
Scannerless NSLR(1) Parsing of Programming Languages

Daniel 3. Salomon 8 Gordon V. Cormack
Department of Computer Science, University of Waterloo

Waterloo, Ontario, Canada N2L 3Gl
djsalomon@waterloo.edu & gvcormack@ waterloo.edu

ABSTRACT

The disadvantages of traditional two-phase
parsing (a scanner phase preprocessing input
for a parser phase) are discussed. We present
metalanguage enhancements for context-free
grammars that allow the syntax of program-
ming languages to be completely described in a
single grammar. The enhancements consist of
two new grammar rules, the exclusion rule, and
the adjacency-restriction rule. We also present
parser construction techniques for building
parsers from these enhanced grammars, that
eliminate the need for a scanner phase.

1. Introduction
Conventional wisdom tells us that to write a compiler we
should split parsing into two phases: lexical analysis by an
finite-state scanner and syntax analysis by a pushdown
parser. Unfortunately both compiler writers and
compiler-compiler writers suffer in this scheme. The
compiler writer suffers in that he must partition the
grammar for the programming language that he is imple-
menting into two interelated grammars, and he must
design an interface between the two phases. In addition,
it is not always clear how much semantic analysis should
be done in the scanner; specifically how much processing
of literal constants should be done. (In attribute gram-
mars this problem corresponds to devising a way to pass
attributes between the two grammars.)

The designer of a compiler-compiler also faces diffi-
cult design decisions. He must choose what
metalanguages are to be used by the scanner generator
and the parser generator, implement two separate auto-
mata generators, design the form of the interface
between them, and prepare user documentation for the
two metalanguages and the interface.

The compiler writer attempting to prepare a com-
plete grammar for a programming language, also suffers
from the constraints of context-free grammars. BNF has

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise. or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-8979’1-306-X/89/0006/0170 $I SO

only one type of rule, the production, and only one
operator, the alternation bar. EBNF has the added
features of square brackets for optional phrases and curly
braces for repeated phrases. Tests on grammars for Pas-
cal, Modula-2, and Ada have shown that due to these
simple enhancements the same grammar can be
expressed in EBNF using from 20% to 43% fewer rules
than BNF. But these improvements are not enough, and
due to the large size and complexity of the grammars that
would be required to fully describe the syntax of existing
programming languages, most programming-language-
definition manuals omit parts of the syntax for brevity.
Typical examples of omissions are:

1) the syntax of comments,
2) a description of what constitutes white space (usually

blanks, tabs, new-line characters, and comments),
3) a description of where white space may appear, and

where it is required,
4) a description of identifiers that excludes the reserved

words, and
5) a description of how reserved words embeded in

identifiers should be treated (henceforth called the
longest-match ambiguity).

For examples of these shortcomings see the definitions of
Pascal,9 Modula-2,l6 and Ada.l These descriptions are
omitted even though they are context-free.

The compiler-compiler writer does benefit from the
limited nature of context-free grammars in that it has
facilitated the theory of automatic parser generation.
But the grammars provided in language-definition manu-
als typically require more sophisticated lookahead
schemes than are afforded by conventional LL(l) and
LR(l) parsers. The result is that the grammars must be
carefully rewritten before they can be processed by the
common compiler-writing tools.

The problem addressed in this paper is twofold.
First, we want a succinct and unambiguous notation to
specify the complete character-level syntax of a program-
ming language, including comments and white space.
Second, we want to be able to construct an efficient
parser from such a notation. Our proposal for a more
powerful metalanguage consists of enhancing context-free
grammars with two new restrictive rules, the exclusion
rule, and the adjacency restriction. The technique pro-
posed is to write compact but ambiguous context-free
grammars, augmented by restrictive rules that disambi-
guate them. To write unambiguous grammars using only
productions would require awkward grammar transfor-
mations, resulting in an exponential size increase
(thousands more rules for Pascal-like languages), and
convoluting of the grammar’s structure so as to

170

compromise its utility as a basis for semantic analysis and
translation.

To provide a parser generator for our scheme, we
propose an enhanced version of the noncanonical SLR(l)
parser generator presented by Tai,14 and describe how it
can be modified to process the proposed new restrictive
rules. We have tested our proposals by implementing the
parser generator that we describe, and by preparing a
complete and unambiguous description of IS0 Pascal that
has been successfully processed by our parser generator.
Our parser generator also provides the basis for a new
Modular Attribute Grammar system.’

2. Previous Work on Unified Metalanguages and
Disambiguation

DeRemer6 proposed that the s’canner and the parser
could be described by the same metalanguage, a
context-free grammar, while keeping a multiphase
parser. He deals with the keyword-identifier ambiguity
problem by introducing another processing phase, called
a screener, between the scanner and the parser for recog-
nizing and reclassifying reserved identifiers as keywords.
He does not, however, deal with other ambiguity prob-
lems in the scanner description, nor does he discuss the
problem of interfacing the three phases.

Krzemien and LukasiewinlO discuss the automatic
extraction of the FSM scanner phase from a unified
grammar. They do not, however, discuss the treatment
of ambiguities in grammars.

Lalonde,tl Baker,4 and Bermudez and Schimpf5
have all proposed powerful parsers for dealing with com-
plex lookahead problems. The goal of parsing complete
character-level grammars with these parsers is seldom
discussed explicitly, but all seem reasonably well suitable
for that purpose. Their parsers are fairly complex, how-
ever: and none of those authors deal with the common
amhguity problems.

The scanner generator LEXr2 is intended to be used
in a two-phase parser and makes no attempt to unify
metalanguages for the two phases. It does, however,
have implied rules for dealing with ambiguities: the long-
est match and the earliest rule take precedence, in that
order. In an LR parser this disambiguation strategy
would have the effect of ignoring all shift-reduce and
reduce-reduce conflicts, thus concealing unintentional
ambiguities. On the other hand, reporting the conflicts
would generate hundreds of messages that must each be
carefully checked for correctness. This ad-hoc approach
to disambiguation lacks any declarative specification of
what language is accepted by the parser-the language
accepted is determined operationally by means of the
particular parsing method.

Aho, Johnson, and Ullman2 discuss parser genera-
tion with disambiguation rules, but their notation is spe-
cialized to the operator-precedence problem and other
specific problems, and is inadequate for disambiguating
complete character-level grammars.

We propose that parsers for practical complete
character-level grammars can be automatically generated
by using an im.yroved version of the NSLR(l) parser
generator of Tar 4 to solve the lookahead problems, and
that two kinds of disambiguation rules be used to resolve
grammar ambiguities.

3. Noncanonical SLR Parsers
Tai presents a fairly simple enhancement to SLR parsers
and parser generators that provides enhanced lookahead
capabilities. Instead of only terminals as lookahead sym-
bols, nonterminals are used as well.

An NSLR parser uses two stacks, a state stack and a
symbol stack (see figure 1).

Finite-State
- Automaton VP Input ,0’

State -
Stack _

t
Parse : j Tables , __ Symbol

L----------A Stack

‘\ ‘\ \ \

Figure 1. NSLR parsing automaton

The four usual parser actions, shift, reduce, error, and
accept are used, but shift may also shift non-terminal
symbols, and reduce is redefined so that the reduced sym-
bol, instead of being shifted immediately, is pushed back
onto the symbol stack to serve as lookahead for the next
parser action. The NSLR(l) parsing algorithm contains
the LR(l) algorithm in that it can execute ordinary
LR(l) parse tables if the goto and shift action tables are
merged. The NSLR(l) parsing algorithm is shown in
figure 2.

state stack c start state
symboi-stack c empty
loop

if symbol-stack =empty then
let s = next input symbol
push s on symbol-stack

end if
let x = top(state-stack)
let y = top(symbol-stack)
case action[x,yl in

shift n
pop symbol-stack
pushn on state-stack

reduce A+ol
pop 1~~1 symbols from state-stack
push A on symbol-stack

accept
exit loop and accept

error
exit loop and reject

end case
end loop

Figure 2. NSLR parsing algorithm.

The parser generator works by initially generating a
standard SLR parser, state by state. When a conflict
arises in a state, a state-expansion algorithm is invoked.
All conflicts involve a lookahead symbol for a reduce
action, so the parser generator resolves conflicts when it
can by eliminating the offending lookahead symbols, and
adding items which derive the offending symbols. This
has the effect of generating shift actions for the conflict-
ing Iookahead symbols so that they can be shifted onto

171

the state stack, reduced based on further lookahead, and
the reduced symbol pushed back onto the symbol stack to
serve as higher-level lookahead. For many grammars,
this reduced symbol provides the extra lookahead infor-
mation needed to resolve the original conflict. This extra
lookahead is achieved while preserving the linear time
and space consumption characteristics of LR parsers.

To make NSLR(l) parsers useful for parsing single-
phase grammars, some corrections and enhancements to
Tai’s algorithm were needed.

1)

2)

3)

The lookahead sets of all states must be computed to
include nonterminaIs as well as terminals. In the
published algorithm, only lookahead sets for
expanded states contain nonterminals, which pro-
duced incorrect parsers for some grammars.
The state expansion algorithm must be improved to
avoid introducing irrelevant e-reducing items. Tai’s
algorithm generates too many such items, introduc-
ing spurious conflicts.
Special treatment is needed for invisible symbols,
symbols that cannot produce terminal symbols, either
directly or indirectly.

Our version of the NSLR(l) construction, shown in fig-
ure 3, requires the prior computation of the following
tables. (We follow the notation of Aho, Sethi, and Ull-
man? and a summary of this notation appears at the end
of this paper.)
VISIBLE - {X(X%xforsomex+e}
FIRST(X) = {YlX & Ym forsomecr}
LAST(X)- {Y)X %aY forsomecr}
FOLLOW(A)- {Xle =-h crY@Zq for some R,

A isin LAST(Y),,~ $ E, andX isin FIRST(Z)}

NEEDED-FOLLOW(A)= {Xl B + aY,9X7 forsome B,
A is in LAST(Y), and /? & E}

UNRESOLVABLE(A)- {XIX iS in VISIBLE,

When the algorithm of Figure 3 marks a conflict as
unresolvable, it may still be possible to resolve the con-
flict for some grammars by adding +redwzing items and
more shift items. We have judged that the extra class of
grammars that would be accepted is not sufficiently
important to justify the added complexity of the construc-
tion algorithm.

4. Restrictive Grammar Rules
Our proposal is that a character-level grammar can be
prepared by writing a concise but ambiguous BNF gram-
mar, which uses restrictive rules to eliminate the ambi-
guity. We have found that two types of restrictive rules
are adequate. The first rule, the exclusion rule, is used
to resolve the reserved-identifier ambiguity and the
second, the adjacency-restriction rule, solves the longest-
match ambiguity as well as other ambiguity problems.

4.1. The Exclusion Rule
The form of an exclusion rule is the same as the form of
an ordinary CFG production except that the operator
“ --, >, is replaced by the operator “ + “. In a BNF
grammar the symbols “ ::z ” can be used as the exclusion
operator. If a grammar must be represented in the
ASCII character sets, then the character sequences
‘LX->“, or ” : : #‘I can be used for the exclusion operator.

Loop until all states completed.
Compute next SLR state q for grammar.
To each complete item Ii-[A +cr*] attach

a lookahead set Li =FOLLOW(A)fl VISIBLE
and a needed-lookahead set
NL,-NEEDED-FOLLOW(A)n VISIBLE.

If state q has a conflict then
For each conflicting lookahead symb X:

resolved := true
For each complete item Zi = [A -+ cr.]

such that X is in Li:
If X is in NLI or

X iS in UNRESOLVABLE(B)
for some B in L1

then resolved := false
else

For each rule B +-X/3 where
B is in Li:
Add item [B --, *X,9] to q

end for
end if

end for
If resolved then remove X from Li
else grammar is not NSLR(1)
end if

end for
end if

end loop.

Figure 3. NSLR(l) Construction algorithm.

An exclusion rule such as

id w begin

can be read as “id does not generate begin”. It indicates
that the language generated by the left part (id) should
not include the language generated by the right part
(begin). It would be used with a general description for
id, to exclude the generation of specific sentential forms
by id. Just as with ordinary BNP rules, multiple exclu-
sion rules with the same left part can be joined by com-
bining the right parts separated by OR bars I’ I “. E.g.

id~begin(endIif(rhenIeZse(*em

More formally, if L(A) is the sublanguage generated
by the nonterminal A, and L(a) is the sublanguage gen-
erated by the string 01, the exclusion rule A ++ 0: restricts
A to represent the sublanguage L(A) n L(a).

Since CFL’s are not closed under complementation,
it is not possible to give a general construction for a CFG
equivalent to the restricted grammar. If we restrict L(a)
to being a regular set, the required algorithms exist in the
literature (see for instance Hopcroft and Ulhnan8).
Note that the language defined by a grammar using an
exclusion rule, is still well defined, even if the language is
not context-free.

4.2. Implementing the Exclusion Rule
Our construction algorithm builds the NSLR parser for
the unrestricted ambiguous grammar, and uses the exclu-
sion rules to eliminate actions that would parse the
excluded sublanguages. The method consists of two
modifications to the parser generator, and two tests for

172

membership in the class of grammars that are handled
correctly.
Definition. The set DESCEND(A) contains the immedi-
ate descendants of A.

DESCEND(A) - {XIA * crXp fOrsome(Y,fi}

Definition. The set DESCEND*(A) contains all symbols
that can appear in any sentential form generated by A.

DESCEND*(A)- {Xl A %aX,9 forsome (Y,P}

DefiniCion. The uniquely-LAST function, U-LAST(A), is
the set of symbols that only appear as the last symbol of
sentential forms generated by A.

U-LAST(A)= {Yl A $,9Y for some ,!?,andevexy
derivation S 3 cu@Yy ; z is isomorphic
to a derivation S & aA $ ayBY7 s z}

For example, in the mini grammar at the end of this
paper, alphu~~um is in UJAST(id). Figure 4 gives an
algorithm for computing U-LAST(A).

Compute the transitive closure ENDSYM+

I

hIe for Y in DESCEND(B)

ALTDESCEND(B,Y)- andB +A.
false. otherwise

Compute the transitive closure ALTDESCEND+

Initially U_LAST(A)- {Xl END-SYM+(A,X)}.

For each rule AdcrY:
For each symbol X in (Y:

U-LAST(A):- U-LAST(A)-DESCEND*(X).
end for

end for

For each B such that ALTDESCEND+(S,B) is
hue, where s is the start symbol:

Remove l? from U-LAST(A).
end for

Figure 4. An algorithm for computing U-LAST(A).

To implement the processing of exclusion rules, the
following modifications are made, and tests added, to the
parser generator:
Modification 1: For the rule E JC, F, reduce-reduce con-
flicts between two items li = [C + yX*] and
!j-[D+6Y~],whereCisin{E}uU-L&T(E)orXis
m U-LAST(E), and D is in {F} u U-LAST(F) or Y is in
U-LAST(F), are resolved in favor of the second item, the
reduction to D. The conflict resolution is made before
each SLR state is tested for consistency. Specifically, for
each X in Lj delete X from Li, and for each Y in NLj
delete Y from NLi. The effect is to prefer chained reduc-
tions that will yield the symbol on the right part of the
exclusion rule rather than the left part.

Modification 2: For each exclusion rule E ++ F, add the
specially marked rule E -c F. These rules will be han-
dled like any other by the parser generator except that
complete items [E + F l] have empty lookahead sets.
Without these additions, the parser may not recognize
that a string in L(F) has occurred, where only a string in
L(E) is expected according to the grammar.
Test 1: This test enforces the restriction on the grammar
that the right part of the exclusion rule must be a single
nonterminal.
Test 2: The condition tested for in modification 1 ensures
that the left context on the state stack represents the end
of sentential forms generatable by E and F, but it does
not verify that recognition of the two sentential forms
starts in the same state. If recognition does not start
simultaneously, then the modification may exclude valid
parses, and the grammar should be rejected. The sim-
plest way to test for this condition is to verify that for any
two parses of E and F, either the parses are distinct, or
that they start simultaneously. To ensure this property
we verify that
(a) there are no states in the parser that contain an item

of the form [A 4 (~0 E/3] and (i) an item of the form
[B-+X7*Yb] where B is in DESCEND*(F), or
(ii) an item of the form [B 4 7.] where B is in
DESCEND*(F) and B isnotin {Fj u U-LAST(F).

(b) Same as (a) above but exchange E and F _
These tests should be applied after state processing is
complete, including state expatision, if any.

The above method accepts only a restricted class of
grammars, which we call SE (simple exclusion) gram-
mars, and which we have found adequate to describe
programming languages. The adjective simple is used to
describe this class of grammars because membership can
be tested by examining each state of the generated parser
individually without regard to the transitions between
states. This property is shared by SLR grammars.

4.3. The Adjacency-Restriction Rule
The adjacency-restriction rule takes the form of a list of
predecessor symbols, followed by the delimiter ” j ‘I,
followed by a list of successor symbols. If the grammar
is to be represented using the ASCII character set, the
sequence of characters I’-/-” can be used to represent
the adjacency-restriction delimiter.

A sample usage of the adjacency restriction rule
would be:

id begin do else . . . f id begin do else . . .

This example indicates that a string generated by one of
the symbols in the predecessor list may not appear
immediately adjacent to a string generated by one of the
symbols in the successor list in any sentence in the
language. The sample rule above indicates that an iden-
tifier or keyword may not abut another identifier or key-
word. (If such symbols did abut each other, they should
of course be parsed as a single identifier.)

More formally stated, the adjacency restriction
W +X disallows all derivations of the form
S % ctWX7 % z. Furthermore, the restriction excludes
all derivations that would produce the same parse tree as
a derivation of the above form.

Figure 5 gives a grammar transformation for con-
structing a pure context-free grammar from a restricted
context-free grammar containing an adjacency reshic-
tion. The existence of this transformation demonstrates

173

that context-free grammars are closed under adjacency
restrictions. Grammars G1 and G2 show a sample appli-
cation of the transformation.

l Given a restricted CFG G’ constructed from a CFG G
by adding the restrictive rule W f X, construct a CFG
G” such that L(G”) - L(G’).

l Initially G” - G .

0 Rewrite G” to eliminate all e-productions. (See Hop-
croft and Ullman! in section 4.4, page 90.

0 For each symbol C in LAST-~(W):

l For each occurrence of C in a production Pi of G”:
l Replace Pi by two productions, one using Cw in

place of C, and the other using C,-.

0 For each C in FIRST-~(X) u FIRST-'(X,)
U FIRST-l(Xg):

l For each occurrence of C in a production Pi of G”:

0 Replace Pi by two productions, one using Cx and
one using Cf.

l For each new symbol Si whose basic part is S (the ori-
ginal start symbol), add a new rule S + S,” to G”. S is
still the start symbol for grammar G”.

Delete all productions using symbols whose basic part
is W and whose subscript part is W. Similarly, delete
all productions using symbols whose basic part is X and
whose superscript part is %.

Delete all productions of the form Cw + (Y Z,- , -
C~+ff Zw , Cx-+Zxa, orCx+ZxO.

Delete all productions of the form Cw --, cry for Y not
subscripted by W unless C = W. Similarly delete all
productions Cx -+ Ycu for Y not superscripted by X
unless C = X.

Delete all productions C + cyYwZx/3. This is the main
step of this algorithm; applying the principle of
adjacency-restriction rule.

Remove all useless symbols and productions.

Figure 5. A Grammar Transformation for Eliminating
Adjacency-Restriction Rules

s + oper 1 ID 1 S white oper 1 S white ID
ID -+ id
id + letter 1 id letter
letter +a lb Ic I... lz
white + e 1 blank
oper -+* I/ I+ I-

ID + ID

Grammar G1. A sample restricted CFG.

s ---, s,b” I sg I s;E I qg
sJD ID -+ ID;: 1 S,!: white ID,!:

I S,$ white ID,!: I SE ID,!:
$4

ID -+ S.!i white oper I S;$ white oper
1 S;i uper I S;$ oper

S- ;z -+ S;z white 10,: I SE white ID,b”
1 @ID,‘;

$3
-

ID + oper I Sii white oper
1 SE white oper I Siz uper
1 Sgoper

ID;; - id

id -+ letter I id letter
letter +a lb Ic I... lz
white - blank
oper --c* I! I+ I-

Grammar G2. The result of applying the adjacency-
restriction-elimination algorithm to grammar G1.

4.4. Implementing Adjacency Restrictions
The adjacency-restriction rule could be implemented in a
parser generator by first applying the transformation of
Figure 5 to the input grammar, but this would usually
lead to an excessively large parser. Instead, we imple-
ment it by eliminating parser actions from the parser
generated by the unrestricted grammar. For an NSLR
parser generator we make two modifications to the the
parser generation algorithm, and then apply three tests
for cases where the method fails.
Modification 1: Eliminate reductions that clearly violate
the adjacency restrictions. In an SLR or NSLR parser
generator, the lookahead set for reduce actions of the
form A - a is the set FOLLOW(A). In the SAR genera-
tor, the lookahead set is replaced by AR-FOLLOW(A)
which is defined as:
AR-FOLLOW(W) = {X 1 B =s croYOj?ZO~o for some B ,

,4 3 c, and there exist derivations
qJYIJ * CylYl ==a - - * a,Y, where W=Y,
ZOrO + Zlrl + 1 * * Z,7, whereX=Z,,,
such that no rule Yi f Z, exists for any i, j}

The function NEEDED-FOLLOW
\
A) is replaced by

AR-NEEDED-FOLLOW(A)- {X
B =+ cr0Y0gX7 for some B and B 2 6, and
there exists a derivation
aoYo =a alY1 =+ - - - anYn where A-Y,
such that no rule Yi # X exists for any i }

The above definition of AR-FOLLOW includes only
symbols that arise from at least one derivation that does
not violate the adjacency restrictions. Note that this
modification precludes some parser implementations that
add spurious elements to lookahead sets; for example,
the use of default reduce actions in YACC. In fact
default reductions may be used except for actions of the
form reduce A + Q, where some exclusion rule A f X
exists. Figure 6 gives an algorithm for computing
AR-FOLLOW and AR-NEEDED-FOLLOW.

174

For each rule B + 8:
For each i in the range (PI > j 2 1 in descending
order, (notice that when ,9 = E this loop is skipped):

For each k in the range j < k <]/?I in ascending
order, stopping after processif;g the first non-
nullable j3[k] :

ProcessAdjacen@~], @[k], 0, 0).

PROCEDURE ProcessAdjacent (W, X , A W, CAR)
Where:

W, X = A pair of adjacent symbols.
AW = Set of ancestors of W in current expansion.
CAR - Collected adjacency restrictions,

={ZI3arestrictionY jZandYisinAW}.
If W is not in AW then:

CAR’ -CARu{YI3aruIeW+Y}.
If X is not in CAR’ then:

If X is in VISIBLE then:
Insert X into AR-NEEDED-FoLLo w (W).

ProcessSuccessor (W , X , 0, CAR’).
For each Y such that there is a rule W - CVY:

ProcessAdjacent(Y, X, AW u {W}, CAR’).

PROCEDURE ProcessSuccessor (W , X , AX, CAR)
Where:

W, X, and CAR have the same meaning as
in ProcessAdjacent.

AX = Set of ancestors of X in current expansion.

If X is not in AX then:
If X is in VISIBLE then:

Insert X into AR-FOLLOW(W).
For each Y such that X + Y LY is in P :

If Y is not in CAR then:
Process+Swccessor(W, Y, AX u {X}, CAR).

Figure 6. Computing the adjacency-restricted follow
SetSARmFOLLOW and ARmNEEDED-FOLLOW.

Modification 2: It is a property of LR parsers that any
given state is reachable only by a shift action on a partic-
ular symbol. That is, for some unique Y, each item in S
is either of the form [C -c (YY. a] or [B + l 61. The
SAR construction eliminates items of the form
[B + l Xb] unless both B and X are in AR-FOLLOW(Y),
and items of the form [B - E*] unless unless B is in
AR-FOLLOW(Y).

Test 1: For each adjacency restriction W f X, W must
be a nonterminal, and X may not be nullable. The prin-
cipal mode of action of the above modifications is to
block reductions to symbols on the left side of adjacency
restrictions. If such symbols are terminals, those reduc-
tions cannot be blocked. If symbols on the right side of
adjacency restrictions are nullable, then the method used
to block the reductions fails, since the lookahead symbol
can be part of context beyond the nullable symbol.
Test 2: For each adjacency restriction A f X, and for
each complete item [A - CY*] with lookahead set L,
Ensure that L n FIRST(X) = 0. This ensures that A
cannot be reduced with lookahead symbols that could
later be reduced to X.
Test 3: For each adjacency restriction A f X, and each
state q containing a complete item [B - ,8* 1, with a loo-
kahead set L , and with B in LAST(A), ensure that q does
not also contain an item [C + 0 71 added during non-
canonical state expansion, such that C is in L and X is in

FIRST(~), or y ; 6. Parsers that violate this constraint
may allow right context beginning with X (which does not
appear in L) to be reduced to an ancestor symbol that
does appear in L before the reduction of left context to
C. Only noncanonical expansion items can lead to the
reduction of right context before left context.

Because of the above tests, our method accepts a
restricted class of grammars, which we call SAR (simple
adjacency-restriction) grammars; we have found SAR
grammars adequate for the programming-language
examples we have tried. Again the adjective simple is
used to describe this class of grammars because member-
ship in the class can be tested by examining each state of
the generated parser individually without regard to the
transitions between the states.

5. The Efficiency of Single-Phase Parsers
A common objection to eliminating finite-state scanners,
and using a pushdown automaton to parse raw input is
that parsing would be slower. Actually, theory tells us
that a finite-state machine, a deterministic pushdown
automaton and an NSLR parser all run in linear time
proportional to the length of the input, hence their per-
formance can only vary by a constant factor. The size of
that constant factor can vary greatly with implementation
details, and can be accurately determined only with
actual tests on production-quality systems. We have per-
formed some tests that attempt to be as fair as possible.

Our first test consisted of writing three two-phase
Pascal recognizers usmg the UNIX utilities LEX and
YACC. These two utilities are both mature systems
widely used for educational purposes and often used in
production compilers. The first recognizer used the stan-
dard approach of a finite-state scanner generated by
LEX, with a DPDA parser generated by YACC.
Although LEX is a mature program, there are com-
plaints that it produces slow scanners, so our second
recognizer used FLEX,13 a more recent version of LEX
designed to generate faster scanners. Our third recog-
nizer described the tokens in terms of a BNF grammar,
and used YACC to generate the scanner as well as the
parser. Ambiguities in the scanner grammar were han-
dled by ad-hoc methods. Table 1 shows the results of
these tests. The surprising result is that the running-time
constant for a DPDA-DPDA recognizer can be as little
as one seventh of that for an FSM-DPDA recognizer,
and two thirds of the size.

Our second test was designed to compare two-phase
recognizers with one-phase recognizers. The two-phase
recognizer used two restricted CFG’s to describe Pascal,
and the one-phase recognizer used a single restricted
CFG. All parse tables were generated using our
NSLR(l) parser generator. Table 2 summarizes results
on the relative sizes of the parsers. The results of Table
2 are not as favorable as those of Table 1, but they still
show single-phase parsing to be a viable technique.
Note, however, that we did not perform any table
compression on the resulting parsers, and we believe that
a single-phase parser will benefit more from table
compression than will a two-phase parser.

At this writing, a comparison of running times of the
two parsers is not available principally due to difficulties
in designing the interface between the two phases of the
two-phase recognizer. When timing test are performed,
the results will not be directly comparable with the LEX
and YACC generated parsers, since the programmers,
source languages, and target languages are all different.
It is hoped however that the high degree of similarity

175

Object Parse
Rules States Size Time*

* 1 lr an 8,558 line Pascal program on a MicroVAX II.

Table 1. Comparison of performance of FSM-DPDA
Versus DPDA-DPDA Syntax Analysis.

Two-Phase Recogl
Parser Scanner*

Symbols 207
Rules 381

States 451
Time to
generate
tables 30.3
(seconds)

Total
non- error
parser 40,319
actions

Total
parser 93,357
actions

Noncanonical PDA.

nlzer
Total

210

358 t

376

8.3 38.6

2,786 43,105

60,502 153,859 348,076

L

One-
Phase*

563
1006

161.1

59,496

Table 2. Comparison of one-phase versus two-phase
Pascal recognizers.

between a two-phase DPDA-DPDA recognizer, and a
noncanonical DPDA-DPDA recognizer will allow run-
ning time of the single-phase parser to be normalized and
compared with the FSM-DPDA recognizer.

Why should one expect that a two-stack pushdown
automaton could perform as well as a finite state
machine? First of all, note that push and pop operations
are not costly, since they can consist of simply moving a
data value, and incrementing or decrementing a pointer.
In contrast a table access on a two-dimensional table may
involve a multiplication to compute addresses from sub-
scripts, or a search operation if the table is large and
stored using sparse-matrix techniques. While manipulat-
ing the stack consumes some time, considerable time is
saved by eliminating the procedural interface between the
scanner and the parser; and by eliminating specialized

buffering, lookahead, and re-scanning for semantics that
are associated with a finite-state scanner like LEX. Also
note that extremely fast LR parsing techniques are being
developed, which we feel could be applied to an NSLR
parser-t5

6. Results
The above proposals have been tested by the implemen-
tation of an SE-SAR-NSLR(1) parser generator and vali-
dated on a complete character-level grammar for IS0
Pascal. Our grammar uses 567 rules (including 3 com-
pound adjacency restriction rules and 35 exclusion rules)
whereas an equivalent grammar written for LEX and
YACC uses 309 rules. It should be noted that much of
the difference in the number of rules required is due to
compact specialized rule forms available in LEX (for
example, we require one production for each printable
ASCII character). Furthermore, in our grammar all the
ambiguities are explicitly corrected, whereas in the
LEX-YACC grammar many are handled by default
actions.

The parser generated by our method had 1006
states, whereas the one generated by LEX and YACC
has 914. Our parser generator has very few size optimi-
zations; in particular, it has no combined shift/reduce
actions and no table compression. Parser optimizations
of the sophistication used by LEX and YACC might
make our parser smaller than the one generated by LEX
and YACC. This surprising prediction can be justified
by noting that when given a complete grammar for a
language a parser generator can make use of the extra
information to produce a more compact parser. We
predict that more work on the form of restrictive gram-
mar rules and on parser generation techniques for these
rules can further reduce the size of the grammars
required and the parsers produced.

Our techniques have been used as the parsing engine
for an integrated modular attribute grammar system.7
We are able to parse programming language grammars
whose structure reflects the desired attribute computa-
tions in a natural way. The mapping from concrete syn-
tax to abstract attribute computations involves two
straightforward and efficient operations: e&ion - ignor-
ing irrelevant subtrees (such as those for white space) and
grouping - applying common attribute computations to
parse tree nodes generated from different nonterminals.
It would also be possible to attach semantic actions to
production rules, as in YACC, but the noncanonical
parsing order would make the ordering of side-effects
unpredictable. (In fact, the ordering of side-effects
between the scanner and parser is already unpredictable
in systems such as LEX/YACC, and noncanonical pars-
ing does not significantly compound the problem.)

7. Sample Grammar
We present below a sample character-level SE-SAR-
NSLR(1) grammar for a Pascal-like mini language. This
grammar has some redundancy, but is still readable and
usable. This grammar is not an optimal character-level
grammar; many improvements in notation and parser
generation strategy are possible that will permit more
concise grammars. But even in its present form it is not
much longer than the combined length of a scanner
grammar and a parser grammar would be for a two-
phase translator.

l On modem computers, the procedural interface usually involves a
great deal of pushing and poping of context information.

176

The restrictive disambiguation rules appear at the
end of the grammar. They are few in number, and the
purpose of each is quite clear. The exclusion rule lists
the reserved keywords. The first adjacency restriction
prevents the parser from breaking up a long identifier
into identifiers and keywords. The last rule is used to
solve the dangling-else ambiguity.

! A character-level grammar for a
! Pascal-like mini language.

p*og + PROGRAM ID SEMI decls cmpdstmt DOT
id-list -+ ID 1 id-list COMMA ID
decls + decls VAR id-list COLON type SEMI 1 c
type -INTEGER
cmpdstmt - BEGIN optstmts END
optstmts -+ stmt-list 1 f
stmt-list + stmt 1 stmt-list SEMI stmt
stmt + variable ASSIGNOP expr 1 cmpdstmt

1 ID 1 WHILE expr DO stmt
1 if-then 1 if-then-else

ifdhen 4 IF expr THEN stmt
if-then-else + IF expr THEN stmt ELSE stmt
variable - ID
expr-list + expr 1 expr-list COMMA expr
expr I+ term 1 sign term 1 expr ADDOP term
term + factor 1 term MULOP factpr
factor -+ ID 1 NUM 1 LPAR expr RPAR 1 NOT factor

MINUS - - white
PLUS + + white
MULT + * white
DIV + I white
COLON -+ : white
SEMI + ; white
COMMA -+ , white
LPAR + (white
RPAR -) white
DOT + . white
ASSIGNOP -+ := white
sign + PLUS 1 MINUS
ADDOP + sign
MULOP + MULT 1 DXV

white + real-white 1 6
real-white + white-char 1 real-white white-char
white-char+ blank I tab 1 newline I comment
comment + cmt-body }
cmt-body + { 1 cmt-body any-cmt-char
any-cmt-char -+ anyJSCII_char-except)

BEGIN + begin white
begin +begin
DO - do white
do -+do
ELSE + else white
else -belse
END + end white
end +end
IF --+ if white
if -+if
INTEGER + integer white
integer *integer
NOT -+ not white

not -not
PROGRAM + white program white
program *program
THEN --c then white
then -+then
VAR + var white
var -+var
WHILE + w h i 1 e white
while -while

ID + id white
id + idfiag
idfi-ag - letter I idfrag alpha-num
letter -calbl...Iz
digit +o I1 I . . . 19
alpha-num -+ letter I digit
NUM - digit-string white
digitstring -+ digit I digit-string digit

! Disambiguation section.

id -w-* begin 1 do I else I end I if I integer I not.
I program I then I var I while

id begin do else end if integer not program then var while
f id begin do else end if integer not

program then var while NUM

if-then + ELSE

8. Enhancements
Our approach is based on SLR parsing techniques, and
therefore rejects some grammars that might in fact be
parsable using exactly the same state set. We have
implemented a hybrid NLALR/SLR(l) parser generator
which applies to a larger class of grammars than
NSLR(l). The original construction uses the LALR(l)
lookahead sets, and noncanonical state expansion is per-
formed only for LALR(l) parsing conflicts. When new
items are introduced in noncanonical expansion, they are
given SLR(l) lookahead sets. In order to attach
LALR(l) lookahead sets to these new items, it would be
necessary to compute LALR(K) Lookahead sets, but the
resulting parser would still use only one lookahead sym-
bol at execution time. We can show that NLR(l) parsers
exist as well as hybrid NLIUSLR(1) parsers. We believe
that enhancements, similar to those of LALR and LR
parsers over SLR parsers., can be made to the processing
of exclusion rules and adjacency restrictions by analyzing
the paths between parser states, rather than just the items
within each parser state.

9. Summary of Notation
A context-free grammar (CFG) G is a quadruple
G = (V,, Vr, P, S), where V, is the set of nonterminals,
V, is the set of terminals, P is the set of productions, and
S in V, is the start symbol. The set of all grammar sym-
bols is represented by V = V, u Vr. We assume that the
grammar has no duplicate or useless productions, and no
useless symbols.

Lowercase letters early in the alphabet, such as a, b,
and c, represent a single terminal symbol. Uppercase
letters early in the alphabet, such as A, B , and C, and
also the letter S, represent nonterminals. Uppercase
letters late in the alphabet, such as X, Y, and Z,
represent terminals or nonterminals. The Greek letter 6

177

represents the empty string, and the other lowercase
Greek letters, such as Q, ,9, and 7, represent strings of
terminals or nonterminals, or E. Lowercase letters late in
the alphabet, such as x, y, and z, represent strings of ter-
minals or e. The length of a string ,6 is denoted by 1s 1,
and therefore (61 = 0. Stings of symbols can be indexed,
so that S[i] represents the iti symbol of ,9. The symbol
0 represents the empty set.

The productions in P are numbered 1, 2, . . ., t where
t = 1P 1. Productions take the form A -+ O, where A in
Vu is called the left part, and (Y in V* is called the right
part. The i” production in P is denoted by Pi, and tzi
denotes the length of the right part of Pi.

If A + o! is a production and PA7 is a string in V+,
then we write ,6A7 =+ ,9ar and say that ,bA7 derives bar.
The transitive closure of =+ is denoted by $,*and the
reflexive transitive closure of + is denoted by =+ .

A sentential form of G is a string cr such that S s (Y
and cy is in V*. A sentence x of G is a sentential form of
G consisting solely of terminals, i.e., x is in VG. The
language L(G) generated by G is the set of sentences
generated by G, i.e., L(G) = {xl S & x}. We can also
refer to the language generated by some symbol X of
grammar G as Lo(X) = {x 1 X ; x}.

A symbol X in V is said to be useless if there is no
derivation of the form S % Uxv % uxv. A nonterminal A
is called nullable if there exists a derivation A & 6.

A restricted context-free grammar, an RCFG, is a
quadruple G = (V, P, R , S) where:

v = v, u v,
= The set of symbols in the grammar.

vN = The set of nonterminal symbols.
vT = The set of terminal symbols.
P = The set of productions.
R = RE u RAR = The set of restrictive rules.
RE = The set of exclusion rules.
R AR = The set of adjacency-restriction rules.
S = A member of V,, is the start symbol.

Every restricted context-free
zc= (V, P , R , S), has a corresponding unrest&%??%

= (V,, VT, P, S), whtch IS the same a G but without
the restrictive rules. The definitions of the restrictive
rules imply that L(G) C L(G’).

10. Acknowledgements
We would like to thank the Natural Sciences and
Engineering Research Council of Canada, and the Infor-
mation Technology Research Centre of Ontario for their
financial support of this work. We would also like to
acknowledge Norbert Kusters for his contribution in pro-
gramming parts of this project.

11. References

1. United States Department of Defense. Reference
Manual for the Ada Programming Language. (1980).

2. Aho, A. V., Johnson, S. C., and Ullman, J. D.,
“Deterministic parsing of ambiguous grammars.”
Communications of the ACM, Vol. 18, NO. 8, pages
441-452 (Aug. 1975).

3. Aho, Alfred V., Sethi, Ravi., and Ullman, Jeffrey
D., Compilers: Principles, Techniques, and Tools.
Addison Wesley, Reading, Mass. (1986).

4. Baker, Theodore P., “Extending lookahead for LR
parsers.” Journal of Computer and System Science,
Vol. 22, No. 2, pages 243-259 (1982).

5. Bermudez, Manuel E. and Schimpf, Karl M., “A
practical arbitrary look-ahead LR parsing tech-
nique.” ACM SIGPLAN Notices, Vol. 21, No. 7,
pages 136-144 (July 1986).

6. DeRemer, Franklin L., “Lexical analysis.” in Com-
piler Construction: An Advanced Course., ed. F. L.
Bauer and J. Eickel, pp. 105-120, Springer-Verlag,
Berlin (1976).

7. Dueck, Gerald D. P. and Cormack, Gordon V.,
“Modular Attribute Grammars.” Technical Report
CS-88-19, University of Waterloo, Waterloo,
Canada (May 1988).

8. Hopcroft, John E. and Ullman, Jeffrey D., Zntroduc-
tion to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Mass. (1979).

9. Jensen, Kathleen and Wirth, Niklaus, Pascal User
Manual and Report. Third Edition. p. 266,
Springer-Verlag, New York (1985). Revised by:
Andrew B. Mickel and James F. Miner

10. Krzemien, Roman. and Lukasiewicz, Andrzej.,
“Automatic generation of lexical analyzers in a
compiler-compiler.” Information Processing Letters,
Vol. 4, No. 6, pages 165-168 (Mar. 1976).

11. LaLonde, Wilf R., “Regular right part grammars
and their parsers.” CACM, Vol. 20, No. 10, pages
731-741 (Oct. 1977).

12. Lesk, M. E., “LEX-A Lexical Analyzer Genera-
tor.” Technical Report 39, AT&T Bell Laboratories,
Murray Hill, N.J. (1975).

13. Paxson, Vern. The FLEX Scanner Generator (Pro-
gram). Real Time Systems, Bldg 46A, Lawrence
Berkeley Laboratory, 1 Cyclotron Rd., Berkeley,
CA 94720.

14. Tai, Kuo-Chung., “Noncanonical SLR(l) Gram-
mars.” ACM TOPLAS, Vol. 1, No. 2, pages 295-
320 (Oct. 1979).

15. Whitney, M. and Horspool, R.N., “Extremely rapid
LR parsing.” in Proceedings of Workshop on
Compiler-Compiler and High-Speed Compilation.,
Berlin, G.D.R. (Oct. 1988).

16. Wirth, Niklaus, Programming in Mod&a-2. Third
Corrected Edition. p. 202, Springer-Verlag, New
York (1985).

178

