. 

The pseudo control flow edge inserted from START to 

STOP caused all nodes in ECFG, except STOP, to 

be directly or indirectly control dependent on START. 
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Therefore, the forward control dependence graph is Many execution profilers are based on run-time 

rooted and connected. Similarly, the pseudo control 

flow edges introduced from the PREHEADER node 

to the POSTEXIT nodes caused all nodes in the 

corresponding interval (and subintervals) to be directly 

or indirectly control dependent on the PREHEADER 

node. The pseudo control flow edges were inserted in 

ECFG so as to obtain this nested structure of intervals 

in FCDG. 

3 Automatic Run-time Profiling 

In this section, we define the execution frequency of 

a control dependence edge in FCDG. Execution 

frequencies include conditional branch probabilities as 

well as loop frequencies. These frequency values may 

be determined by program analysis, or may be obtained 

from an execution profile of the input program. We 

believe that program analysis is feasible for only a few 

restricted cases (e.g. a Fortran DO loop with constant 

bounds and no conditional loop exits, an IF condition 

that can be computed at compile-time, etc.), and should 

be complemented by execution profile information wher- 

ever compile-time analysis is unsuccessful. 

Definition 3 Given an edge (u, v,l) in the forward 

control dependence graph, FCDG = (Ne, Ef , T,), the 

execution frequency of the edge is defined as: 

I. (when u is a preheader node and I is the label 

connecting u to its header node in ECFG) 

FREQ(u, 1) = average number of times u’s header 

node is executed in one execution of u’s inlerval. 

In this case, FREQ(u, 1) > 0 represents the loop 

frequency for u’s interval. 

2. (all other cases) 

FREQ(u, 1) = average number of times that node u 

takes the branch labelled 1 in one,execution of node 

u. In this case, 0 5 FREQ(u, 1) 5 1 represents the 

branch probability of label 1 in node u. 

sampling of the program counter, typically done by 

the operating system. The output of a sampling- 

based profiler is of the form “Procedure P was found 

executing 2% of the time”, which gives an approximate 

but realistic measure of the relative execution time 

spent in each procedure, for that particular execution 

run. However, the coarse granularity of the sampling 

interval makes this approach unsuitable for determining 

execution frequencies of individual statements, or even 

small procedures. So, we propose using a counter- 

based profiler instead, where counter variables are 

incremented in the compiled code and recorded in a 

program database at the end of each program exe- 

cution. The output of a counter-based profiler is of 

the form “Statement S was executed n times”, which 

gives an exact measure of the execution frequency of 

each statement. This approach is very flexible, in 

that the frequency information can be generated on 

any machine, and can be used to estimate execution 

times for different optimizations/transformations of the 

program on different target architectures. 

An important efficiency advantage of the counter- 

based approach is that the profiling code is directly 

compiled in with the program, without requiring any 

calls to the operating system. However, the potential 

overhead of counter-based profiling is still a concern 

if the counter variables need to be incremented too 

frequently. The naive approach would be to maintain 

one counter per basic block. In this section, we outline 

three optimizations for counter-based profiling, based 

on the interval structure and control dependence graph. 

With these optimizations, we believe that counter- 

based profiling is a practical approach. This belief is 

supported by experimental results presented at the end 

of this section. Throughout the following, we assume 

that the program completes execution with no abnormal 

termination, so that all procedure calls are followed by 
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corresponding returns. 

Let {(u,I)\(u,~, I) E Ef} be the set of control 

conditions in FCDG. The first optimization is to 

maintain one counter per control condition, rather than 

one per basic block. This optimization is based on 

the observation that identically control dependent nodes 

must have the same execution frequency. In this way, 

one counter could serve for several identically control 

dependent basic blocks. For example, in the following 

Fortran code fragment, the I=1 and K=3 statements are 

identically control dependent on the Cl=true condition, 

though the statements belong to different basic blocks 

in the control flow graph. Therefore, only one counter 

is needed to track the execution frequency of both 

statements. 

IF ( Cl ) THEN 

I=1 

IF ( C2 > THEN 

J I = 

ELSE 

J=2 

ENDIF 

K=3 

ENDIF 

L=4 

The second optimization applies to any node, u, 

that has at least one edge (u,v,/) in FCDG for each 

branch labelled 1 out of u in CFG. Of course, it is 

not necessary for every branch label from u to appear 

as a control condition in FCDG. For example, in the 

above Fortran code fragment, the L=4 statement is not 

control dependent on the Cl condition, so there will be 

no edge in FCDG corresponding to Cl=fulse. However, 

if all the branch labels from node u (say n of them) are 

present as control conditions in FCDG, then we observe 

that the sum of the total execution frequencies of all n 

labels must equal the total execution frequency of node 

U. Therefore, we only need to maintain counters for 

(n - 1) of the n labels. This represents a 50% savings 

when n = 2. This optimization can also be applied to 

loops by making the following observations: 

1. 

2. 

The sum of the total execution frequencies of all 

loop exits must equal the total execution frequency 

of the loop preheader (i.e. the total number of times 

the loop is entered from outside). 

The sum of the total execution frequencies of 

all control conditions (u, r) that transfer control 

back to the loop header must equal the difference 

between the total execution frequencies of the 

preheader and header nodes. 

The two optimizations discussed above are purely 

syntactic, in that they are derived from the structure 

of the control flow graph without examining the nodes’ 

contents. If we limit ourselves to syntax-based schemes 

for counter-based profiling, then these two optimiza- 

tions will yield the minimum possible number of counter 

variables and operations. To do better, one would 

have to use semantic information which could involve 

exhaustive symbolic analysis of all branch conditions 

and other parts of the program. 

Our third optimization uses limited semantic in- 

formation, and has been chosen because it provides a 

large payoff for little effort! The optimization applies 

to a DO loop with no loop exits, where the number 

of iterations can be added to the counter variable once 

at the start of the loop, instead of incrementing the 

counter by 1 in each iteration. Further, if the number 

of iterations is known to be a compile-time constant, 

then it is not necessary to maintain a counter variable 

at all. In the absence of interval structure information, 

the best we can do is to perform this optimization only 

when the DO loop body consists of straight-line code. 

However, with interval structure information, we can 

check if any branch in the body of the DO loop is 

targetted to a node that is not contained (directly or 

indirectly) in the DO loop’s interval. If so, the branch 
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represents a loop exit and the optimization cannot be 

applied. This is a simple test to do in FCDG, where 

we can just look for an edge to a POSTEXIT node, 

since the interval structure information was already 

incorporated in ECFG by adding the PREHEADER 

and POSTEXIT nodes. 

For each control condition (u,l) in FCDG, the 

output of execution profiling is TOTAL-FREQ(u, I), 

the tot&number of times the branch labelled 1 was taken 

from node u. The relative frequency values, FREQ(u, I) 

from Definition 3, can be computed from the total 

frequency values by a single top-down pass over FCDG. 

First, we know that TOTAL,FREQ(START, U) gives 

the total execution frequency of the procedure or sub- 

routine containing CFG, since it is the total num- 

ber of times the START node was executed. Let 

NODEJ’REQ(u) be the average execution frequency 

of node u, for a single execution of ‘u’s subroutine. Then, 

all FREQ(u,l) 1 va ues can be computed in a single top- 

down pass of FCDG by using the following recurrence 

equations2 : 

1. NODE-FREQ(START) = 1 

2. FREQ(u,I) = 
TOTALmFREQ(u,l) 

TOTAL-FREQ(START,U)xNODE_FREQ(u) 

3. NODE-FREQ(v) = 

CC u,,,,l)~E, NODE-f’REQ(u) x FREQ(u, 0 

Since the only use of TOTALJREQ values is 

as a rulio in equation 2, we can just as well use 

TOTAL-FREQ values that are accumulated over sev- 

eral program runs. In fact, it is a good idea to 

accumulate the TOTALJ’REQ values (as a sum or 

average) from different program executions in the pro- 

gram database, so as to get a more representative set of 

frequency values. 

‘One must take care to avoid a division by zero in qua, 
tion 2. It can only happen if TOTAL-FREQ(START,U) = 
0 or NODE-FREQ(u1 = 0. in which case the numerator. 

-\ I 

TOTALEREQ(u, I) must also = 0, so we can correctly set 
FREQ(u, 1) = 0 without performing the division, 

The < . . . > tuples in Figure 3 contain FREQ and 

TOTAL-FREQ values respectively, for each edge in 

FCDG. These values correspond to an execution of 

the code in Figure 1, in which the IF statement with 

label 10 is executed 10 times, and the loop is exited by 

taking the IF(N.LT.0) branch. Note that the pseudo 

edges with labels Zl and 22 have zero frequencies. 

We end this section with some execution time mea- 

surements for the overhead of counter-based profiling. 

Table 1 gives the CPU time in seconds for the following 

cases: 

1. 

2. 

3. 

Original code - time taken for a complete execu- 

tion of the original program 

Smart profiling - time taken for a complete ex- 

ecution of the original program, augmented with 

counter-update operations as dictated by our opti- 

mized approach 

Naive profiling - time taken for a complete ex- 

ecution of the original program, augmented with 

counter-update operations for the naive approach 

of one counter per basic block, with the DO loop 

optimization applied only when the body consists 

of straight-line code by our optimized approach 

These measurements were made on an IBM 3090, 

using the VS Fortran compiler, Version 2, Release 3. 

The “Compiler optimization ON” heading stands for 

full optimization and vectorization, and the “Compiler 

optimization OFF” heading stands for no optimization 

or vectorization. The benchmark programs used are: 

l LOOPS - a program that executes all 24 Liver- 

more Loops [McM86]. 

l SIMPLE - a benchmark for computational fluid 

dynamics and heat flow [CHR78]. The problem 

size used was 100 x 100, with NCYCLES = 10. 

The execution times in Table 1 show that the overhead 

of counter-based profiling is small compared to the per- 

formance difference between optimized and unoptimized 
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code, and that “smart profiling” is noticeably more 

efficient than “naive profiling”. 

4 Computation of Average 
Execution Times 

In this section, we describe how average execution times 

can be computed for all nodes in the forward control 

dependence graph. Having obtained frequency values 

as described in the previous section, the other impor- 

tant set of values is the execution times of primitive 

operations on the target architecture. We will not 

discuss in detail the possible techniques for obtaining 

the costs of primitive operations, as they vary widely for 

different architectures. A simple approach is to simply 

count the number of instructions required to implement 

a primitive operation. A more careful estimation 

is required when considering pipelined architectures, 

vector instructions or the effects of cache usage. For the 

purpose of this work, it is assumed that the (average) 

local execution time of each node, u, in FCDG has 

already been estimated, and is stored as COST(u). 

This section describes the computation of node u’s total 

execution time, TIME(U), which includes COST(u) 

and the frequency-weighted execution times of all of 

node u’s descendants in the forward control dependence 

graph. 

The computation of TIME(u) is based on two 

simple rules: 

1. TIME(u) = 

COSw4 + C(“,V,I)EE, FREQ(u, 1) x TIME(v) 

This rule assumes that the node V’S execution time 

is independent of which conditional branch caused 

it to execute. With this assumption, we can use the 

same average value, TIME(V), for all predecessors 

of node v in FCDG. 

2. If node u is a procedure or function call, then 

COST(u) = TIME(START), where START is 

the start node from the callee function’s forward 

control dependence graph. This rule assumes that 

the execution time of a procedure call is indepen- 

dent of the call site, so that the same average 

execution time of the procedure, TIME(START), 

is used as the average execution time of each call 

to that procedure. This assumption is commonly 

made in execution profilers e.g. the Unix profiler 

[GKM82]. 

Rules 1 and 2 implicitly dictate how the execution time 

values should be computed. Rule 2 requires that the 

procedures be visited in a bottom-up traversal of the 

call graph, so that the root procedure (main program) 

is visited last. We do not address the issue of cost esti- 

mation for recursive procedures in this paper. In [Sar87, 

Sar89] we described an approach for handling recursive 

procedures in structured programs, which can easily be 

extended for use with the forward control dependence 

graph for unstructured programs. Analogous to rule 2, 

rule 1 requires that the nodes be visited in a bottom-up 

traversal of FCDG. 

The first two values in the [,..] tuples in Figure 

3 contain the COST and TIME values respectively, 

for each node in FCDG. These values were obtained 

assuming COST = 0 for the START, CONTINUE, 

PREHEADER and POSTEXIT nodes, COST = 1 

for the IF nodes, and COST = 100 for the CALL node. 

The entire program has an estimated execution time of 

TIME(START) = 920. 

5 Computation of Variance 

This section generalizes the computation of average 

execution times to the computation of variance. An 

interesting application of variance information is in 

determining the optimal chvnlc size [KW85] for the 

execution of parallel loops on multiprocessors. In- 

tuitively, when the execution time of the loop body 

has zero variance, we would prefer to use a chunk 

size of [N/P1 for N t i erations on P processors, since 
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that provides perfect load balancing with the smallest 

overhe ad. However, when the variance is large, we 

have to move to smaller chunk sizes to get better load 

balancing, at the cost of increased overhead due to a 

larger number of chunks. The techniques presented 

in this section show how variance can be estimated at 

compile-time, allowing the compiler to choose smaller 

chunk sizes only when it is really necessary (when the 

variance is large). 

To define variance precisely, let T be the ran- 

dom variable corresponding to the execution time of 

node v (say). In the previous section, we computed 

TIME(v) = E(T), the expected value of T. Vari- 

ance is defined according to the well-known equation, 

VAR(v) = E(T2) - E(T)‘, and the standard deviation 

is STD,DEV(v) = dm. 

The computation of average execution times in the 

previous section freely used the rules 

E(A + B) = E(A) + E(B), and 

E(A x B) = E(A) x E(B). 

Computing variance is more complicated because 

VAR(A x B) # VAR(A) x I/AR(B) in general, though 

VAR(A + B) = VAR(A) + VAR(B) is always true. 

To compute VAR(A x B), we instead need to use the 

identities 

E(A2 x B2) = E(A’) x E(B2) 

VAR(A) = E(A2) - E(A)’ 

to obtain 

VAR(A x B) = VAR(A) x VAR(B) + 

E(A)2 x V/AR(B) + 

E(B)2 x VAR(A) 

The relationship between node execution times in 

FCDG was stated in the previous section as: 

TIME(u) = COST(u) 

+ c FREQ(u,I) x TIME(v) 

(vJWj 

Based on this relationship between average execution 

times, TIME(u) and TIME(v), we now derive the 

relationship between the variance values, VAR(u) and 

I/AR(v). 

Let L(u) = {I[( u, v,Z) E FCDG) be the set of 

labels from node u in FCDG, and 

C(u, I) = {vl(u, v, I) E FCDG} be the set of u’s children 

in FCDG with label 1. Then the relationship between 

average execution times can be rewritten as 

TIME(u) = COST(u) + 

c F REQ(u, 1) x c TIME(v) 
&L(u) UEC(U,l) 

We consider two cases: 

Case 1: u is a preheader node 

There is only one label 1 from u that is of interest 

- the label of the FCDG edges connecting u to nodes 

in the loop body (which includes the header node). All 

other labels from u go to postexit nodes and have zero 

execution frequencies. For simplicity, we also assume 

that COST(u) = 0, since preheader node u is a special 

node with no local computation. Therefore, the above 

expression for TIM E(u) becomes 

TIME(u) = FREQ(u,I) x c TIME(v) 
VEC(%l) 

Using the identity for VAR(A x B) discussed above, we 

iset 

VAR(u) = FREQ(uJ2 x ( c VARW) + 
VEC(U,l) 

VAR(FREQ(u,I)) x ( c TIME(v))’ 
VEC(U,l) 

+VAR(FREQ(u, 1)) x ( c VA%)) 
vEC(u,l) 

In this case, FREQ(u,Z) represents the average 

number of iterations in the interval, and the correspond- 

ing variance, VAR(FREQ(u, I)), can be determined by 

assuming an appropriate distribution for the number 
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of iterations. If we do not wish to assume a par- 

ticular distribution for the number of loop iterations, 

the variance term can also be computed by obtaining 

E(FREQ(u, Z)2) f rom execution profile information. 

If we decide to ignore the variance in FREQ(u,I) 

and consider VAR(FREQ(u, I)) = 0, then the above 

equation simply becomes 

VAR(u) = FREQ(uJ)~ x c VAR(w) 
UEC(U,l) 

Case 2: u is nod a preheader node 

In this case, FREQ(u, Z) represents a branch prob- 

ability from node u. For convenience, we assume that 

VAR(COST(u)) = 0, i.e. the local execution time 

at a node has zero variance, though a sophisticated 

approach to estimating the execution time of primary 

operations may provide a variance value (e.g. dependent 

on a cache miss ratio). Similarly, we also assume that 

VAR(FREQ(u, I)) = 0 for all branch probabilities, 

otherwise we would have to deal with the complication 

of computing variance when the probability values 

themselves are random variables with non-zero variance! 

Let 

TIMEc(u) = c FREQ(u,Z) x c TIME(w) 
lEL(u) UEC(U,l) 

be the total cost of u’s children. 

Therefore, TIME(u) = COST(u) + TIM&(U)! 

and 

, 

VAR(u) = VAR(COST(u)) + VAR(TIMEc(u)) 

= VAR(TIMEc(u)) 

= E[TIMEc(u)2] - E[TIMEc(u)]2 

But E[TIM&(u)~] can be computed as follows: 

= c F-Q(d) x E[( c TIME(v))~] 
rE L(u) UEC(U,I) 
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= c FREQ(u,Z) x VAR( c TIME(V)) 
ICL(u) uECfu,l) 

+E[( c UEC(U,l) TIM-w)] ‘> 
= c FREQ(u, 0 x c VAW 

IEL(u) uG(u,l) 

VEC(U,l) / 

The dependence between VAR(u) and VAR(v) is 

similar to that of average execution times, in that it 

requires a bottom-up traversal of FCDG. The last 

three values in the [...I tuples in Figure 3 contain 

the E[TIME(v)~], VAR(v) and STD,DEV(V) values 

for our examples. For simplicity, we assumed that 

VAR(FREQ(u, 1)) = 0 for the loop frequency as well. 

Therefore, the only contribution to variance arises from 

the conditional branches. The estimated standard 

deviation in execution time for the entire program is 

STDBEV(START) = 300 (the average execution 

time was 920). 

6 Related Work 

There has been a long-standing interest in measuring 

execution frequencies, and using the information as 

feedback to the programmer. An early study of ex- 

ecution frequencies in Fortran program was reported 

in [Knu’ll], which discusses both the sampling-based 

and counter-based approaches to execution profiling. 

[CK74] presented an approach for determining average 

execution frequencies from transition probabilities in a 

control flow graph. It is only recently that automatic 

program optimizations have been proposed that use 

frequency information e.g. trace scheduling [FERN84], 

register allocation [WalSS], optimization of delayed 

branches [MH86], partitioning and scheduling of parallel 

programs [SH86a, SH86b]. Given its growing impor- 

tance, execution profile information ought to become 

an indispensable component of future programming sys- 



terns, and the availability of the frequency information call graph is required to be acyclic with possible self- 

will no doubt motivate its use in new optimizations. loops to permit only direct recursion. The approach 

Previous efforts in obtaining execution frequencies works reasonably well for simple Lisp functions like 

were typically extended to estimate the total program REVERSE and UNION, but it appears that it would 

execution time as the sum, be too restrictive to be useful for larger programs. 

TOTAL-TIME = C freq(B) x time(B) 
basic block B 

To the best of our knowledge, our work is the first to 

extend this approach to estimate each statement’s t&al 

execution time by considering the contribution of all 

statements “contained” within it. For the structured 

SISAL programs considered in [Sar89], “containment” 

was defined by lexical nesting; in this paper, we con- 

sidered unstructured programs where “containment” is 

defined by the control dependence relation. Also, to the 

best of our knowledge, this work is the first to define 

the notion of execution time variance and to provide an 

algorithm for computing variance. 

A far more ambitious approach than the methods 

presented in this paper is to automatically perform a 

symbolic complexity analysis of the program, and thus 

estimate execution times without relying on execution 

profile information. The complexity analysis problem is, 

of course, undecidable in general, but there have been a 

few efforts to solve the problem for restricted cases. 

[Weg75] describes Metric, a prototype system that 

analyzes simple Lisp programs and produces closed- 

form symbolic expressions for execution times as a 

function of the length of the arguments, costs of prim- 

itive operations, and branch probabilities. Recursion 

is handled by mapping each recursive procedure into 

a recursive cost expression, which is mapped into a 

set of recursive equations, which in turn are mapped 

into a set of difference equations, which are then finally 

solved for the integer-valued complexity measures of 

interest. The approach enforces several approximations 

and restrictions at each step e.g. all branch probabilities 

are assumed to be statistically independent, and the 

[FS87] and [HC88] discuss approaches for auto- 

matic average-case analysis of special classes of pro- 

grams. The work in [FS87] is applicable to recursive 

descent procedures over recursively defined data struc- 

tures that can be expressed in their language PL-tree 

e.g. tree matching, binary search. [HC88] describes 

approaches for simple probabilistic programs and a 

simple functional programming language. 

An interesting question that arises with symbolic 

complexity analysis is how will the information be used, 

even if it can be derived for real programs? There is a 

danger of flooding the programmer or compiler with too 

much information, when providing symbolic expressions 

with several variables. The most common usage of 

complexity analysis in program optimization would be 

a less-than or greater-than comparison between two 

different symbolic expressions. Such a comparison is 

hard to resolve when the expressions contain more 

than one variable. Even if all symbolic expressions are 

somehow rewritten in terms of a single variable, some 

range information is necessary to answer questions like 

“Is 100 x N < N’?” or “Is N > (logzN)3?“. The 

range information would somehow have to represent a 

“typical” program input, making the whole approach 

come closer to that of using execution profiles. It seems 

that automatic symbolic analysis is better suited to 

asymptotic analysis where constants can be ignored, 

than to compiler optimixations where real numbers are 

needed. 

7 Conclusions 

We have presented a general framework for the estima 

tion of average execution times and variance in a pro- 
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gram. Our approach is based on the control dependence 

relation, and can be used for unstructured programs. 

Execution profile information is used to obtain the 

frequency values necessary for cost estimation. The 

cost of primitive operations is assumed to be a function 

of the target architecture, so that the same frequency 

information can be used to estimate execution times on 

different architectures. The average execution times and 

variance values can be computed in a single, linear time, 

bottom-up traversal of the forward control dependence 

graph. 

This framework has been implemented in the 

PTRAN system, where the execution time and variance 

values will be used to guide the automatic partitioning 

of the input program into parallel tasks. We believe that 

several new optimizations that use average execution 

times will naturally evolve, now that the information is 

available in the program database. 
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Compiler optimization ON Compiler optimization OFF 
Program Original code Smart profiling Naive profiling Original code Smart profiling Naive profiling 
LOOPS 0.05 0.06 0.08 0.24 0.24 0.26 

d SIMPLE 3.8 4.2 4.4 17.0 17.8 18.6 

Table 1: Sequential execution times with and without profling 

10 IF (M .GE. 0) THEN 
IF (N .LT. 0) GOT0 20 

ELSE 
IF (N .GE. 0) GOT0 20 

ENDIF 
CALL FOO(M,N) 
GOT0 10 

20 CONTINUE 

Figure 1: Original Control Flow Graph, CFG 
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STEXIT)c- 

1 u 

CONTINUE 

U 
v 

STOP 

Figure 2: Extended Control Flow Graph, ECFG 
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[0,920,936400,90000,300] 

[0,920,936400,90000,300] 

[1,92,9364,900,30] [ 
v 

IF (M .GE.O) 

cFREQ,TOTALJREQ~ = edge frequency values 

[A,B,C,D,E] = node execution times as follows: 
A = local node execution time, COST(n) 
B = expected total node execution time, E(T) = TIME(n) 
C = expected value of time squared, E(T*T) 
D = VAR(n) = E(T*T - E(T)*E(T) = C - B*B 
E = STD-DEV(n) = J VAR(n) = dD 

Figure 3: Forward Control Dependence Graph, FCDG 
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