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ABSTRACT 

The disadvantages of traditional two-phase 
parsing (a scanner phase preprocessing input 
for a parser phase) are discussed. We present 
metalanguage enhancements for context-free 
grammars that allow the syntax of program- 
ming languages to be completely described in a 
single grammar. The enhancements consist of 
two new grammar rules, the exclusion rule, and 
the adjacency-restriction rule. We also present 
parser construction techniques for building 
parsers from these enhanced grammars, that 
eliminate the need for a scanner phase. 

1. Introduction 
Conventional wisdom tells us that to write a compiler we 
should split parsing into two phases: lexical analysis by an 
finite-state scanner and syntax analysis by a pushdown 
parser. Unfortunately both compiler writers and 
compiler-compiler writers suffer in this scheme. The 
compiler writer suffers in that he must partition the 
grammar for the programming language that he is imple- 
menting into two interelated grammars, and he must 
design an interface between the two phases. In addition, 
it is not always clear how much semantic analysis should 
be done in the scanner; specifically how much processing 
of literal constants should be done. (In attribute gram- 
mars this problem corresponds to devising a way to pass 
attributes between the two grammars.) 

The designer of a compiler-compiler also faces diffi- 
cult design decisions. He must choose what 
metalanguages are to be used by the scanner generator 
and the parser generator, implement two separate auto- 
mata generators, design the form of the interface 
between them, and prepare user documentation for the 
two metalanguages and the interface. 

The compiler writer attempting to prepare a com- 
plete grammar for a programming language, also suffers 
from the constraints of context-free grammars. BNF has 
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only one type of rule, the production, and only one 
operator, the alternation bar. EBNF has the added 
features of square brackets for optional phrases and curly 
braces for repeated phrases. Tests on grammars for Pas- 
cal, Modula-2, and Ada have shown that due to these 
simple enhancements the same grammar can be 
expressed in EBNF using from 20% to 43% fewer rules 
than BNF. But these improvements are not enough, and 
due to the large size and complexity of the grammars that 
would be required to fully describe the syntax of existing 
programming languages, most programming-language- 
definition manuals omit parts of the syntax for brevity. 
Typical examples of omissions are: 

1) the syntax of comments, 
2) a description of what constitutes white space (usually 

blanks, tabs, new-line characters, and comments), 
3) a description of where white space may appear, and 

where it is required, 
4) a description of identifiers that excludes the reserved 

words, and 
5) a description of how reserved words embeded in 

identifiers should be treated (henceforth called the 
longest-match ambiguity). 

For examples of these shortcomings see the definitions of 
Pascal,9 Modula-2,l6 and Ada.l These descriptions are 
omitted even though they are context-free. 

The compiler-compiler writer does benefit from the 
limited nature of context-free grammars in that it has 
facilitated the theory of automatic parser generation. 
But the grammars provided in language-definition manu- 
als typically require more sophisticated lookahead 
schemes than are afforded by conventional LL(l) and 
LR(l) parsers. The result is that the grammars must be 
carefully rewritten before they can be processed by the 
common compiler-writing tools. 

The problem addressed in this paper is twofold. 
First, we want a succinct and unambiguous notation to 
specify the complete character-level syntax of a program- 
ming language, including comments and white space. 
Second, we want to be able to construct an efficient 
parser from such a notation. Our proposal for a more 
powerful metalanguage consists of enhancing context-free 
grammars with two new restrictive rules, the exclusion 
rule, and the adjacency restriction. The technique pro- 
posed is to write compact but ambiguous context-free 
grammars, augmented by restrictive rules that disambi- 
guate them. To write unambiguous grammars using only 
productions would require awkward grammar transfor- 
mations, resulting in an exponential size increase 
(thousands more rules for Pascal-like languages), and 
convoluting of the grammar’s structure so as to 
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compromise its utility as a basis for semantic analysis and 
translation. 

To provide a parser generator for our scheme, we 
propose an enhanced version of the noncanonical SLR(l) 
parser generator presented by Tai,14 and describe how it 
can be modified to process the proposed new restrictive 
rules. We have tested our proposals by implementing the 
parser generator that we describe, and by preparing a 
complete and unambiguous description of IS0 Pascal that 
has been successfully processed by our parser generator. 
Our parser generator also provides the basis for a new 
Modular Attribute Grammar system.’ 

2. Previous Work on Unified Metalanguages and 
Disambiguation 

DeRemer6 proposed that the s’canner and the parser 
could be described by the same metalanguage, a 
context-free grammar, while keeping a multiphase 
parser. He deals with the keyword-identifier ambiguity 
problem by introducing another processing phase, called 
a screener, between the scanner and the parser for recog- 
nizing and reclassifying reserved identifiers as keywords. 
He does not, however, deal with other ambiguity prob- 
lems in the scanner description, nor does he discuss the 
problem of interfacing the three phases. 

Krzemien and LukasiewinlO discuss the automatic 
extraction of the FSM scanner phase from a unified 
grammar. They do not, however, discuss the treatment 
of ambiguities in grammars. 

Lalonde,tl Baker,4 and Bermudez and Schimpf5 
have all proposed powerful parsers for dealing with com- 
plex lookahead problems. The goal of parsing complete 
character-level grammars with these parsers is seldom 
discussed explicitly, but all seem reasonably well suitable 
for that purpose. Their parsers are fairly complex, how- 
ever: and none of those authors deal with the common 
amhguity problems. 

The scanner generator LEXr2 is intended to be used 
in a two-phase parser and makes no attempt to unify 
metalanguages for the two phases. It does, however, 
have implied rules for dealing with ambiguities: the long- 
est match and the earliest rule take precedence, in that 
order. In an LR parser this disambiguation strategy 
would have the effect of ignoring all shift-reduce and 
reduce-reduce conflicts, thus concealing unintentional 
ambiguities. On the other hand, reporting the conflicts 
would generate hundreds of messages that must each be 
carefully checked for correctness. This ad-hoc approach 
to disambiguation lacks any declarative specification of 
what language is accepted by the parser-the language 
accepted is determined operationally by means of the 
particular parsing method. 

Aho, Johnson, and Ullman2 discuss parser genera- 
tion with disambiguation rules, but their notation is spe- 
cialized to the operator-precedence problem and other 
specific problems, and is inadequate for disambiguating 
complete character-level grammars. 

We propose that parsers for practical complete 
character-level grammars can be automatically generated 
by using an im.yroved version of the NSLR(l) parser 
generator of Tar 4 to solve the lookahead problems, and 
that two kinds of disambiguation rules be used to resolve 
grammar ambiguities. 

3. Noncanonical SLR Parsers 
Tai presents a fairly simple enhancement to SLR parsers 
and parser generators that provides enhanced lookahead 
capabilities. Instead of only terminals as lookahead sym- 
bols, nonterminals are used as well. 

An NSLR parser uses two stacks, a state stack and a 
symbol stack (see figure 1). 

Finite-State 
- Automaton VP Input ,0’ 

State - 
Stack _ 

t 
Parse : j Tables , __ Symbol 

L----------A Stack 

‘\ ‘\ \ \ 

Figure 1. NSLR parsing automaton 

The four usual parser actions, shift, reduce, error, and 
accept are used, but shift may also shift non-terminal 
symbols, and reduce is redefined so that the reduced sym- 
bol, instead of being shifted immediately, is pushed back 
onto the symbol stack to serve as lookahead for the next 
parser action. The NSLR(l) parsing algorithm contains 
the LR(l) algorithm in that it can execute ordinary 
LR(l) parse tables if the goto and shift action tables are 
merged. The NSLR(l) parsing algorithm is shown in 
figure 2. 

state stack c start state 
symboi-stack c empty 
loop 

if symbol-stack =empty then 
let s = next input symbol 
push s on symbol-stack 

end if 
let x = top(state-stack) 
let y = top(symbol-stack) 
case action[x,yl in 

shift n 
pop symbol-stack 
pushn on state-stack 

reduce A+ol 
pop 1~~1 symbols from state-stack 
push A on symbol-stack 

accept 
exit loop and accept 

error 
exit loop and reject 

end case 
end loop 

Figure 2. NSLR parsing algorithm. 

The parser generator works by initially generating a 
standard SLR parser, state by state. When a conflict 
arises in a state, a state-expansion algorithm is invoked. 
All conflicts involve a lookahead symbol for a reduce 
action, so the parser generator resolves conflicts when it 
can by eliminating the offending lookahead symbols, and 
adding items which derive the offending symbols. This 
has the effect of generating shift actions for the conflict- 
ing Iookahead symbols so that they can be shifted onto 
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the state stack, reduced based on further lookahead, and 
the reduced symbol pushed back onto the symbol stack to 
serve as higher-level lookahead. For many grammars, 
this reduced symbol provides the extra lookahead infor- 
mation needed to resolve the original conflict. This extra 
lookahead is achieved while preserving the linear time 
and space consumption characteristics of LR parsers. 

To make NSLR(l) parsers useful for parsing single- 
phase grammars, some corrections and enhancements to 
Tai’s algorithm were needed. 

1) 

2) 

3) 

The lookahead sets of all states must be computed to 
include nonterminaIs as well as terminals. In the 
published algorithm, only lookahead sets for 
expanded states contain nonterminals, which pro- 
duced incorrect parsers for some grammars. 
The state expansion algorithm must be improved to 
avoid introducing irrelevant e-reducing items. Tai’s 
algorithm generates too many such items, introduc- 
ing spurious conflicts. 
Special treatment is needed for invisible symbols, 
symbols that cannot produce terminal symbols, either 
directly or indirectly. 

Our version of the NSLR(l) construction, shown in fig- 
ure 3, requires the prior computation of the following 
tables. (We follow the notation of Aho, Sethi, and Ull- 
man? and a summary of this notation appears at the end 
of this paper.) 
VISIBLE - {X(X%xforsomex+e} 
FIRST(X) = {YlX & Ym forsomecr} 
LAST(X)- {Y)X %aY forsomecr} 
FOLLOW(A)- {Xle =-h crY@Zq for some R, 

A isin LAST(Y),,~ $ E, andX isin FIRST(Z)} 

NEEDED-FOLLOW(A)= {Xl B + aY,9X7 forsome B, 
A is in LAST(Y), and /? & E} 

UNRESOLVABLE(A)- {XIX iS in VISIBLE, 

When the algorithm of Figure 3 marks a conflict as 
unresolvable, it may still be possible to resolve the con- 
flict for some grammars by adding +redwzing items and 
more shift items. We have judged that the extra class of 
grammars that would be accepted is not sufficiently 
important to justify the added complexity of the construc- 
tion algorithm. 

4. Restrictive Grammar Rules 
Our proposal is that a character-level grammar can be 
prepared by writing a concise but ambiguous BNF gram- 
mar, which uses restrictive rules to eliminate the ambi- 
guity. We have found that two types of restrictive rules 
are adequate. The first rule, the exclusion rule, is used 
to resolve the reserved-identifier ambiguity and the 
second, the adjacency-restriction rule, solves the longest- 
match ambiguity as well as other ambiguity problems. 

4.1. The Exclusion Rule 
The form of an exclusion rule is the same as the form of 
an ordinary CFG production except that the operator 
“ --, >, is replaced by the operator “ + “. In a BNF 
grammar the symbols “ ::z ” can be used as the exclusion 
operator. If a grammar must be represented in the 
ASCII character sets, then the character sequences 
‘LX->“, or ” : : #‘I can be used for the exclusion operator. 

Loop until all states completed. 
Compute next SLR state q for grammar. 
To each complete item Ii-[A +cr*] attach 

a lookahead set Li =FOLLOW(A)fl VISIBLE 
and a needed-lookahead set 
NL,-NEEDED-FOLLOW(A)n VISIBLE. 

If state q has a conflict then 
For each conflicting lookahead symb X: 

resolved := true 
For each complete item Zi = [A -+ cr.] 

such that X is in Li: 
If X is in NLI or 

X iS in UNRESOLVABLE(B) 
for some B in L1 

then resolved := false 
else 

For each rule B +-X/3 where 
B is in Li: 
Add item [B --, *X,9] to q 

end for 
end if 

end for 
If resolved then remove X from Li 
else grammar is not NSLR(1) 
end if 

end for 
end if 

end loop. 

Figure 3. NSLR(l) Construction algorithm. 

An exclusion rule such as 

id w begin 

can be read as “id does not generate begin”. It indicates 
that the language generated by the left part (id) should 
not include the language generated by the right part 
(begin). It would be used with a general description for 
id, to exclude the generation of specific sentential forms 
by id. Just as with ordinary BNP rules, multiple exclu- 
sion rules with the same left part can be joined by com- 
bining the right parts separated by OR bars I’ I “. E.g. 

id~begin(endIif(rhenIeZse( *em 

More formally, if L(A) is the sublanguage generated 
by the nonterminal A, and L(a) is the sublanguage gen- 
erated by the string 01, the exclusion rule A ++ 0: restricts 
A to represent the sublanguage L(A) n L(a). 

Since CFL’s are not closed under complementation, 
it is not possible to give a general construction for a CFG 
equivalent to the restricted grammar. If we restrict L(a) 
to being a regular set, the required algorithms exist in the 
literature (see for instance Hopcroft and Ulhnan8 ). 
Note that the language defined by a grammar using an 
exclusion rule, is still well defined, even if the language is 
not context-free. 

4.2. Implementing the Exclusion Rule 
Our construction algorithm builds the NSLR parser for 
the unrestricted ambiguous grammar, and uses the exclu- 
sion rules to eliminate actions that would parse the 
excluded sublanguages. The method consists of two 
modifications to the parser generator, and two tests for 
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membership in the class of grammars that are handled 
correctly. 
Definition. The set DESCEND(A) contains the immedi- 
ate descendants of A. 

DESCEND(A) - {XIA * crXp fOrsome(Y,fi} 

Definition. The set DESCEND*(A) contains all symbols 
that can appear in any sentential form generated by A. 

DESCEND*(A)- {Xl A %aX,9 forsome (Y,P} 

DefiniCion. The uniquely-LAST function, U-LAST(A), is 
the set of symbols that only appear as the last symbol of 
sentential forms generated by A. 

U-LAST(A)= {Yl A $ ,9Y for some ,!?,andevexy 
derivation S 3 cu@Yy ; z is isomorphic 
to a derivation S & aA $ ayBY7 s z} 

For example, in the mini grammar at the end of this 
paper, alphu~~um is in UJAST(id). Figure 4 gives an 
algorithm for computing U-LAST(A). 

Compute the transitive closure ENDSYM+ 

I 

hIe for Y in DESCEND(B) 

ALTDESCEND(B,Y)- andB +A. 
false. otherwise 

Compute the transitive closure ALTDESCEND+ 

Initially U_LAST(A)- {Xl END-SYM+(A,X)}. 

For each rule AdcrY: 
For each symbol X in (Y: 

U-LAST(A):- U-LAST(A)-DESCEND*(X). 
end for 

end for 

For each B such that ALTDESCEND+(S,B) is 
hue, where s is the start symbol: 

Remove l? from U-LAST(A). 
end for 

Figure 4. An algorithm for computing U-LAST(A). 

To implement the processing of exclusion rules, the 
following modifications are made, and tests added, to the 
parser generator: 
Modification 1: For the rule E JC, F, reduce-reduce con- 
flicts between two items li = [C + yX* ] and 
!j-[D+6Y~],whereCisin{E}uU-L&T(E)orXis 
m U-LAST(E), and D is in {F} u U-LAST(F) or Y is in 
U-LAST(F), are resolved in favor of the second item, the 
reduction to D. The conflict resolution is made before 
each SLR state is tested for consistency. Specifically, for 
each X in Lj delete X from Li, and for each Y in NLj 
delete Y from NLi. The effect is to prefer chained reduc- 
tions that will yield the symbol on the right part of the 
exclusion rule rather than the left part. 

Modification 2: For each exclusion rule E ++ F, add the 
specially marked rule E -c F. These rules will be han- 
dled like any other by the parser generator except that 
complete items [E + F l ] have empty lookahead sets. 
Without these additions, the parser may not recognize 
that a string in L(F) has occurred, where only a string in 
L(E) is expected according to the grammar. 
Test 1: This test enforces the restriction on the grammar 
that the right part of the exclusion rule must be a single 
nonterminal. 
Test 2: The condition tested for in modification 1 ensures 
that the left context on the state stack represents the end 
of sentential forms generatable by E and F, but it does 
not verify that recognition of the two sentential forms 
starts in the same state. If recognition does not start 
simultaneously, then the modification may exclude valid 
parses, and the grammar should be rejected. The sim- 
plest way to test for this condition is to verify that for any 
two parses of E and F, either the parses are distinct, or 
that they start simultaneously. To ensure this property 
we verify that 
(a) there are no states in the parser that contain an item 

of the form [A 4 (~0 E/3] and (i) an item of the form 
[B-+X7*Yb] where B is in DESCEND*(F), or 
(ii) an item of the form [B 4 7. ] where B is in 
DESCEND*(F) and B isnotin {Fj u U-LAST(F). 

(b) Same as (a) above but exchange E and F _ 
These tests should be applied after state processing is 
complete, including state expatision, if any. 

The above method accepts only a restricted class of 
grammars, which we call SE (simple exclusion) gram- 
mars, and which we have found adequate to describe 
programming languages. The adjective simple is used to 
describe this class of grammars because membership can 
be tested by examining each state of the generated parser 
individually without regard to the transitions between 
states. This property is shared by SLR grammars. 

4.3. The Adjacency-Restriction Rule 
The adjacency-restriction rule takes the form of a list of 
predecessor symbols, followed by the delimiter ” j ‘I, 
followed by a list of successor symbols. If the grammar 
is to be represented using the ASCII character set, the 
sequence of characters I’-/-” can be used to represent 
the adjacency-restriction delimiter. 

A sample usage of the adjacency restriction rule 
would be: 

id begin do else . . . f id begin do else . . . 

This example indicates that a string generated by one of 
the symbols in the predecessor list may not appear 
immediately adjacent to a string generated by one of the 
symbols in the successor list in any sentence in the 
language. The sample rule above indicates that an iden- 
tifier or keyword may not abut another identifier or key- 
word. (If such symbols did abut each other, they should 
of course be parsed as a single identifier.) 

More formally stated, the adjacency restriction 
W +X disallows all derivations of the form 
S % ctWX7 % z. Furthermore, the restriction excludes 
all derivations that would produce the same parse tree as 
a derivation of the above form. 

Figure 5 gives a grammar transformation for con- 
structing a pure context-free grammar from a restricted 
context-free grammar containing an adjacency reshic- 
tion. The existence of this transformation demonstrates 
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that context-free grammars are closed under adjacency 
restrictions. Grammars G1 and G2 show a sample appli- 
cation of the transformation. 

l Given a restricted CFG G’ constructed from a CFG G 
by adding the restrictive rule W f X, construct a CFG 
G” such that L(G”) - L(G’). 

l Initially G” - G . 

0 Rewrite G” to eliminate all e-productions. (See Hop- 
croft and Ullman! in section 4.4, page 90. 

0 For each symbol C in LAST-~(W): 

l For each occurrence of C in a production Pi of G”: 
l Replace Pi by two productions, one using Cw in 

place of C, and the other using C,-. 

0 For each C in FIRST-~(X) u FIRST-'(X,) 
U FIRST-l(Xg): 

l For each occurrence of C in a production Pi of G”: 

0 Replace Pi by two productions, one using Cx and 
one using Cf. 

l For each new symbol Si whose basic part is S (the ori- 
ginal start symbol), add a new rule S + S,” to G”. S is 
still the start symbol for grammar G”. 

Delete all productions using symbols whose basic part 
is W and whose subscript part is W. Similarly, delete 
all productions using symbols whose basic part is X and 
whose superscript part is %. 

Delete all productions of the form Cw + (Y Z,- , - 
C~+ff Zw , Cx-+Zxa, orCx+ZxO. 

Delete all productions of the form Cw --, cry for Y not 
subscripted by W unless C = W. Similarly delete all 
productions Cx -+ Ycu for Y not superscripted by X 
unless C = X. 

Delete all productions C + cyYwZx/3. This is the main 
step of this algorithm; applying the principle of 
adjacency-restriction rule. 

Remove all useless symbols and productions. 

Figure 5. A Grammar Transformation for Eliminating 
Adjacency-Restriction Rules 

s + oper 1 ID 1 S white oper 1 S white ID 
ID -+ id 
id + letter 1 id letter 
letter +a lb Ic I... lz 
white + e 1 blank 
oper -+* I/ I+ I- 

ID + ID 

Grammar G1. A sample restricted CFG. 

s ---, s,b” I sg I s;E I qg 
sJD ID -+ ID;: 1 S,!: white ID,!: 

I S,$ white ID,!: I SE ID,!: 
$4 

ID -+ S.!i white oper I S;$ white oper 
1 S;i uper I S;$ oper 

S- ;z -+ S;z white 10,: I SE white ID,b” 
1 @ID,‘; 

$3 
- 

ID + oper I Sii white oper 
1 SE white oper I Siz uper 
1 Sgoper 

ID;; - id 

id -+ letter I id letter 
letter +a lb Ic I... lz 
white - blank 
oper --c* I! I+ I- 

Grammar G2. The result of applying the adjacency- 
restriction-elimination algorithm to grammar G1. 

4.4. Implementing Adjacency Restrictions 
The adjacency-restriction rule could be implemented in a 
parser generator by first applying the transformation of 
Figure 5 to the input grammar, but this would usually 
lead to an excessively large parser. Instead, we imple- 
ment it by eliminating parser actions from the parser 
generated by the unrestricted grammar. For an NSLR 
parser generator we make two modifications to the the 
parser generation algorithm, and then apply three tests 
for cases where the method fails. 
Modification 1: Eliminate reductions that clearly violate 
the adjacency restrictions. In an SLR or NSLR parser 
generator, the lookahead set for reduce actions of the 
form A - a is the set FOLLOW(A). In the SAR genera- 
tor, the lookahead set is replaced by AR-FOLLOW(A) 
which is defined as: 
AR-FOLLOW(W) = {X 1 B =s croYOj?ZO~o for some B , 

,4 3 c, and there exist derivations 
qJYIJ * CylYl ==a - - * a,Y, where W=Y, 
ZOrO + Zlrl + 1 * * Z,7, whereX=Z,,, 
such that no rule Yi f Z, exists for any i, j} 

The function NEEDED-FOLLOW 
\ 
A) is replaced by 

AR-NEEDED-FOLLOW(A)- {X 
B =+ cr0Y0gX7 for some B and B 2 6, and 
there exists a derivation 
aoYo =a alY1 =+ - - - anYn where A-Y, 
such that no rule Yi # X exists for any i } 

The above definition of AR-FOLLOW includes only 
symbols that arise from at least one derivation that does 
not violate the adjacency restrictions. Note that this 
modification precludes some parser implementations that 
add spurious elements to lookahead sets; for example, 
the use of default reduce actions in YACC. In fact 
default reductions may be used except for actions of the 
form reduce A + Q, where some exclusion rule A f X 
exists. Figure 6 gives an algorithm for computing 
AR-FOLLOW and AR-NEEDED-FOLLOW. 
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For each rule B + 8: 
For each i in the range (PI > j 2 1 in descending 
order, (notice that when ,9 = E this loop is skipped): 

For each k in the range j < k < ]/?I in ascending 
order, stopping after processif;g the first non- 
nullable j3[k] : 

ProcessAdjacen@~], @[k], 0, 0). 

PROCEDURE ProcessAdjacent ( W, X , A W, CAR) 
Where: 

W, X = A pair of adjacent symbols. 
AW = Set of ancestors of W in current expansion. 
CAR - Collected adjacency restrictions, 

={ZI3arestrictionY jZandYisinAW}. 
If W is not in AW then: 

CAR’ -CARu{YI3aruIeW+Y}. 
If X is not in CAR’ then: 

If X is in VISIBLE then: 
Insert X into AR-NEEDED-FoLLo w (W). 

ProcessSuccessor (W , X , 0, CAR’). 
For each Y such that there is a rule W - CVY: 

ProcessAdjacent(Y, X, AW u {W}, CAR’). 

PROCEDURE ProcessSuccessor (W , X , AX, CAR) 
Where: 

W, X, and CAR have the same meaning as 
in ProcessAdjacent. 

AX = Set of ancestors of X in current expansion. 

If X is not in AX then: 
If X is in VISIBLE then: 

Insert X into AR-FOLLOW(W). 
For each Y such that X + Y LY is in P : 

If Y is not in CAR then: 
Process+Swccessor(W, Y, AX u {X}, CAR). 

Figure 6. Computing the adjacency-restricted follow 
SetSARmFOLLOW and ARmNEEDED-FOLLOW. 

Modification 2: It is a property of LR parsers that any 
given state is reachable only by a shift action on a partic- 
ular symbol. That is, for some unique Y, each item in S 
is either of the form [C -c (YY. a] or [B + l 61. The 
SAR construction eliminates items of the form 
[B + l Xb] unless both B and X are in AR-FOLLOW(Y), 
and items of the form [B - E* ] unless unless B is in 
AR-FOLLOW(Y). 

Test 1: For each adjacency restriction W f X, W must 
be a nonterminal, and X may not be nullable. The prin- 
cipal mode of action of the above modifications is to 
block reductions to symbols on the left side of adjacency 
restrictions. If such symbols are terminals, those reduc- 
tions cannot be blocked. If symbols on the right side of 
adjacency restrictions are nullable, then the method used 
to block the reductions fails, since the lookahead symbol 
can be part of context beyond the nullable symbol. 
Test 2: For each adjacency restriction A f X, and for 
each complete item [A - CY* ] with lookahead set L, 
Ensure that L n FIRST(X) = 0. This ensures that A 
cannot be reduced with lookahead symbols that could 
later be reduced to X. 
Test 3: For each adjacency restriction A f X, and each 
state q containing a complete item [B - ,8* 1, with a loo- 
kahead set L , and with B in LAST(A), ensure that q does 
not also contain an item [C + 0 71 added during non- 
canonical state expansion, such that C is in L and X is in 

FIRST(~), or y ; 6. Parsers that violate this constraint 
may allow right context beginning with X (which does not 
appear in L) to be reduced to an ancestor symbol that 
does appear in L before the reduction of left context to 
C. Only noncanonical expansion items can lead to the 
reduction of right context before left context. 

Because of the above tests, our method accepts a 
restricted class of grammars, which we call SAR (simple 
adjacency-restriction) grammars; we have found SAR 
grammars adequate for the programming-language 
examples we have tried. Again the adjective simple is 
used to describe this class of grammars because member- 
ship in the class can be tested by examining each state of 
the generated parser individually without regard to the 
transitions between the states. 

5. The Efficiency of Single-Phase Parsers 
A common objection to eliminating finite-state scanners, 
and using a pushdown automaton to parse raw input is 
that parsing would be slower. Actually, theory tells us 
that a finite-state machine, a deterministic pushdown 
automaton and an NSLR parser all run in linear time 
proportional to the length of the input, hence their per- 
formance can only vary by a constant factor. The size of 
that constant factor can vary greatly with implementation 
details, and can be accurately determined only with 
actual tests on production-quality systems. We have per- 
formed some tests that attempt to be as fair as possible. 

Our first test consisted of writing three two-phase 
Pascal recognizers usmg the UNIX utilities LEX and 
YACC. These two utilities are both mature systems 
widely used for educational purposes and often used in 
production compilers. The first recognizer used the stan- 
dard approach of a finite-state scanner generated by 
LEX, with a DPDA parser generated by YACC. 
Although LEX is a mature program, there are com- 
plaints that it produces slow scanners, so our second 
recognizer used FLEX,13 a more recent version of LEX 
designed to generate faster scanners. Our third recog- 
nizer described the tokens in terms of a BNF grammar, 
and used YACC to generate the scanner as well as the 
parser. Ambiguities in the scanner grammar were han- 
dled by ad-hoc methods. Table 1 shows the results of 
these tests. The surprising result is that the running-time 
constant for a DPDA-DPDA recognizer can be as little 
as one seventh of that for an FSM-DPDA recognizer, 
and two thirds of the size. 

Our second test was designed to compare two-phase 
recognizers with one-phase recognizers. The two-phase 
recognizer used two restricted CFG’s to describe Pascal, 
and the one-phase recognizer used a single restricted 
CFG. All parse tables were generated using our 
NSLR(l) parser generator. Table 2 summarizes results 
on the relative sizes of the parsers. The results of Table 
2 are not as favorable as those of Table 1, but they still 
show single-phase parsing to be a viable technique. 
Note, however, that we did not perform any table 
compression on the resulting parsers, and we believe that 
a single-phase parser will benefit more from table 
compression than will a two-phase parser. 

At this writing, a comparison of running times of the 
two parsers is not available principally due to difficulties 
in designing the interface between the two phases of the 
two-phase recognizer. When timing test are performed, 
the results will not be directly comparable with the LEX 
and YACC generated parsers, since the programmers, 
source languages, and target languages are all different. 
It is hoped however that the high degree of similarity 
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Object Parse 
Rules States Size Time* 

* 1 lr an 8,558 line Pascal program on a MicroVAX II. 

Table 1. Comparison of performance of FSM-DPDA 
Versus DPDA-DPDA Syntax Analysis. 

Two-Phase Recogl 
Parser Scanner* 

Symbols 207 
Rules 381 

States 451 
Time to 
generate 
tables 30.3 
(seconds) 

Total 
non- error 
parser 40,319 
actions 

Total 
parser 93,357 
actions 

Noncanonical PDA. 

nlzer 
Total 

210 

358 t 

376 

8.3 38.6 

2,786 43,105 

60,502 153,859 348,076 

L 

One- 
Phase* 

563 
1006 

161.1 

59,496 

Table 2. Comparison of one-phase versus two-phase 
Pascal recognizers. 

between a two-phase DPDA-DPDA recognizer, and a 
noncanonical DPDA-DPDA recognizer will allow run- 
ning time of the single-phase parser to be normalized and 
compared with the FSM-DPDA recognizer. 

Why should one expect that a two-stack pushdown 
automaton could perform as well as a finite state 
machine? First of all, note that push and pop operations 
are not costly, since they can consist of simply moving a 
data value, and incrementing or decrementing a pointer. 
In contrast a table access on a two-dimensional table may 
involve a multiplication to compute addresses from sub- 
scripts, or a search operation if the table is large and 
stored using sparse-matrix techniques. While manipulat- 
ing the stack consumes some time, considerable time is 
saved by eliminating the procedural interface between the 
scanner and the parser; and by eliminating specialized 

buffering, lookahead, and re-scanning for semantics that 
are associated with a finite-state scanner like LEX. Also 
note that extremely fast LR parsing techniques are being 
developed, which we feel could be applied to an NSLR 
parser-t5 

6. Results 
The above proposals have been tested by the implemen- 
tation of an SE-SAR-NSLR(1) parser generator and vali- 
dated on a complete character-level grammar for IS0 
Pascal. Our grammar uses 567 rules (including 3 com- 
pound adjacency restriction rules and 35 exclusion rules) 
whereas an equivalent grammar written for LEX and 
YACC uses 309 rules. It should be noted that much of 
the difference in the number of rules required is due to 
compact specialized rule forms available in LEX (for 
example, we require one production for each printable 
ASCII character). Furthermore, in our grammar all the 
ambiguities are explicitly corrected, whereas in the 
LEX-YACC grammar many are handled by default 
actions. 

The parser generated by our method had 1006 
states, whereas the one generated by LEX and YACC 
has 914. Our parser generator has very few size optimi- 
zations; in particular, it has no combined shift/reduce 
actions and no table compression. Parser optimizations 
of the sophistication used by LEX and YACC might 
make our parser smaller than the one generated by LEX 
and YACC. This surprising prediction can be justified 
by noting that when given a complete grammar for a 
language a parser generator can make use of the extra 
information to produce a more compact parser. We 
predict that more work on the form of restrictive gram- 
mar rules and on parser generation techniques for these 
rules can further reduce the size of the grammars 
required and the parsers produced. 

Our techniques have been used as the parsing engine 
for an integrated modular attribute grammar system.7 
We are able to parse programming language grammars 
whose structure reflects the desired attribute computa- 
tions in a natural way. The mapping from concrete syn- 
tax to abstract attribute computations involves two 
straightforward and efficient operations: e&ion - ignor- 
ing irrelevant subtrees (such as those for white space) and 
grouping - applying common attribute computations to 
parse tree nodes generated from different nonterminals. 
It would also be possible to attach semantic actions to 
production rules, as in YACC, but the noncanonical 
parsing order would make the ordering of side-effects 
unpredictable. (In fact, the ordering of side-effects 
between the scanner and parser is already unpredictable 
in systems such as LEX/YACC, and noncanonical pars- 
ing does not significantly compound the problem.) 

7. Sample Grammar 
We present below a sample character-level SE-SAR- 
NSLR(1) grammar for a Pascal-like mini language. This 
grammar has some redundancy, but is still readable and 
usable. This grammar is not an optimal character-level 
grammar; many improvements in notation and parser 
generation strategy are possible that will permit more 
concise grammars. But even in its present form it is not 
much longer than the combined length of a scanner 
grammar and a parser grammar would be for a two- 
phase translator. 

l On modem computers, the procedural interface usually involves a 
great deal of pushing and poping of context information. 
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The restrictive disambiguation rules appear at the 
end of the grammar. They are few in number, and the 
purpose of each is quite clear. The exclusion rule lists 
the reserved keywords. The first adjacency restriction 
prevents the parser from breaking up a long identifier 
into identifiers and keywords. The last rule is used to 
solve the dangling-else ambiguity. 

! A character-level grammar for a 
! Pascal-like mini language. 

p*og + PROGRAM ID SEMI decls cmpdstmt DOT 
id-list -+ ID 1 id-list COMMA ID 
decls + decls VAR id-list COLON type SEMI 1 c 
type -INTEGER 
cmpdstmt - BEGIN optstmts END 
optstmts -+ stmt-list 1 f 
stmt-list + stmt 1 stmt-list SEMI stmt 
stmt + variable ASSIGNOP expr 1 cmpdstmt 

1 ID 1 WHILE expr DO stmt 
1 if-then 1 if-then-else 

ifdhen 4 IF expr THEN stmt 
if-then-else + IF expr THEN stmt ELSE stmt 
variable - ID 
expr-list + expr 1 expr-list COMMA expr 
expr I+ term 1 sign term 1 expr ADDOP term 
term + factor 1 term MULOP factpr 
factor -+ ID 1 NUM 1 LPAR expr RPAR 1 NOT factor 

MINUS - - white 
PLUS + + white 
MULT + * white 
DIV + I white 
COLON -+ : white 
SEMI + ; white 
COMMA -+ , white 
LPAR + ( white 
RPAR - ) white 
DOT + . white 
ASSIGNOP -+ := white 
sign + PLUS 1 MINUS 
ADDOP + sign 
MULOP + MULT 1 DXV 

white + real-white 1 6 
real-white + white-char 1 real-white white-char 
white-char+ blank I tab 1 newline I comment 
comment + cmt-body } 
cmt-body + { 1 cmt-body any-cmt-char 
any-cmt-char -+ anyJSCII_char-except) 

BEGIN + begin white 
begin +begin 
DO - do white 
do -+do 
ELSE + else white 
else -belse 
END + end white 
end +end 
IF --+ if white 
if -+if 
INTEGER + integer white 
integer *integer 
NOT -+ not white 

not -not 
PROGRAM + white program white 
program *program 
THEN --c then white 
then -+then 
VAR + var white 
var -+var 
WHILE + w h i 1 e white 
while -while 

ID + id white 
id + idfiag 
idfi-ag - letter I idfrag alpha-num 
letter -calbl...Iz 
digit +o I1 I . . . 19 
alpha-num -+ letter I digit 
NUM - digit-string white 
digitstring -+ digit I digit-string digit 

! Disambiguation section. 

id -w-* begin 1 do I else I end I if I integer I not. 
I program I then I var I while 

id begin do else end if integer not program then var while 
f id begin do else end if integer not 

program then var while NUM 

if-then + ELSE 

8. Enhancements 
Our approach is based on SLR parsing techniques, and 
therefore rejects some grammars that might in fact be 
parsable using exactly the same state set. We have 
implemented a hybrid NLALR/SLR(l) parser generator 
which applies to a larger class of grammars than 
NSLR(l). The original construction uses the LALR(l) 
lookahead sets, and noncanonical state expansion is per- 
formed only for LALR(l) parsing conflicts. When new 
items are introduced in noncanonical expansion, they are 
given SLR(l) lookahead sets. In order to attach 
LALR(l) lookahead sets to these new items, it would be 
necessary to compute LALR(K) Lookahead sets, but the 
resulting parser would still use only one lookahead sym- 
bol at execution time. We can show that NLR(l) parsers 
exist as well as hybrid NLIUSLR(1) parsers. We believe 
that enhancements, similar to those of LALR and LR 
parsers over SLR parsers., can be made to the processing 
of exclusion rules and adjacency restrictions by analyzing 
the paths between parser states, rather than just the items 
within each parser state. 

9. Summary of Notation 
A context-free grammar (CFG) G is a quadruple 
G = (V,, Vr, P, S), where V, is the set of nonterminals, 
V, is the set of terminals, P is the set of productions, and 
S in V, is the start symbol. The set of all grammar sym- 
bols is represented by V = V, u Vr. We assume that the 
grammar has no duplicate or useless productions, and no 
useless symbols. 

Lowercase letters early in the alphabet, such as a, b, 
and c, represent a single terminal symbol. Uppercase 
letters early in the alphabet, such as A, B , and C, and 
also the letter S, represent nonterminals. Uppercase 
letters late in the alphabet, such as X, Y, and Z, 
represent terminals or nonterminals. The Greek letter 6 
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represents the empty string, and the other lowercase 
Greek letters, such as Q, ,9, and 7, represent strings of 
terminals or nonterminals, or E. Lowercase letters late in 
the alphabet, such as x, y, and z, represent strings of ter- 
minals or e. The length of a string ,6 is denoted by 1s 1, 
and therefore (61 = 0. Stings of symbols can be indexed, 
so that S[i] represents the iti symbol of ,9. The symbol 
0 represents the empty set. 

The productions in P are numbered 1, 2, . . ., t where 
t = 1P 1. Productions take the form A -+ O, where A in 
Vu is called the left part, and (Y in V* is called the right 
part. The i” production in P is denoted by Pi, and tzi 
denotes the length of the right part of Pi. 

If A + o! is a production and PA7 is a string in V+, 
then we write ,6A7 =+ ,9ar and say that ,bA7 derives bar. 
The transitive closure of =+ is denoted by $ ,*and the 
reflexive transitive closure of + is denoted by =+ . 

A sentential form of G is a string cr such that S s (Y 
and cy is in V*. A sentence x of G is a sentential form of 
G consisting solely of terminals, i.e., x is in VG. The 
language L(G) generated by G is the set of sentences 
generated by G, i.e., L(G) = {xl S & x}. We can also 
refer to the language generated by some symbol X of 
grammar G as Lo(X) = {x 1 X ; x}. 

A symbol X in V is said to be useless if there is no 
derivation of the form S % Uxv % uxv. A nonterminal A 
is called nullable if there exists a derivation A & 6. 

A restricted context-free grammar, an RCFG, is a 
quadruple G = (V, P, R , S) where: 

v = v, u v, 
= The set of symbols in the grammar. 

vN = The set of nonterminal symbols. 
vT = The set of terminal symbols. 
P = The set of productions. 
R = RE u RAR = The set of restrictive rules. 
RE = The set of exclusion rules. 
R AR = The set of adjacency-restriction rules. 
S = A member of V,, is the start symbol. 

Every restricted context-free 
zc= (V, P , R , S), has a corresponding unrest&%??% 

= (V,, VT, P, S), whtch IS the same a G but without 
the restrictive rules. The definitions of the restrictive 
rules imply that L(G) C L(G’). 
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