Compilation for a High-performance Systolic Array

Thomas Gross and Monica S. Lam

Deparrment of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

We report on a compiler for Warp, a high-performance systolic
array developed at Carnegie Mellon. This compiler enhances the
uscfulness of Warp significantly and atlows application program-
mers o code substantial algorithms,

The compiler combines a novel programming model, which is
based on a2 model of skewed computation for the array, with
powerful optimization techniques. Programming in W2 (the
language accepted by the compiler) is orders of magnitude easier
than coding in microcode, the only alternative available
previously.

1. Introduction

In systolic arrays, the flow of data through the cells is planned
cycle by cycle so that cells never have to wait for input and can
compute at their maximum rates. As a result, systolic algorithm
design is not easy. Existing systolic algorithms and design tools
are directed at simple machine models where all cells perform
simple, identical, atomic computations. That is, the cells input a
set of data, computc and output the result in each clock cycle.
The domain of these simple models is restricled to mathematical
recurrences, which are amenable to simple algebraic manipula-
tion.

The research was supported in part by Defense Advanced Research
Projecis Agency (DOD). monitored by the Air Force Avionics Laboratory
under Contract F33615-81-K-1539, and Naval Electronic Systems Com-
mand under Contract N00039-85-C-0134, and in pait by the Officc of
Naval Rescarch under Contracts N00014-80-C-0236, NR (043-659, and
N0C014-85-K-0152, NR SDRI-007. Thomas Gross is also supported by an
1BM Faculty Development Award.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1986 ACM 0-89791-197-0/86/0600-0027 75¢

27

Carnegie Mellon is currently building a high-performance,
programinable systolic machine, known as Warp: each of its ten
cells contains a 4K -word memory and can deliver up to 10 million
Noating-point operations per second [3]. The machine’s applica-
tion domain extends far beyond simple recurrences, which have
been he focus of earlier systolic designs. The complexity of the
machine as well as the application domain cause previous tech-
niques, be they manual or automatic, 10 break down.

Our solution to the problem of compilation for high-performance
systolic arrays has three aspects: a new computation model for
systolic arrays, a programmer’s model, and compilation tech-
niques that translate algorithms expressed in terms of the
programmer’s model to our computation model for the machine.
A compiler based on these concepls has been implemented for
Warp.

In this paper, we first present an overview of the Warp machine,
Next, we describe our computation model, which we call the
skewed computation model. We then introduce our programmer’s
model and describe the compilation techniques that allow us to
compile user programs for Warp. We conclude the paper with
some preliminary results on the performance of the Warp com-
piler.

2. Warp architecture

Warp is a high-perforimance systolic array computer designed by
Carncgie Mellon for signal and image processing, and scientific
computing [3}. This machine has been named Warp because of its
high spced and throughput. As an example of performance, a
10-ccll Warp can process 1024-point complex fast Fourier trans-
forms at a rate of onc FFT every 600 microseconds. It can also be
programmed to perform many other primitive computations,
such as two-dimensional convolution, and real or complex matrix
multiplication, at a peak rate of 100 million floating-point opera-
tions per second. A two-cell prototype has been operational since
the Fall of 1985, and the first 10-cell machine was delivered early
1986; at least eight additional machines will be built during the
next two years.

2.1.'Warp machine

‘The Warp machine has three componcnts—the Warp processor
array (Warp array), the interface urnit (IU), and the host, as
depicted in Figure 2-1. The host is a general-purpose workstation
(currently a SUN) running UNIX and provides an adequate data
bandwidth to sustain the array at full speed in the targeted
applications. The Warp array provides the raw computation
power for performing computation-intensive routines. It is a
one-dimensional systolic array with identical cells, called Warp
cells. Data flow through the array on two data paths (X and Y),
while addresses and systolic control signals travel on the Adr path
(as shown in Figure 2-1). Each Warp cell is a programmable
horizontal microengine, with its own local program memory and
sequencer. The host controls the Warp array and executes those
parts of the application code that cannot be mapped onto the
Warp array. The IU connects the Warp array and the host; it also
generates addresses and control signals for the Warp array.

HOST

Adr —I

INTERFACEF______
UNIT

X
cell o L Jcetilesyy
2 [3 n

L WARP_PROCESSOR_ARRAY J

-— e e m wm e e me e p Ges o ame e

Figure 2-1: Warp machine overview

In the following, we examine the different sources of complexity
that must be mastered by a user of this architecture. We describe
the interaction between the three components of the machine, the
cooperation between the cells in the processor array, and lastly,
code generation issues for the Warp cells.

2.2. System issues

Communication between the host and the processor array re-
quires code to be generated for all three components of the
system. The IU and the host communicate asynchronously via a
standard bus. The 170 processors in the Warp host must be
programmed to supply input in the exact scquence as the data is
used in the Wamp cclls. The 1U and the processor array communi-
cate synchronousty; the IU must be programmed correctly so that
data from the host reach the Warp cells in time.

In addition to interfacing the Warp array to the host, the U is
also responsible lor generating addresscs and loop control signals
for the cells. Warp cells are not equipped with integer arithmetic
capability. The justification is that systolic cells typically perform
identical, data-independent functions, using identical addressing
patterns and loop comrols, For example, when multiplying two
matrices, each ccll computes some columns of the result. Al cells

28

access the same local memory location, which has been loaded
with diffcrent columns of one of the argument matrices. There:
fore, common addresses and loop control signals can be generated
externally in the 1U and propagated to alt the cells. Moreover, it
is desirable that each Warp cell can make two memory references
per cycle. To sustain this high local memory bandwidth, the cell
demands powerful address gencration capabilities, which were
expensive to provide and therefdre became a target for optimiza-
tion. We can dedicale much more hardware resources to address
generation if it is implemented only once in the IU, and not
replicated on all Warp cells. The IU also supplies loop control
signals to the Warp cells. When the cells cxecute a loop, the 1U
sends a signal at the end of cach iteration to indicate if another
loop iteration is to be executed. Since addresses and loop controls
are integral to any computation, the actions on the IU and the
‘Warp cells are strongly coupled.

2.3. Systolic array issues

A feature that distinguishes Warp from other processors of similar
computation power is its high 170 bandwidth. Adjacent cells can
transfer up to 20 million words (80 Mbytes) per second. This
high inter-cell communication bandwidth makes it possible to
transfer large volumes of intermediate data and thus supports
fine-grain problem decomposition.

The problem of mapping a computation onto a systolic array is an
ongoing rescarch topic. Except for very simple mathematical
recurrences, automatic tools do not exist. Furthermore, in most
cases, insight into the application domain is necessary to partition
the computation properly across an array.

2.4. Cell issues

While the parallelism potentially available in this machine is
tremendous, the complexity of using it effectively is correspond-
ingly overwhelming, Each Warp cell can be likened to a conven-
tional array processor. Its data path is 32-bit wide and is depicted
in Figure 2-2. It contains two floating-point units, both of which
are S-stage pipelined. FEach cell contains 4K-word memory for
resident and temporary data, a 128-word queuc for each com-
munication channel, and a 32-word register file to buffer data for
each floating-point unit. These storage blocks can supply four
words of data per cycle; this rate matches exactly the consump-
tion rate of the arithmctic units, All the functional units are
interconnected by a full crossbar, and are controlled individually
by scparate fields in wide micro-instruction words {(over 200 bits).

All cells operate in lock step under control of a global clock.
There is no hardware support for dynamic flow control between
cells. As a result, the 170 operations of the cells in the array need
to be synchronized at compile-time. Although a buffer exists
between cach 170 link of a pair of communicating cells, the status
of the buffer cannol be tested at run time. 'Therefore, the
computation on all cclis needs to be scheduled such that no data
is removed from the chaunel buffer before it is sent by the sender
of the data.

1 XCurr
X YCurr
XPrev — Queue A
Reg Alu b~
YPrev Y
YNext Queue
literal
Mem
M
{Reg Mpy I
AdrPrev Adr » AdrCurr
Queue
G} Functional Block
em» Switch
Figure 2-2: Warp cell data path

3. Skewed computation model

After describing the architecture, we now define our computation
mode! of the machine, that is, the compiler’s target computation
model. In previous systolic machine models, cells latch in data,
compute, and output the result for their neighboring cells in one
single cycle, In most algorithms, all the cells in the array perform
identical functions.

An obvious way to extend this simple model to cover Warp,
where cach data set may consist of multiple data items and the
computation per data set may span multiple clock cycles, is to
adopt the SIMID computation model. All cells input a data set in
the same cycle, perform an identical sequence of computations,
and then output the results for the neighboring cells simul-
tanecously. However, this SIMI) model is too restrictive and
unattractive to implement. We define a new computation model,
which we call the skewed computation model. 1n this model, cells
in an array execute the same function, but possibly with a time
delay between neighboring cells. To show that the skewed
computation model supports an easicr and more efficient use of
the systolic array than the SIMI) model, we first observe that a
one-dimensional systolic array is normally used in two modes:
® Pipcline mode. each processor constitutes a stage of the
pipeline, and data are processed as they flow though the
array, repetitive computation can often be decomposed into
a number of identical pipcline stages.

® Parallel mode; the input data are partitioned among the
processors, and each processor performs the same function
on data resident in its local memory.

Implementing the pipeline mode on this skewed computation
model is natural; the exccution of consecutive processors is
simply skewed by the amount of ‘time it takes for dala to pass
through a stage. The data dependency belwcen consccutive
stages of the pipeline makes it impossible to initiate useful com-
putation on ail the cells simultancously. To implement this
pipeline mode in the SIMD modcl, one can pretend that input
exists for all slages of the pipeline from the very start. The
programuncr, however, needs to initialize the state of the cells so

29

that no ¢xception is raised on “fictitious™ data before the actual
data arrive; he also has to provide cxtra data o flush the pipeline
1o retrieve the last valid results. Alternatively, the programmer or
additional special hardware can mask off the execution or just the
exception signalling mechanism on cells during the invalid data
period. In cither case, the programmer is still left with the tedious
task of determining which of the outputs of the array constitutes
the desired results.

Implementing a pipeline in the SIMD model is inefficient. The
latency of results through each slage in the SIMD model is
determined by the computation time of the entire stage. In the
skewed model of computation, the latency of each cell is given by
the time skew between the celis: this time skew is determined by
the minimum lead time a stage needs such that results for the next
cell are ready by the time they are used. Consider a simple
example program where each stage takes 4 steps and that the
fourth step requircs the result from the fourth step of the previous
stage. The latency through each cell is 4 cycles in the SIMD
model. but only one cycle in the skewed model, as illustrated in
Figure 3-1. This differcnce in latency can be significant when a
nontrivial amount of computation is involved in each stage.

SIMD computation model Skewed computation model

CELL1 CELL2 CELL3 CELL1 CELL2 CELL3

step, step;
step, step, step,
step, step, step, step,
step, step, step, step,
step, step; step, step, step,
step, step, step, step, step,
step, step, step, step, step,
step, step, step, step, step,
step, step, stepy step; step, stepy
step, step, step, step, step; step,
step, step, step, step, step, step,
step, step, step, step, step, step,
step, step, step, step,
step, step, step,
step, step,
step, step,
stepy
step,
stepy
step,

Figure 3-1: Comparing latencics between SIMD and
skewed computation models

The skewed computation model is uscful for the parallel mode of
operation as well. All the processors receive their own distinct set
of input data. In the SIMI) model computation cannot start until
atl the data arc rcady for all the cclls. In the skewed modecl, we
can initiate thc computation in cach cell as soon as its input
demand is satisfied, thus reducing the latency of the computation,

4. Programmer’s model

There is one central goal in the design of the programmer’s
modcl: to abstract out all unnecessary details of the architecture.
We want to support a programmer’s model as simple as possible:
however, programs expressed in this model must be amenable to
effective automatic techniques that produce cfficicnt code for our
computation model of the machine, For cxample, as discussed
carlicr, the general problem of decomposing a computation onto
a processor array is difficult and usually benefits from insight of
the application domain. Therefore, this problem is left to the user
by exposing the processor array configuration in the
programmer’s model. On the other hand, complexities at the
system and the cell level, as discussed in Secction 2, are removed
from the programmer’s model. In fact, not only does this
simplified view make programming easier, automatic techniques
can produce better code because of the vast amount of machine-
level details involved. We have defined a language, W2, which
allows the user to describe Warp programs in this programmer’s
model. In the following, we describe the features of our program-
ming model in more detail, and we introduce our specialized
language constructs for expressing conceplts in this model.

4.1. Asynchronous communication

The most significant deviation of our programmer’s model from
the conventional view of systolic arrays is asynchronous com-
munication. In previous systolic models, data communicated
between cells is identified by the clock cycle the transfer takes
place. As Warp’s application domain-includes far more compli-
cated cell programs, it is impossible for the user to specify the
exact timing of the I/0 unless he programs at the microcode
level. The alternative of allowing user-defined logical clocks has
also been investigated. However, this logical clock approach
suffices only if cell programs cohsist of a simple input-compute-
output loop; furthermore, it makes code optimization difficult.

Our programmer's model does not include the notion of time.
The user specifics the data dependency relationships between
cells using asynchronous “receive” and “send” constructs. Con-
necting each pair of cells are two 170 channels, X and Y, with a
dedicated data buffer. To communicate, the sender processor
“sends” a data item (o a designated channel, and the data item is
stored into the buffer of the recipient; when the recciving proces-
sor issues a “receive” operation, the oldest data item in the buffer
is returned. Therefore, “send” and “receive™ operations on a
channel are matched by virtue of the ordering; ie. the nth
“receive” operation will get the data item transferred in the ath
“send" operation. The semantics of the communication primi-
tives is that the recciver is blocked if the buffer is empty, and
similarly, the sender is blocked if the buffer is full. In Section §,
we will describe how we can bridge the semantic gap between the
programmer’s model and our synchronous machine.

30

4.2. System abstraction

In the programmer’s model, Warp is a rcgular onc-dimensional
array. both the host and the 1U are hidden from the programmer.
Address computation and loop controls arc an integral part of a
program, it is too tedious if a user must explicitly input into the
processor array each and every calculated address. Therefore,
addrcsses and loop controls generation to be performed on the [U
arc automatically extracted from the user’s specification.
Similarly, although the processor array, the IU and the host all
must participate in transferring data between the host and the
array, this partitioning of function is not present in the
programmer’s model.

4.3. W2 language

W2 is the “machine language™ of the Warp machine; the
microcode level is not visible to the user, and it is conceivable that
higher level languages be built on top of this W2 level. The
language is designed to reflect the constructs that can be executed
efficiently by the machine. For example, cells can only communi-
cate with their neighbors on either of the two channels between
the cells. It lacks generality and high level programming support
found in other languages. For example, it differs from CSP
(communicating sequential processes) [4] in that it does not have
guarded commands and the more basic, unbuffered communica-
tion primitives. These features cannot be implemented cf-
ficiently, if at all, on the hardware.

The W2 language is a simple block-structured language with
assignment, conditional, and loop statements. Communication
between cells is made explicit by the use of the send and receive
primitives. The receive primitive has four parametérs: the direc-
tion of the channel, the channel name, an internal variable the
data is received into and, lastly, the external (host) variable that is
received by this operation. The first cell of the Warp array
reccives data directly from the host through the U, and the value
is cxplicitly specified by the external variable; all other cells
receive the data transferred in the corresponding send operation
of the communicating cell. In other words, the external variable
is meaningful only for the first cell. Similarly, the send primitive
has the same parameters, cxcept that the internal variable con-
tains the data to be sent and the external variable specifies the
location the data is to be stored in the host memory. Again, the
external variable only applies to the boundary cell of the array (in
this case, the last cell), which sends data directly to the host
through the IU.

Tigure 4-1 shows a simple example of a Warp program which
evaluates a polynomial using an array of ten cells, The program
evaluates the polynomial

I’(z)=co?+ clzs+ cootGy
for a vector of input data 2922y - Each cell (starting with cell
0 up to cell 9, the last cell in the system) exccutes a copy of the
program. The first cell receives the valucs of the host program
variables (bound to parameters ¢ and z), and the results are sent
and stored in a host variable bound to paramcter results.

/““#‘i“"‘i‘.t!"i*‘.‘##‘.“.‘.!‘t#‘l#.#i/

/* Polynomial evaluation */
/* A polynomial with 10 coefficients is ./

/*evaluated for 100 data points on 10 celis*/
/ti'##.!“t#i‘.‘t“‘li!iﬂi!tt.‘t‘ﬁl!.*t‘.i“/

module polynomial (z in, ¢ in, results out)
float 2[100], c[10];
float resutts[100]:

cellprogram (cid : 0 : 9)
begin
function poly
begin
float coeff,/* local copy of c{cid] */
temp,
xin, yin, ans; /* temporaries */
int i;

/*Every cell saves the first coefficient that
reaches it, consumes the data and passes the
remainihg coefficients. Every cell generates
an additional item at the end to conserve the
number of receives and sends. ./

receive (L, X, coeff, c[0]);

for i := 1 to 9 do begin
receive (L, X, temp, c[i]):
send (R, X, temp);

end;

send (R, X, 0.0);

/* Implementing Horner's rule, each cell
multiplies the accumulated result yin with
incoming data xin and add the next
coefficient ./

for 1 := 0 to 99 do begin
receive (L, X, xin, z{1]):
receive (L, Y, yin, 0.0);
send (R, X, xin);
ans := coeff + yin*xin;
send (R, Y, ans, results[i]);

end;

end

call poly;
end

Figure 4-1: A sample program: polynomial evaluation

The program of IFigure 4-1 is best explained by observing the first
couple of iterations on the first two cells. An arrow in Figure 4-2
indicates that the output of the “send” is input for the cor-
responding “reccive” operation.

Figure 4-2 shows the logical sequence of steps only; it does not
imply that there is a single statement per cycle. In fact, several of
the staiements can be executed in parallel, but the compiler will
always preserve the data dependencies depicted in Figure 4-2.

31

Cell 0 Cell 1

Receive coeff c[0]

Receive temp c¢[1]

Send temp c¢[1] — Receive coeff c[1]

Receive temp c[2]

Send temp c¢[2] — Receive temp c[2]

Receive temp c[3] Send temp c[2]

Receive temp c[9] Send temp c[8]

Send temp c¢[9) — Receive temp c[9]
Send temp cf9]

Send 0.0 0.0 — Receive temp 0.0
Send temp 0.0
Send 0.0 0.0

Figure 4-2: Details for program of Figure 4-1

5. Mapping programmer’s model to skewed
computation

While the programmer’s model presents a simple view to the user,

it is quite remote from our skewed computation model of the

machine. In this section, we show that only a subset of the

computation in the programmer’s model can be mapped onto our

machine model.

5.1. Restrictions on programmer’s model

An obvious restriction for all W2 programs is that it must be
possible for the compiler to determine a lower bound on when
data is received, and an upper bound on when data is output.
The hardware does not support dynamic flow control, and the
compiler must guarantee that an input data is not used until the
data is output. This implics, for example, that “while” state-
ments, or “for” statements with dynamic loop bounds cannot be
supported. This restriction is tolerable in the application domain
of Warp.

Since the cells in our skewed computation model all execute the
same code, it necessarily follows that all the cells in the array must
execute the same W2 program. We call programs that require all
cells to perform the same function homogeneous. It is, however,
not true that all homogeneous W2 programs can be mapped onto
our skewed computation model. Specifically, some bidirectional
homogencous programs (programs that send data from left to
right as well as from right to left) cannot be mapped onto this
model.

5.1.1. Bidirectional W2 programs

We represent the computation of the array as a graph. Since all
the cclls perform the same function, we can succinctly specify the
computation with only one sct of nodes representing the opera-
tions on a singlc cell. There are, however, two types of cdges
representing two kinds of data dependency relationships: intra-
cell computation dependencies and inter-cell communication
dependencics, The communication edges are labelled by the
direction the data is sent. A “right” edge connects a “send-to-
right” node to a “reccive-from-left” node, and a “left” edge
connects a “'send-to-left” node to a “receive-from-right™ node.

The graph represents the exccution of the array; each execution
of a statement is represented by a separate node. The computa-
tion edges form no cycles, otherwise, the computation is not well
defined. The communication edges, however, may or may not
introduce cycles in the graph. In both programs A and B in
Figure 5-1, each cell receives and sends a data item from and to its
left and right neighbor, respectively. In program A, the two data
items are unrelated and the communication edge introduces no
cycles. However, in program B, each cell sends the data it
reccives from its neighbor; the communication edge introduces a
cycle. We say that the cycle is a right ¢ycle if the communication
edge completing the cycle is labelled “right”; similarly, it is a left
¢ycle if the communication edge is labelled “left™.

Program A Program B

Send-to-Right Receive-Trom-left

!
Right i Right
|

\&I

Receive-from-left Send-to-Right

Figure 5-1: Programs with and without communication cycles

A right cycle dictates that the exccution of a cell be skewed with
respect to the right. Since the receive operation precedes the send
operation, in order that the cell does not perform the receive
operation before its right neighbor has sent the data, the cell
should be delayed with respect to the cell on the right. By the
same argument, a left cycle dictates that the execution of a cell be
skewed with respect to the left. In other words, it is not possible
to map a W2 program containing both right and lcft cycles onto
our skewed computation model.

Fortunately, bidirectional data flow is not nccessary for systolic

arrays operating in either pipeline or parallcl mode. Qur current.

compiler only handles the unidircctional flow programs.

6. Compiler design

The principal problem ¢hat is to be solved by the compiler is the
management of the parallclism of the Warp machine, The 170
processots of the host, the 1U, and the cells in the array cooperate
to cxecute the user's program, and the compiler must generate

32

code for cach of these processors. The input to the compiler is a
W2 program; the output consists of a program for each host 170
processor, microcode for the IUJ, and microcode for the Warp
array.

6.1. Overview

We now describe how we structure the compiler to manage the
parallclism of the Warp machine. The compiler consists of five
modules: dataflow analysis, the computation decomposition
module, and three code generators (for the Warp array, the 1U
and the host 170 processors). Figure 6-1 shows the dependencies
between these major modules.

The flow analyzer is reasonably machine independent. The flow
analyzer builds the central data structure, which is shared be-
tween all other modules of the compiler. This data structure is 2
flowgraph of the program: ecach node of the flowgraph represents
a basic block of the program (sce {1] for principal concepts and
terminology). The computation of each basic block is represented
as a directed acyclic graph (dag).

Each node in a dag corresponds to an abstract opcration of the
Warp cell. This level models the Warp cell as a simple processor
with memory to memory operations and no registers. Later, the
code generator translates these abstract instructions into micro-
operations, allocates registers, and schedules the code.

The flow analysis module consists of two steps: local and global
analysis. The local phase constructs the dag for each basic block
and is fairly straightforward. Many local optimizations have been
implemented, including common sub-expression elimination,
constant folding, height reduction and idempotent operation
removal [2].

The global flow analysis phase collects detailed intra-block infor-
mation for all variables of the program. For regular accessing
patterns, the analysis is powerful enough to distinguish between
individual array elements and different iterations of a loop [8].
This global data dependency information is incorporated into the
dag as arcs between nodes in different basic blocks. There are
two types of arcs. If the global analyzer can deduce a strict
dependency. we say that node n uses the value of node j (for
example, iteration i of a loop uses always the result of iteration
i=1 of another loop). If a strict dependency cannot be es-
tablished, the global flow analyser inserts sequencing arcs that
enforce a conservative order of ecvaluation. This information
makes it possible for the code gencrator and scheduler to overlap
the execution of different basic blocks, and this is important for
heavily pipelined processors like the Warp cells.

The computation decomposition phase partitions the flowgraph
generated by the flow analyzer into subgraphs for the different
code generators. As it is most important that the Warp array
delivers the desired computation bandwidth, code is generated for
the Warp cells first. The additional scheduling constraints result-
ing from the array code are then input to the It code generation
phase; the constraints resulting from the IU code generating
phase are input to the host code generation phase.

W2 Program

Flow Analyzer

Flow Graph
(FG)

Computation
Decomposition

Warp Array Ye=eee-=eo
re Epuopupuputeg

Warp Code
Generator

Warp Code

1V Code

Host Code
Generator

Gensrator

Constraints

Figure 6-1: Structure of the compiler

The computation decomposition phase also analyses the address
computation nodes in the dag to determine if they depend on any
input data. Addresses that only depend on loop counters are
considered data indcpendent, and these addresses can be com-
puted on the IU. The subgraph containing all data independent
addresses is separated from the rest of the dag and is only used by
the IU code generator. Calculations of data independent ad-
dresses in the original flowgraph are replaced by “receive-
address™ operations. 'This modified flowgraph is the input for the
Warp array code generator. Addresses moved to the interface
unit must be common to all cells in the Warp array. This
requirement is always fulfilled for data independent addresses
since all cells execute a copy of the same program.

6.2. Warp array code generation

The techniques used in the scheduling of the cell computation is
bascd on those designed originally for increasing the throughput
of hardware pipelines [6, 7). Details on scheduling of individual
ceils will not be discussed here. In this section, we concentrate on
the inter-cell scheduting aspect of the code generation,

The asynchronous communication primitives present in our pro-
gramming language ar¢ not supported by hardware. The seman-
tics of the receive and send statements in the language is that
recciving data from an empty queue or sending data to a full
queue will causc the exccution of the cell to be suspended. Direct
hardware support of this semantics would have complicated the
design, implementation and debugging of the machine. It is the
compiler’s responsibility to ensure that queue overflow or under-
flow does not occur. That is, an input operation cannot be
executed until its corresponding output operation has been ex-

33

ccauted. Also, the number of data items buffered in the queue
cannol cxceed the size of the queue.

6.2.1. Queue underflow

Let us first consider the issue of queue underflow, by assuming
that the buffer is infinite. Because W2 programs accepted by the
compiler have unidireclional communication, inter-cell timing
constraints can be handled scparately from the code generation of
the individual cells. To ensure that no underflow occurs, the
initiation of the cxecution of a cell is simply delayed with respect
to the preceding cell until no receive operations exccuted precede
the corrcsponding send operations. This approach suffices be-
cause there is no circularity in the data dependency between cells;
in the worst case, a cell is not allowed to start executing until the
preceding cell has finished completely. If the data flow is bidirec
tional, however, it may be necessary to insert delays in the middie
of the code, which can be difficult in highly optimized horizontal
microcode for a deeply pipelined machine.

Ignoring inter-cell timing constraints in the code generation phase
simplifics the problem without compromising efficiency. This
strategy may only increase the latency through the array, due to
the possible increase in the skew between cells. However, op-
timizing the code of the individual cells optimizes the throughput
of the array, the most imporiant performance measure of systolic
arrays. (Pathological cases, in which the skew is of the same order
as the length of the execution time, are rare in systolic arrays,
where data typically strcam through the cells at high rates.)

To calculate the minimum skew between cells, we need to iden-
tify all matching pairs of input and output operations, and the
time the operations are executed with respect to the beginning of
the program. The input program must be skewed with respect to
the output program by an amount such that atl outputs precede
their corresponding inputs. Therefore, the minimum skew is the
maximum time difference beiween all matching pairs of inputs
and outputs.

Letr 1(”) and 7 o(n) be the functions that map the ordinal number
of input and output » to the clock cycle the operation is per
formed, relative to the beginning of the input and output
programs. Then, the minimum skew is given by:

max (7 (m)=7 (n)), 0<n< number of input/outputs

Example: straight line code

Consider the simple straight line program in Figure 6-2. Suppose
the same program is executed by two cells. Table 6-1 shows the
input and output timing, and Figure 6-3 shows how none of the
input operations of the second cell precedes the corresponding
output operation of the first cell. They arc separated by the
minimum skew of three cycles.

output
inputo
1nput1
nop

nop
output1

Figure 6-2: Input and output of a straight-line program example

Number To T, o~y
0 0 1 -1
1 5 2 3
max 3
Table 6-1: Input/output timing functions and minimum skew
Time Cell 1 Ceil 2
0 output
1 input
2 1nput.1
3 output,
4 input
g o:utput:1 1npu1:‘1
7
8 ou'c.put1

Figure 6-3: Two cells executing with minimum skew

Example: loop constructs

Programs with loops are more complicated. The difficulty of
determining the minimum skew depends on whether the match-
ing input and output statements are nested in similar or different
control structures. Figure 6-4 is an example program that il-
lustrates these two cases.

nop

Loop 5 times: 1nput0
1nput1
nop

nop

nop

Loop 2 times: output
output1

nop

nop

Loop 2 times: output
output
output4
nop
nop

nop
Figure 6-4: A program with loops

Table 6-2 gives the input/output timing information. The control
structure of the input loop is similar to that of the first, but not
the second, output loop. Both the input and the first output loop
contain two input/output opcrations in cach iteration, As a
resujt, the first and second input statements arc always matched
with the first and second output statements, respectively. Since
the rate of input (2 every 3 cycles) is lower than that of output (1
every cycle), the maximum skew can be determined by consider-
ing only the first iteration. Conversely, if the input rate were
higher, only the time difference between the input/output opera-
tions of the last iteration needs to be considered. In the second
output loop, the number of outputs per iteration differs from that
of the input. An input statement is matched to different output
statements in different iterations. All combinations of matches

34

nced to be considered. [Furthermore, the complexity of the
analysis increases significantly with the nesting levels of iterations.

In most programs, the input and output control constructs arc
usually similar, since they are operating on similar data structures.
Furthermore, it is not necessary to derive the exact minimum, a
close upper bound will be sufficient. The following mathematical
formulation of the problem allows us to cheaply calculate the
minimum skew in the simple cases and its upper bound in the
complex ones.

The key observation that leads to our solution is that it is not
necessary to identify all the matching pairs of inputs and outputs,
the most difficult step in the calculation of the minimum skew.
Each input/output statement may be executed many times, if it is
in a loop. We define a timing function = 1) °F T om) for the mth
input/output statement in the program. This function maps the
ordinal number of the input or output operation n to the clock
cycle it is executed; it is applicable only for certain values of n.
We then determine a bound on the maximum time difference for
cach pair of input/output functions, for those values of n that are
in both functions’ domains. Finding the exact intersection of
both domains may be difficult for timing functions that cor-
respond to statements in dissimilar control structures. For these
cases, instead of using the constraints to solve for the intersection
completely, we simply use the constraints to bound the time
difference between the input and output. The value thus ob-
tained bounds the time difference between all possible matches, if
any, between these two input and output statements. By taking
the maximum of such bounds between every pair of input and
output functions, we obtain the minimum skew. Although every
pair of input and output statements needs to be considered,
functions corresponding to statements in the same loop share
many common terms which need to be computed only once.
Also, the branch and bound technique is applicable here: bounds
on the timing of all the input/output operations in the same loop
can be checaply obtained to reduce the number of pairs of func-
tions that necds to be evaluated.

number To L T,
0 18 1 17
1 19 2 17
2 20 4 16
3 21 5 16
4 24 7 17
5 25 8 17
6 26 10 16
7 29 11 18
8 30 13 17
9 31 14 17
max 18

Table 6-2: Input and output timing for program in Figure 6-4

We characterize each input/output statement by five vectors of k
clements, where & is the number of cnclosing loops. Each

element of the vector characterizes an enclosing loop, with the
first representing the outermost loop. The five vectors are:

R= [rl rk]: Number of iterations

N =[n1. AL Number of inputs/outputs in one iteration of
the loop.

S—[sl, .. ,s’J Ordinal number of the first input/output in
the loop with respect to the enclosing loop.

L=| Time of execution of one iteration of the loop

[,S,J:
RN A

For each loop, we calculate the starting time of the iteration the
nth input/output is in, relative to that of the enclosing loop. By
summing all these starting times, we get the time the nth opera-
tion is executed:

Time to start the first iteration of the loop with
respect to the enclosing loop.

n-sl
— h

Lay)

(n=-s)modn s,
! L S

L ny J?

T(n)= L+
By defining

ifj=0

. { N |
Y (g(=1) sj_l)modn!_1 otherwise

(g(j)=s)modn
! 1y
n J n ‘f)

2()=g(j+1))

J

[koot !

- (—’-Ll)go)——"g(m)
n T\ n,

I
-
P

I
1~

3 o~
)

+

-
_:/L.‘N

—
~

-
B '&.."'
\h
T
0%
—~
—
~
+

~
[

J=1 j=1
for the values of nsu
k

k
Z sMSg(i)s(r]—l)nj+ Z 5,
m=J

m=j =
For uniformity in notation, the input/output operations them-

selves are considered a single-iteration loop. For example, in the
program in Fig. 6-4, all the vectors describing the operations
contain two elements; the first gives information on the enclosing
loop, and the second gives information on the statement itself.
Therefore, the vector R characterizing K0) is {5,1], because it is in
a S-iteration loop, and the operation is treated as a single iteration
loop. Timing information on all the input and output operations
is tabulated in Table 6-3 and the timing functions are given in
Table 6-4.

5

that

0 K) 00 o) 02 03 0@
R B [R R ORY RU RY
NooRY R R RD BY B B
S [0 (04 [00] [0 [0 1] [42]
L B B RO ORYOBAOB B
T [0] (LY [80] [181] [240] [4.1] [24.2)

Table 6-3: Veclors characterizing input/outputs in Figure 6-4

35

7(n) [function domain constraints

K0) 1+3/2n=1/2nmod?2 0<n<8andnmod2=0
K1) 1+3/2n-1/2nmod2 1<n<9andnmod2=1
o0) 18+ n+0nmod2 0<ns2andnmod2=0
O(1) 18+ n+0nmod2 l<n<3andnmod2=1
OQ2) 52/3+5/3n=2/3(n=4)mod3 4<n<7and(n—-4)mod3=0
0(3) 52/3+5/3n=2/3(n=4)mod3 S5<n<B8and(n—-4)mod3=1
O4) 52/3+5/3n=2/3(n=4)mod3 6<n<%and(n—4)mod3=2

Table 6-4: Timing functions for program in Figure 6-4

The domains of a pair of input and output can be disjoint,
completely overlapped and partially overlapped. We give an
example for each category:
® Disjoint; the domains to which the functions = 1(0)(") and
T 0(1)(”) are applicable do not intersect, since #modm=0
and nmodm=1 cannot be satisfied simultancously. That is,
no instance of data items produced by O(1) is read by I(0).

® Completely overlapped: the domain of = o is completely
contained in that of Tro (n). That is, all the data items
produced by OX0) are read by X(0). The time difference is
given by

max r o(o)(n)—f 1(0)(")= 17=1/2n+1/2nmod 2,
where0 < n<2and nmod2=0
<17

® FPartially overlapped: the domains of 7 10 (n) and "'0(4)(")
intersect, but are not compietely overlapped. That is, some,
but not all, of the data produced by O(4) is read by X0).
Here, we don’t find the intersection exactly, but just use the
constraint domains to bound the valuec of their time dif-

ferences:
max 4)(n)—r ’(o)(n)
=52/3=1+4(5/3=3/2n
=2/3(n=4)mod3+1/2nmod?2,
where

6< n<8,nmod2=1and(n~4)mod3=2
<$49/3+1/6x8-2/3%0+1/2x0
=17+2/3

Compile-time synchronization is possible only if the loop bounds
are compile-time constants, or if the loop bounds for different
loops satisfy certain relationships (e.g. if the loop bounds for the
input and output loop arec always the same). The compiler
currently can only handle the former case; powerful symbolic
manipulation routines would be necessarily to handle the latter.

The initiation of the input program is skewed with respect to the
output program by the minimum skew. It is possible to vary the
skew in the course of the computation. This alternative of
inserting the necessary delays before each input operation may
lower the demand on the size of the buffers, However, it does not
lead to higher utilization of the machine; the latency of the
computation remains the same, since it is limited by the same
minimum skew between cells,

6.2.2. Queue overflow

‘The problem of detcrmining the minimum buffer size for the
queues is similar to dclermining the minimum skew. In the
minimum skew problem, we define a function for each
inputl/output statement that maps the ordinal number of the 170
operation to time. In the minimum buffer size problem, we
definc a function for cach input/output statcment that maps time
to the number of input and output daia reccived/sent.

The queue overflow problem is currently only detected and
reported. Eventually, overflow data needs to be buffered in local
data memory, and overflow addresses need to be generated on the
cells directly.

6.3. Coupling between U and Warp array

The program for the IU has two componcnts: the gencration of
the loop termination signals and the generation of addresses. The
IU program is not specified by the user, the compiler must
generate it from the original user program and the schedule of
cell instructions. The IU and the cells of the Warp array logically
operate in lock step. The IU could get ahcad of the cells (i.e. send
an address required in cycle 3 already in cycle 2), but the compiler
utilizes this freedom only inside a basic block. There are two
reasons for this restraint. It makes debugging the compiler easer,
and the finite length of the input queues in the cells would
impose limits in any case.

6.3.1. Loop signals

A control signal is sent from the IU to the Warp array at the end
of a loop to indicate whether the cell should continue with or
terminate the loop. The flowgraph of the program together with
the scheduling constraints produced by the cell code gencrator
make it fairly straightforward to determine the loop signals to be
sent. The main problem is that the cell can execute a loop with a
loop body of exactly one instruction. The IU on the other hand
necds at least threc cycles Lo update and test the loop counter.
However, unrolling the last k iterations (with k = (3 / (length of
cell loop)) + 1) of the IU loop solves this problem.

6.3.2. Address generation

The input to the IU code generator contains the addresses to be
generated (from the local dataflow module) and the time at which
the cells need the addresses. This timing information is deter-
mined by the Warp array code generator and establishes a strict
deadline which must be met. These address expressions of the
program plus their timing are translated into a labelled flowgraph
in the same format as the original flowgraph. Those dag nodes
that represent an address o be sent to the Warp array obtain an
additional label, their deadline, The dags of the flowgraph
capture the computation that must be performed, but no deci-
sions about the code sequences have been made.

The problem of code gencration for dags with deadlines and

other cxternal constraints has been studicd before, However, the
hardware idiosyncrasics of the implementation of the U and the

36

specific features of the Warp array create additional constraints.
First, the computational power of the 1U is not always sufficient.
The IU has been designed to deliver the average performance
required, but not peak performance. Together with the in-
fiexibility of the timing constraints demanded by the Warp array,
this lack of computation power mcans that there is sometimes no
schedule that satisfies all constraints. I this happens, the 1U
provides an unorthodox escape mechanism.

This mechanism imposes the second constraint that is unique to
the IU. The compiler can pre-store addresses that the IU cannot
producc at run-time in a table. This table has 32K elements, and
these elements can only be accessed in sequential order. This is a
small table for a machine that can demand up to 10 million
addresses per second. For this reason, table memory is con-
sidered a scarce resource. If at all possible, the compiler com-
putes the address at run time. If addresses must be moved to the
table, then complicated address computations with no common
sub-cxpressions are good candidates. Address computations in-
side ncsted loops are bad candidates, since they can overflow the
tablc memory easily.

The third problem is the lack of sufficient registers. Most
compilers handle this problem by spilling some registers into
memory. But there is no memory in the IU, at no time can there
be more than 16 live variables, since there arc only 16 registers.

The last constraint is that all addresses must be generated by
additions or subtractions only. The IU does not contain hardware
for multiplication, and the compiler must apply strength reduc-
tion to remove multiplications. Strength reduction is essential for
multi-dimensional array references. This constraint implies that
there must be at least one register for every address expression.

Given these constraints, the scheduling algorithm is quite com-
plex. It consists of two steps: First, based on a set of strategies,
the compiler transforms the address computation dags for the 1U
so that an acceptable sequence of instructions is generated. A
sequence of instructions is acceptable if it contains no multiplica-
tions, mects the deadline, and uses as few registers as possible to
meet the deadline. Then, a second phase combines register
allocation and scheduling to produce the final IU code sequence.
This second phase determines the exact cycle for cach instruction
and is based on list scheduling. We describe the first phase, U
code generation, in more detail.

1U code generation

The problem faced by the IU code generator is primarily a
problem of operand selection and combination; all arithmetic
must be reduced to addition/subtraction or the address must be
stored in the table. To appreciate the wealth of choices, consider
the generation of addresses for

af1,3+1] bli+§.4]

inside a nested loop (4 and j are indices, a, b are NxN arrays).
The compiler can keep scveral sub-expressions in registers. The
next table gives possible register allocations, their cost {(measured

and

in number of arithmetic operations needed to form the
addresses), and the number of registers that must be updated in
the inner loop (index j):

Allocated to registers Number of Arithmetic Update
registers operations operations
i*N, j*N, j 3 6 2
a[i],b[1]. 3. j*N 4 2 2
a[i].b[i). a[1.4].
b[i+j]1.) 5 1 3

Table 6-5: Operand aliocation to registers

The first option needs the absolute minimums; all allocations need
at least three registers. The options in Table 6-5 are not complete,
there are also other possibilities, The number of options to the IU
code generator increases with the number of address expressions
in a basic block. The algorithm to generate code for the 1U is
given as follows:

1. Find the next basic block (in this loop). Each root in the

dag corresponds to an address and has a label, the deadline.

2. Order ali root nodes according to their label; count the
number of operations needed to compute the address on the
IU.

3. For all labelled dag nodes D, compare the label value with
the number of operations nceded (the time the result is
available at the earliest).

a. If the deadline cannot be met for D, create a new loop
counter and bind a sub-expression to this loop
counter. For example, in Table 6-5, a[i] is a sub-
expression that is bound to a new loop counter and
updated by N for each iteration of the outer loop.

This counter needs a register, if there is no register
left, then mark this address rooted at D to be pre-
stored in the table.

b. Insert code to initialize this register in the loop
header, and insert code to update the counter at the
end of the loop body. If no cycle is available to
initialize the register, mark the address.

¢. Check if the deadline can be met; if not, repeat until
cither the deadline is met or the node is marked for
the table.

4. If no basic blocks are left, we arc done; otherwise, continue
with step 1.

We have only done preliminary performance evaluation of the [U
code generator. The most serious problem is the restricted
number of registers, and we are investigating hardware changes to
solve this problem. The size of the table space has been less
critical, but it s too early to tell if the programs compiled so far
are representative,

37

7. Preliminary results

The compiler is implemented in Common Lisp and runs on a
Perq, a 16-bit minicomputer with microcode support for Lisp. All
modules together account for approximately 25.000 lines of code.
We present some preliminary data in Table 7-1. The length of the
jcode is measured in micro-instructions for the IU or Warp ccll.

1d-Conv Simple 1-dimensional convolution for kernel
of size 9, oné kernel element per cell [S). All
the arithmetic units are fully utilized in the
innermost loop, giving a throughout of one
result per cycle.

Binop Binary operator on an image with 512x512
elements.

ColorSeg Feature separation in a 512x512 image based
on color values.

Mandelbrot Implementation of the Mandelbrot program
for a 32x32 image and 4 iterations on one cell.

Polynominal The sample program from Figure 4-1, with one
coefficient per cell, for an array of ten cells.
The throughput is also one result per cycle.

Name W2 Lines Cell pcode IU gucode Compile time

1d-Conv 59 69 72 4 min 58 sec

Binop 61 118 130 5 min 1 sec

ColorSeg 157 213 242 8 min 35 sec

Mandelbrot 107 94 101 4 min 51 sec

Polynominal 39 50 51 2 min 30 se¢

Table 7-1: Metrics for sample programs

8. Concluding remarks

We designcd and implemented a compiler for a systolic processor
array, a first version of the compiler has been released to users.
We developed two models of computation for systolic arrays, a
programimer’s model and a machine model. The compiler maps
programs wrilten in the programmer’s model to the machine
computation model.

We identified a useful computation model for the machine, the
skewed computation model. This extremely simple model en-
ables the compiler to efficiently gencrate code that satisfies the
stringent synchronous timing constraints across the array. The
computation model has been demonstrated to be very powerful in
capturing a wide range of applications for the Warp machine. We
also showed that the scmantic gap between the programmer’s
model and this machine model can be bridged by restricting the
data flow through the array to unidirectional.

The programiner’s model partitions the task of managing the

immensc paraliclism into two sublasks. The uscr performs the
high-tevel task of problem dccomposition onto the individual

cells in the array. The compiler manages the Jow-level parallelism
and schedules the code so that the timing constraints of the
synchronous hardware are met. This separation of responsibilities
works reasonably well in practice. We do not preclude future
work on a higher level user model, but we conclude that the
current user model and compiler implement a workable system.

Acknowledgments

We appreciate the contributions of all members of the Warp
project at Carnegie Mellon. We thank especially C. Chang,
R. Cohn, K. Hughes, P. Lieu, R. Mosur, and P. Steenkiste, who
all helped with the implementation of this compiler.
H. Enderton, B. Siegell, and J. Webb are the first users of the
compiler and suffered through the first releases.

References

1. Aho, A.V. and Ullman J.D.. Principles of Compiler Design.
Addison-Wesley, Menlo Park, 1977.

2. Allen, F.E. and Cocke, J. A Catalogue of Optimizing Trans-
formations. In Design and Optimization of Compilers, Rustin, R.,
Ed., Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 1-30.

3. Annaratone, M., Amnould, E., Gross, T., Kung, H. T, Lam,
M. S., Menzilcioglu, O., Sarocky, K., and Webb, J. A, Warp
Architecture and Implementation. Proceedings of the 13 Intl,
Symposium on Computer Architecture, ACM, June, 1985.

4. Hoare, C. A, R, "Communicating Sequential Processes”.
Communications of the ACM 21, 8 (August 1978), 666-677.

5. Kung, H.T. Systolic Algorithms for the CMU Warp Processor.
Proceedings of the Seventh International Conference on Pattern
Recognition, International Association for Pattern Recognition,
1934, pp. 570-577.

6. Patel, Janak H. and Davidson, Edward S. Improving the
Throughput of a Pipeline by Insertion of Delays. Proc. 3rd
Annual Symposium on Computer Architecture, Jan., 1976, pp.
159-164.

7. Ray, B. R. and Glaeser, C. D.. Some Scheduling Techniques
and an Easily Schedulable Iorizontal Architccture for High Per-
formance Scientific Computing. Proc. 14th Annual Workshop on
Microprogramming, October, 1981.

8. Steenkiste, P. Global dataflow for W2. Internal report.

38

