
Cache Topology Aware Computation Mapping for Multicores ∗

Mahmut Kandemir†, Taylan Yemliha‡, SaiPrashanth Muralidhara†,

Shekhar Srikantaiah†, Mary Jane Irwin†, Yuanrui Zhang†

†The Pennsylvania State University, University Park, PA. {kandemir, smuralid, srikanta, mji, yuazhang}@cse.psu.edu
‡Syracuse University, Syracuse, NY. {tyemliha}@syr.edu

Abstract

The main contribution of this paper is a compiler based, cache
topology aware code optimization scheme for emerging multicore
systems. This scheme distributes the iterations of a loop to be
executed in parallel across the cores of a target multicore machine
and schedules the iterations assigned to each core. Our goal is to
improve the utilization of the on-chip multi-layer cache hierarchy
and to maximize overall application performance. We evaluate our
cache topology aware approach using a set of twelve applications
and three different commercial multicore machines. In addition,
to study some of our experimental parameters in detail and to
explore future multicore machines (with higher core counts and
deeper on-chip cache hierarchies), we also conduct a simulation
based study. The results collected from our experiments with three
Intel multicore machines show that the proposed compiler-based
approach is very effective in enhancing performance. In addition,
our simulation results indicate that optimizing for the on-chip cache
hierarchy will be even more important in future multicores with
increasing numbers of cores and cache levels.

Categories and Subject Descriptors B.3.2 [Memory Structures]:
Design Styles – Cache memory; C.4 [Performance of Systems]:
Design Studies

General Terms Management, Design, Performance, Experimen-
tation, Algorithms

Keywords Cache, Multi-level, Multicore, Topology-aware, Com-
piler

1. Introduction

Running into the power wall has forced processor designers to look
to other than clock-frequency scaling to continue the scaling in
processor performance that we have come to expect over the last
few decades. Since Moore Law continues to provide a doubling
in the number of transistors in every technology generation (every
two to three years), one way to double the performance without

∗ This research is supported in part by NSF grants CNS #0720645, CCF
#0811687, OCI #0821527, CCF #0702519, and CNS #0720749, and a grant
from Microsoft Corporation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.

increasing the clock frequency is to double the number of proces-
sors (cores) on the chip. The first (non-embedded) dual-core ar-
chitecture was delivered in 2001 and now quad-core architectures
are becoming increasingly common. As the microprocessor world
experiences this transition from out-of-order execution and clock-
frequency scaling to scaling through the placement of multiple pro-
cessor cores on one chip, programming these multicore machines
and optimizing software for them is emerging as a very challenging
task. It is clear that, without proper application software and system
software support that can take advantage of multiple cores on the
same chip, we will not be able to extract the expected performance
benefits from these machines. Unfortunately, developing reusable
and portable software for emerging multicore architectures is not
easy as the architectures of these machines (even those produced
by the same chip manufacturer) can be very different from one an-
other.

Consider for example three sample multicore architectures,
shown in Figure 1, from Intel: Harpertown, Nehalem, and Dun-
nington. Each of these architectures has two sockets; Harpertown
and Nehalem have 8 cores and Dunnington has 12 cores. We see
that these three architectures have very different on-chip cache hi-
erarchies. For example, while Harpertown has only two levels of
on-chip caches (L1 and L2), the other two machines have three
levels of on-chip caches (L1, L2, and L3). Also, in Nehalem, each
core has a private L2, whereas in Dunnington each L2 is shared by a
pair of cores. Considering the fact that the on-chip cache hierarchy
plays a very important role in determining the overall performance
of a multi-threaded application [8, 11, 21, 32, 33, 38], one can
expect that a given parallel code can have dramatically different
behaviors on these three machines. As a result, if a multi-threaded
code written and optimized for one multicore architecture is to
be ported to another, either one must accept the resulting perfor-
mance degradation or one must perform extensive code re-tuning
and re-optimization by hand to customize the code for the new tar-
get architecture. Clearly, neither of these options is very desirable
from a programmer’s viewpoint.

In this work, we explore a third option – enlisting the com-
piler’s help in customizing a program for a target multicore on-chip
cache hierarchy. Traditionally, optimizing compilers have three lay-
ers: front-end (which implements scanning, parsing and interme-
diate representation construction), middle-end (which mostly im-
plements architecture-independent optimizations such as code re-
structuring and data layout reorganization), and back-end (which
implements architecture-dependent optimizations such as instruc-
tion scheduling and register allocation).1 However, we believe that,
with multicore architectures, the middle-end layer of an optimizing

1 We should mention that a few optimizing compilers that target uniproces-
sor systems consider cache capacity during the optimizations in the middle
layer.

74

Copyright c© 2010 ACM 978-1-4503-0019-3/10/06. . . $10.00

L1 L1 L1 L1

L2

L1 L1 L1 L1

L2

0 1 3 64 52 7

L2 L2

L1 L1L1 L1L1 L1L1

L3

L2 L2 L2 L2

L1 L1L1 L1L1 L1L1

L3

L2 L2 L2 L2

3 762 51 40

0 1 2 3 4 5 6 7 8 9 10 11

(a) (b)

L1 L1 L1 L1

L3

L2

L1 L1

L2 L2

0 1 2 3 4 5

L1 L1 L1 L1

L3

L2

L1 L1

L2 L2

6 7 8 9 10 11

(c)

Figure 1. Multicore cache architectures: (a) Harpertown (b) Ne-
halem (c) Dunnington. In each figure, ovals denote processors
(cores) and L1, L2 and L3 represent on-chip caches. Typically, L2
has higher data access latency than L1, and L3 has higher access
latency than L2. Each of these architectures has two sockets (de-
noted by rectangles), each holding half of the cores and half of the
cache components.

compiler should consider the on-chip cache hierarchy as well; that
is, the cache hierarchy of the target multicore architecture should be
exposed to the middle-end layer of the compiler. While we present
a detailed experimental analysis later in the paper, Figure 2 illus-
trates the normalized parallel execution times for a multi-threaded
application (named galgel, which is a fluid dynamics code that im-
plements an analysis of oscillatory instability) on our three Intel
multicore machines, shown in Figure 1. The three bars in each
group correspond, from left to right, to the code versions generated
while targeting the on-chip hierarchies of Harpertown, Nehalem
and Dunnington, respectively. For example, the first bar in the sec-
ond group gives the execution time of the Harpertown version of
the code when run on Nehalem. The results for each group of bars
are normalized with respect to the best-performing version, and the
Dunnington version is executed using 8 threads (1 thread per core)
when ported to the other machines. We observe from these results
that, on each multicore machine, the version that has been special-
ized for that machine (by considering the on-chip cache hierarchy)
generates the best result. Exploiting the on-chip cache hierarchy
is critical for achieving the best performance on a given multicore
machine. As an example, if one were to run code optimized for
Harpertown on Nehalem, one would see a performance hit of 26%.
In the remainder of this paper, we present a compiler based, cache
topology aware code optimization strategy that customizes the data
access pattern of an application for the on-chip cache hierarchy of
a target multicore architecture.

Our target application domain is array/loop intensive programs.
These programs cover at least two important classes of applica-
tions. First, many scientific and engineering applications operate
on large data arrays using nested loops. Examples include appli-
cations for climate modeling, astrophysics, computational chem-
istry, bioinformatics, and nuclear structure exploration [20]. Sec-
ond, many data-intensive embedded applications such as multime-
dia codes operate on large data arrays that represent signals us-
ing structured loop nests [14]. The important point is that these
array/loop intensive programs (from both the scientific/engineering
domain and the embedded world) can potentially take advantage
of emerging multicore systems very well, as their parallelization
has been thoroughly studied and many loop level code/data restruc-
turing techniques (e.g., loop reordering, iteration space tiling, data

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Execution on

Harpertown

Execution on

Nehalem

Execution on

DunningtonN
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

Harpertown Version Nehalem Version

Dunnington Version

Figure 2. Normalized parallel execution times for a multi-threaded
application (galgel) on different Intel multicore architectures.

layout optimizations) have been developed to maximize their par-
allelism.2 What is missing, however, is the data locality aspect, i.e.,
how one can maximize data locality for a given on-chip cache hi-
erarchy. Unfortunately, existing data locality (cache performance)
optimization techniques – in the context of both single processor
machines and discrete multi-processor machines – do not specifi-
cally address shared on-chip caches that are now almost ubiquitous
across the spectrum of multicore machines.

We make three main contributions in this paper:
• We present a cache topology aware loop iteration distribution

scheme for multicore systems. This strategy uses polyhedral arith-
metic to distribute the iterations of a parallel loop across multiple
cores such that the performance of the on-chip cache hierarchy is
maximized. We describe our compiler algorithm and give an exam-
ple to illustrate how it operates in practice.

• We explain how this strategy can be extended to handle data
dependencies (i.e., if we want to execute in parallel the iterations
of a loop nest that have loop-carried dependencies) and to exploit
intra-core data locality.

• We implemented in a compiler and evaluated our proposed
scheme using a set of twelve applications and three commercial
multicore machines. In addition, to study some of our experimental
parameters in detail and to explore future multicores (with larger
numbers of cores and deeper on-chip cache hierarchies), we also
present results from a simulation based study.

The results collected from our experiments with three Intel mul-
ticore machines show that the proposed compiler-based approach
is very effective in enhancing the performance of on-chip cache
hierarchies of multicores, and as a result, significant overall perfor-
mance improvements are possible. For example, our loop distribu-
tion scheme generated 16%, 17% and 21% improvements in exe-
cution cycles, on average, over a state-of-the-art data locality op-
timization strategy, when targeting the Harpertown, Nehalem and
Dunnington systems, respectively. Our results also indicate that
optimizing for the on-chip cache hierarchy will be even more im-
portant in future multicores with increasing numbers of cores and
cache levels.

The next section explains the problem of optimizing data lo-
cality in shared on-chip caches of multicores. The details of our
proposed iteration distribution and scheduling schemes are pre-
sented in Section 3. Section 4 presents an evaluation of the pro-
posed schemes using both real multicore machines and a simula-
tion framework. Section 5 discusses related work and the paper is
concluded in Section 6 with a summary of our major observations.

2 The main parallelization strategy for these applications is loop-level par-

allelism in which iterations of a given (parallel) loop are distributed across
processors.

75

�

� �

�

� � � �

� �

� � � �

���

�

� �

� �

�

�

� � � � � � � �

�	�

�
�

�
�

�

� � � �

�

���

Figure 3. Motivation for distributing loop iterations and reorganiz-
ing loop iterations. A, B and C denote different data blocks. (a) The
case with iterations that do not share data. (b) The case with itera-
tions that share data. (c) Impact of local scheduling. In the original
schedule (left), core 0 accesses first A and then B, and core 1 ac-
cesses first B and then C. It is assumed that A and B conflict in the
shared cache, and therefore, access to B by core 0 will result in a
cache miss. The revised schedule on the right fixes this problem.

2. The Problem of Enhancing the Performance of

On-Chip Hierarchy

In multicore machines, the cores on the same chip can share an
on-chip cache space. How they share this cache space can make a
difference in runtime performance as cache sharing across different
cores can be constructive or destructive [13]. In the former case,
concurrently scheduled threads share data through the cache and/or
their access patterns are such that they do not displace each other’s
data from the cache. In the latter case, however, accesses from
concurrently scheduled threads displace each other’s data. This
occurs frequently when multiple applications are executed at the
same time on the same multicore machine (as different applications
do not share memory-resident data), but it can also happen when
data accesses from the threads that belong to the same application
(and share data between them) conflict in the shared cache [37].

We now focus on distributing and scheduling the iterations of
a parallel loop across multiple cores. We say that “two cores have
affinity at cache L” if both have access to that cache. For example,
in the Dunnington architecture in Figure 1(c), cores 0 and 1 have
affinity at the first (leftmost) L2 cache as both are connected to
it (as well as the L3 cache they share). Consider two cores that
have affinity at cache L. The chances for experiencing destructive
interactions in the cache space are higher if these cores do not
share data, as this will typically increase the number of distinct
data elements that compete for the limited cache space. Therefore,
if two iterations (that belong to a parallel loop) do not share data, it
is better to assign those iterations to cores that do not have affinity at
any cache (if possible). Figure 3(a) illustrates this scenario (A and
B represent two different data blocks). The left figure in (a) shows
the case when the iterations that access A and B are assigned to two
cores with no affinity, whereas the right one illustrates a potential
conflict if the iterations that do not share data are assigned to cores
with cache affinity. On the other hand, if two iterations do share
data, it is better to assign them to cores that have affinity at some
cache (see the right part of Figure 3(b)). If we do not do so (see
the left part of Figure 3(b)), this leads to data replication across
multiple on-chip caches at the same layer, which in turn reduces
the effective on-chip cache capacity, and ultimately hurts overall
performance.

The two scenarios illustrated in Figures 3(a) and (b) provide
motivation for distributing loop iterations across available cores
carefully by considering on-chip cache topology. Figure 3(c), on
the other hand, provides motivation for reorganizing the loop itera-

tions assigned to a core, i.e., scheduling them. This reorganization
(scheduling) has two goals: (i) improving the shared cache local-
ity beyond what can be achieved by loop distribution alone and (ii)
improving L1 cache locality. In this particular case, if two data ac-
cesses from two cores conflict in the shared cache (e.g., when the
access sequence is B[core 1], A[core 0], B[core 0] and C[core 1]
and A and B conflict in the shared cache space), the reuse of B by
core 0 will not be converted into locality because the second access
to B will result in a miss (see the left part of Figure 3(c)). One solu-
tion is to change the order of data accesses for this core, as shown
on the right part of the figure. That is, the goal should be to ensure
that when two cores do share data, they access that data at simi-
lar times to increase the chances for exploiting the resulting reuse
while the shared data is still in the shared cache space. In addition,
for a given core, the successively scheduled computations should
reuse data as much as possible to improve private (L1) cache local-
ity.

To summarize, there are two complimentary problems. The
first is the distribution of loop iterations across cores, that is, the
loop iteration-to-core assignment problem. This problem should
be attacked considering the data sharing across loop iterations as
well as the cache topology of the target multicore system. The
cores with affinity should be given iterations that share data (to
minimize conflicts in the cache), whereas the cores without affinity
should be given iterations that do not share data (to minimize data
replication within the on-chip cache space). In this paper, our main
goal is to address this assignment problem. Once, this problem is
handled, one can also be interested in a second problem, namely,
that of scheduling iterations assigned to a core to further improve
data locality. Clearly, in some cases, a compiler/user can decide
to run the iterations of a loop with loop-carried dependencies in
parallel and use proper synchronization to ensure correct semantics.
In this paper, we also discuss the necessary enhancements to our
base approach to handle such cases that involve data dependencies
(see Section 3.5.2).

3. Cache Hierarchy Aware Loop Iteration

Distribution and Scheduling

3.1 Assumptions

The input to our approach is a set of loop iterations that are to be
distributed over available cores for parallel execution. For now, we
restrict ourselves to fully-parallel loops, i.e., the loops in which
there are no loop-carried dependencies across iterations. As a re-
sult, any distribution of the iterations of such a loop is legal (i.e., se-
mantically correct). However, as will be demonstrated later, differ-
ent distributions can have significantly different data locality (on-
chip cache performance) behavior. The reason why we first focus
on fully-parallel loops is that, in practice, many commercial com-
pilers execute only such loops in parallel. While there are certainly
cases where benefits are possible when the iterations of a loop with
dependencies are distributed across available cores and the correct-
ness is ensured through inter-core synchronization, such cases are
rare in practice. In fact, in the parallel benchmarks that we have,
only 14% of the loops that are executed in parallel have some sort
of dependencies across iterations; the rest are fully parallel. Still,
we do discuss in this paper how our base approach can be enhanced
to handle data dependencies.

3.2 Representing Data Elements, Loop Iterations, and Array
Accesses

In our compiler framework, we use sets to represent array elements,
loop iterations, and mappings between them. Consider for example
the code fragment in Figure 4, written in a C-like pseudo-language.

76

int A[0..D1-1][0..D2-1]

...

for(i1=0;i1<Q1;i1++)

for(i2=2;i2<Q2+2;i2++)

...A[i1+1][i2-1]...

Figure 4. Example code frag-
ment.

int B[0..m-1]

...

for(j=2k;j<m-2k+1;j++)

B[j] = B[j] + B[2k+j]

+ B[j-2k]

Figure 5. Example code frag-
ment.

The iteration space K of this loop nest can be expressed as follows:

K = {(i1, i2)|(0 ≤ i1 ≤ Q1 − 1) ∧ (2 ≤ i2 ≤ Q2 + 1)},

where ∧ denotes the “and” operator. We use ~I = (i1 i2)
T to denote

the iteration vector for this loop nest. The set of values ~I can
assume, i.e., iteration space K, is the set of all combinations of
the values of the loop indices. Similarly, the set

D = {(d1, d2)|(0 ≤ d1 ≤ D1 − 1) ∧ (0 ≤ d2 ≤ D2 − 1)}

defines the data elements declared in the code fragment. Further,
the array reference in the loop body can be expressed as:

R = {(i1, i2) → (d1, d2)|(i1, i2) ∈ K ∧ (d1, d2) ∈ D ∧

(d1 = i1 + 1) ∧ (d2 = i2 − 1)},

where → represents a mapping from the iteration space to the data
space. Note that, while the first line of this expression enforces
the data and loop indices to be within the array and loop bounds,
respectively, the second line captures the relationship between these

indices. We use R(~I) to indicate the array element accessed by

iteration ~I using reference R (the fragment in Figure 4 has only
one reference, which is A[i1 + 1][i2 − 1]).

These sets can be viewed as a polyhedral model in which the ob-
jects of interest (loop iterations and data elements) are represented
as integer valued points in various regions of different spaces and
the mappings (such as R) are used to connect these spaces. Two of
the widely used polyhedral tools are the Omega Library [23] and
Polylib [3]. In this work, we use the Omega Library to capture the
iteration and data sets and the mappings between them as well as to
generate output code. However, its choice is orthogonal to the main
focus of this work, i.e., if desired, it can be replaced by another
polyhedral tool.

3.3 Tagging Iterations

We assume that data manipulated by an application are partitioned
into equal-sized blocks, and use β0, β1, β2, · · · βn−1 to denote
these blocks, assuming a total of n data blocks. We want to em-
phasize that (i) this partitioning is a logical one, i.e., the data are
not physically divided into blocks, (ii) blocks do not cross array
boundaries, i.e., each array starts with a new block, (iii) blocks are
numbered sequentially in some order (though the exact ordering
scheme used is not very important, one would expect two consecu-
tive blocks of an array to be assigned consecutive numbers, and the
number of the first block of the next array is going to be larger by 1
than the last block of the current array), and (iv) all blocks collec-
tively cover all the data elements accessed by the loop nest being
optimized.

Similar to data arrays, iterations of a loop nest are partitioned
into groups. We use notation ξ∆ to indicate an iteration group
ξ with tag ∆. This tag is determined based on the data block
access pattern exhibited by the iteration group. Specifically, if ∆
is δ0δ1 · · · δn−2δn−1, for each j between 0 and n − 1, δj is 1

if all iterations ~I ∈ ξ∆ access a data element ~d that belongs to
βj ; otherwise, δj is set to 0. Therefore, the tag associated with
an iteration group captures the set of data blocks accessed by the
iterations in that group as well as those that are not accessed. For

instance, assuming n = 4, ξ1100 represents an iteration group
that accesses the first two data blocks and does not access the last
two data blocks. As another example, ξ1000 represents an iteration
group that accesses only the elements of the first data block. Note
that ξ1100 and ξ1000 do not share any iteration between themselves,
as all the iterations in the former one access the second data block,
whereas none of the iterations in the latter one accesses the second
data block. Based on this discussion, we can say that two different
iteration groups do not share any iterations between them, and all
iteration groups collectively cover the entire iteration set of the loop
nest being distributed, that is,

K =
[

∆

ξ∆.

3.4 Going from Data Blocks to Iteration Groups

We now discuss how we obtain iteration groups from data blocks
and generate code that enumerates the iterations in an iteration
group. This code generation capability is important because, once
we distribute loop iterations across available processor cores and
reorganize (schedule) them, we need to generate code for each
core.3

Let us focus, without loss of generality, on ξ∆, where ∆ =
δ0δ1 · · · δi−1δiδi+1 · · · δn−2δn−1 = 11 · · · 100 · · · 00, that is, the
first i bits are 1 and the rest are 0. Then, assuming that there are R
references in the loop nest (R0, · · · ,RR−1), we can write:

ξ∆ = {~I|∀q, 0 ≤ q ≤ (i − 1)[∃r, 0 ≤ r ≤ R − 1 s. t. Rr(~I) ∈ βq]

and ¬∃q′, i ≤ q′ ≤ (n − 1)[∃r, 0 ≤ r ≤ R − 1 s. t. Rr(~I) ∈ βq′]}.

The first line of this expression captures the iterations that access
all data blocks βq where 0 ≤ q ≤ (i − 1), while the second line
indicates that none of these iterations access any data block βq′

where i ≤ q′ ≤ (n − 1). In our approach, the iteration distribu-
tion across the cores is carried out at an iteration group granularity.
That is, each core is assigned a number of iteration groups. There-
fore, once we determine the set of iteration groups assigned to a
core, we need to generate code that enumerates the iterations in
those groups. Note that, for a given ξ∆, the Omega Library can be
used for generating code for it. Specifically, the codegen(.) utility
provided by the Omega Library helps us generate the code (typi-
cally in form of a set of nested loops) that enumerates the itera-
tions in ξ∆ (and we repeat this for all iteration groups based on the
scheduling determined for the core).

3.5 Algorithms

In this section, we first describe our iteration distribution scheme
for the fully parallel case, i.e., when the loops to be executed
in parallel do not have any loop-carried dependencies. We then
discuss the case with data dependencies, and explain how data
locality can be further improved through intra-core scheduling of
iteration blocks.

3.5.1 Iteration Distribution Algorithm

Our loop distribution algorithm is shown Figure 6. This algorithm
takes the set of iterations to be distributed and the cache topology
of the target multicore machine as the input, and produces itera-
tion groups/clusters to be scheduled on each core such that cache
sharing among the iteration groups is maximized.

In the initialization step, the iterations of the loop nest are
grouped into iteration groups based on the similarity of their tags.
Recall that a tag of an iteration is a signature of the data blocks ac-
cessed by that iteration, and that a set of iterations are clustered into

3 Note that, the iteration groups allocated to a core and their scheduling
defines the thread that will be executed on that core.

77

an iteration group if they have the same tag. After this initialization,
we build a graph with these iteration groups being nodes. An edge
between two nodes of this graph has a weight equal to the number
of common “1”s between the tags of the two nodes. Therefore, the
weight of an edge between any two nodes is an indicator of the de-
gree of data block sharing (sort of affinity) between the iterations
of the two nodes.

We then cluster the nodes (iteration groups) hierarchically ac-
cording to the cache hierarchy tree. The cache hierarchy tree is a
tree representation of the on-chip cache hierarchy with the last level
cache as the root. By considering the cache hierarchy tree in clus-
tering the iteration groups, our scheme customizes the clustering
for the cache topology of the target multicore architecture. We start
at the root and cluster the iteration groups, level by level, until we
reach the leaf level. To emphasize, the graph mentioned above cap-
tures the degree of data sharing between iteration groups, whereas
the cache hierarchy tree represents the target cache topology.

In clustering for a given level in the cache hierarchy, we con-
sider the bitwise sum of the tags of all the nodes in the cluster as
the tag of the cluster. We compute the dot product (denoted using
“•” in the algorithm) of the tags of two clusters as the qualitative
measure of affinity and use that as a measure in our clustering algo-
rithm. The dot product measures the degree of data block sharing
between any two clusters and hence is used as a qualitative mea-
sure for clustering. The number of clusters formed at each level is
the same as the number of child nodes in the cache hierarchy tree.
If the number of clusters formed is less than the number of child
nodes, we go on splitting the clusters (i.e., form smaller clusters)
until the number of clusters is equal to the number of child nodes.

After the clustering step, we are left with the required number of
iteration group clusters for the current level of the cache hierarchy.
Our goal in the next step is load balancing, i.e., balancing the sizes
of the iteration group clusters. In this context, size of a cluster is the
total number of iterations present in the iteration group cluster – the
sum of the sizes of all the iteration groups present in the cluster. For
the load balancing step, we use a greedy approach to balance the
number of iterations4 across the clusters. Using a balance threshold
(which is the maximum tolerable imbalance across the iteration
counts of different cores), we compute an upper and a lower limit
for the size of each cluster. Note that the balance threshold is a
tunable parameter. We evict iteration groups from the largest sized
cluster to the smallest in each step. While doing so, we ensure that
the dot product of the tag of the evicted iteration group and that
of the recipient cluster is maximized. Also, we only evict if, after
the eviction, the donor cluster size does not drop below the lower
limit of the cluster size and the recipient cluster size does not go
above the upper limit. If no such eligible iteration group is found
for eviction, we break an iteration group according to the balance
threshold requirements and evict that iteration group. We repeat this
step until all the iteration group clusters are within the limits of the
balance threshold.

Our algorithm repeats the clustering and load balancing steps
at each level of the cache hierarchy tree. After all the levels of the
cache hierarchy tree are considered, the number of clusters we have
is equal to the number of cores in the target multicore architecture.
Note that, by performing the clustering and load balancing at each
level of the cache hierarchy, our approach considers the data block
sharing at each level of the on-chip cache and optimizing the same
at each cache level.

4 Although iteration count is not the ideal metric for load balancing, it
performs much better than not balancing at all, and is implementable within
a compiler.

Input :

Loop Iteration Set, IS = {ψ0, ψ1, . . . ψm}
IS is the set of all iterations in the loop nest

Data Block Set,DS = {β0, β1, . . . βr−1}
DS is the set of all equal sized data element blocks
accessed by the loop nest

Architecture Description,A = {T,N}
T is the cache hierarchy tree with the last level
cache as the root node and N is the number of cores
/*Off chip memory is treated as the root if there are more
than one last level caches*/

BalanceThreshold = Maximum tolerable imbalance in iteration counts
Output :

Iteration Group Set, CS = {c0, c1, . . . ck}
ci = {ψj , ψl, . . . ψz},N is the number of cores

Algorithm

Initialization :

Initialize tags:
Assign a tag ∆j = δ0δ1 . . . δr−1 to iteration ψi

where, δk = 1 if ψi accesses data block βk

Iteration Group ξ∆ = {ψk, such that ψk has tag ∆}
/*As there are r data blocks, there are 2r

tags and consequently, 2r possible iteration groups*/

Size of the iteration group, ξ∆, S(ξ∆) = |ξ∆|
Build Graph:

Build a graph G = {V, E},
V = {ξ∆1 , ξ∆2 , . . . ξ∆2r }

E = {(ξ∆i , ξ
∆j) such that ω(ξ∆i , ξ

∆j) =
number of ”1” bits in∆i ∧ ∆j}

Hierarchical Iteration Distribution:

HierLevel = root of the cache hierarchy tree, T
NumClusters = degree of nodes at level ” HierLevel ”
Cluster Set, CS = {cs}, cs = {{c}∀ c ∈ V }
While HierLevel 6= leaf level:

New cluster set, NCS = {}
For Each cluster csi ∈ CS:

CS = CS − csi

Totaliterations = total number of iterations in csi

Clustering:

While(|csi| > NumClusters) :
For each cluster cαp ∈ csi,

cαp = {ξ∆a , ξ∆b , . . . ξ∆c}
αp = BitwiseSum(∆a,∆b, . . .∆c)

S(cαp) = |ξ∆a | + |ξ∆b | + . . .+ |ξ∆c |
Select and merge cαp and cαq in to a new cluster cαnew

such that, αp • αq(dotproduct) is maximized
∴ cαnew = cαp ∪ cαq

If (|csi| < NumClusters) :
//if current number of clusters < required number at this level

While(|csi| 6= NumClusters) :
Select cαq ∈ csi, such that S(cαq) is maximum
Break cαq into two clusters

Load balancing:

After clustering, csi = {cα1 . . . cαNumClusters}
/*Use greedy approach to balance cluster sizes*/

UpLimit = T otaliterations
NumClusters

+ BalanceThreshold

LowLimit = T otaliterations
NumCusters

− BalanceThreshold
While ∃ cαp ∈ csi, such that S(cαp) > UpLimit:

Select cαq ∈ csi such that,
S(cαq) < LowLimit

Evict some ξ∆a from cαp to cαq such that,
LowLimit < S(cαp) < UpLimit
LowLimit < S(cαq) < UpLimit
and, ∆a • αq is maximum

If no such node exists, split ξ∆a such that
S(cαp) and S(cαq) are with in
limits and evict as described above

For Each cαp ∈ csi:

NCS = NCS + {{ξ∆a}∀ξ∆a ∈ cαp}
CS = NCS
Hierlevel = Hierlevel + 1,

Update NumClusters to the degree of nodes at ”Hierlevel”
After h = log2N hierarchical levels, CS = {c0, c1, . . . ck}

where,N is the number of cores
Return CS

Figure 6. Iteration distribution algorithm.

78

Input :

Iteration Group Set, CS〉 = {ξ∆a , ξ∆b , . . . ξ∆c}∀0 < i < ncores

DG = (V,E) - Iteration group dependence graph

//for ξ∆a , ξ∆b ∈ V , ξ∆b depends on ξ∆a if e(ξ∆a , ξ∆b) ∈ E
α = Shared cache reuse factor
β = Level 1 cache reuse factor

Output :

Scheduled Iteration Group Set,SCS〉 = {ξ∆p , ξ∆m , . . . ξ∆q}∀i

Algorithm :

For Each shared cache S at the first shared cache level
n = Number of cores sharing the cache S
j = First core under the shared cache S
ACS = {CSj , CSj+1, . . . CSj+k}
SCSi = {}, for all j < i < j + n
si = 0, for all j < i < j + n //num of iterations in SCSi

AllGrps = CSj ∪ CSj+1 . . . ∪ CSj+n

While ∃CSk, such thatCSk 6= ∅
PrevSched = SCSj ∪ SCSj+1 . . . ∪ SCSj+n

CurrRnd = {}
UnSched = AllGrps− PrevSched

For Each i from j to j + n
If (CSi == ∅) continue;
If (i == j and SCSi == ∅)

SCSi = SCSi + ξ∆a , CSi = CSi − ξ∆a , and,

si = si + S(ξ∆a), such that,

ξ∆a ∈ CSi, and, ∆a has the least number of ”1” bits

CurrRnd = CurrRnd+ ξ∆a

Else If (i > j and SCSi == ∅)

SCSi = SCSi + ξ∆a , CSi = CSi − ξ∆a , and,

si = si + S(ξ∆a), such that,

ξ∆a ∈ CSi,

∄ξ∆k ∈ CurrRnd, with e(ξ∆k , ξ∆a) ∈ E
and, α× (∆a • ∆x) is maximum

where, ξ∆x = Last element added to SCSi−1

CurrRnd = CurrRnd+ ξ∆a

Else If (i == j and SCSi 6= ∅)
While si < sj+n

SCSi = SCSi + ξ∆a , CSi = CSi − ξ∆a , and,

si = si + S(ξ∆a), such that,

∄ξ∆k ∈ UnSched, with e(ξ∆k , ξ∆a) ∈ E

and, ξ∆a ∈ CSi, and, β × (∆a • ∆y) is maximum

where, ξ∆y = Last element added to SCSi

CurrRnd = CurrRnd+ ξ∆a

Else
While si < si−1

SCSi = SCSi + ξ∆a , CSi = CSi − ξ∆a , and,

si = si + S(ξ∆a), such that,

ξ∆a ∈ CSi,

∄ξ∆k ∈ CurrRnd, with e(ξ∆k , ξ∆a) ∈ E,

∄ξ∆k ∈ UnSched, with e(ξ∆k , ξ∆a) ∈ E
and, α× (∆a • ∆x) + β × (∆a • ∆y) is maximum

where, ξ∆x = Last element added to SCSi−1

and, ξ∆y = Last element added to SCSi

CurrRnd = CurrRnd+ ξ∆a

add barrier synchronization
Return SCSi∀0 < i < ncores

Figure 7. Dependence-aware local iteration scheduling algorithm.
This algorithm is invoked after the one in Figure 6.

3.5.2 Handling Data Dependencies

In the cache topology aware loop iteration distribution algorithm
described in the previous section, we restricted ourselves to fully-
parallel loops, i.e., loops in which there are no loop-carried depen-
dencies across iterations. In cases where distributing the loop iter-
ations with dependencies could bring high benefits, our algorithm
can be extended by distributing the loop iterations with dependen-
cies across available cores and ensuring correctness through inter-
core synchronization.

There are at least two ways of extending our approach to handle
loops with dependencies. First, we can ensure that the clustering al-

ξΔa ξΔmξΔp ξΔx

ξΔb ξΔnξΔq ξΔy

ξΔc …ξΔr …

C0 C1 C2 C3

Figure 8. Scheduling order of iteration groups for a 4-core ma-
chine.

L1 L1 L1 L1

L2 L2

L3

C0 C1 C2 C3

Figure 9. Target multicore architecture.

gorithm clusters all iteration groups with loop carried dependencies
together in a single cluster. This can be achieved by associating an
infinite edge weight between iteration groups that have dependen-
cies between them. This ensures correctness without the need for
inter-core synchronization. However, conservatively clustering all
dependent iteration groups together may reduce the benefits of par-
allelism in iteration group execution, and therefore, this approach
may not be very effective when we have large number of depen-
dencies. Alternatively, the clustering algorithm can treat loop car-
ried dependencies between iteration groups as normal data block
sharing. Therefore, in the presence of dependencies across loop it-
erations, the data sharing resulting from these dependencies is ac-
counted for by the edge weights used to quantify the sharing of
data between the iteration groups containing the respective itera-
tions (provided they are different). Therefore, we can use the same
global cache hierarchy aware loop iteration distribution algorithm
described above (given in Figure 6) to improve data sharing. How-
ever, to ensure correctness, the dependencies can be detected during
the local reorganization step (explained shortly) and corresponding
inter-core synchronization directives can be inserted to enforce the
dependencies. We now elaborate on this second option.

Note that so far we did not discuss how the iteration groups
assigned to a core by our iteration distribution algorithm are sched-
uled (i.e., their order of execution). The important point is that if
there are no loop carried dependencies, any scheduling of itera-
tions groups is legal. However, if we have data dependencies, we
need to determine a legal schedule that respects all dependencies.
In our extension, the cache hierarchy aware loop distribution algo-
rithm clusters the iteration groups as in the case of the dependence-
free case. Once the iteration group clusters are computed, a local
reorganization algorithm schedules the iteration groups assigned to
cores such that the iteration group dependencies are preserved. In
order to do this, when the iteration groups are scheduled in time,
proper synchronization constructs are inserted. Figure 7 describes
this algorithm in detail.

The dependence-aware local reorganization algorithm takes the
iteration group set computed by the hierarchical clustering algo-
rithm (CS) and the iteration group dependence graph (DG) as in-
puts. The iteration group dependence graph (DG) represents de-
pendencies between the iteration groups. It contains an edge from

79

ξ� j =0 to k-1 101010000000

ξ�� j =k to 2k-1 010101000000

ξ�� j =2k to 3k-1 001010100000

ξ�� j =3k to 4k-1 000101010000

ξ�� j =4k to 5k-1 000010101000

ξ�� j =5k to 6k-1 000001010100

ξ�� j =6k to 7k-1 000000101010

ξ�� j =7k to 8k-1 000000010101

ξΔ2

ξΔ7ξΔ1

ξΔ8

ξΔ3

ξΔ4

ξΔ6

ξΔ5

2
2

2

2

2

2

1

1

1

1

(a) Initial graph and iteration groups with their
tags.

ξΔ2

ξΔ7ξΔ1

ξΔ8

ξΔ3

ξΔ4

ξΔ6

ξΔ5

2
2

2

2

2

2

1

1

1

1

L1� L1� L1� L1�

L3

L2�

3210

L2�

ξ��� ξ��� ξ��� ξ�� L2�

ξ��� ξ��� ξ��� ξ�� L2�

Assignment

(b) After clustering at the first level of the
cache hierarchy.

ξΔ2

ξΔ7ξΔ1

ξΔ8

ξΔ3

ξΔ4

ξΔ6

ξΔ5

2
2

2

2

2

2

1

1

1

1
L1 L1! L1" L1#

L3

L2

3210

L2!

ξ$!% ξ$# L1"

ξ$&% ξ$' L1#

ξ$"% ξ$(L1

ξ$)% ξ$* L1!

Assignment

(c) After clustering at the second level of
the cache hierarchy.

Figure 10. Example application of our scheme.

node (iteration group), ξ∆a to ξ∆b , if at least an iteration in ξ∆a

depends on an iteration in ξ∆b . Note that an edge in DG can go
from an iteration group assigned to one core to an iteration group
assigned to another core. Note also that DG can potentially be a
cyclic graph, since some iterations present in ξ∆a can depend on
iterations in ξ∆b , while other iterations present in ξ∆a can be de-
pendent on iterations in ξ∆b . We remove all the cycles in the de-
pendence graph by merging the involved nodes and consequently
convert the graph to an acyclic graph before proceeding. The algo-
rithm then computes a schedule of iteration groups for each core
with inserted synchronization constructs. We schedule the iteration
groups starting with the first core. For the first core, we pick any
iteration group that belongs to the cluster assigned to the first core
and does not depend on any iteration group (i.e., it is scheduleable).
We then consider all the iteration groups assigned to the second
core and pick the iteration group which is not dependent on the last
scheduled group on core one. We repeat this process for the second
core till the total number of iterations assigned to the second core
is at least as many as that assigned to the first core. When that hap-
pens, we move on to the next core and repeat the process. This way,
we try to balance the iteration counts across the cores. After one
round of scheduling for all the cores, we insert a barrier synchro-
nization construct. Note that, not balancing the iteration counts in
the above fashion can hurt performance in presence of barrier syn-
chronization. We then start the second round of scheduling from
the first core. In the second and later scheduling rounds, we also
ensure that the scheduled iteration group does not depend on any
iteration group yet to be scheduled. These scheduling rounds are
repeated until all the iteration groups are scheduled. With this pro-
cess, not only are there no dependencies between iteration groups
scheduled in a round, but also iteration groups scheduled at any
particular round can only be dependent on the iteration groups of
the previous rounds. The dependencies between iteration groups
are enforced by the inserted barrier synchronization construct.

3.5.3 Improving Cache Block Reuse

While the dependence-aware scheduling described in Section 3.5.2
schedules the iteration groups on cores in a loop-carried dependence-
aware manner, it does not consider the data block sharing at dif-
ferent cache levels. The algorithm described in Figure 7 not only
tries to perform dependence-aware scheduling, it also tries to im-
prove both local level one cache reuse and the first shared level
cache reuse. This local reorganization can be used with both the
dependence and dependence-free cases.

The cache block reuse can be improved both at the local level
one cache or at the first shared cache level. The local level one
cache reuse can be improved by scheduling the iteration groups
assigned to a core such that the tags of the contiguously sched-
uled iteration groups have the least possible Hamming Distance
between them. On the other hand, shared level cache reuse can
be improved by scheduling iteration groups with minimum Ham-
ming Distance on the cores sharing the cache such that those it-
eration groups are executed simultaneously on the cores, thereby
improving cache performance. Our algorithm exploits data local-
ity in two directions: horizontal and vertical. Maximizing the dot
product with the last scheduled iteration group on the previous core
improves data block reuse at the first level of shared cache (hori-
zontal). In comparison, maximizing the dot product with the last
scheduled iteration group on the same core improves data block
reuse on the local level one cache (vertical). We weigh these dot
products with tunable parameters, α and β, so that the cache level
at which the sharing needs to be improved can be customized by
assigning suitable values to α and β. In Figure 8, in the third round
of scheduling for core 1, we pick ξ∆r because it maximizes the
value α × (∆c • ∆r) + β × (∆q • ∆c). Therefore, to schedule

ξ∆r (circled) on core 1, we consider its left and upper neighbors
(dotted circles) as indicated by the arrows in Figure 8. In this way,
our approach takes care of the data reuse in both horizontal and
vertical directions.

3.5.4 Example

Consider the example loop shown in the Figure 5. We consider a
dependence-free case here for simplicity. This loop body has four
references with each iteration accessing three elements of the same
array. For illustrative purposes, we assume a data block size of k
elements. We also assume that the total number of data blocks is
twelve, i.e., m/k = 12. The cache hierarchy of the target multicore
architecture is depicted in Figure 9. The iterations of the loop can
be divided into eight iteration groups based on the data blocks
accessed. The iteration groups and the initial graph are shown in
Figure 10(a).

We now go over our hierarchical loop iteration distribution
scheme. The first step is to cluster the loop iteration groups for the
L2 cache (as L3 is shared by all cores and is considered the root
of the cache hierarchy tree). The graph and the assignment after
the first level of clustering and loop iteration distribution are shown
in Figure 10(b). Next, the loop iteration distribution is applied to
each of the two clusters formed in the previous step. After this
second and final level of clustering and load balancing, the iteration

80

Core 0 ξ+,- ξ+.

Core 1 ξ+/- ξ+0

Core 2 ξ+1- ξ+2

Core 3 ξ+3- ξ+4

Figure 11. Final assignments
and schedule.

567

8989 8989 8989

8:8:

8;8; 8;8;

8989 8989

8;8;

8989 8989

8:8:

8<8<

8989 8989 8989

8:8:

8;8; 8;8;

8989 8989

8;8;

8:8:

8<8<

8=8=

8989 8989

>> 99 ;;

8;8;
8989 8989

8;8;

:: << == ?? @@ AA BB 9>9> 9999 9;9; 9:9: 9<9< 9=9=

8989

>>

8989 8989 8989

8:8:

8;8; 8;8;

8989 8989

8;8;

8989 8989

8;8;

8:8:

8<8<

5C7

99 ;; :: << == ?? @@

Figure 12. Architectures with complex on-chip cache hierarchies: (a) Arch-I and (b) Arch-II.

Harpertown Nehalem Dunnington

Number of Cores 8 cores (2 sockets) 8 cores (2 sockets) 12 cores (2 sockets)
Clock Frequency 3.2GHz 2.9GHz 2.4GHz
L1 32KB, 8-way, 64-byte line, 3 cycle latency 32KB, 8-way, 64-byte line, 4 cycle latency 32KB, 8-way, 64-byte line, 4 cycle latency
L2 6MB, 24-way, 64-byte line, 15 cycle latency 256KB, 8-way, 64-byte line, 10 cycle latency 3MB, 12-way, 64-byte line, 10 cycle latency
L3 - 8MB, 16-way, 64-byte line, 30-40 cycle latency 12MB, 16-way, 64-byte line, 32-40 cycle latency
Off-Chip Latency ∼100 ns ∼60 ns ∼50 ns

Table 1. Important parameters for our three multicore machines.

clusters are assigned to the cores as shown in Figure 10(c). Finally,
the iteration groups assigned to each core are scheduled using the
local iteration group scheduling algorithm given in Figure 7. The
final iteration group assignments and the corresponding schedule
for each core is depicted in Figure 11.

4. Experimental Evaluation

4.1 Setup

In our experimental evaluation, we used both commercial multi-
core machines and a simulation framework (for sensitivity experi-
ments). Table 1 gives the important characteristics of the three Intel
machines we used: Harpertown, Nehalem, and Dunnington (all il-
lustrated in Figure 1).

The set of applications used in this study is given in Table 2. We
experimented with two types of applications, namely, sequential
and parallel. For the sequential benchmarks, we executed a paral-
lelism extraction phase before our scheme could be applied. Since
the selection of the loop parallelization strategy used is orthogonal
to our scheme (which performs iteration distribution across cores),
here we only summarize it. This strategy, which is similar to the one
discussed in Anderson’s thesis [1], identifies (for each loop nest)
the outermost loop that does not have any loop-carried dependence
and parallelizes it. This tends to exploit coarse grain parallelism
and minimize inter-core synchronization. For the parallel bench-
marks on the other hand, our strategy is slightly different. Since the
loops to execute parallel are already identified, what we need to do
is to apply our scheme to distribute (redistribute if necessary) itera-
tions to cores. Our parallel benchmarks are from three sources: ap-
plu, galgel and equake are from SpecOMP [16]; cg and sp are from
NAS [4]; and bodytrack, facesim and freqmine are from the Par-
sec benchmark suite [7]. Two of our sequential benchmarks, namd
and povray, are from the Spec2006 suite [18]. The remaining two
benchmarks, mesa and H.264, are two serial applications we main-
tain locally. The data set sizes of these applications varied from
4.6MB to 2.8GB. Unless otherwise stated, the default data block
size used in our experiments is 2KB. Our iteration distribution al-
gorithm operates with a given data block size. However, we use a
strategy to determine the block size (and consequently the number
of blocks). This strategy tries to ensure that the total size of data
manipulated by even the “most aggressive” iteration group does
not exceed L1 cache capacity. An iteration group becomes most
aggressive when it has all 1’s in its tag. We first profile the applica-
tion and determine the size of the total data it manipulates and then,
assuming a tag size of k bits (unknown), we determine the amount
of data accessed by the most aggressive iteration group. This value

Benchmark Description Time

applu Parabolic/elliptic partial differential equations 2.4 sec

galgel Fluid dynamics: analysis of oscillatory instability 4.6 sec

equake Finite element simulation; earthquake modeling 3.5 sec

cg Estimates the largest Eigenvalue of a sparse matrix 11.2 sec

sp Solves a synthetic system of nonlinear PDEs 3.8 sec

bodytrack Body tracking of a person 6.7 sec

facesim Simulates the motions of a human face 6.3 sec

freqmine Frequent itemset mining 8.6 sec

H.264 Video compression: equivalent to MPEG-4 AVC 5.0 sec

mesa 3D graphics library 7.9 sec

namd biomolecular systems simulation 7.1 sec

povray image ray-tracing 8.0 sec

Table 2. Our applications. The last column gives the execution
time when the original application is executed on a single core of
the Dunnington machine.

is in terms of k and we solve for k such that this value does not
exceed L1 capacity. Please note that this sets an upper bound, and
any lower value would be good as well.

In this work, we compare our scheme against two base cases.
The first of these, called Base, is the original application code with-
out any modification (except for parallelization when the input ap-
plication is sequential). The second base case, referred to as Base+,
represents the state-of-the-art in data locality (cache performance)
enhancement. It improves data locality, for each core, by applying
a set of well-known locality optimizations, which include loop per-
mutation (changing the order in which loop iterations are executed)
and iteration space tiling (also known as blocking, which imple-
ments a blocked version of the code to improve temporal reuse
in outer loop positions). Please note that Base+ contains a com-
prehensive set of well-established locality optimizations including
linear transformations and tiling. In fact, the linear transformations
we used were very similar to those discussed in [43]. However, we
found that non-unimodular transformations (such as scaling) did
not bring additional benefits over unimodular ones in our bench-
marks. To approximate the ideal tile size (blocking factor), we ex-
perimented with different tile sizes and selected the one that per-
formed the best. The important point to emphasize is that the set
of iterations assigned to each core is the same in both Base and
Base+; the only difference is the order used to execute these iter-
ations. Therefore, in a sense, Base+ can be viewed as intra-core
locality optimization, or an extension of single core locality opti-
mization to the multicore case (i.e., we apply conventional locality
optimization to each core separately). In the rest of this section, we
refer to our proposed loop iteration distribution strategy as ”Topol-
ogy Aware”. Unless explicitly stated, Topology Aware does not in-

81

D
DEF
DEG
DEH
DEI
DEJ
DEK
DEL
DEM
DEN
F

OP
P
QR

SO
QS
TQ

TU
R
OV
T WS XP

Y
Z[
\]̂
OW
V

_O
WT
X̀
a

_T
U
a
b̀
T

c
de
fg

a
TX
O

b
Oa
[

P
Z
ĥ
O\

OP
P
QR

SO
QS
TQ

TU
R
OV
T WS XP

Y
Z[
\]̂
OW
V

_O
WT
X̀
a

_T
U
a
b̀
T

c
de
fg

a
TX
O

b
Oa
[

P
Z
ĥ
O\

OP
P
QR

SO
QS
TQ

TU
R
OV
T WS XP

Y
Z[
\]̂
OW
V

_O
WT
X̀
a

_T
U
a
b̀
T

c
de
fg

a
TX
O

b
Oa
[

P
Z
ĥ
O\

ijklmknopq rmsjtmu vwqqxqynoq

z
{
|}
~�
��
��
��
��
�
��
{�
��
}
�

�j�m� �olotoy� �pjkm

Figure 13. Normalized execution time results for Base+ and
Topology Aware.

�
���
���
���
���
�

���
���
���

������� �� ¡ ¢£¤ ¥�¦§�¦£¤¨ �� ¡ ¢£¤ ¥�¦§�¦£¤¨ �������

¥�¦§�¦£¤¨ ������� �� ¡ ¢£¤

©
ª
«¬
®̄
°±
²
³́
±µ
¶
·̄
ª
¸
¹̄
¬
±

�§§�� ¢��¢�� �º��»� ¼¢ ½§ ¾¤¿À£¦�¼»
Á�¼�½¡� Á�º�¡ � ¥���� ��½� ��¿ §¤Â¦�À

Figure 14. Cross comparison among three Intel multicore archi-
tectures.

clude the loop scheduling step, which is part of the algorithm in
Section 3.5.3. Instead, once the iteration distribution is carried out,
the iteration groups assigned to each core are scheduled consider-
ing only data dependencies. In order to have a better understanding
of their behavior, we study loop distribution and loop scheduling
in isolation as well as when they are combined. Note that, in Base,
Base+, and Topology Aware, the set of iterations executed in par-
allel is the same; the only difference is in the way in which these
iterations are partitioned across the cores and scheduled within a
core.

In our experiments, the load balance threshold mentioned in
Section 3.5.1 is set to 10%, and the α and β parameters discussed in
Section 3.5.3 are both set to 0.5 (i.e., equal weights). When we use
Intel machines, the results are obtained using all available cores (8
in the case of Harpertown and Nehalem and 12 in the case of Dun-
nington). All the versions used in this work have been implemented
using Microsoft’s Phoenix infrastructure [31]. Specifically, after the
input code is analyzed by Phoenix, we build the polyhedral frame-
work and pass it to the Omega Library [23]. The code returned
from the Omega Library enumerates the iterations in the iteration
groups assigned to the cores and is passed back to the Phoenix in-
termediate format. In our experiments with the Intel machines, we
used the Intel compiler (with the most powerful optimization flag
available) as our back-end compiler. In our simulations on the other
hand, the back-end compiler we used is gcc (again, with the highest
optimization flag).

Before moving to the discussion of our experimental analysis,
we want to mention that the increase in compilation times due to
our scheme varied between 65% and 94% (depending on the appli-
cation being compiled) over the compilation that includes a paral-
lelization step (but does not include any data locality optimization).
We also observed that the our approach did not have a significant
impact on the instruction cache miss rates (less than 1% increase in
all the application codes we tested).

Ã
ÃÄÅ
ÃÄÆ
ÃÄÇ
ÃÄÈ
ÃÄÉ
ÃÄÊ
ÃÄË
ÃÄÌ
ÃÄÍ
Å

ÎÏ
Ï
ÐÑ

ÒÎ
ÐÒ
ÓÐ

ÓÔ
Ñ
ÎÕ
Ó ÖÒ ×Ï

Ø
ÙÚ
ÛÜ
ÝÎ
ÖÕ

ÞÎ
ÖÓ
×ß
à

ÞÓ
Ô
à
ßá
Ó

â
ãä
åæ

à
Ó×
Î

á
Îà
Ú

ÏÙ
çÝ
ÎÛè

é
êë
ìí
îï
ðñ
òó
ðô
õ
öî
é÷
øî
ë
ð

ùúûúüúýþ ÿ���� �ú��ü �ú������

Figure 15. Influence of local iteration reorganization (scheduling).

4.2 Results

Goals. We have four main goals in our experimental evaluation.
First, we want to demonstrate that, for a given multicore archi-
tecture, our approach generates better results than both Base and
Base+. Second, we want to show that a version customized for
a specific multicore architecture may not perform well when ex-
ecuted on another multicore architecture. Third, we want to see
whether considering the entire cache hierarchy is a must for achiev-
ing maximum savings. Fourth, we want to illustrate that our ap-
proach is expected to perform well in future multicore systems
with larger numbers of cores and deeper on-chip cache hierarchies.
All the results presented in this subsection are normalized with re-
spect to Base.

Results on Commercial Machines. Figure 13 gives the execution
cycles for the benchmarks in our three multicore machines, nor-
malized with respect to Base (remember that all different versions
use the same back-end compiler). Our main observation from these
results is that, for all three multicores and all application programs,
our approach generates better results than both Base and Base+, in-
dicating the importance of cache topology aware loop iteration as-
signment. We also observe that the difference between our scheme
and Base+ is higher in Dunnington. This is because Dunnington has
a more complex on-chip cache topology, which makes optimizing
for data locality even more important. The average performance
improvements our topology aware approach brings over Base and
Base+ are about 28% and 16%, respectively, in the case of Harper-
town. The corresponding savings are 29% and 17% for Nehalem
and 30% and 21% for Dunnington. Since Topology Aware, Base,
and Base+ have exactly the same set of loop iterations executed in
parallel and only differ in how these iterations are distributed and
scheduled, this difference across execution times is due to entirely
on-chip cache behavior. For example, we observed that, in Dun-
nington, our approach reduced the L1, L2 and L3 cache misses on
average by 18%, 39%, 47%, respectively, over the Base version.
The corresponding cache miss reductions over Base+ were 16%,
31% and 37%.

Cross-Machine Results. Our next set of results quantify the per-
formance of a multi-threaded code generated for a specific multi-
core when run on another multicore, and are presented in Figure 14.
The first group of bars in this graph corresponds to the execution of
the Nehalem version on Harpertown, and the second group repre-
sents the execution of the Dunnington version on Harpertown. The
remaining groups are interpreted similarly. These results clearly
underline the importance of customizing loop iteration distribution
to the specific on-chip cache topology. The important point to note
here is that, in the Harpertown machine, using the multi-threaded
versions generated for Nehalem and Dunnington results, on av-
erage, in about 17% and 31% worse performance, respectively,

82

	

	
�

	

	
�

	
�

	
�

	
�

	
�

	
�

	
�

�

�
�
��
�
��
�
�

!
"
�
#
$
%�
�
&
'
��
�

��()*+, ��()*+, �-. -. �-. �-. ��-.

Figure 16. Impact of data block size.

/

/01

/02

/03

/04

5

3 51 54 12 6/ 3 51 54 12 6/

789:; <=>=?=@A BC8D:

E
F
GH
I
JK
L
M
N
O
P
M
Q
R
SK
F
T
U
KH
M

8>>?V @8?@:? :WV8X: Y@ 9> Z=[A\D8YX

]8Y:9^_]:W_^`: a0132 _:98 `8_[>=bD8A

Figure 17. Impact of increasing the number of cores (in a
Dunnington-like architecture).

than the version customized for Harpertown. Similarly, using the
Harpertown and Nehalem versions in Dunnington leads to 24%
and 21% average degradation, and using the Harpertown and Dun-
nington versions in Nehalem results in 25% and 19% performance
degradation, respectively, on average. These results combined with
those in Figure 13 help us to conclude that, if one is to map an
application to a target multicore architecture, it is not a good idea
to use a conventional data locality optimization strategy or to sim-
ply use the code optimized originally with a different multicore in
mind. Instead, the best results are achieved by customizing loop
iteration distribution considering the underlying cache topology.

Impact of Intra-Core Scheduling. Recall that Section 3.5.3 pre-
sented a local iteration reorganization (scheduling) strategy, which
can be applied after the global iteration distribution scheme. Fig-
ure 15 plots the normalized results, for Dunnington, that summarize
the influence of this algorithm in improving overall performance.
In this bar-chart, for each application, we have three bars: global
loop distribution alone (Topology Aware), local iteration reorgani-
zation alone (Local), and combined (when the local reorganization
is applied after the global distribution scheme). Note that in Lo-
cal the iteration distribution across cores is either the default one
indicated by the original parallel code or random (in the case of
sequential codes parallelized by our loop parallelization step). Two
trends can be observed from this plot. First, Local generates similar
(slight better) results than Base+ (see Figure 13 for the Base+ re-
sults). This is not very surprising as both Local and Base+ improve
the locality behavior from an individual core’s perspective. While
Base+ tries to do that using conventional restructuring techniques,
Local takes a more data centric approach and attempts to cluster
iterations with similar data block access patterns. In addition, as ex-
plained earlier, Local also considers affinity with other cores when
performing scheduling for a given core. Second, the best results
are achieved when both these schemes are used together. Specifi-
cally, this combined scheme obtains an average performance im-
provement of around 37%. Although not presented here, we also
performed experiments with different values for α and β (recall

c

cde

cdf

cdg

cdh

i

jklmnop qrstui qrstue jklmnop qrstui qrstue

vmwkx yz{zoz|} q~mrk

�
�
��
�
��
��
�
�
�
�
�
�
��
�
�
�
��
�

m{{on |mo|ko k�nm�k s| w{ �z�}prms�

lmskw�� lk����k �degf �kwm �m�� {z�rm}

Figure 18. Impact of the on-chip cache hierarchy (Default repre-
sents the configuration in the commercial Dunnington machine).

that the default value used so far is 0.5 for both). We observed that
giving them equal values generated the best results. Specifically, if
β is too big, the potential locality in the shared caches is missed,
and if α is too big, L1 locality starts to suffer.

Sensitivity Experiments. In the rest of our experiments, we con-
duct a sensitivity study with Topology Aware. In these experiments,
our starting point is the Dunnington architecture (see Figure 1(c)).
We first present the sensitivity of our savings to the data block size.
Recall that the default block size used in our experiments was 2KB.
One can observe from Figure 16 that, as expected, smaller data
block sizes are better as they lead to smaller iteration groups which
in turn result in a finer granular clustering by our algorithm (Fig-
ure 6). While this result motivates small block sizes, a smaller block
size increases overall compilation time. For example, we observed
that, as we move from 2KB to 256 bytes, the compilation time in-
creased by more than 80%.

For our experiments described below, we used Simics [28], a
simulator that can simulate multiprocessor architectures. We also
used GEMS [29], which is a set of modules for Simics that enables
detailed (cycle accurate) simulation of different types of multipro-
cessor systems, including multicores. In Figure 17, we give the nor-
malized results obtained by Topology Aware and Base+ when the
number of cores is increased. Recall that, in Dunnington, the total
number of cores is 12.5 We see from these results that the effective-
ness of our approach increases as we increase the number of cores
(for each experiment, we added a six more cores to the architec-
ture shown in Figure 1(c)). For example, the average performance
improvement our approach brings over Base jumps from 29% to
46% as we move from 12 cores (in our default configuration) to 24
cores. The main reason for this is that a higher number of cores typ-
ically lead to more sparse data access patterns from the perspective
of a single core, and this in turn causes the performance of Base to
suffer. Since the results in Figure 17 are normalized with respect
to the Base scheme, we see an improvement. These results are im-
portant mainly because future multicore machines are expected to
accommodate large core counts [9].

Figure 18 illustrates the results from our simulations with
deeper on-chip cache topologies shown in Figure 12. It needs to
be emphasized that Arch-I is more complex than our default Dun-
nington architecture (see Figure 1(c)) and Arch-II is more com-
plex than Arch-I. One can observe from Figure 18 that Topology
Aware performs better as we have deeper cache hierarchies (the
best improvements are obtained with Arch-II). Again, this result is
very important, because (considering current trends) one can ex-

5 It needs to be noted that the 8 core results are slightly different from
those presented for Dunnington earlier. This difference is because while the
former results are obtained on real machines, the latter results are obtained
using simulation.

83

0

0.2

0.4

0.6

0.8

1

a
p
p
lu

g
a
lg
e
l

e
q
u
a
ke cg sp

b
o
d
y
tr
a
ck

fa
ce
si
m

fe
q
m
in
e

H
.2
6
4

m
e
sa

n
a
m
d

p
o
v
ra
y

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

Base+ Topology Aware

Figure 19. Impact of the total data set size / the cumulative on-chip
cache capacity.

0.4

0.6

0.8

1

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

0

0.2

a
p

p
lu

g
a

lg
e

l

e
q

u
a

ke cg sp

b
o

d
y

tr
a

ck

fa
ce

si
m

fe
q

m
in

e

H
.2

6
4

m
e

sa

n
a

m
d

p
o

v
ra

y

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

b
o

d
y

tr
a

ck

L1+L2 L1+L2+L3

Topology Aware Optimal

Figure 20. Results with different versions and optimal scheme.

pect future multicores to have increasingly deeper on-chip cache
hierarchies [9].

Our next set of experiments were designed to explore what hap-
pens when the values of the parameter total data set size/cumulative
on-chip cache space is increased. Since increasing data set sizes
of our applications is not trivial (as it requires understanding the
details of the underlying algorithms implemented by the applica-
tion), we instead changed the on-chip cache capacities. Specifically,
maintaining the original Dunnington topology, we cut the capacity
of each cache component (L1, L2 and L3) by half. We see from
Figure 19 that our scheme performs better with smaller cache ca-
pacities. More specifically, the average performance improvements
brought by Base+ and Topology Aware are approximately 21% and
33%, respectively. These savings jumped to 29% and 41%, respec-
tively, when loop distribution was combined with loop scheduling
(detailed results are omitted due to space concerns).

Results with Different Versions and Comparison with Optimal
Savings. Focusing now on the architecture in Figure 12(a), we try
to answer the question of whether it is really important to consider
the entire cache hierarchy. In Figure 20, L1+L2 and L1+L2+L3 re-
fer to two different versions of our scheme (Topology Aware) where
only L1 and L2, and only L1, L2 and L3 are considered, respec-
tively. We see that, on average, considering all levels in the hier-
archy (L1+L2+L3+L4) bring 21.8% and 12.7% improvement over
the L1+L2 and L1+L2+L3 versions, respectively. In other words,
for the best results, it is necessary to consider the entire cache hi-
erarchy in distributing loop iterations among cores. Figure 20 also
illustrates the results from an optimal scheme. To obtain these re-
sults, we determined the ideal iteration group-to-core mapping (for
each parallel loop nest) using integer linear programming (which

took up to 23 hours in some cases). We see that the performance
difference between the mapping generated by our scheme and the
optimal mapping is around 7.6%.

5. Related Work

There have been several architectural level schemes to optimize
shared cache management [44] [10] [5] [19]. Zhang et al propose
a scheme that employs a small victim cache to improve the per-
formance of the shared level 2 cache in multicores [44]. Chang
and Sohi propose to combine the advantages of both shared and
private caches using a unified, cooperative caching scheme [10].
Beckmann et al propose that, by monitoring the workload behavior
and using controlled selective cache block replication, performance
can be significantly improved [5]. Hsu et al discuss various policies
that can be employed in multicore shared cache management [19].
There have also been schemes that partition shared caches of mul-
ticores in order to improve the overall throughput in most cases and
fairness, QoS in a few cases. These schemes include dynamic cache
way partitioning [38] and fairness aware partitioning [25].

Liu et al discuss different organizations for the last level of
cache [27]. Youn et al also recognize the importance of a combined
approach [40]. Their scheme employs a private L2 cache architec-
ture, while emulating a shared L2 cache through evictions into peer
L2 private caches. Speight et al present simple architectural exten-
sions for effective management of L2 and L3 caches in multicores
[36]. Kim et al state that large cache designs will be limited by
growing wire delays and propose a nonuniform cache architecture
to placate the effects of growing wire delays [24]. Beckmann and
Wood propose a cache management scheme that incorporates vari-
ous latency management techniques [6]. They also show that block
migration is less effective in commercial workloads than expected.

Prior parallelization, scheduling, and mapping strategies out-
side the multicore domain include [15, 17, 26, 35]. There have
also been compiler based schemes aimed at cache management for
multicores. Sarkar and Tullsen propose a data-cache aware compi-
lation to find a layout for data objects which minimizes inter-object
conflict misses [34]. Anderson et al propose using sharing rules to
avoid data races [2]. Chen et al use a compiler directed approach to
increase the idle periods of communication channels by reusing the
same set of channels for as many communication messages as pos-
sible, there by reducing the power requirement in network-on-chip
based multicores [12]. Kandemir et al [22] discuss a multicore map-
ping strategy that does not customize mapping based on target on-
chip cache hierarchy. Zhang et al [45] evaluate the impact of cache
sharing on modern parallel workloads. Zhang et al study reference
affinity and further present a heuristic model for data locality [41].
Markatos et al propose a loop iteration distribution scheme that bal-
ances the workload, minimizes synchronization overhead and also
co-locates the iterations with the data they access [42]. Li et al pro-
pose to not only balance the workload but also take data locality
in to account [43]. In contrast to the above two schemes ([42] and
[43]), our proposed scheme not only balances the workload but also
takes the cache hierarchy of the underlying multicore architecture
into account while deciding the iteration scheduling. Although not
presented here due to space concerns, our initial experience with
dynamic scheduling schemes like [42] did not generate good re-
sults on the Harpertown and Dunnington machines, mostly due to
the cost of dynamic iteration distribution.

Our approach differs from the above efforts in that it tries to
improve the performance of shared on-chip caches using loop dis-
tribution and loop scheduling. In doing so, it takes the target cache
topology as input. It is also complementary to many of these prior
studies. For example, in a setting where multiple multi-threaded
applications exercise the same multicore machine, an OS based
scheme can partition shared caches across different applications,

84

and our scheme can optimize the performance of each application
individually.

6. Concluding Remarks

In order to take advantage of emerging multicore architectures, we
need compilers that can optimize a given application for the tar-
get architecture. Unfortunately, current multicore architectures are
very different from each other and we expect this dissimilarity to
grow wider in future generations of multicores. This makes it very
difficult to develop architecture agnostic high level code and data
optimizations. The two main contributions of this paper are an iter-
ation distribution algorithm and a loop scheduling algorithm target-
ing at improving the performance of on-chip cache hierarchies of
emerging multicore systems. We implemented our approach using
a compiler infrastructure, and performed experiments on real archi-
tectures, and also conducted a simulation based study. Our results
are encouraging and show that considering on-chip cache topology
makes significant difference in performance. Our results also show
that the code optimized using our proposed scheme remains within
8% of the schedule generated by an optimal strategy.

References

[1] J. M. Anderson. Automatic Computation and Data Decomposition for
Multiprocessors. Ph.D Thesis, Stanford University, March 1997.

[2] Z. R. Anderson et al. Lightweight annotations for controlling sharing
in concurrent data structures. SIGPLAN Not., 44(6):98–109, 2009.

[3] R. Bagnara et al. The PARMA polyhedra library: Toward a com-
plete set of numerical abstractions for the analysis and verification of
hardware and software systems. Sci. Comput. Program., 72(1-2):3–21,
2008.

[4] D. Bailey et al. The NAS Parallel Benchmarks 2.0, NASA. Technical

Report, 1995.

[5] B. M. Beckmann et al. ASR: Adaptive selective replication for CMP
caches. In Proc. MICRO, 2006.

[6] B. M. Beckmann and D. A. Wood. Managing wire delay in large chip-
multiprocessor caches. In Proc. MICRO, 2004.

[7] C. Bienia et al. The PARSEC benchmark suite: characterization and
architectural implications. In Proc. PACT, 2008.

[8] R. Bitirgen et al. Coordinated management of multiple interacting
resources in chip multiprocessors: A machine learning approach. In
Proc. MICRO, 2008.

[9] S. Borkar et al. Platform 2015: Intel processor and platform evolution
for the next decade. Technical Report, Intel Corporation, 2005.

[10] J. Chang and G. S. Sohi. Cooperative caching for chip multiprocessors.
In Proc. ISCA, 2006.

[11] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip
multiprocessors. In Proc. ICS, 2007.

[12] G. Chen et al. Compiler-directed channel allocation for saving power
in on-chip networks. In In Proc. POPL, 2006.

[13] S. Chen et al. Scheduling threads for constructive cache sharing on
CMPs. In Proc. SPAA, 2007.

[14] F. Catthoor et al. Data Access and Storage Management for Embed-

ded Programmable Processors. Kluwer Academic Publishers, Boston,
2002.

[15] A. Darte et al. Scheduling the Computations of a loop nest with respect
to a given mapping. In Proc. Europar, 2000.

[16] SPEC OMP V3.2. http://www.spec.org/omp/

[17] P. Feautrier. Scalable and structured scheduling. Int. J. Parallel Pro-

gram. 34, 5, 2006.

[18] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH

Comput. Archit. News, 34(4):1–17, 2006.

[19] L. R. Hsu et al. Communist, utilitarian, and capitalist cache policies
on CMPs: caches as a shared resource. In Proc. PACT, 2006.

[20] INCITE Leadership Computing. Technical Report,
http://www.er.doe.gov/ ascr/incite/.

[21] R. Iyer et al. QoS policies and architecture for cache/memory in CMP
platforms. SIGMETRICS Perform. Eval. Rev., 35(1):25–36, 2007.

[22] M. Kandemir et al. Optimizing shared cache behavior of chip multi-
processors. In Proc. MICRO, 2009.

[23] W. Kelly et al. The Omega Library interface guide. Technical Report,

University of Maryland, 1995.

[24] C. Kim et al. An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches. SIGPLAN Not., 37(10):211–222, 2002.

[25] S. Kim et al. Fair cache sharing and partitioning in a chip multiproces-
sor architecture. In Proc. PACT, 2004.

[26] A. Legrand et al. Mapping and Load-Balancing Iterative Computa-
tions. IEEE TPDS, 2004.

[27] C. Liu et al. Organizing the last line of defense before hitting the
memory wall for CMPs. In Proc. HPCA, 2004.

[28] P. S. Magnusson et al. Simics: A full system simulation platform. IEEE

Computer, 35(2):50–58, 2002.

[29] M. M. K. Martin et al. Multifacet’s general execution-driven multipro-
cessor simulator (GEMS) toolset. SIGARCH Comput. Archit. News,
33(4):92–99, 2005.

[30] The OPENMP API specification for parallel programming.
http://openmp.org/wp/

[31] Phoenix Compiler Infrastructure. Technical Report, Microsoft.
https://connect.microsoft.com/Phoenix.

[32] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In Proc. MICRO, 2006.

[33] N. Rafique et al. Architectural support for operating system-driven
CMP cache management. In Proc. PACT, 2006.

[34] S. Sarkar and D. M. Tullsen. Compiler techniques for reducing data
cache miss rate on a multithreaded architecture. In Proc. HiPEAC,
2008.

[35] S.K. Singhai and K.S. McKinley. A Parameterized Loop Fusion Al-
gorithm for Improving Parallelism and Cache Locality. The Computer

Journal, vol. 40, no. 6, 1997.

[36] E. Speight et al. Adaptive mechanisms and policies for managing
cache hierarchies in chip multiprocessors. SIGARCH Comput. Archit.

News, 33(2):346–356, 2005.

[37] S. Srikantaiah et al. Adaptive set pinning: managing shared caches in
chip multiprocessors. In Proc. ASPLOS, 2008.

[38] G. E. Suh et al. Dynamic partitioning of shared cache memory. Journal

of Supercomputing, 28(1):7–26, 2004.

[39] P. Viana et al. Configurable cache subsetting for fast cache tuning. In
Proc. DAC, 2006.

[40] S. Youn et al. A reusability-aware cache memory sharing technique for
high-performance low-power CMPs with private l2 caches. In Proc.

ISLPED, 2007.

[41] C. Zhang et al. A hierarchical model of data locality. In Proc. POPL,
2006.

[42] E. P. Markatos and T. J. LeBlanc. Using Processor Affinity in Loop
Scheduling on Shared-Memory Multiprocessors. In Proc. IPDPS,
1994.

[43] H. Li et al. Locality and Loop Scheduling on NUMA Multiprocessors.
In Proc. ICPP, 1993.

[44] M. Zhang and K. Asanovic. Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors. In Proc. ISCA,
2005.

[45] E. Zhang et al. Does cache sharing on modern CMP matter to the
performance of contemporary multithreaded programs?. In In Proc.

PPOPP, 2010.

85

