Guarded Models For Intrusion Detection

Hassen Saidi

Computer Science Laboratory
SRI International

saidi@csl.sri.com

Abstract

Host-based intrusion detection systems that monitor an application
execution and report any deviation from its statically built model
have seen tremendous progress in recent years. However, the weak-
ness of these systems is that they often rely on overly abstracted
models that reflect only the control flow structure of programs,
and therefore are subject to so-called “mimicry attacks”. Authors
of these models have argued that capturing more of the data flow
characteristics of a program is necessary to prevent a large class
of attacks, in particular, non-control-data attacks. In this paper, we
present the guarded model, a novel model that addresses the various
deficiencies of the state-of-the-art intrusion detection systems. Our
model is a generalization of previous models that offers no false
alarms, a very low monitoring overhead, and is automatically gen-
erated. Our model detects mimicry attacks by combining control
flow and data flow analysis, but can also tackle the ever increas-
ingly threatening non-control-data flow attacks. Our model is the
first model built automatically by combining control flow and data
flow analysis using state-of-the-art tools for automatic generation
and propagation of invariants. Our model not only prevents intru-
sions, but allows in some cases the detection of application logic
bugs. Such bugs are beyond the reach of current intrusion detection
systems.

Categories and Subject Descriptors
tection

D [4]: 6 Security and Pro-

General Terms Security, Verification

Keywords Static analysis, dynamic analysis, invariant generation,
intrusion detection

1. Introduction

It has been shown [15] that finding anomalies in the stream of sys-
tem calls issued by user applications is an effective host-based in-
trusion detection capability. Wagner and Dean [32] proposed an
approach by which static analysis is used to derive a model of ap-
plication behavior resulting in a host-based intrusion detection sys-
tem with three advantages: a high degree of automation, protection
against a broad class of attacks based on corrupted code, and the
elimination of false alarms. Automation is guaranteed by extract-
ing the model from the control structure of the source code of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’07 June 14, 2007, San Diego, California, USA.
Copyright © 2007 ACM 978-1-59593-711-7/07/0006. . . $5.00

85

program. Detection of attacks rely on the fact that code injection
often results in the execution of a system call that is not invoked
by the application at all, or a sequence of system calls that are ex-
ecuted in an order not allowed by the application code. Finally,
false alarms are eliminated because the model is an overapproxima-
tion of the behavior of the application. Therefore, while the model
might be porous and not detect attacks, it will never raise a false
alarm. Starting with Wagner and Dean’s paper, various models cap-
turing the sequences of legitimate system calls have been proposed
[32, 18, 13, 16, 8].

Current state-of-the-art host-based intrusion detection systems
approaches struggle with several issues. The most important one is
the precision of the model. The more precise the model is, the less
an attack is possible. Current models are limited when it comes to
handling complex control structures such as loops, recursive func-
tion calls, and circuits in function calls. These limitations produce
today’s models in forms of very crude overapproximations of the
actual behavior of the application and are all subject to so-called
mimicry attacks [33] that produce a sequence of system calls that
conforms to the model but is not a sequence in the original code.
The imprecision of state-of-the-art models comes from the weak-
ness of the static analysis methods employed to construct them.
These weaknesses can be summarized by the absence of any signif-
icant data flow analysis. Mimicry attacks exploit the nondetermin-
ism that arises from the imprecision of the models. A new wave of
attacks called, non-control-data attacks [10] exploit the nondeter-
minism in the application code itself and therefore allow the sub-
version of the intended data flow. We observe that the attacks men-
tioned above are all preventable by making sure that the application
models used for intrusion detection capture as precisely as possible
the semantics of the program in a simple and intuitive way. We ob-
serve that mimicry and non-control-data attacks always inevitably
violate an invariant of the program, and that any approach to static-
analysis-based intrusion detection will be weakened by the absence
of such invariants from application models.

In this paper, we propose a novel model that can reduce the risk
of mimicry attacks, but can also detect the ever increasingly threat-
ening non-control-data attacks. Our model is a generalization of
previous models and offers no false alarms, and a very low mon-
itoring overhead, and is automatically generated. In some cases,
our model is precise enough that it is possible to automatically
check the application for the presence of application logic bugs.
Our model, called the guarded model, is a control flow graph where
system calls are guarded by invariants. We ensure both control flow
and data flow integrity by making sure that system calls not only
occur in the order specified by the model, but that each system call
must be preceded by a check that some program invariant gener-
ated by static analysis holds. Such invariants capture crucial prop-
erties about system call arguments, system call return values, input
variables, and the values of branch predicates at all control loca-
tions of the program. Weaker versions of these properties are gen-

erated manually in [16], or learned from runs of the application in
an attack-free environment in [8] to form an underapproximation
of the application behavior, which leads to an intrusion detection
approach that generates many false alarms.

The contribution of our work can be summarized as follows:

e A novel model for intrusion detection, generated by static and
dynamic analysis. The model is built using a combination of
predicate abstraction, invariant generation techniques, and in-
terprocedural invariant propagation.

Our model is from the theoretical point of view more precise
than the models used by the state-of-the-art host-based intrusion
detection systems [16, 8] and therefore reduces the space of
possible attacks.

Our model is built fully automatically from source code and
combines control flow and data flow properties of the applica-
tion. In particular, our model allows the detection of mimicry
attacks generated by various automated mimicry attack genera-
tion tools [17, 24].

Our model treats in a uniform way both mimicry and non-
control-data attacks thanks to the use of invariants.

The rest of the paper is organized as follows: In Section 2, we
describe a toolbus architecture that allows the plugin of several
cooperating invariant generation tools to build guarded models.
In Section 3 we illustrate in a series of simple but illustrative
examples the deficiencies of the state-of-the-art models used in
intrusion detection systems and how our approach, based on the
construction of a guarded model, addresses those deficiencies. In
Section 4 we formally define our model, and in Section 5 we
describe the automatic process by which guarded models are built.
In Section 6 we illustrate the properties of our model by showing
that it is more precise than the state-of-the-art models, provides a
way of detecting a much broader class of attacks, detects all attacks
generated automatically by some recent methods described in the
literature [24], and provides a way of detecting logic bugs, which
is not a feature covered by any other intrusion detection system.

2. An Architecture for Building and Using
Guarded Models

The ability of guarded models to be successful at detection and pre-
venting actual attacks rely heavily on our ability to capture program
invariants. Our approach is effective because our invariants are gen-
erated by using a combination of several complementary meth-
ods and tools implementing both static and dynamic code anal-
ysis. First, assertions are generated from observed runs during a
training period in an attack-free environment using Daikon [12].
Daikon generates likely invariants from execution traces gathered
using Valgrind [26]. Likely invariants are assertions or relationships
between program variables that are true at some control location
during the observed runs, but may or may not be true in all possi-
ble runs of the program. We use the BLAST assertion checker for C
programs [21] to prove or disprove the fact that the likely invariants
hold at the locations indicated by Daikon. Daikon generates asser-
tions at the entry point and exit point of all functions appearing in
the application’s code. We extended Daikon to generate assertions
at arbitrary program locations. In particular, we generate likely loop
invariants that are often crucial in determining invariants at the exit
point of complex functions. Daikon also ignores calls to libraries
and system calls and will not generate invariants at the entry point
of a library implementing a system call. We have extended Daikon
in such a way that likely invariants are generated at program loca-
tions where system calls are invoked. We also automatically gen-
erate invariants expressing linear relationships among integer pro-

86

gram variables that hold at all control locations of a program using
the Inv-Gen tool described in [20]. Inv-Gen also uses the notion of
logical lattices that allows the generation of linear invariants in the
form of assertions expressed in a combination of theories including
linear arithmetic, uninterpreted functions symbols, and arrays. Un-
interpreted function symbols are useful in abstracting away func-
tion calls.

We add the linear invariants to BLAST as additional informa-
tion about the program so that it maximizes BLAST’s chances of
proving or disproving likely invariants. BLAST proves assertions
using predicate abstraction [19]. That is, it partitions the reachable
states of the program using a set of predicates appearing in the as-
sertion to prove, the conditional branches and assignments as well
as internally generated predicates from failed proofs using Craig’s
interpolation theorem [23], in order to obtain a finite representa-
tion of the program. BLAST’s assertion checking process amounts
to unfolding the control graph of the program, and evaluating the
set of predicates in every control location, effectively propagating
the predicates throughout the control graph of the program. The
propagation works as follows: if an assignment instruction does not
modify the variables in a predicate, then the predicate holds after
the assignment. If, however, the program variables in the predicate
are modified by the instruction, it is necessary to either prove that
the post condition of the assignment implies that the predicate still
holds, or its negation holds. If neither implication is proved, then
the successor control node is split into a node where the predicate
holds and a node where the negation of the predicate holds, intro-
ducing therefore some nondeterminism in the control flow graph.
Proofs are discharged automatically using efficient decision proce-
dures that can process thousands of proofs per second.

The result of our invariant generation and assertion checking
process is a control flow graph where each program control point
is annotated with a set of predicates that are true at that location.
That is, an abstract state graph that captures both the control and
the data flow properties of a program. Consider a set of predicates
Py, .-+, Py over program variables. The abstract state graph of a
program P is a graph where each node is a pair (v, e), where v is a
control location and e is a valuation of the predicates Py, - - - , Py at
control location v. For instance, for & = 3, a node (pcl, (0,1, 1))
indicates that at location pcl, the predicate Py A =P A—Ps is true.
Figure 1 shows a simple program and its abstract state graph.

z:=0 QT
whilex <10do —— >

T x:=x+1 ‘T

od

(=B)

Figure 1. A Simple Program and its Nondeterministic Abstract
State Graph Built Using the Predicate B = = < 10.

Unlike any other model construction approach for intrusion de-
tection, we do not consider the control flow graph of an application
but rather the much more precise abstract state graph. Early in their
paper [19], Graf and Saidi note that an abstract state graph also
represents a precise global control flow graph of the system. In-
variants that are true at control locations where system calls are
invoked become guards that should evaluate at runtime to true be-
fore allowing a system call. This ensures both control flow and data
flow integrity. Abstract state graphs have many interesting proper-
ties. For instance, if the abstract state graph is deterministic, then
there is an equivalence between the application’s code and its ab-
stract state graph. That is, the model is not an overapproximation of
the application behavior but is an exact abstraction. Therefore, not
only a deviation from the model is an attack, but the model itself is

ncc compiler Daikon BLAST Inv-Gen

AT B S

Preprocessing . __ [Inyariant Generation and
Assertion Checking

Guarded Model Evaluation
Model and Refinement

[System Call Interposition j

I

Model Violations

-

Figure 2. Guarded Models Construction and Monitoring Architec-
ture

a finite faithful representation of the original program that can be
easily evaluated against a specification of application logic bugs.

Our prototype implementation and monitoring framework is
described in Figure 2. Invariant generation tools and BLAST are
used to build the guarded model of the entire application. When
the application deviates from the model, we detect an intrusion. If
we include in the model the likely invariants or hypotheses that
have not been established as invariants by BLAST, we can monitor
when these likely invariants are violated and log the sequences of
executions in which such violations occur. Such sequences can then
be examined by complementary statistical approaches to conclude
whether such rarely observed sequences are truly vulnerable or
are legitimate. The use of Daikon, Blast, and Inv-Gen required
some preprocessing capability that was necessary to deal with the
limitation of each of these tools.

Guarded models as well as previously proposed models are
useful only if they detect actual attacks. Evaluating if a model can
be defeated by mimicry attacks addresses such a concern. The work
described in [17] provides a simple and effective way of detecting
if a given model is vulnerable to mimicry attacks by using model-
checking techniques to automatically check the model against a
specification of an attack expressed as the effect of the attack
on the operating system state. Guarded models have the property
of simplifying further such analysis. An undetected attack is any
attacks that executes a sequence of system calls accepted in the
model but contains a nondeterministic transition. A simple graph
algorithm can be used to extract all sequences that contain such
nondeterministic transitions. These sequences can then be checked
using a model checking procedure similar to the one used in [17].
When a sequence representing an attack is discovered, the problem
of refining the model is reduced to the problem of refinement of a
predicate abstraction, and can be addressed by several techniques
developed in the literature. In particular, the techniques developed
in [28] and [29] that define the problem of refinement of a predicate
abstraction as the problem of eliminating nondeterminism in an
abstract state graph.

3. Examples

Following is a series of examples that illustrate the weaknesses of
the various models proposed in the literature and how our model
automatically captures dependencies between program variables
and system calls in the form of program invariants that produce
more precise control flow graphs and limit the attacker’s ability to
launch mimicry and non-control-data attacks.

87

3.1 Abstract State Graphs for Intrusion Detection

Figure 3 describes an example without any function calls, stud-
ied in [13]. The predicate strncmp(user,” admin”, 5) determines
which branch of the if statement is executed. Only two system
call sequences are possible: (sys_1, sys_3) if the predicate eval-
uates to true and (sys-2,sys-4) otherwise. Since recent mod-
els proposed in the literature (e.g., Dyck models [13, 16]) do not
track automatically the values of branch predicates, they will al-
low the following four sequences: (sys_1, sys_3), (sys_1, sys_4),
(sys-2, sys-3), and (sys-2,sys-4) (see Figure 3 (i)). An attack
on these models uses a large someinput in strcpy to overflow str
and change the value " guest” of user to "admin”. Then the illegal
sequences (sys_1, sys_4) or (sys_2, sys_3) are executed without
any detection. Figure 3 (ii) illustrates that the guarded model that
we propose is simply the abstract state graph of the program built
using the predicate (user = admin) appearing in the conditional
branches. Our model will first accept the system call sys_1 because
the guard P = (user = admin) is true, but will not accept sys-
tem call sys_4, because sys_4 is allowed only if the negation of P
holds. The illegal sequences will violate the invariants P and —P
that respectively guard system calls sys_3 and sys_4. The graph in
Figure 3 (ii) is a simplification of the reachability graph produced
by BLAST. BLAST does not always recognize that some expres-
sions are equal. This is the case of both if conditions. Our pre-
processing of the application’s code allows us to help BLAST rec-
ognize such equalities. If we uncomment the program line user =
"guest”, our model is precise enough to allow only the sequences
(sys_1, sys_3) and (sys_2, sys_3) (see Figure 3 (iii)).

char *str, *user;

if (strncmp (user, "admin", 5)){
sys_1 O3}
else {
sys_2 O3}
/* user = ’’gest’’; */
strcpy (str, someinput);
if (strncmp (user, "admin", 5)){
sys_3 O3}
else {
sys_4 O3}
}
O -r
sys_1() sys_2() -P p Sysil() syT_Z()
Sys_ 1() sys_2()
-P P P

sys_3() sys_4() sys_3()

sys_. 3()(& sys_4()

@ (i) (iii)

Figure 3. A Simple Program and its Abstract State Graph where
P = (user =="admin") and |P = —P.

3.2 Invariants and Model Precision

Figure 5 illustrates an example of a program with a call to a
function ctrl that does not contain system calls. The behavior of
this function affects the sequences of system calls that the program
can generate. Existing models abstract away in their control-flow-
based-models all function calls that do not contain system calls.
The program prompts the user to enter two integers i and j and

a shell command. If the function ctrl returns 0, the command is
executed, otherwise the command’s script is printed.

int ctrl(int i, int j) {

int x,y;

x = 1i;

y =3

while (x <> 0) {
x=x-1;
y=y -5
}

if (i==j)
return y;

else

return x - y;

Figure 4. A simple Example of a Function with no System Calls

Function ctrl, described in Figure 4, takes two integers as input
and returns an integer value. Determining the return value of the
function and its relationship to the arguments i and j is crucial in
building a precise model of the program. The absence of any invari-
ant on the return value of function ctrl leads to a nondeterministic
model that will allow the nondeterministic choice between the ex-
ecution of either the if or else for any inputs of the program.

void main (void) {
char input[32];
gets(input) ;
gets(i);
gets(j);
if (ctrl(i,j) == 0) {
setreuid(42,-1);
syslog(1l,"Execing file");
execve (input,0,0);
} else {
struct stat buf;
syslog(l, "Echoing file");
stat (input+2, &buf);
int fd = open(input,0_RDONLY);
void *filedata =
mmap (0, buf .st_size,PROT_READ,MAP_PRIVATE,£d,0) ;
write(1,filedata,buf.st_size);

Figure 5. A Example of a Program with a Call to a Function with
no System Calls

3.3 Invariant Generation and Assertion Checking

Figure 6 describes the result of running Daikon on the program
with respect to the function main. That is, all of the likely in-
variants that Daikon discovers about the function main and all
functions and system calls within the body of the function main,
and by running the program and providing respectively the inputs
" /esl/bin/library”, 3, and 3, as the respective values for the vari-
ables input, i, and j.

Daikon captures the fact that arguments of functions and sys-
tem calls are constants. An example of that is __ruid == 42 and
__euid -1 for the first and second arguments of setruid.
Daikon can also capture the fact that the arguments to a function or
a system call are equal. An example of that is the equality __argv
== __envp between the second and third argument of execve. But
most importantly, Daikon can establish equalities between return
values and arguments of function calls. With our preprocessing ca-
pability, we are able to use Daikon to generate those relationships
between return values and arguments of system calls as well. An ex-
ample of such relationships is the quality between the return value

88

Daikon version 4.2.12, released December 1, 2006;
Processing trace data; reading 1 dtrace file:
[2:37:50 PM]: Finished reading example.dtrace

..setreuid():: :ENTER
_ruid == 42
_euid == -1

..execve():: :ENTER

__argv == __envp
"/csl/bin/library"
__argv == null

..gets():::EXIT
return == "/csl/bin/library"
Exiting Daikon.

Figure 6. Output of Running Daikon on the Program in Figure 5

Daikon version 4.2.12, released December 1, 2006;
Processing trace data; reading 1 dtrace file:
[8:19:21 PM]: Finished reading new.dtrace

..ctrl():::ENTER

i==j
i==3
x ==y

one of {0, 1, 2}

»

return ==
Exiting Daikon.

Figure 7. Output of Daikon for Function ctrl

of gets and the first argument of execve. Such simple relation-
ships are easily proved by BLAST as invariants that hold for all
runs of the program.

Most importantly, Daikon generates a key likely invariant for
function ctrl. Figure 7 describes the output of Daikon for function
ctrl in the form of the assertion i==j. Daikon also generates the
loop invariant x==y for this particular run as well. Since i and j are
input variables to the function, and x and y are local variables, we
combine the two assertions into i==j implies x=y. This likely
invariant is trivially proved by BLAST.

34

Figure 8 describes the Dyck model for the example in Figure 5. The
first observation is that the model does not take into account system
call arguments and therefor introduce a great deal of nondetermin-
ism. The second observation is that the model ignores functions that
do not perform any system calls but might influence the behavior
of the application.

The Dyck model is a pushdown automaton where null system
calls in the form of push and pop are introduced before and after
each system call and used to ensure that system calls are executed
in the order defined by the control flow graph of the program.
In [17], the following mimicry attack against the Dyck model of
Figure 5 is generated to illustrate the weakness of state-of-the-art
models proposed in the literature:

Mimicry and Non-Control-Data Attacks

read(0);

read(0);

read(0);
setreuid(0,0);
write(0);
execve(“/bin/sh");

push A

read()
pop A o&.“ B
pop B read()

push C read()

pop C
push E

setreuid()

push D
write()
pop D pop E
execve() stat()
open()
mmcap()
write()

Figure 8. Dyck Model for the Example in Figure 5

A mimicry attack is a sequence of malicious system calls that is
allowed by the model but not by the application. A mimicry at-
tack exploits the nondeterminism introduced in the model. This
nondeterminism is the result of the approximation process during
the construction of the Dyck and similar models. In contrast, our
guarded model of the same program described in Figure 9 includes
key invariants generated by Daikon and validated by BLAST and
represents a semantically richer representation of the program’s be-
havior. The combination of likely invariant generation and assertion
checking is the key to the success of our approach.

J r1 =read()
ro =read()
r3 =read()

Ty =73 r2 #13
setreuid() write()
write() stat()
¢ $ mmcap()
$ write()
[

Figure 9. Guarded Model for the Example in Figure 5

While our extension of Daikon can generate a large number of
invariants for a given program, it is possible to provide Daikon
with a list of program control points and generate invariants only at
those control locations. It is also possible to select a subset of local
and global variables to reduce further the number of invariants.
With these restrictions, we are guaranteed to capture automatically
all system call arguments that are constants, and all equalities
between system call return values and system calls arguments.
This particular form of likely invariants is much simpler to prove
with any assertion checker than arbitrary assertions about program
variables. Furthermore, these likely invariants are exactly the kind

89

of invariants that prevent non-control-data attacks. Non-control-
data attacks exploit the nondeterminism that is inherent to the
applications code it self. Figure 10 illustrate a non-control-data
attack on a simple program where ch is an input character that
determines what system call is executed in the switch statement.
Between the time where the user inputs a value for ch and the
time it is used to decide which branch of the switch statement
to execute, the user inputs a string input that might override the
value of ch.

int main(void) {
char ch;
char input[32];
ch = getchar();
gets(input);

SY;IZ:L{'/Ch(Ch) {

case ’u’: sysl ;
case ’e’: sys2 ;
case ’r’: sys3 ;

Figure 10. Example of Code vulnerable to Non-control-data At-
tack

Daikon automatically generates for this kind of example, the
relationship between the return value of getchar and the variable
ch used in the switch statement.

4. Guarded Models

In the previous section, we illustrated how invariants generated
from source code can produce guarded models that are precise
enough to capture rich semantics information about the application
and prevent a large number of attacks. In this section, we formally
define guarded models. In particular, we show how guarded models
relate to application code via predicate abstraction [19]. Our first
model is the guarded model for an individual procedure. This
model is the abstract state graph of the procedure. It is a much more
precise version of the control flow graph of the procedure.

DEFINITION 1. (ASG: Abstract State Graph) Let P be a program,
and p1,- -+, pr a set of arbitrary predicates over its variables. An
ASG of a procedure P using the predicates p1,-- - ,py is the in-
traprocedural control flow graph Gp = (A, Tp, Lp,Ta) associ-
ated with the program source code of P where

o A is the finite set of abstract states such that each abstract state
is a pair (v, e) where v is a program control location and e a
valuation of the predicates p1, - - - , Pk

e Tp € V isthe entry point of P.

o | p C V is the finite set of P’s exit points.

e 7, CV x V isa transition relation.

The ASG of a procedure is turned into a Guarded Control Flow
Graph by guarding each transition originating from an abstract state
(v, e) by the boolean combination of the predicates pi,- -+ , Pk
given by the valuation e. This boolean combination is an invariant
of the program at location v.

DEFINITION 2. (GCFG: Guarded Control Flow Graph) A GCFG
of a procedure P is the intraprocedural control flow graph Gp =
(V, Tp,Lp,T) associated with the program source code of P
where

e V is the finite set of program locations.
e Tp € V isthe entry point of P.

o | p C V is the finite set of P’s exit points.

o 7 C V x G x V is a transition relation where each transition
between two control locations is guarded by an invariant in the
set G of program invariants.

Since we monitor system calls, our model abstracts away from
the GCFG any instruction block that does not refer to a system call
or function call to obtain a guarded call graph.

DEFINITION 3. (GCG: Guarded Call Graph) Let P be a proce-
dure and let Gp = (V, Tp, Lp,) be its GCFG. A guarded call
graph (GCG) of P is a tuple

G=(S,Tp,Lp,7c,F,2, A) where

e S is a finite set of states.

o F is the finite set of function calls that appear in P.

e 3 is the finite set of system calls that appear in P.

o A is a two-dimensional array associated with function call
sites.

e 70 C(EXGXFxS)U(SxGxXxS)is a transition
relation.

Intuitively, a state s in S represents a set of consecutive program
points than identify a basic block, that is, a straight-line piece of
code without any jumps, or system calls, or function calls. Transi-
tions are labeled by either a function call or a system call. Since we
monitor only system calls, it is necessary to replace function calls
by a jump to the model of the called function while retaining infor-
mation about the control location to which the application should
return after the call to the function is completed. By eliminating all
function calls, we obtain a Guarded System Call Graph.

DEFINITION 4. (GSCG: Guarded System Call Graph) Let G =
(8, Tp,Lp,7s¢,F, X, A) be the GCG of a procedure P. Then
G is said to be a Guarded System Call Graph if F = 0. In
other words, G does not contain function calls. Furthermore, the
transition relation Tsc is defined as follows:

o 75c C (S x G XX xUXS) is a transition relation where
u € U is an action of the form A[F,s| := 1 or A[F,s] := 0
that updates the array A.

Intuitively, by eliminating function calls, the transition relation
refers only to system calls. However, for the purpose of maintaining
control flow integrity, it is crucial to maintain information related to
function call sites and return sites. This is achieved by augmenting
the transition relation with assignments of the form A[F,s] := 1
to indicate that a function F' has been called at control location s,
and assignments of the form A[F,, s] := 0 to indicate a return from
a call to the function F'. Therefore, for each function F' and each
program control point s where the function is invoked, the boolean
value A[F, s] indicates whether the program is executing F’ or not.

Similarly to other approaches in the literature, we show how to
extend the previous model with a stack, allowing us to build models
of programs with recursive functions.

DEFINITION 5. E_GSCG: Extended GSCG

Let G = (S, Tp,Lp,7c,F, %, A) be the guarded system call
graph (GSCG) of a procedure P. The E_.GSCG Eq extends. We
define the transition relation Tg as follow:

TE CUE X G XX XxUg xS)

where U is the finite set of actions where each action a; is of
the form push(v), pop(v), an update action u € U, or the empty
action e.

The semantics of the transition relation 7 identifies valid se-
quences of system calls within a program execution. We associate

0

to each function F', the set scope(F’) of all functions that appear in
the call graph of F'.
The semantics of each transition of the form

(Sia 9,04, Qi, 5i+1)
is given bellow:

1. invoking a system call: a transition corresponding to a system
call o; is accepted if and only if the invariant g; guarding the
system call is true.

2. call to a function: if s; is the entry point to a function, then
o; is the first system call executed in F'. The call is allowed if
the invariant g; is true, and the corresponding action a; is the
assignment A[F) s;] := 1 which indicates that the program in
executing F' from s;.

3. return from a function call: if s; 11 is the exit point of a function,
then o; is the last system call executed in F'. The call is allowed
if the invariant g; is true, and if the function F' has been invoked
from s;41, thatis, A[F, s;] == s;1. The corresponding action
a; is the assignment A[F, s;] := 0 which indicates that the
program is returning from executing F'. In addition to checking
that g; is true, we must check that:

VG € scope(F). Vs. AlG,s] ==0

indicating that all function calls inside F' have resulted in a
return to the intended return locations.

4. call to and return from a recursive function call: if s; is the
entry point to a recursive function, then in addition to the action
described above, the pair (F,s;) is pushed onto the stack. If
sit+1 is the exit point of a nonrecursive function, then it is
necessary to check that the top of the stack contains the pair
(F 5 SL)

Models that use a pushdown System to monitor sequences of
system calls belong to the family of visibly pushdown automata [5].
Intuitively, the stack alphabet is a finite set of return addresses spec-
ifying where the program execution should resume after the call to
a function. The visibly pushdown automaton pushes onto the stack
an element when it reads a function call, and it pops the stack only
when returning, and does not use the stack when it reads allowed
system calls. Using a visibly pushdown automaton requires code
instrumentation to trigger the push and pop operations based on the
observed inputs to the automaton of the application. Our model is
more efficient at monitoring time because we already encoded stack
activity using the array A. Our model achieves stack determinism
and can be simulated by a Dyck model which generates more over-
head during monitoring and which cannot deal with recursive func-
tions nor with the presence of circuit in function calls. In our model,
we show that recursive functions can be handled without generat-
ing extra system calls. We succeed in building a model which does
not need to monitor the program counter, unlike [32], nor does it
introduce extra null system calls, unlike the Dyck model [13, 16].

Our model shares many features of already proposed models.
Steps 2 and 3 ensure context sensitivity and capture the call-return
semantics of high-level programming languages like any reason-
able model would. Step 4 adopts the traditional approach of adding
a stack to model recursive programs. The novelty of our model re-
sides in the use of program invariants generated by invariant gener-
ation techniques, dynamic program analysis, and assertion check-
ing. Building our model using predicate abstraction and invariant
generation allows us to derive key properties that make the model
useful as a formal approach to intrusion detection.

5. Building Our Model

Our model construction process consists of the execution of the
following steps:

1. run the Inv-Gen tool to generate a set of invariants in the form
of linear relationships among program variables at exit function
points for each function.

2. run the application using Daikon and generate a set of likely
invariants. Likely invariants are generated at the entry and exit
points of each function and at each location where a system call
is invoked.

3. turn every likely invariant generated by Daikon into an assert
statement in the line of code indicated by Daikon and augment
the application code with these assert statements.

4. run the BLAST assertion checker and check all assert state-
ments in the augmented application code and make use of the
invariants generated by Inv-Gen as aids in the assertions check-
ing process.

5. filter the set of likely invariants into three sets:

e likely invariants for which BLAST can prove that the corre-
sponding asserts hold

e likely invariants for which BLAST generates execution
traces that violate the corresponding asserts

e likely invariants for which BLAST either runs out of mem-
ory, crashes, or returns with an inconclusive answer

6. for each procedure, generate, using BLAST, the control flow
graph of each function where each node is decorated by the set
of predicates that hold at that node location.

Step 6 effectively produces the abstract state graph of a pro-
cedure using the predicates collected by Daikon and Inv-Gen, and
the predicates appearing in conditional branches and assignments
in the source code of the function. We minimize the abstract state
graph by applying a minimization algorithm based on the obser-
vational equivalence proposed by Milner [25] and implemented in
[14], that is, by retaining only system calls and function calls while
preserving the invariants that hold true before each system call and
function call and at the return location of each function call as well.
This minimization guarantees that the sequences of system calls
accepted by the original model and the minimized model are the
same. This allows us to obtain the guarded call graph for each func-
tion. The call graph of each function is turned into a guarded call
graph by guarding each system call and function call by the in-
variant that holds at the control location where the call is invoked.
The minimization step does not lose any information about the col-
lected invariants at the control nodes that have been collapsed since
the construction of the abstract state graph propagates every invari-
ant to every node location where it holds, in particular at control
locations where a function or a system call is invoked.

While obtaining the guarded call graph for each function is
simple once an abstract state graph is built, combining the guarded
call graphs of all functions to build a global call graph can be done
in different ways. In [18] inlining is used whenever a function call
is made. The problem in this approach is that the same call graph
is duplicated at each call site of a function without further analysis.
In our approach, invariants that are true at the function call site
are propagated inside the function to obtain a more refined control
structure. That is, for every function call site, we might inline a
different, more precise, model of the function. In the case where
the propagation of the predicates does not produce a more precise
model of the function, we just transfer the control to the function’s
guarded call graph. Since we need to remember the call site to
which the execution should return to after the function call, we

91

update the array .4 when a particular call at a particular control
location is invoked. We also update the array A at function return
sites. Updating the array A amounts to combining the guarded
call graph of all functions and producing a global guarded system
call graph when there are no recursive functions, or an extended
guarded system call otherwise. This is done by eliminating the
function calls and deciding whether or not to apply inlining. The
following algorithm describes our process for producing the final
global model, starting from the guarded call graph (GCG) of the
main function. Let T = (s,g,F,s’) € 7¢, a transition where a
function call to F' is invoked at site s. If F' does not invoke any
function calls and F' contains at least one system call, we connect
s to the GCG of F' as follows: we merge the states s and T 7, and
we add the transition

ty = (S,gk,Uk,A[F, ’5] = 17Sk)

for every first system call o encountered in every possible control
path from T r. Also, for every state s. from which L r is reached
in one step (se, g, 0, L), we replace such transition by

(se;g NI 0, A[F,s'] :==0,s")
where [is the predicate
A[F,s'] == 1AV G € scope(F).V¥s.A[G,s] ==0

If F' does not contain system calls, we merge s and s’, and we
strengthen the guards of all outgoing transitions of s’ with the
disjunction of invariants that hold at the exit points of F' and
we remove 7. If F' invokes function calls, then we apply the
same algorithm to every function called by F'. If F' is a recursive
function, the assignments to A are replaced by the appropriate push
or pop actions.

BLAST can be invoked with an option that can compute a
global abstract state graph for the whole application code and
with an option that computes the abstract state graph for each
individual function. When the application code is larger than a few
hundred lines of code, it is recommended to avoid building the
global abstract state graph since it requires more space and time
for the generation process to be completed. Due to the limitations
of BLAST, we use the ncc compiler [3] to generate the call graph
of the entire program or a particular function, and use the analysis
information generate by ncc to indicate the location for which
Daikon should generate invariants. Invariants proved by BLAST
are then attached to the corresponding nodes in the call graph.

6. Properties of Guarded Models

Our model allows fewer attacks than, for instance, a Dyck model
[16]. Recall that Dyck model instrumentation involves inserting
distinct pre-calls and post-calls at each function call site. This en-
sures determinism in stack operations as each call site is identi-
fied by its pre-call. A Dyck stack records the pre-call and a path is
deemed feasible if each return leads to a post-call, matching with
the last pre-call at the top of the Dyck stack.

THEOREM 6.1. [Expressivity]
Let P be a program, and Pred_GSCG and E_GSCG be respectively
the guarded system call and the extended system call graph for P.

1. If P contains no recursive functions or no circuit in the se-
quence of functions calls, then any Pred_GSCG of P can be
simulated by the Dyck model of P.

2. If P contains, recursive functions then any E.GSCG of P can
be simulated by the Dyck model of P.

PROOF 1. In the absence of any data flow analysis, the Dyck model
introduces for each system call a Pre- and Post-call. The Dyck
model does not allow any path that is not allowed by the control

Reference Program Attacks

[10] ghttpd overwrite filename

[10] wu-ftpd overwrites userid

2] rm.c race condition

overwrites path name
[27, 31] ssh overwrites authenticated

flag to non-zero

[10] Netkit Telnetd overwrites execve’s

arguments

Figure 11. Attacks on Real-world Applications Detected by In-
variant Violation.

flow graph of the program, but does not eliminate any paths from
the control flow graph either. Guarded models are more precises
that the control flow graph of the program. Therefore, to every path
in a guarded model, corresponds a path in the Dyck model.

Theorem 6.1 shows that our Model is always more precise than
the Dyck model. Also, the level of stack determinism is reached
without the overhead of instrumenting the binary with null system
calls. We also do not need to monitor the program counter, as
it is statically taken into account by the abstract state graph. By
using updates the the array A, we eliminate the need to instrument
the source or the binary code with additional system calls at each
system call site. If P does not contain recursive functions or circuits
in a sequence of function calls, then a stack is not mandatory (even
if a function is called at different sites).

In some cases, our model can detect application logic bugs
efficiently.

THEOREM 6.2. [Exact Model]

Let P be a program, and Pred_GSCG the guarded system call
graph of P. If Pred_GSCG is built from deterministic abstract state
graphs, then the sequences of system calls accepted by Pred_GSCG
are exactly those accepted by the P.

PROOF 2. The proof'is trivial in the sense that in the case where the
abstract state graph is deterministic, the model is not an overap-
proximation of the application behavior, but a finite an exact faith-
ful abstraction of the application. This means that every sequence
in the model is a sequence of the application and vice versa.

In addition to its robustness against attacks to which the Dyck
model is vulnerable, our model can tackle non-control-data attacks
that are beyond the reach of the Dyck model. In Figure 11 we refer
to published attacks that are based on non-control-flow manipula-
tion described briefly in the third column. All these attacks do not
modify the sequences of system calls generated by the execution
of the program (second column) but violate a trivial invariant that
is generated and propagated along the control structure of the pro-
gram. Notice that three attacks listed in [10] are detected by data
flow integrity mechanisms implemented in [9] and that connect a
variable value used in an instruction to the value it was set to in
a previous instruction. These are exactly the kind of dependencies
Daikon generates for these examples and those are exactly the in-
variants that BLAST manages to trivially prove true since no pro-
gram instruction will affect those variables between the time they
are set and the time they are used. This has been confirmed by our
experiments with the three attacks.

To illustrate further the effectiveness of our model, we prove
that our automatically generated model detects any attack generated
automatically by the techniques described in [24].

THEOREM 6.3. [Detection]
Let Pred_GSCG be the guarded system call graph of a program

92

P. Any attack on P automatically generated by the framework
described in [24] will be detected by Pred_GSCG.

PROOF 3. The technique described in [24] consists in finding a
sequence sci,SCa, -+ ,8Cn Of system calls that are accepted by
an intrusion detection model such as a Dyck model. The attacker
hijacks the application and executes the following sequence:

mcy, 8C1,T1,MC2,8C2,T2 " ,MCp, SCn, Tn

That is, it executes a malicious code mc; before a system call sc;
in which arguments to the system call have been overwritten with
values defined by the attacker, executes the system call sc; with the
attacker’s arguments, and then finds a set of memory locations and
corresponding values so that if these memory locations are over-
written in a sequence r; of instructions, the program’s flow of exe-
cution will return to a legitimate program control point to conform
to the control flow integrity enforced by the model. The sequence is
repeated for each system call sc;. The Pred_GSCG guards each sys-
tem call sc; with an invariant g;. Therefore, there exists some i for
which executing the sequence mc;, sc; that overrides system call
arguments with attacker’s values instead of the sequence lc;, sc;
consisting of the legitimate block of instruction lc; preceding the
system call sc; will not follow the program execution paths from
which g; has been generated and propagated and will violate g;
that summarizes the data flow in lc;.

For the attack to succeed, the attacker has to execute all of the
sequence mci, SC1, 71, MC2,8C2,T2 "+ ,MCp, SCn, T'n. For our
model to prevent the attack, it is sufficient that one invariant g;
be violated.

Current state-of-the-art models introduce nondeterminism that
is not present in the applications code and therefore are subject to
mimicry attacks. In [17], Giffin and al. presented a simple and ef-
ficient way of checking whether a model is subject to a mimicry
attack and can generate a sequence of system calls and their ar-
guments that defeats a given model if it is vulnerable. Such a
technique is based on model checking the model it self against a
specification of an OS policy expressed in a simple form. In the
case of guarded models, we make such a process even simpler.
Guarded models are built using predicate abstraction which has
nice theoretical properties of great practical usefulness. The non-
determinism created by the abstraction process determines exactly
where mimicry attacks are possible. A mimicry attack is every se-
quence of system calls that reaches a particular OS configuration
and that has at least a nondeterministic transition.

THEOREM 6.4. [Evaluation]
Every sequence in a guarded model containing a nondeterminis-
tic transition created by predicate abstraction can potentially be
exploited by a mimicry attack.

Theorem 6.4 allows us to devise a simple procedure for evaluat-
ing guarded models against mimicry attacks and reduces the model
checking process of evaluating a given model.

7. Experimentation

Using our prototype implementation, we ran some experiments to
measure the model construction and monitoring overhead for small
and medium size applications. For monitoring purposes, we used
the etrace framework [22] that allows the interception of system
calls and provides an API for extracting system calls arguments.
The overhead of checking whether system calls arguments satisfy
or not some invariant is negligible since most of the overhead in the
monitoring process is caused by the interception of the system calls.
Therefore, the number of invariants and their size does not induce
additional performance penalties. The etrace framework induces

an overhead of between 2% and 30% for the applications that
we studied such as gzip, httpd, ssh, and snort. The construction
of the models was the most computationally intensive phase of
the experiments. However, it is important to notice that model
construction is a one-time cost to endure and once the model has
been built, the practicality of our approach depends solely on the
monitoring overhead.

We executed the steps described in Section 5 to build our mod-
els. We restricted the runs of each application to collect no more
than 20 MB of execution traces to be processed by Daikon to gen-
erate likely invariants.

Application | Daikon/ etrace model
Inv-Gen | overhead | overhead
ghttpd 16 5% 1.1%
gzip 106 2.2% 0.9%
ssh 374 13% 1.9%
snort 2130 28.5% 3.2%

Figure 12. Number of Invariants for Some Sample Applications
and the Corresponding Overheads Associated with System Calls
Interposition and Invariant Checking

Figure 12 shows our experimental results. For each application,
Daikon takes between 30 and 60 seconds to processes each MB
of run traces. Once those traces are processed, likely invariants are
generated. For each application, the second column gives the total
number of likely invariants generated by Daikon and the invariants
generated by Inv-Gen. The percentage of the likely invariants that
have been generated by Daikon that are proven true by BLAST is
between 5% and 10%. This means that most likely invariants are
proved to be violated. This means that if those invariants have been
used to build an underapproximation model of the application, then
that model will potentially generate a huge number of false alarms.
The speed by which BLAST discharges each likely invariant de-
pends largely on the size of the application’s code. While it takes
about 2 seconds in the example of small applications such as ghttpd,
it may take up to 20 minutes for some likely invariants in the case
of snort. However, it took BLAST far less than that to disprove
more than 90% of the invariants. That is, BLAST takes more time
to prove that a likely invariant holds than to generate a counter-
example for a likely invariant that does not hold. This performance
indicates that the tools that we use can handle large number of in-
variants and therefore large models, but the construction time might
takes several days for a significant application. However, it is useful
to remember that this is a one-time cost in the process of securing
such application. More experiments are needed to devise a strategy
by which invariants are generated only for some system calls and
not all system calls. This is possible since attacks usually proceed
in sequences of system calls and therefore, as illustrated in the pre-
vious section, one needs to enforce application invariants only at
some system calls. This will speed up the model construction pro-
cess and will reduce the monitoring overhead. In the case of snort,
it was not possible to generate the global abstract state graph, but
we were able to generate a global state graph for one particular
important part of snort’s code, that is, the functions that process
network packets. Those are the most vulnerable functions since an
intrusion is the result of processing a malicious packet. The model
has 49 states and 657 transitions. Only 23 invariants are used in the
model. Those 23 invariants are enough to monitor the application
when it processes any packet on the network. In any given appli-
cation, vulnerabilities are typically localized to a particular library,
or a set of functions. While in general, it might not be possible to
know what part of the application’s code is vulnerable, it is often
the case possible to determine which part of the code is critical and

93

should be monitored. Our experiment with the snort vulnerability
[1] illustrate this point. The code of snort could be divided into
two basic blocs: an initialization block and a packet processing and
logging bloc. A buffer overflow is likely to be triggered by a well
crafted packet. Therefore, it is not necessary to build a model of the
initialization phase that consists largely of configuring the network
interface and reading snort rules.

8. Conclusion

We have presented guarded models, a novel model of application
behavior for intrusion detection systems. Our model is built in a
fully automatic way and provides an improvement over state-of-
the art models [16, 8] due to its tight coupling of control flow and
data flow analysis. Our model presents strong properties such as the
automatic detection of mimicry attacks [33] to which state-of-the-
art models are all subject. Furthermore, it can handle non-control-
data attacks [10] that are often detected because of a violation of
the many invariants that we generate. Because guarded models are
built using predicate abstraction, their evaluation against mimicry
attacks is largely simplified compared to other models, because the
nondeterminism introduced by predicate abstraction characterizes
precisely where in the code the model loses precision in modeling
that application’s behavior.

Our approach is complementary to many interesting and effi-
cient approaches to securing software. Our invariants could easily
be added as guards to a Dyck model to make it a more precise
model. In approaches [8] where an application model is learned
from a training period, a large number of facts are generated about
the program from the various runs. These approaches have no way
of evaluating which facts are useful. In particular, if a learned fact
is violated later during monitoring, it is not possible to know if the
violation corresponds to a legitimate execution of the program or
to an attack. Our combination of Daikon and BLAST allows us
to determine precisely which likely invariants are always true and
which likely invariants are not. This means that we have a proof
that some assertions observed during the training period will even-
tually be violated in a legitimate execution of the program. There-
fore, we can provide to any learning approach the likely invariants
for which BLAST did not succeed in proving or disproving their
validity at particular locations of the program. Our model can ben-
efit from recent efficient implementation of control flow integrity
[4]. The combination of control flow integrity and memory protec-
tion [11] will provide guarantees that all our invariant checks are
added to the application’s binary and that they are protected from
being overwritten. Recent data flow integrity mechanisms [9] detect
non-control-data attacks by enforcing simple safety properties that
reflect memory safety policies. We believe that by adding to such
policies our invariants will provide more security. It is noted in [10]
that mounting non-control-data attacks requires knowledge of the
semantics of the application. Mechanisms such as those employed
in [9] do not include in their memory policy semantics information
about the application. We believe a combination with our invari-
ants will produce a much more powerful detection mechanism. In-
variant generation techniques have been investigated for over three
decades. Our framework is extensible in the sense that any invari-
ant generation technique can be exploited, in particular, any tech-
niques that deal with multithreaded programs [7, 28], programs that
manipulate dynamic objects, such as shape analysis [34], and pro-
grams involving complex relationships among program variables,
such as nonlinear invariants [30]. Our framework is an open archi-
tecture to which different invariant generation tools can be plugged
in. The maturity of assertion checking tools such as BLAST and
SLAM [6] for C programs shows that our approach is scalable.

More information on this work is available at
http://www.csl.sri.com/users/saidi/program_analysis

Acknowledgments

We thank the anonymous referees for their useful comments. The
design and implementation of guarded models benefited from the
help of Rachid Rebiha and his many useful comments and sugges-
tions while being a summer visitor at SRI. Dr. John Rushby and
Mr. Rance Delong were a source of many stimulating discussions
about this work. This research was sponsored by NSF under con-
tract number SA4102-10097PG/CCR-0325274 and by DARPA un-
der contract number FA8750-06-C-0182.

References

[1] 2007-02-19 sourcefire advisory: Vulnerability in snort dce/rpc
preprocessor, versions 2.6.1, 2.6.1.1, 2.6.1.2, and 2.7.0 beta 1.
http://www.snort.org/docs/advisory-2007-02-19.html.

[2] The common vulnerabilities and exposures (cve) web site.
http://cve.mitre.org/.

[3] Ncc: a compiler that produces program analysis information.
http://students.ceid.upatras.gr/ sxanth/ncc/.

[4] Abadi, Budiu, Erlingsson, and Ligatti. Control-flow integrity:
Principles, implementations, and applications. In SIGSAC: 12th
ACM Conference on Computer and Communications Security. ACM
SIGSAC, 2005.

[5] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC:
ACM Symposium on Theory of Computing (STOC), Aug 2004.

[6] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. pages 1-3, Jan. 2002.

[71 S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the
automatic generation of invariants. In R. Alur and T. A. Henzinger,
editors, Computer-Aided Verification, CAV ’96, volume 1102 of
Lecture Notes in Computer Science, pages 323-335. Springer Verlag,
1996.

[8] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection.
In IEEE Symposium on Security and Privacy, pages 48—62. IEEE
Computer Society, 2006.

[9] M. Castro, M. Costa, and T. Harris. Securing software by enforcing
data-flow integrity. In Proceedings of the Sixth Symposium on
Operating Systems Design and Implementation, Nov. 2006.

[10] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-control-
data attacks are realistic threats. In USENIX Security Symposium,
2005.

O. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. Xfi:
Software guards for system address spaces. In Proceedings of the 7th
Usenix Symposium on Operating Systems Design and Implementation
(OSDI’06), 2006.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27(2):1-25, Feb. 2001.
H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller.
Formalizing sensitivity in static analysis for intrusion detection. In
IEEE Symposium on Security and Privacy, page 194. IEEE Computer
Society, 2004.

J.-C. Fernandez, H. Garavel, AlainKerbrat, R. Mateescu, L. Mounier,
and MihaelaSighireanu. Cadp (casar/aldebaran development
package): A protocol validation and verification toolbox. In R. Alur
and T. A. Henzinger, editors, Computer-Aided Verification, volume

1102 of Lecture Notes in Computer Science, pages 437-440. Springer

Verlag, Aug. 1996.

S. Forrest and T. Longstaff. A sense of self for unix processes. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy,
pages 120-128, May 1996.

J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller. Environment-
sensitive intrusion detection. In A. Valdes and D. Zamboni, editors,
Recent Advances in Intrusion Detection (RAID), volume 3858 of
Lecture Notes in Computer Science, pages 185-206. Springer, 2005.

(11]

[12]

[13]

[14]

[15]

[16]

94

[17] J. T. Giffin, S. Jha, and B. P. Miller. Automated discovery of mimicry
attacks. In D. Zamboni and C. Kriigel, editors, Recent Advances
in Intrusion Detection, 9th International Symposium, RAID 2006,
Hamburg, Germany, September 20-22, 2006, Proceedings, volume
4219 of Lecture Notes in Computer Science, pages 41-60. Springer,
2006.
R. Gopalakrishna, E. H. Spafford, and J. Vitek. Efficient intrusion
detection using automaton inlining. In IEEE Symposium on Security
and Privacy, pages 18-31. IEEE Computer Society, 2005.
S. Graf and H. Saidi. Construction of abstract state graphs with PVS.
In O. Grumberg, editor, Computer Aided Verification, volume 1254 of
Lecture Notes in Computer Science, pages 72—83, Haifa, Israel, June
1997. Springer Verlag.
S. Gulwani and A. Tiwari. Combining abstract interpreters. In T. Ball,
editor, ACM SIGPLAN Conf. on Programming Language Design and
Implementation, PLDI 2006, pages 376-386, 2006.
T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with BLAST. In T. Ball and S. K. Rajamani, editors,
Model Checking Software, 10th International SPIN Workshop.
Portland, OR, USA, May 9-10, 2003, Proceedings, volume 2648
of Lecture Notes in Computer Science, pages 235-239. Springer,
2003.
K. Jain and R. Sekar. User-level infrastructure for system call
interposition: A platform for intrusion detection and confinement.
In NDSS. The Internet Society, 2000.
R. Jhala and K. L. McMillan. Interpolant-based transition relation
approximation. In K. Etessami and S. K. Rajamani, editors, Computer
Aided Verification, 17th International Conference, CAV 2005,
Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings, volume
3576 of Lecture Notes in Computer Science, pages 39-51. Springer,
2005.
C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Automating mimicry attacks using static binary analysis. In
Proceedings of the 14th USENIX Security Symposium, 2005.
[25] R. Milner. A calculus of communicating systems. LNCS, 92, 1980.
[26] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. Electronic Notes in Theoretical Computer Science, 89(2),
2003.
[27] K. Pekka and L. Kalle. Sshl remote root exploit., 2002.
http://www.hut.fi/ kalyytik/hacker/ssh-crc32-exploit_Korpinen_Lyytikainen.
[28] H. Saidi. Modular and incremental analysis of concurrent software
systems. In /4th IEEE International Conference on Automated
Software Engineering, pages 92—101, Cocoa Beach, FL, Oct. 1999.
IEEE Computer Society Press.
H. Saidi. Model-checking guided abstraction and analysis. In 7th
International Static Analysis Symposium, SAS 2000, volume 1824 of
Lecture Notes in Computer Science, pages 377-396. Springer Verlag,
June 2000.
S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop
invariant generation using groebner bases. In POPL '04: Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 318-329, New York, NY, USA, 2004.
ACM Press.
[31] P. Starzetz. Crc32 sshd vulnerability analysis.
. http://packetstormsecurity.org/0102-exploits/ssh1.crc32.txt.
[32] D. Wagner and D. Dean. Intrusion detection via static analysis. In
IEEE Symposium on Security and Privacy, pages 156—169, 2001.
[33] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion
detection systems. In R. Sandhu, editor, Proceedings of the 9th ACM
Conference on Computer and Communications Security, Washington,
DC, USA, Nov. 2002. ACM Press.
[34] R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. In D. A.
Watt, editor, Compiler Construction, 9th International Conference,
CC 2000, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS 2000, Berlin, Germany,
Arch 25 - April 2, 2000, Proceedings, volume 1781 of Lecture Notes
in Computer Science, pages 1-17. Springer, 2000.

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[29]

[30]

	1 Introduction
	2 An Architecture for Building and Using Guarded Models
	3 Examples
	3.1 Abstract State Graphs for Intrusion Detection
	3.2 Invariants and Model Precision
	3.3 Invariant Generation and Assertion Checking
	3.4 Mimicry and Non-Control-Data Attacks

	4 Guarded Models
	5 Building Our Model
	6 Properties of Guarded Models
	7 Experimentation
	8 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

