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Abstract 

We report on a compiler for Warp, a high-performance systolic 
array developed at Carnegie Mellon. This compiler enhances the 
uscfulncss of Warp significantly and allows application program- 
mers to code substantial algorithms. 

The compiler combines a novel programming model, which is 
based on a model of skewed computation for the array, with 
powerful optimi7aadon tcchniqucs. Programming in W2 (the 
language accepted by the compiler) is orders of magnitude easier 
than coding in microcode, the only alternative available 
previously. 

1. Introduction 
In systolic arrays, the flow of data through the cells is planned 
cycle by cycle so that cells never have to wait for input and can 
compute at their maximum rates. As a result, systolic algorithm 

design is not easy. Existing systolic algorithms and design tools 
arc directed at simple machine models where all cells perform 
simple, identical. atomic computations. That is, the cells input a 
set of data, compute and output the result in each clock cycle. 
‘Ihe domain of thcsc simple models is restricted to mathematical 
rccurrcnces, which are amcnablc to simple algebraic manipula- 
tion. 
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Carnegie Mellon is currently building a high-performance, 
programmable systolic machine. known as Warp: each of its ten 
cells contains a 4K-word memory and can deliver up to 10 million 
floating-point operations per second [3). ?he machine’s applica- 
tion domain extends far beyond simple recurrences. which have 
been the focus of earlier systolic designs. The complexity of the 
machine as well as the application domain cause previous tech- 
niques, be they manual or automatic, to break down. 

Our solulion to the problem of compilation for high-performance 
systolic arrays has three aspects: a new computation model for 
systolic arrays, a programmer’s model, and compilation tech- 
niques that translate algorithms expressed in terms of the 
programmer’s model to our computation model for the machine. 
A compiier based on these concepts has been implemented for 
Warp. 

In this paper, we first present an overview of the Wirp machine. 
Next, we dcscribc our computation model, which we call the 
skewed computurion modL% We then introduce our programmer’s 
model and describe the compilation techniques that allow US to 
compile user programs for Warp. We conclude the paper with 
some preliminary results on the performance of the Warp com- 
piler. 

2. Warp architecture 
Warp is a high-performanic: systolic array computer designed by 
Carncgic Mellon for signal and image processing. and scientific 
computing [3]. This machine has been named GYarp because of its 
high speed and throughput. As an example of performance, a 
1.0.ccl1 Warp can process 1024.point complex fast Fourier trans- 
forms at a rate of one FFT every 600 microseconds. It can also be 
programmed to perform many other primitive computations, 
such as two-dimensional convolution, and real or complex malrix 
multiplication, at a peak nlc of 100 million floating-point opera- 
tions per scvond. A iwu-ccl1 prototype has been operational since 
the Fall of 1985, and the lirst lo-cell machine was delivered early 
1956; at least eight additional machines will be built during the 
next two years. 
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2.1 :Warp machine 

‘Ihe Warp machine has three components--the Warp processor 
array (Warp army). tie interface unit (ICI), and Lhe host, as 
depicted in Figure 2-1. The host is a general-purpose workstation 
(currently a SUN) running UNIX and provides an adcquale data 
bandwidth to sustain the array at full speed in the targeted 
applications. Ihe Warp array provides the raw computation 
power for performing computation-intensive routines. It is a 
one-dimensional systolic array wilh identical cells, called Warp 
cells. Data flow through the array on two data paths (X and Y), 
while addresses and systolic control signals travel on the Adr path 
(as shown in Figure 2-l). Each Warp cell is a programmable 
horizontal microcngine. with its own local program memory and 
sequencer. The host controls the Warp array and executes those 
parts of the application mde that cannot be mapped onto the 
Warp array. The IU connects the Warp array and the host: it also 
generates address% and control signals for the Warp array. 

1 HOST 
I 

J-l---- ---------- 4, 

I I 
L WARP PROCESSOR ARRAY ---------------- J 

Figure 2-l: Warp machine overview 

In the following, we examine the different sources of complexity 
that must be mastered by a user of Lhis architecture. We describe 
the interaction between the three components of the machine, the 
cooperation between the cells ln the processor array, and lastly, 
code generation issues for the Warp cells. 

2.2. System issues 
timmunication bctwccn the host and the processor array re- 
quires code to bc generated for all three components of the 
system. The IU and the host communicate asynchronously via a 
standard bus. Ihe I/O processors in the Warp host must be 
programmed to supply input in the exact sequence as the data is 
used in the Warp cells. The NJ and the processor array communi- 
cate synchronously: tie IU must bc programmed correctly so that 
data from the host reach the Warp cells in time. 

In addition to interfacing the Warp array to the host. the IU is 
also rcsponsiblc for gcneraling addrcsscs and loop control signals 
for the cells. Warp cells arc not equipped with integer arithmetic 
capability. The justilication is that syslolic cells typically perform 
identical, data-indcpcndcnt functions, using identical addressing 
pn\kcrns and loop conrmls. For example. when multiplying two 
matrices. each ccl1 computes some columns of the resull. Ali cells 

access the same local memory location, which has been loaded 
with diffcrcnt columns of one of lhc argument matrices. ‘lhcrc- 

fort. common addresses and loop control signals can be gcncratcd 
externally in the IU and propagated to ail the cells. Moreover, it 
is desirable that ach Warp cell can make two memory rcfcrcnces 
per cycle. To sustain this high local memory bandwidth. the ~~11 
demands powerful address generation capabilities, which were 
expensive to provide and thcrefdrc became a target for optimira- 
tion. We can dedicale much more hardware resources to address 
generation if it is implemented only once in the IU, and not 
replicated on all Warp cells. The IU also supplies loop control 
signals to the Warp cells. When the cells execute a loop, the IU 
sends a signal at Ihe end of each iteration to indicate if another 
loop iteration is to be executed. Since addresses and loop controls 
are integral to any computation, the actions on the IU and the 
Warp cells are strongly coupled. 

2.3. Systolic array issues 
A fizature that distinguishes Warp from other processors of similar 
computation power is its high I/O bandwidth. Adjacent cells can 
transfer up to 20 million words (80 Mbytes) per second. This 
high inter-cell communication bandwidth makes it possible to 
transfer large volumes of intermediale data and thus supports 
fine-grain problem decomposition. 

The problem of mapping a computation onto a systolicarray is an 
ongoing research topic. Except for very simple mathematical 
recurrences. automatic tools do not exist. Futicrmore, in most 
cases, insight into the application domain is necessary to partition 
the computation propcriy across an array. 

2.4. Cell issues 
While the parallelism potentially available in this machine is 
tremendous. the complexity of using it effectively is corrcspond- 
ingly overwhelming. Each Warp cell can be likened to a convcn- 
tional array processor. Its data path is 32-bit wide and is depicted 
in Figure 2-2. It contains two floating-point units, both of which 
arc 5-stage pipelined. Each cell contains 4K-word memory for 
resident and temporary data, a 128-word queue for each com- 
munication channel, and a 32-word register file to buffer dat3. for 
each floating-point unit. These storage blocks can supply four 
words of data per cycle; this rate matches exactly the consump- 
tion rate of the arithmetic units. All tic functional units are 
interconncctcd by a full crossbar, and arc controlled individually 
by scparatc fields in wide micro-instruction words (over 200 bits). 

All cells operate in lock step under control of a global clock. 
Thcrc is no hardware support for dynamic now antrol between 
cells. As a rcsu!t, Ihe I/O operations of the cells in the array need 
to bc synchronized at compile-time. Although a buffer exists 
bclwccn each I/O !ink of a pair of communicating cells. the status 
of the buffer cannot be tested at run time. ‘Ihcreforc, the 
computation on all cells needs to be schcdulcd such that no data 
is removed from the chnnncl buffer before it is sent by the scndcr 
of the data+ 
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Figure 2-2: Warp cell data path 

3. Skewed computation model 
After describing the architecture. we now define our computation 
model of the machine, that is, the compiler’s target computalion 
model. In previous systolic machine models, ceils latch in data, 
compute, and output the result for their neighboring cells in one 
single cycle. In most algorithms, all the ceils in the array perform 
identical functions. 

An obvious way to extend this simple model to cover Warp, 
where each data set may consist of multiple data items and the 
computation per data set may span multiple clock cycles, is to 
adopl the SI.MI> computation model, Ail ceils input a data set in 
the same cycle, perform an identical sequence of computations, 
and then output the results for the neighboring cells simui- 
taneously. However, this SIMI) model is too restrictive and 
unattractive to impiemcnt. We define a new computation model, 
which WC call the skewed compurafion model. In this model, cells 
in an array execute the same function, but possibly with a time 
delay bctwecn neighboring cciis. To show that the skewed 
computation model supports an easier and more emcient use of 
the systolic array than the SIMI) model, we first observe that a 
one-dimensional systolic array is normally used in two modes: 

l Pipeline mode: each processor constitutes a stage of the 
pipeline, and data arc processed as they flow though the 
array: rcpetitivc computation can often be decomposed into 
a number of identical pipciine stages. 

l Parallel mode: the input data are partitioned among the 
processors, and each processor performs the same hmction 
on data resident in its local memory. 

Impiemcnting the pipeline mode on this skewed computation 
model is natural; the execution of consecutive processors is 
simply skewed by the amount of’timc it takes for dnta to pass 
through a stage. Ihe data dcpendcncy belwccn consecutive 
stages of the pipeline makes it impossible to initiate useful com- 
putation on all the cells simuilancousiy. To impicment this 
pipeline mode in Ihe SIMD model, one can prclcnd that input 
exists for ail stages of lhc pipciinc from the very start. The 
programmer. however, needs to initialize the state of the cells so 

that no exception is raised on “Iictitious” data bcforc the actual 
data arrive: he also has to provide extra data Lo flush the pipeline 
to rctricvc the last valid rcsuits. Altcrnativcly, the programmer or 
additional spcciai hardware can mask off the cxccution or just the 
cxceplion signalling mechanism on cells during the invalid data 
period. in either case, the programmer is still left with the tedious 
task of dctcrmining which of the outputs of the array constitutes 
the desired results. 

Implementing a pipeline in the SIMD model is inefficient. The 
latency of results through each stage in the SIMD model is 
determined by the computation time of the entire stage. In the 
skewed model of computation, the latency of each ccl1 Is given by 
the time skew between the cells: this time skew is determined by 
the minimum lead time a stage needs such that results for the next 
ccl1 are ready by the time they are used. Consider a simple 
example program where each stage takes 4 steps and that the 
fourth step rcquircs the result from the fourth step of the previous 
stage. The latency through each ccl1 is 4 cycles in the SIMD 
model. but only one cycle in the skewed model. as illustrated in 
Figure 3-1. This differcncc in latency can be significant when a 
nontrivial amount of computaiion is involved in each stage. 

SIMD computation model Skewed computation model 

CELL 1 CELL2 CELL 3 CELL1 CELL2 CELL3 

awl 
wz 
step3 
step4 
w+ 
aeP2 
step3 
w4 
awl 
aep, 
step3 
step4 

sfepl 
*eP2 
step3 
step, 
step1 
step2 
step3 
stcp4 
SW+ 
s’“pz 
acPj 
step4 

Figurc 3-l: Comparing latencics between SIMD and 
skewed computation models 

The skewed computation model is useful for the parallel mode of 
operation as wcii. All the processors rcccivc their own distinct set 
of input data. In the SIMI) model computation cannot stan until 
all the data arc rcndy for all the cells. In the skewed model, we 
can initiate the computation in each ceil as soon as its input 
demand is satisIicd. thus reducing the latency of the computation. 

29 



4. Programmer’s model 
Them is one central goal in the design of the programmer’s 
model: to abstract out all unnecessary details of the architecture. 
We want to support a programmer’s model as simple as possible: 
however. programs cxprcssed in this model must be amenable to 
effective automatic techniques that product cfficicnt code for our 
computation model of the machine. For example, as discussed 
earlier, the general problem of decomposing a computation onto 
a processor array is difficult and usually benefits from insight of 
the application domain. Therefore, this problem is left to the user 
by exposing the processsr array conliguration in the 
programmer’s model. On the other hand, complexities at the 
system and the cell level, as discussed in Section 2. are removed 
from the programmer’s model. In fact, not only does this 
simplified view make programming easier, automatic techniques 
can produce better code because of the vast amount of machine- 
level details involved. We have defined a language, W2, which 
allows the user to describe Warp programs in this programmer’s 
model. In the following, WC describe the features of our program- 
ming model in more detail. and we introduce our specialized 
language constructs for expressing concepts in this model. 

4.1. Asynchronous communication 
The most signihcant deviation of our programmer’s model from 
the conventional view of systolic arrays is asynchronous com- 
munication. In previous systolic models, data communicated 
between cells is identilied by the clock cycle the transfer takes 
place. As Warp’s application domain.includcs far more compli- 
cated cell programs, it is impossible for the user to specify the 
exact timing of the I/O unless he programs at the microcode 
level. The alternative of allowing user-defined logical clocks has 
also been investigated. However, this logical clock approach 
suffices only if cell programs consist of a simple input-compute- 
output loop; firrthermore, it makes code optimization difficult 

Our programmer’s model does not include the notion of time. 
The user specifics the data dependency relationships between 
cells using asynchronous “receive” and “send” constructs. Con- 
necting each pair of cells are two I/O channels, X and Y, with a 
dedicated data buffer. To communicate, the sender processor 
“sends” a data item to a designated channel, and the data item is 
stored into the buffer of the recipient; when the receiving proces- 
sor issues a “receive” operation, the oldest data item in the buffer 
is returned. Therefore “send” and “receive” operations on a 
channel are matched by virtue of the ordering: i.e. the nth 
“receive” operation will get the data item transferred in the nth 
“send” operation. The semantics of the communication primi- 
tives is that the receiver is blocked if the buffer is empty, and 
similarly, the sender is blocked if the buffer is full. In Section 5. 
WC will describe how we c”dn bridge the semantic gap between the 
programmer’s model and our synchronous machine. 

4.2. System abstraction 
In the programmer’s model. Warp is a regular one-dimensional 
array: both the host and the 1U arc hidden from the programmer. 
Address computation and loop controls arc an integral part of a 
program. it is too tedious if a user must explicitly input into the 
processor array each and every calculated address. Iherefore, 
addresses and loop controls generation to be performed on the IU 
are automatically extracted from the user’s specification. 
Similarly. although the processor array, the IU and the host ah 
must participate in transferring data between the host and the 
array, this partitioning of function is not present in the 
programmer’s model. 

4.3. W2 language 
W2 is the “machine language” of the Warp machine; the 
microcode level is not visible to the user. and it is conceivable that 
higher level languages be built on top of this W2 level. The 
language is designed to reflect the constructs that can be executed 
efficiently by the machine. For example, cells can only communi- 
cate with their neighbors on either of the two channels between 
the cells. It lacks generality and high level programming support 
found in other languages. For example, it differs from CSP 
(communicating sequential processes) [4] in that it does not have 
guarded commands and the more basic, unbuffered communica- 
tion primitives. These features cannot be implemented ef- 
ficiently, if at all, on the hardware. 

The W2 language is a simple block-stmctured language with 
assignment, conditional, and loop statements. Communication 
between cells is made explicit by the use of the send and receive 
primitives. The receive primitive has four parameters: the dircc- 
tion of the channel, the channel name, an internal variable the 
data is received into and. lastly, the external (host) variable that is 
received by this operation. The first cell of the Warp array 
reccivcs data directly from the host through the IU, and the value 
is explicitly specified by the external variable: all other cells 
receive the data transferred in the corresponding send operation 
of the communicating cell. In other words, the external variable 
is meaningful only for the first cell. Similarly, the send primilive 
has the same paramctcrs, except that the internal variable con- 
tains the data to be sent and the external variable specilies the 
location the data is to be stored in the host memory. Again, the 
external variable only applies to the boundary cell of the array (in 
this case. the last cell), which sends data directly to the host 
through the IU. 

Figure 4-I shows a simple example of a Warp program which 
evaluates a polynomial using an array of ten cells. The program 
evaluates lhc polynomial 

r(z)=+!-e,P+ . . . +c9 
for a vector of input data zo.zl.zz,. . . . Each cell (starting with cell 
0 up to ccl1 9. the last ccl1 in the system) cxccutcs a copy of the 
program. The lirst cell rcccives the values of the host program 
varinblcs (bound to pammctcrs c and z), and the results arc sent 
and stored in a host variahlc bound to paramctcr res u 1 t s. 
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/+*+C++~*L~+*********************~*******~**/ 

/+ Polynomial evaluation +/ 
/+ A polynomial with 10 coefficients is */ 
/*evaluated for 100 data points on 10 cells+/ 
/*******+**+*++*I*********~******~~~****~***/ 

module polynomial (z in, c in, results out) 
float z[lOO], c[lO]; 
float resuFts[lOO]: 

cellprogram (cid : 0 : 9) 
begln 

function poly 
begin 

float coeff,/* local copy of cfcid] l / 
temp. 
xin. yin, ans: /+ temporaries +/ 

int i; 

/*Every cell saves the first coefficient that 
reaches it, consumes the data and passes the 
remaining coefficients. Every cell generates 
an additional item at the end to conserve the 
number of receives and sends. '/ 

receive (L, X, coeff, CEO]); 
for i := 1 to 9 do begin 

receive (L, X, temp, c[i]): 
send (R. X, temp); 

end; 
send (ft. X. 0.0): 

/* Implementing Homer's rule, each cell 
multiplies the accumulated result yin with 
incoming data xin and add the next 
coefficient l / 

for i := 0 to 99 do begln 
receive (L, X, xin. z[i]); 
receive (L, Y, yin, 0.0); 
send (R, X, xin); 
ans := coeff + yin*xin: 
send (R, Y. ans. results[i]): 

end; 
end 

call poly; 
end 

Figure 4-1: A sample program: polynomial evaluation 

The program of Figure 4-1 is best explained by observing the first 
couple of iterations on the first two ~~11% An arrow in Figure 4-2 
indicates that the output of the “send” is input for the car- 
responding “receive” operation. 

Figure 4-2 shows the logical sequence of steps only; it does not 
imply that lhcrc is a single statement per cycle. In fact. several of 
the statements can bc executed in parallel, but the compiler will 
always preserve the data depcndcncics dcpicled in Figure 4-2. 

Cell 0 Cell 1 

Receive coeff c[O] 

Receive temp cc11 
Send temp cc11 --) Receive coeff c[l] 

Receive temp CC23 

Send temp cc23 --+ Receive temp cc23 
Receive temp cc31 Send temp cc21 

. 

Receive temp cc93 Send temp CC81 

Send temp cc91 - Receive temp cc91 
Send temp cc91 

Send 0.0 0.0 --t Receive temp 0.0 

Send temp 0.0 

Send 0.0 0.0 

Figure 4-2: Details for program of Figure 4-l 

5. Mapping programmer’s model to skewed 
computation 

While the programmer’s model presents a simple view to the user, 
it is quite remote from our skewed computation model of the 
machine. In this section, we show that only a subset of the 
computation in the programmer’s model can be mapped onto our 
machine model. 

5.1. Restrictions on programmer’s model 
An obvious restriction for all W2 programs is that it must be 
possible for the compiler to deicrminc a lower bound on when 
data is received, and an upper bound on when data is output 
The hardware does not support dynamic flow control. and the 
compiler must guarantee that an input data is not used until the 
data is output. This implies, for example, that “while” state- 
ments, or “for” statements with dynamic loop bounds cannot be 

supported. This restriction is tolerable in the application domain 
of Warp. 

Since the cells in our skewed computation model all execute the 
same code, it necessarily follows that all the cells in the array must 
execute the same W2 program. We call programs that require all 
cells to perform the same funclion homogeneous. It is, however, 
not tnre that all homogeneous W2 programs can be mapped onto 
our skewed computation model. Specifically, some bidirectional 
homogeneous programs (programs tint send data from left to 
right as well as from right to left) cannot bc mapped onto this 
model. 
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5.1.1. Bidirectional W2 programs 
WC represent the computation of the array as a graph. Since all 
the cells perform the same function, we can succinctly specify the 
computation with only one set of nodes rcprcscnling the opera- 
tions on a single cell. There arc, however, two lypcs of edges 
rcprcsenting two kinds of data dependency relationships: intra- 
cell computation depcndcncics and inter-cell communication 
dependencies. The communication edges arc Iabelled by the 
direction the data is sent. A “right” edge connects a “send-to- 
right” node to a “receive-from-lelt” node, and a “left” edge 
connects a “send-to-left” node to a “receive-from-right” node. 

The graph represents the execution of the array: each execution 
of a statement is represented by a separate node. The computa- 
tion edges form no cycles, otherwise, the computation is not well 
defined. lhe communication edges, however, may or may not 
introduce cycles in the graph. In both programs A and 3 in 
Figure 5-1, each cell receives and sends a data item from and to its 
left and right neighbor, respectively. In program A, the two data 
items are unrelated and the communication edge introduces no 
cycles. However, in program B. each cell sends the data it 
receives from its neighbor; the communication edge introduces a 
cycle. We say that the cycle is a righr CJ& if the communication 
edge completing the cycle is labelled “tight”: similarly. it Is a &l 
cwZe if the communication edge ls labelled “left”. 

Program A Program II 

Send-to-Right Recefve-from-left 

I Right 

I I I Right 
I 

‘6’ 
Receive-from-left Send-to-Right 

Figure 5.1: Programs with and without communication cycles 

A right cycle dictates that the execution of a cell be skewed with 
respect to the tight Since the receive operation precedes the send 
operation, in order that the cell does not perform the receive 
operation before its right neighbor has sent the data. the cell 
should be delayed with respect to the cell on the right By the 
same argument, a left cycle dictates that the execution of a cell be 
skewed with respect to the Icft In other words, it is not possible 
to map a W2 program containing both right and IcR cycles onto 
our skewed computation modei. 

Fortunately, bidirectional data flow is not necessary for systolic 
arrays operating in either pipeline or parallcl mode. Our current 
compiler only handles the unidirectional flow programs. 

6. Compiler design 
The principal problem Ulat is to be solved by the compiler is the 
managcrncnt of the parallelism of the Warp machine. The I/O 
processors of the host, the IU, and the cells in the array cooperate 
to crccutc the uscc’s program. and the compiler must generate 

code for each of these processors. ‘lhe input to the compiler is a 
W2 program: the output consists of a program for each host I/O 
processor. microcode for the 1lJ. and microcode for the Warp 
tXX2y. 

6.1. Overview 
We now describe how we structure the compiler to manage the 
parallelism of the Warp machine. The compiler consists of five 
modules: dataflow analysis, the computation decomposition 
module, and three code generators (for the Warp array, the IU 
and the host I/O processors). Figure 6-1 shows the dependencies 
between these major modules. 

The Row analyzer is reasonably machine independent The flow 
analyzer builds the central data structure, which is shared be- 
tween all other modules of the compiler. This data .s&ucture is a 
Rowgraph of the program: each node of the flowgraph represents 
a basic block of the program (see [I] for principal concepts and 
terminology). The computation of each basic block is represented 
as a directed acyclic graph (dag). 

Each node in a dag corresponds to an abstract operation of the 
Warp cell. Ihis level models the Warp cell as a simple processor 
with memory to memory operations and no registers. Later, the 
code generator translates these abstract instructions into micro- 
operations. allocates registers, and schedules the code. 

The flow analysis module consists of two steps: local and global 
analysis. The local phase constructs the dag for each basic block 
and is fairly straightforward. Many local optimizations have been 
implemented, including common sub-expression elimination, 
constant folding, height reduction and idempotent operation 
removal [2]. 

The global Row analysis phase collects detailed intra-block Infor- 
mation for all variables of the program. For regular accessing 
patterns, the analysis is powerful enough to distinguish between 
individual array elements and different iterations of a loop[8]. 
This global data dcpendcncy information is incorporated into the 
dag as arcs between nodes in dilferent basic blocks. There are 
two types of arcs. If the global analyzer can deduce a strict 
dependency. we say that node n uses the value of node i (for 
example, iteration i of a loop uses always the result of iteration 
I-1 of another loop). If a strict dependency cannot be es- 
tablished, the global Row analyser inserts sequencing arcs that 
enforce a conservative order of evaluation. This information 
makes it possible for the code gcncrator and scheduicr to overlap 
the execution of different basic blocks, and this is important for 
heavily pipelincd processors like the Warp cells. 

The computation decomposition phase partitions the flowgraph 
generated by the flow analyzer into subgraphs for the dilferent 
code generators. As it is most important that the Warp array 
delivers the dcsircd computation bandwidth, code is generated for 
the Warp cells lirst The additional scheduling constraints result- 
ing from the array code arc then input to the IIJ co& generation 
phase: the constraints resulting from the Iti code generating 
phase arc input to the host code generation phase. 
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Figure 6-1: Suucture of the compiler 

The computation decomposition phase also analyses the address 
computation nodes in the dag to determine if they depend on any 
input data. Addresses that only dcpcnd on loop counters are 
considered data indcpendcnt, and these addresses can be corn 
puted on the IU. The subgraph containing all data independent 
addresses is separated from the rest of the dag and is only used by 
the IU code generator. Calculations of data independent ad- 
dresses in the original flowgraph arc replaced by “receive- 
address” operations. This modified flowgraph is the input for the 
Warp array code generator. Addresses moved to the interface 
unit must be common to all cells in the Warp array. This 
requirement is always lNilled for data independent addresses 
since all cells execute a copy of the same program. 

6.2. Warp array code generation 
The techniques used in the scheduling of the cell computation is 
based on those dcsigncd originally for increasing the throughput 
of hardware pipelines [6.7]. Details on scheduling of individual 
cells will not be discussed here. In this section. we concentrate on 
the inter-cell scheduling aspect of the code generation. 

The asynchronous communication primitives present in our pro- 
gramming language arc not supported by hardware. The seman- 
tics of the receive and send statements in the language i$ that 
receiving data from an empty queue or sending data to a full 
queue will cause the execution of the cell to bc suspended. Direct 
hardware support of this semantics would have complicated the 
design, implcmcntaGnn and debugging of the machine. It is the 
compiler’s responsibility to ensure that queue overflow or under- 
flow does not occur. That is, an input operation cannot bc 
cxccutcd until its corresponding output opcmtion has been CX- 

ccutcd. Also. the number of data items buffcrcd in the queue 
cannot cxcccd Ihe size of the queue. 

6.2.1. Queue underflow 
Let us first consider the issue of queue underflow. by assuming 
that the buffer is infinite. Ikcausc W2 programs accepted by the 
compiler have unidirectional communication, inter-cell timing 
constraints can be handled scparatcly from the code generation of 
the individual cells. To ensure that no underflow occurs, the 
initiation of the cxecudon of a cell is simply delayed with respect 
to the preceding cell until no receive operations executed precede 
the corresponding send operations. This approach suffices be- 
cause thcrc is no circularity in the data dcpcndency between cells: 
in the worst case, a cell is not allowed to start executing until the 
preceding cell has finished completely. If the data flow is bidirec- 
tional, however, it may be necessary to insert delays in the middle 
of the code, which can be difficult in highly optimized horizontal 
microcode for a deeply pipelincd machine. 

Ignoring inter-cell timing constraints in the code generation phase 
simplifies the problem without compromising efficiency. This 
strategy may only increase the latency through the array, due to 
the possible increase in the skew between ~41s. However, OP 

timizing the code of the individual cells optimizes the throughput 
of the array, the most important performance measure of systolic 
arrays. (Palhological cases, in which the skew is of the same order 
as the length of the execution time, are rare in systolic arrays, 
whcrc data typically stream through the cells at high rates.) 

To calculate the minimum skew between cells. we need to iden- 
tify atI matching pairs of input and output operations, and the 
time the operations are executed with respect to the beginning of 
the program. The input program must be skcwcd with respect to 
the output program by an amount such that at1 outputs precede 
their corresponding inputs. Therefore, the minimum skew is the 
maximum time difference between all matching pairs of inputs 
and outputs. 

Let 7,(n) and 7Jn) be the functions that map the ordinal number 
of input and output n to the clock cycle the operation is per 
formed, relative to the beginning of the input and output 
programs. Then, the minimum skew is given by: 

max (7,(n)-7,(n)), 0 I n c number of inpuVoutputs 

Example: straight tine code 
Consider the simple straight line program in Figure 6-2. Suppose 
the same program is executed by two cells. Table 6-1 shows the 
input and output timing, and Figure 6-3 shows how none of the 
input operations of the second cell preccdcs the corresponding 
output operation of the lint cell. They arc separated by the 
minimum skew of three cycles. 

outpu$ 
input* 
input1 
w 
nap 
output* 

Pigurc 6-2: Input and output of a straight-lint program example 
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Number 7O 

0 0 
1 5 

?I rO-rI 

1 -1 
2 3 

miu 3 

Table 6-l: Input/output timing functions and minimum skew 

Time Cell 1 Cell 2 

0 
1 

outpl$) 

2 
3 

input0 input1 

4 
5 output1 

outputO input0 

6 
input1 

zl outputi 
Figure 6-3: Two cells executing with minimum skew 

Example: loop constructs 
Programs with !oops are more complicated. The difficulty of 
determining the minimum skew depends on whether the match- 
ing input and output statements are nested in similar or different 
control structures. Figure 6-4 is an example program that il- 
lustrates these two cases. 

w 
Loop 6 times: input0 

input1 
w 

w 
w 
Loop 2 times: output0 

outputi 
nap 
nap 
Loop 2 times: outpu$ 

outputg 
output4 
w 
nw 

nap 
Figure 6-4: A program with loops 

Table 6-2 gives the input/output timing information. The control 
structure of the input loop is similar to that of the first, but not 
the second, output loop. Both the input and the first output loop 
contain two input/output operations in each iteration. As a 
result, the first and second input statements arc always matched 
with the first and second output statements, respectively. Since 
the rate of input (2 every 3 cycles) is lower than that of output (1 
every cycle), the maximum skew can be detcrmincd by considcr- 
ing only tic first iteration. Conversely, if the input rate were 
higher, only the time diffcrcnce between the input/output opcra- 
tions of the last iteration needs to be considcrcd. In the second 
output loop. the number of outputs per iteration differs from that 
of the iuput. An input shtcmcrlt is matched to diffcrcnt output 
statements in different itcrat.ioos. All combinalions of matchrs 

riced to be considered. Fuflhcrmore, the complexity of the 
analysis increases significantly with tie nesting levels of iterations. 

In most programs, the input and output control constructs arc 
usually similar, since they arc operating on similar data structures. 
Furthermore, it is not necessary to derive the exact minimum, a 
close upper bound will bc sufticicnt. The following mathematical 
formulation of the problem allows us to cheaply calculate the 
minimum skew in the simple cases and its upper bound in the 
complex ones. 

The key observation that leads to our solution is that it is not 
necessary to identify all the matching pairs of inputs and outputs, 
the most difficult step in the calculation of the minimum skew. 
Each input/output statement may be executed many times, if it is 
in a loop. We define a timing function T 
input/output statement in the program. ‘#is 

or 7o(mJ for the mth 
function maps the 

ordinal number of the input or output operation n to the clock 
cytle it is executed; it is applicable only for certain values of n. 
We then determine a bound on the maximum time difference for 
each pair of input/output functions. for those values of n that are 
in both functions’ domains. Finding the exact intersection of 
both domains may be difficult for timing functions that car- 
respond to statements in dissimilar control structures. For these 
cases, instead of using the constraints to solve for the intersection 
complclely, we simply use the constraints to bound the time 
difference between the input and output. The value thus ob- 
tained bounds the time difference between all possible matches, if 
any, bctwccn these two input and output statements. By taking 
the maximum of such bounds between every pair of input and 
output functions, we obtain the minimum skew. Although every 
pair of input and output statements needs to be considered, 
functions corresponding to statements in the same loop share 
many common terms which riced to bc computed only once. 
Also, the branch and bound technique is applicable here: bounds 
on the timing of all the input/output operations in the same loop 
can be cheaply obtained to reduce the number of pairs of func- 
tions that needs to be evaluated. 

number '0 r1 rO-r1 

0 18 1 17 
1 19 2 17 
2 20 4 16 
3 21 5 16 
4 24 I 17 
5 25 8 17 
6 26 10 16 
7 29 11 18 
8 30 13 17 
9 31 14 1.7 

max 18 

Table 6-2: Input and output timing for program in Figure 6-4 

WC charactcrizc c?cb input/output statcmcnt by five vectors of k 
clcmcnts, whcrc k is UIC nurnbcr of enclosing loops. Each 
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clement of the vector charactcrizcs an enclosing loop, with the 
first rcprcscnting the outcnnost loop. The five vectors are: 
R =[q. . . .rJ: Number of iterations 
N=[nl,. . . .nJ: Number of inputs/outputs in one iteration of 

the loop. 
S=[sl,. , ,sJ: Ordinal number of tie Arst input/output in 

the loop with respect to the enclosing loop. 
L=[l,. . . . ,sJ: Time of execution of one iteration of the loop 
l-=[r,, . . . +rJ: Time to start the first iteration of the loop with 

respect to the enclosing loop. 

For each loop, we calculate the starting time of the iteration the 
nth input/output is in. relative to that of the enclosing loop. By 
summing all these starting times, we get the time the nth opera- 
tion is executed: 

.(n)=tl+~~,ll+t2+, 
(n-s,)modn -s 

n2 l ;I’+ ..* 

By defining 

ifj=O 
)modn I-1 otherwise 

we get 

for the values of n such that 
k k 

- - 

III=/ m=j 
For uniformity in notation, the input/output operations them- 
selves are considered a single-iteration loop. For example, in the 
program in Fig. 6-4, all the vectors describing the operations 
contain two elements: the first gives information on the enclosing 
loop, and the second gives information on the statement itself. 
Therefore, the vector H characterizing Z(0) is [SJ], because it is in 
a S-iteration loop, and the opcwtion is treated as a single iteration 
loop. Timing information on all the input and output operations 
is tabulalcd in Table 6-3 and the timing functions are given in 
Table 6-4. 

40) m ao) au W) a3 o(4) 

R [5,1] [5,11 [2-l] [2,1] [2,11 [2,11 [2,1] 
N 12.11 P.11 PA P.11 [3.11 [3Jl l3.11 
S [O.O] [OJI [O,Ol [OJ] [4,01 f4.11 l4.21 
L [3,1] [3,1] [2,11 [2,.ll [5,11 IS.11 [5,11 
1 [LO] [Ll] [18,0] [18,1] [24.0] [‘Xl] [X2] 

7(n) function domain constraints 

Z(0) 7 + 3/2n-1/2nmod 2 Oln<8andnmodZ=O 
Z(1) 1+3/2n-1/2nmod2 llnl9andnmod2=1 
o(O) 18+ n+Onmod2 OSnI2andnmod2=0 
o(l) 18+ n+Onmod2 lSnS3andnmod2=1 
o(2) 52/3+5/3n-2/3(n-4)mod3 4InS7and(n-4)mod3=0 
o(3) 52/3+5/3n-2/3(n-4)mod3 5SnS8and(n-4)mod3=1 
o(4) 52/3+5/3n-U3(n-4)mod3 65nS9and(n-4)mod3=2 

Table 6-4: Timing iunctions for program in Figure 6-4 

The domains of a pair of input and output can be disjoint, 
completely overlapped and partially overlapped. We give an 
example for each category: 

0 Disjoint: the domains to which the functions T,,,(n) and 
Tall(n) are applicable do not intersect, since nmodm=O 
and nmodm= 1 cannot be satisfied simultaneously. That is, 
no instance of data items produced by o(1) is read by Z(o). 

0 Completely overlapped: the domain of T,,)(n) is completely 
contained in that of 7,&t). That is. all the data items 
produced by o(O) are read by Z(0). The time difference is 
given by 
max ~~ofn)-~,~o~n)= 17-1/2n+ 1/2nmod2, 

whereOSnSZandnmod2=0 
I17 

l Partially overlapped: the domains of r&n) and To&) 
intersect, bul are not completely ovcrlappcd. That is. some, 
but not all, of the data produced by O(4) is read by Z(0). 
Here, we don’t find the intersection exactly, but just use the 
constraint domains to bound the value of their time dif- 
ferences: 

- ~,,~4-~,o+4 
=52/3-1+(5/3-3/2)n 

-2/3(n-4)mod3+1/2nmod2, 
where 

6Snl8,nmod2=land(n-4)mod3=2 
549/3+1/6x8-2/3x0+1/2x0 
=17+u3 

Compile-time synchronization is possible only if the loop bounds 
are compile-time constants, or if the loop bounds for different 
loops satisfy certain relationships (e.g. if the loop bounds for the 
input and output loop arc always the same). The compiler 
currently can only handle the former case: powertil symbolic 
manipulation routines would be necessarily to handle the latter. 

The initiation of the input program is skewed with respect to the 
output program by the minimum skew. It is possible to vary the 
skew in the course of the computation. lhis alternative of 
inserting the necessary delays before each input operation may 
lower the demand on the size of the buffers. Howcvcr, it does not 
lead to higher utilization of the machine; the latency of the 
computation remains the same, since it is limited by the same 
minimum skew between cells. 

‘I’ablc 6-3: Vectors characterizing input/outputs in Figure 6-4 
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6.2.2. Queue overflow 
lhc problem of delcrmining the minimum buffer size for the 
queues is similar to determining the minimum skew. In the 
minimum skew problem, we delinc a function for each 
inpuVoutput statement mat maps Lhc ordinal number of the I/O 
operation to time. In Lhe minimum buffer size problem, we 
deflnc a function for each input/output statement that maps time 
to the number of inpuL and output dara received/sent. 

The queue overflow problem is currently only detected and 
reported. Eventually, overflow data needs to be buffered in local 
data memory, and overflow addresses need to be generated on the 
cells directly. 

6.3. Coupling between Ill and Warp array 
The program for the IU has two components: the generation of 
the loop termination signals and the generation of addresses, The 
NJ program is not specified by the user, the compiler must 
generate it from the original user program and the schedule of 
cell instructions. The IU and the cells of the Warp array logically 
operate in lock step. The IU could get ahead of the cells (i.e. send 
an address required in cycle 3 already in cycle 2). but the compiler 
utilizes this freedom only inside a basic block. There are two 
reasons for this restraint. It makes debugging the compiler easier, 
and the finite length of the input queues in the cells would 
Impose limits In any ease. 

6.3.1. Loop signals 
A convol signal is sent from the IU to the Warp array at the end 
of a loop to indicate whether the ceil should continue with or 
terminate the loop. The Bowgraph of the program together with 
the scheduling constraints produced by the cell code generator 
make it fairly straightforward to determine the loop signals to be 
sent. The main problem is that the cell can execute a loop with a 
loop body of exactly one instruction. The IU on the oLher hand 
needs at least three cycles lo update and test the loop counter. 
However, unrolling the last k iterations (with k = ( 3 / (length of 
ccl1 loop)) + 1) of the IU loop solves this problem. 

6.3.2. Address generation 
lhe input to the IU code generator contains Lhe addresses to be 
generated (from the local dataflow module) and the time at which 
the cells need the addresses. This timing information is dctcr- 
mined by the Warp array code generator and cstablishcs a strict 
deadline which must be met. These address expressions of the 
program plus their timing are translated into a labelled flowgraph 
in the same format as the original flowgraph. Those dag nodes 
that fcpresent an address to be sent to the Warp array obtain an 
addiiional label, their deadline. The dags of Lhe flowgraph 
capture the computation that must be performed, but no de& 
sions about the code scqucnccs have been made. 

The problem of code generation for dags with deadlines and 
other external constraints has been studied before. Howcvcr, the 
hardware idiosyncrasies of the implemcnlation of Lhc NJ and the 

spccilic features of Lhe Warp array crcalc addilional constraints. 
First. Lhc compmational power of the 1U is not always sufficient. 
The 1U has been designed to deliver the aveagc performance 
required, but not peak performance. Together with the in- 
flexibility of the Liming constraints demanded by Ihe Warp array; 
this lack of computation power means that thcrc is sometimes no 
schcdulc that satislics all constraints. If lhis happens, the IU 
provides an unorthodox escape mechanism. 

‘lhis mechanism imposes the second constraint that is unique to 
the IU. The compiler can prc-store addresses that the IU cannot 
product at run-time in a table. This table has 32K elements, and 
these elements can only be accessed in sequential order. This is a 

small table for a machine thai can demand up to 10 million 
addresses per second. For this reason, table memory is con- 
sidered a scarce resource. If at all possible, the compiler com- 
putes the address at run time. If addresses must be moved to the 
table, then complicated address computations with no common 
sub-expressions are good candidates. Address computations in- 
side nested loops are bad candidates, since they can overflow the 
table memory easily. 

The third problem is the lack of sufficient registers. Most 
compilers handle this problem by spilling some registers into 
memory. But there is no memory in the IU, at no time can there 
be more than 16 live variables, since there arc only 16 registers. 

‘Ihc last constraint is that all addresses must be generated by 
additions or subtractions only. The IU does not contain hardware 
for multiplication, and the compiler must apply strength reduc- 
tion to remove multiplications. Strength reduction is essential for 
mulli-dimensional array references. This constraint implies that 
there must be at least one rcgistcr for every address expression. 

Given these constraints, Lhe scheduling algorithm is quite com- 
plcx. It consists of two steps: First, based on a set of strategies. 
the compiler transforms the address computation dags for the IU 
so that an acceptable sequence of instructions is generated. A 
sequence of instructions is acceptable if it contains no multipllea- 
tions, meets the deadline, and uses as few registers as possible to 
meet the deadline. Ihcn, a second phase combines register 
allocation and sehcduling to produce the final IU code sequence. 
This second phase determines the exact cycle for each instruction 
and is based on list scheduling. We describe the first phase, IU 
code gcncration. in more detail. 

IU code generation 
The problem faced by the IU code generator is primarily a 
problem of operand selection and combination; all arithmetic 
must bc reduced to addition/subtraction or the address must be 
stored in the table. To appreciate the weallh of choices, consider 
~hhc gcncrauon of addresses for 

a[i ,j+il and “Ci+J $31 

inside a nested loop (i and j are indices, a, b ‘are NxN arrays). 
The compiler can keep scvcral sub-cxprcssions in regislcrs. The 
next table gives possible rcgistcr atloca~ions. Ulcir cost (measured 
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in number of arithmetic operations necdcd to form the 
addresses), and the number of rcgistcrs that must bc updated in 
the inner loop (index j): 

Allocated to registers Number of Arithmetic Update 
registers operations operations 

i*N, j*N, j 3 6 2 
aCi1, bCi1. j, j*N 4 2 2 
aCi1, bCil,aCi, jl. 

bCi+Jl. j 5 1 3 

Table 6-5: Operand allocation to registers 

The first option needs the absolute minimum: all allocations need 
at least three registers. ‘Ihe options in Table 6-5 are not complete, 
there are also other possibilities. The number of options to the IU 
code generator increases with the number of address expressions 
in a basic block. The algorithm to generate code for the IU is 
given as follows: 

1. Find the next basic block (in this loop). Each root in the 
dag corresponds to an address and has a label, the deadline. 

2. Order all root nodes according to their label; count the 
number of operations needed to compute the address on the 
IU. 

3. For all labelled dag nodes D, compare the label value with 
the number of operations needed (the time the result is 
available at the earliest). 

a. If the deadline cannot be met for D, create a new loop 
cOunter and bind a sub-expression to this loop 
counter. For example. in Table 6-5. a[ i ] is a sub- 
expression that is bound to a new loop counter and 
updated by N for each iteration of the outer loop. 

This counter needs a register, if there is no register 
left, then mark this address rooted at D to be pre- 
stored in the table. 

b. Insert code to initialize this register in the loop 
header. and insert code to update the counter at the 
end of the loop body. If no cycle is available to 
initialize the register, mark the address. 

c. Check if the deadline can be met; if not, repeat until 
either the deadline is met or the node is marked for 
the table. 

4. If no basic blocks are left, we arc done: otherwise, continue 
with step 1. 

We have only done preliminary performance evaluation of the IU 
code generator. The most serious problem is the restricted 
number of registers, and we arc investigating hardware changes to 
solve this problem. The size of the table space has been less 
crititi, but it is too early to tell if the programs compiled so far 
are representative. 

7. Preliminary results 
lhc compiler is implemented in Common Lisp and runs on a 
Pcrq. a 16-bit minicomputer with microcode support for Lisp. All 
modules togcthcr account for approximately 25.000 lines of code. 
We present some preliminary data in Table 7-1. The length of the 
pcode is measured in micro-instructions for the IU or Warp cell. 
Id-Conv Simple l-dimensional convolution for kernel 

of size 9, onC kernel element per cell [S]. All 
the arithmetic units are fully utilized in the 
innermost loop, giving a throughout of one 
result per cycle. 

Binop Binary operator on an image with 512~512 
elements. 

ColorSeg Feature separation in a 512x512 image based 
on color values. 

Mandelbrot Implementation of the Mandelbrot program 
for a 32x32 image and 4 iterations on one cell. 

Polynominal The sarnplc program from Figure 4-1, with one 
coefficient per cell, for an array of ten cells. 
The throughput is also one result per cycle. 

Name W2 Lines Cell pcode IU ticode Compile time 

Id-Conv 59 69 72 4min 58sec 

Binop 61 118 130 Smin lsec 

ColorSeg 157 213 242 8 min 35 set 

Mandelbrot 107 94 101 4min 51s 

Polynominai 39 50 51 2rnin30seC 

Table 7-l: Metrics for sample programs 

8. Concluding remarks 
We designed and implemented a compiler for a systolic processor 
array, a first version of the compiler has been released to users. 
We developed two models of computation for systolic arrays, a 
programmer’s model and a machine model. The compiler maps 
programs written in the programmer’s model to the machine 
computation model. 

We identified a useful computation model for the machine. the 
skewed computation model. This extremely simple model en- 
ables the compiler to efficiently generate code that satisfies the 
stringent synchronous timing constraints across the array. The 
computation model has been demonstrated to be very powerful in 
capturing a wide range of applications for the Warp machine. We 
also showed Lhat Lbe scmanlic gap between the programmer’s 
model and this machine model can be bridged by restricting the 
data flow through the ,array to uaidircctionai. 

lhe programmer’s model parlitions the mk of managing the 
immense parallelism into two sublasks. ‘lhc user pcrfolms the 
high-level task of problem dc,composition onto the individual 
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cells in the array. The compiler manages the low-level parallelism 
and schcdulcs the code so that the timing constraints of the 
synchronous hardware are met. This separation of responsibilities 
works masonably well in practice. We do not preclude future 
work on a higher level user model. but we conclude that the 
current user model and compiler Implement a workable system. 
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