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Abstract
GPGPU programming promises high performance. However, to
achieve it, developers must overcome several challenges. The main
ones are : write and use hyper-parallel kernels on GPU, manage
memory transfers between CPU and GPU, and compose kernels,
keeping individual performance of components while optimizing
the global performance. In this article, we propose to study the
composition by distinguishing the location where it is done : kernel
composition on the GPU, kernel generation by the CPU, and over-
all composition. To achieve it, we use the SPOC library, developed
in OCaml. SPOC offers abstractions over the Cuda and OpenCL
frameworks. It proposes a specific language, called Sarek, to ex-
press kernels and different parallel skeletons to compose them. We
show that by increasing the level of abstraction to handle kernels,
programs are easier to write and that some optimizations (via ker-
nel generation and transfers scheduling) become possible. Thus, we
win on both sides : expressiveness and efficiency.

Categories and Subject Descriptors C.1.4 [Computer System
Organization]: Processor Architectures - Parallel Architectures;
D.1.3 [Software]: Programming Techniques – Concurrent Program-
ming; D.3.4 [Programming Languages]: Processors – Code Gen-
eration, Runtime environment

General Terms Design, Languages, Performance

Keywords GPGPU, DSL, OCaml, parallel skeletons, composition

1. Introduction
GPGPU programming consists in the use of specific devices,
GPUs, that are dedicated to graphics rendering, for general pur-
pose computations. Thus, it demands to compose software using
two kinds of subprograms : (i) a host program that will run on
the CPU and manage memory transfers and computations, and (ii)
GPGPU kernels that are small programs describing intensive com-
putations that will run on the GPU.

Both programs demand to be composed internally as well as
globally. In order to improve the composition of GPGPU programs,
we propose to use a high-level multi-paradigm language : OCaml.
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Figure 1: GPGPU Composition with OCaml

Using a dedicated library, SPOC, it is possible to use several com-
positions schemes to handle both host and kernel programs.

This article is constructed through a bottom-up direction. As
presented in figure 1, we will first introduce GPGPU programming
by describing how hardware is handled by common frameworks
(Cuda [1] and OpenCL [2]). Then, we will present the SPOC li-
brary. First, in section 2.1, we will discuss our choice of OCaml
as a composition language, and how its high-level features im-
prove composition while keeping programs efficient. Then, we will
describe in section 2.2 the SPOC runtime. It abstracts memory
transfers and manages GPGPU kernels, through interoperability
with external Cuda/OpenCL kernels and bindings with high per-
formance libraries, as well as through a Domain Specific Language
(DSL) embedded into OCaml, Sarek. SPOC and Sarek are both
targeting high performance while offering abstractions and porta-
bility. Furthermore, both are built taking into account the evolution
of computers and supercomputers into very heterogeneous archi-
tectures and provide seamless use of these systems. We will dis-
cuss, in section 3, how both can be used to compose programs se-
quentially, as its is commonly done in High Performance Comput-
ing (HPC) software, and will present an example of HPC software
built with them. In order to improve composability and increase ef-
ficiency, we will describe, in section 4, how to build higher-order
constructions upon SPOC. Specifically, we will present how paral-
lel skeletons can be translated to composition of GPGPU kernels
with automatic optimizations. As Sarek is embedded into OCaml,
we will discuss how OCaml functions can transform GPGPU ker-
nels to serve specific purposes, and how these transformations offer
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automatic generation of complex composition algorithms, mixing
GPGPU kernels with host composition. Finally, we will compare
our approach with several related works in section 5, before con-
cluding and presenting our future work.

2. GPGPU Programming with OCaml
Commonly, GPUs and CPUs are dedicated devices and possess
their own memory. To produce efficient code, programmers have
to optimize both their GPGPU kernels in order to benefit from the
highly parallel architectures, as well as the host program to take
into account the scheduling of transfers and kernel launches by
the host program. Currently, the GPGPU programming model (and
frameworks) can target multiple kinds of hardware architectures,
from GPUs to multi-core CPUs and specific accelerators like FPGA
and the Cell processor.

To write GPGPU software, two main frameworks exist : Cuda
and OpenCL. Cuda is developed by Nvidia. It is proprietary and
can only be used directly (without any kind of translator) with
Nvidia devices. OpenCL is a standard offered by the Khronos
Group. Many hardware vendors (including Nvidia, AMD or Intel)
offer an OpenCL implementation for their products (multi-core
CPUs as well as GPUs). Both frameworks are based on the stream
processing that considers kernels as computations taking a stream
as an input and producing another stream as an output. Cuda and
OpenCL are built around C libraries used for the host part, and
C subsets to express kernels. While being very similar, both are
incompatible and difficult to compose together. Computers are now
heterogeneous architectures that can easily combine a multi-core
CPU (that can be targeted with OpenCL), that embeds a GPU
(OpenCL) and often provides a dedicated GPU (compatible with
Cuda or OpenCL) for intensive graphics rendering. Portability and
heterogeneity of systems becomes an issue for programmers. To
compose efficient software with low-level and verbose frameworks
is very difficult and error-prone. Thus, we propose to use a high-
level programming language to do the composition.

2.1 OCaml as a composition language
An important part of GPGPU programming comes from the com-
position of transfers and computations. OCaml [3] is a language
developed at Inria. It is a multi-paradigm (functional, imperative,
object, modular) language that features a state of the art memory
manager. It can be compiled to efficient native code for perfor-
mance as well as to virtual machine byte-code for portability. These
features makes it an excellent candidate for GPGPU composition.
In particular, it offers sequential programming, that is the common
practice for HPC well as the common paradigm for GPGPU ker-
nels and libraries. Besides, its other paradigms can help improve
expressiveness, through the development of higher order algorith-
mic constructions to handle specific GPGPU algorithms.

Using OCaml, we developed the SPOC library that offers to use
GPGPU programming via Cuda and OpenCL and provides several
abstractions over memory transfers as well as devices management.

2.2 SPOC : Stream Processing with OCaml
SPOC [4, 5], is built upon Cuda and OpenCL. It has been developed
focusing on performance but also portability and heterogeneity.
Besides, as transfers scheduling and composition are difficult but
mandatory tasks to achieve high performance, it provides automatic
transfers as well as several ways of expressing GPGPU kernels,
through interoperability or via the use of an OCaml DSL, Sarek.

Portable and Heterogeneous. To provide portability, SPOC uni-
fies both Cuda and OpenCL APIs. SPOC is dynamically linked to
those APIs, thus it is possible to compile or use a software built
with SPOC on systems with any kind of GPU devices (compatible

with Cuda or OpenCL). Besides, SPOC automatically detects every
devices compatible with it at runtime. Associated with a common
API, this can be used to handle multiple GPUs (from any frame-
work) indifferently and conjointly. This eases the expression of
complex programs dedicated to very heterogeneous architectures,
such as supercomputers or current personal computers.

Vectors and lazy transfers. In order to abstract transfers schedul-
ing, SPOC introduces a specific monomorphic data set to OCaml:
vectors. SPOC keeps tracks of vectors location (on CPU or GPGPU
memory) during program execution, and thus, can automatically
transfer them when needed. In particular, SPOC checks that ev-
ery vector used by a GPGPU kernel is present in GPGPU memory
(and triggers transfers if required) before launching the computa-
tion. Similarly, when the CPU reads or writes in a vector, SPOC
checks its location and transfers it if needed. Furthermore, SPOC
uses the OCaml garbage collector to manage vectors and trigger
transfers to the CPU memory when the GPU memory is full.

3. Kernel Composition
As for transfers, it is mandatory to compose kernel internally and
globally. Thanks to OCaml, kernels can be composed sequentially,
and new abstractions can be built to compose them.

3.1 Expressing kernels
SPOC provides two main solutions to express GPGPU kernels. The
first one is to use interoperability with Cuda/OpenCL kernels. This
eases code reuse as well as helps write bindings with existing high
performance libraries such as Cublas [6] or Magma [7]. The sec-
ond one is to use Sarek [4], a DSL built into OCaml dedicated
to GPGPU kernels. Sarek is based on the C subsets of Cuda and
OpenCL but offers type inference, with static type checking as well
as an OCaml-like syntax for more consistency with the host pro-
gram. Sarek kernels are written within the OCaml program (in the
same file as the host program), and can even be embedded into
OCaml functions. They are compiled in two steps. The first takes
place at compile-time. It uses a Camlp4 [8] Ocaml syntax exten-
sion to type-check the kernel and generate OCaml code. This code
embeds the kernel internal representation (KIR) as well as the rep-
resentation of an external kernel, in order to make Sarek kernels
compatible with external ones. SPOC handles both indifferently,
linking external kernels to their source file and internal kernel to
their KIR. The second step takes place at runtime and compiles KIR
into actual Cuda or OpenCL kernels depending on the device where
the kernel is loaded. This provides a way to write full GPGPU pro-
gram from OCaml while providing portability and heterogeneity.

The figure 2 shows a simple kernel computing a vector addi-
tion written in Sarek, Cuda and OpenCL. Kernels are elementary
operations that are mapped to the GPU computations unit to pro-
vide global computations. Here, multiple computation units will
compute an elementary addition, producing the overall vector ad-
dition. Programmers can express a virtual 3D layout of their map-
ping, mimicking a 3D grid layout composed of blocks of elemen-
tary computation units. These layouts are dependent of the kernel
and must be optimized depending on the computation units layout
on the hardware used.

3.2 Sequential and functional composition
Why use lazy transfers? Using OCaml as a kernel composition
language, it becomes possible to express composition with its mul-
tiple paradigms. However GPGPU kernels are imperative proce-
dures that work through side effects making it difficult to predict
which input value will be modified and thus provide efficient func-
tional kernel composition. This leads to imperative designs, com-
posing kernels sequentially. In order to make sure that every vector
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Sarek
l e t vec_add = kern a b c n ->

l e t i = thread_idx_x +
block_idx_x * block_dim_x i n

i f i < n t h e n c.[<i>] <- a.[<i>] + b.[<i>]

Cuda
__global__ void vec_add ( c o n s t f l o a t ⇤ a ,

c o n s t f l o a t ⇤ b ,
f l o a t ⇤ c ,
i n t N ) {

i n t i = blockDim . x ⇤ blockIdx . x + threadIdx . x ;
i f ( i >= N ) re turn ;
c [ i ] = a [ i ] + b [ i ] ;}

OpenCL
k e r n e l v o i d vec_add( g l o b a l c o n s t f l o a t * a,

g l o b a l c o n s t f l o a t * b,
g l o b a l f l o a t * c,

i n t N) {
i n t i = get_global_id (0);
i f (i >= N) r e t u r n ;
c[i] = a[i] + b[i]; }

Figure 2: Vector addition in Sarek, Cuda and OpenCL

needed by a kernel is present on the device running the kernel, it
is mandatory to transfer all vectors on the device. As mentioned
earlier, kernels are procedures and in order to make sure that ev-
ery vector potentially modified by the kernel can be accessed by
the CPU, a common automatic solution [9] consists in transferring
back every input vectors to the CPU memory after kernel execu-
tion. It ensures that modified vectors are correctly transferred. But,
this solution may trigger many unnecessary transfers especially
when applying several kernels to the same vectors, and thus re-
duces performance. SPOC provides on-demand transfers. This of-
fers efficient sequential composition and ensures that unused vec-
tors stay on their current location. Thus, it limits costly transfers.
Most high performance libraries are built to be used sequentially.
Using OCaml imperative paradigm is thus helpful to develop sim-
ple bindings to this libraries.

Case study. To check that our solutions, with OCaml to compose
kernels and high performance library calls, are relevant, we ported
a real size numerical application from Fortran and Cuda to OCaml.
We chose the PROP software of the 2DRMP suite [10] that simulates
the scattering of electrons in ions at intermediate energies. 2DRMP
is a high performance software targeting multiple architectures,
from sequential computers to GPGPU clusters and supercomput-
ers. The suite has been awarded the UK Research Councils’ HEC
Strategy Committee HPC Prize (2006) for machine utilization. This
ensured us to work with state of the art HPC software. PROP mainly
uses HPC libraries (Cublas and Magma) for its GPGPU computa-
tions. We provided bindings for OCaml to a subset of each library.
Several GPGPU kernels were also translated from Cuda to Sarek.
PROP being a part of We only translated the computation part to
OCaml, keeping I/O in Fortran [11]. Our program mixes OCaml,
Sarek, Fortran, calls to HPC libraries and a bit of C code to glue
OCaml and Fortran together. While looking rather complex, and
keeping the overall layout of the program, that is sequential calls
to Cublas and Magma functions, the final code is 30% shorter than
the original one, and benefits from features of OCaml such as au-
tomatic memory management, and static type checking. Most of
the code reduction comes from the removal of transfers scheduling
from the host program, SPOC managing it automatically.

Table 1 presents the results we obtained, compared to the orig-
inal version of the program. We compared two versions of our

PROP Version Time Speedup
Fortran 15m51s 1

SPOC + Sarek 19m55s 0.8
SPOC + Cuda kernels 16m58s 0.93

Test machine : 1 Intel Core i7-3770 CPU + 1 Nvidia Tesla C2070 GPU
data sets : local R-matrix : 383⇥383 – global R-matrix : 7660⇥7660

Table 1: PROP results

program, one using Sarek to describe GPGPU kernels, while the
other uses untouched Cuda kernels through interoperability. Re-
sults show that using SPOC offers very good performance as we
achieve 80% of the hand-tuned Fortran program performance when
using Sarek and increases it to 93% when using external kernels.

4. Functional composition
As discussed previously, using GPGPU kernels directly as well as
through simple bindings to HPC libraries makes it difficult to com-
pose computations other than sequentially. This is due to kernels
being procedures with no outputs. In order to improve composi-
tion of the overall program and increase reusability, we propose
algorithmic constructs built upon SPOC and Sarek : transformation
functions that heavily modify Sarek KIR in order to provide spe-
cific computations, and algorithmic skeletons that offer functional
composition of kernels and helps provide automatic optimization

4.1 Automatic composition from transformation functions
Using SPOC, it is possible to declare external kernels or describe
internal ones using Sarek. Sarek gives access to KIR from the host
program. Thus, we can write functions, from our composition lan-
guage, OCaml, transforming KIR to match specific computations.
For instance, a map (figure 3) transformation can transform an oth-
erwise not executable kernel into a correct one. From a kernel gen-
erated via Sarek, map transforms scalar computations (’a -> ’b)
that cannot be run on a GPU into vector ones (’a vector -> ’b
vector). Taking a vector as parameter it automatically computes
the host composition to produce the correct output vector.

val map : (’a -> ’b) kernel ->
’a vector -> ’b vector

Figure 3: Type of map transformation

This kind of constructs can be used to rewrite the vector addition
mentioned previously as simply as :

l e t vec_add a b = map2 (kern x y -> x + y) a b
val map2 : (’a -> ’b -> ’c) kernel ->

’a vector -> ’b vector ->’c vector

To describe how the transformation is done, let’s look at the
sorting algorithm. Sorting vectors efficiently in parallel is difficult,
especially with most GPUs that cannot call kernels from kernels or
use recursion. Sorting combines GPGPU kernels with host compo-
sition to correctly schedule each step of the overall computation.

It is possible to write this kind of computations by hand with
SPOC and Sarek. But using Sarek, it is possible to transform the
elementary comparison to generate the needed code to compute a
global sorting.

Figure 4 shows how sort transforms a scalar comparison kernel
into the sequential host composition of a GPGPU kernel computing
over vectors. Given the comparison function, sort injects it within a
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sort (kern a b -> a - b) vec1
val sort : (’a -> ’a -> int) kernel ->

’a vector -> unit

Injection into sort kernel

l e t bitonic_sort = kern v j k ->
l e t open Std i n
l e t i = thread_idx_x + block_dim_x*block_idx_x i n
l e t ixj = Math.xor i j i n
l e t mutab le temp = 0. i n
i f ixj >= i t h e n (

i f (Math.logical_and i k) = 0 t h e n (

i f v.[< i >]� v.[< ixj >] > 0 t h e n
(temp := v.[<ixj >];
v.[<ixj >] <- v.[<i>];
v.[<i>] <- temp))

e l s e i f v.[< i >]� v.[< ixj >] < 0 t h e n
(temp := v.[<ixj >];
v.[<ixj >] <- v.[<i>];
v.[<i>] <- temp);)

Host composition

w h i l e !k <= size do
j := !k lsr 1;
w h i l e !j > 0 do

run bitonic_sort (vec1 ,!j,!k) device;
j := !j lsr 1;

done;
k := !k lsl 1 ;

done;

Figure 4: Overall composition generation via sort transformation

more complex predefined code. Here, we are using a simple Bitonic
sorting algorithm [12].

Transformations makes using GPGPU easier by abstracting
most of it : managing devices, transfers, kernels and the overall
composition. Besides, transformations offer some polymorphism
compared to kernel. The type of the final kernel depends on the
transformation and its parameters.

4.2 Parallel skeletons
Skeletons [13] are algorithmic constructs based on common design
patterns, that can be parameterized to adapt their behavior. They are
commonly used in parallel programming to abstract parallel com-
plexity while helping access high performance, in particular with
Ocaml, for instance with the CamlP3L [14] library. By building
skeletons, we can associate GPGPU kernels to inputs and outputs,
making it possible to compose them. Thus, it becomes possible to
compose GPGPU computations described with external Cuda and
OpenCL kernels as well as with Sarek.

We introduce a skeleton data structure associating

• a kernel
• an execution environment (consisting of the kernel parameters)
• an input (included in the execution environment)
• an output (included in the execution environment).

Inputs and outputs have to be SPOC vectors. The (’a,’b,’c)
skeleton type is parameterized by ’a the environment type, ’b

the input type and ’c, the output type. The ’a type includes kernel
globals, inputs and outputs and thus contains ’b and ’c.

SPOC offers two kinds of skeletons : MAP and REDUCE. MAP
takes a kernel and a vector as parameters, and returns a vector.
Each element of the returned vector is the kernel applied to the
corresponding element of the input vector. REDUCE also takes a ker-
nel and a vector as parameters. REDUCE returns a vector containing
only one value. This value is computed by recursively combining
elements of the input vector using the kernel to do the combination.

(* ’a : environment , ’b : input , ’c : output *)
val MAP : ’a kernel -> ’b vector -> ’c vector

-> (’a,’b,’c) skeleton
val REDUCE : ’a kernel -> ’b vector -> ’c vector

-> (’a,’b,’c) skeleton
val run : (’a,’b,’c) skeleton -> ’a -> ’c vector

Figure 5: Simplified types of skeletons constructions

Skeletons offer inputs and outputs making it possible to com-
pose them. While looking similar, skeletons and transformations
(for instance MAP and map) are different and serve different pur-
poses (figure 5 presents skeletons constructions types). Skeletons
can use existing kernels within composition while transformations
generate complex code from simple sub-kernels. Transformations
can generate kernels (without host composition) that can be used
within composition skeletons.

4.3 Composition and automatic optimizations
Compositions explicitly describe the relations between skeletons
and data. A common composition is PIPE. It composes two skele-
tons, taking the output of the first one as the input of the second
one. PIPE explicitly expresses the dependencies between two com-
putations and the data they handle, and thus, helps express complex
algorithms. Besides, using this functional style helps us provide
automatic optimizations, as it automatically gives us the data de-
pendency graph of our programs. Indeed, using PIPE, we can eas-
ily start the transfers of the vectors needed by the second skeleton
while computing the first one. This provides automatic overlapping
of transfers by computations, and thus, improves the overall perfor-
mance.

val PIPE : (’a,’b,’c) skeleton ->
(’d,’c,’e) skeleton ->
(’a,’b,’e) skeleton

Many algorithms can benefit from the use of PIPE, for instance,
the iteration loop of a power iteration algorithm (computing the
largest eigenvalue of a given matrix). This algorithm is described
by the iteration

bk+1 =

A⇥ bk
||A⇥ bk||

.

At each iteration, the vector bk is multiplied by the matrix A and
normalized. This example use three very simple kernels :

• kern init which computes the matrix-vector multiply
• kern divide which simply divides one data set by another
• kern norm which computes the norm of an input vector

This computation can be expressed through the use of MAP
and REDUCE skeletons that can be composed with PIPE. Figure 6
shows the code of this program using skeletons. Beside transfer
overlapping, piping skeletons also reduces the number of times
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...
w h i l e (!norm > eps && !iter < max_iter) do
incr iter;
max := (run (pipe
(map k_init vn (vn, v, a, n ))
(reduce spoc_max max (vn , max ,n))) dev vn);

norm := (run (pipe
(pipe

(map k_divide vn (vn , max , n))
(map k_norm v_norm (vn, v, v_norm , n)))
(reduce spoc_max max2 (v_norm!, max2 , n)))  -

dev vn ).[<0>];
done;

Figure 6: Power Iteration with skeleton compositons

SPOC will compute the checks and transfers optimizations needed
for each run.

Version Time (s) Speedup

Sequential OCaml 637 1
OCaml + SPOC 101 6.31

OCaml + SPOC + Skeletons 81 7.86
OCaml + SPOC + Composition 74 8.61

Test machine : 1 Intel Core i7-3770 CPU + 1 AMD Radeon HD6950 GPU

Table 2: Results using skeleton composition

Table 2 shows performance results for this algorithm comparing
four versions of it : using sequential OCaml, translating computa-
tions to GPGPU kernels, using GPGPU kernels within skeletons
and composing GPGPU skeletons.

Here, using GPGPUs already improves performance. When us-
ing Skeletons, SPOC automatically optimizes the layout of the
computations to maximize parallelism on the many computing
units of our GPU. Using PIPE, SPOC can overlap some transfers
with computations, and thus, improve performance.

This kind of overlapping could, for example, also be imple-
mented in the MAP skeleton to provide some kind of multi-buffering
for large enough data sets, computing over some part of the vector
while transferring another part.

5. Related Works
GPGPU programming is a complex field but it can offer very high
performance. To harness it, multiple solutions have emerged, some
based on high-level languages and libraries, while others target
scheduling and kernel composition.

5.1 High-level GPGPU programming
Most languages currently provides bindings to Cuda or OpenCL
API to use GPGPU programming, including high level program-
ming language. This section presents some libraries and tools pro-
viding higher-level features and compares them with our solutions.
Most keep the same approach : provide DSLs dedicated to GPGPU
kernels, with a runtime library to handle transfers and composition.

Accelerate [15] is a Haskell library that features a DSL to de-
scribe GPGPU computations. As its multi-core counterpart REPA,
Accelerate is based on array computations. Similarly to SPOC
skeletons and transformations, Accelerate computations take array
(or vectors) as inputs and produce arrays as outputs. As with Sarek,
Accelerate computations are transformed to an internal representa-
tion that is compiled to Cuda, OpenCL or REPA code, using spe-
cific plugins. Accelerate also allows to use external CUDA code
via an FFI [16] making it very similar to SPOC. However, comes

from the possibility, for Sarek to describe computations that are not
vector operations.

FSCL [17], for F#, is composed of two projects FSCL.Compiler
and FSCL.runtime. The first is a F# compiler that produces OpenCL
code. FSCL features several high-level improvements overs classic
OpenCL such as generic types, automatic array length or record and
structs. In association, the runtime library offers to access OpenCL
kernels from .NET. This approach is very similar to ours, provid-
ing a solution dedicated to kernels as well as another to compose
kernels with high-level languages and tools. The main difference
comes mostly from the compiler that offers higher-level features
than Sarek but only targets OpenCL. As SPOC, FSCL.runtime of-
fers specific parallel collections that are automatically managed.

Several tools exist for the Python language. Most are based
on NumPy, the main numerical library for Python. For instance,
Parakeet [18] and Copperhead [19] use subsets of the Python
language to declare numerical computations that can be compiled
just-in-time to multi-core or GPGPU kernels. Both offer data-
parallel operators (like map and reduce) and use specific data-types.
Numba [20] is another Python JIT compiler that compiles specific
python expressions to parallel LLVM code. Its commercial version
offers compatibility with Cuda.

Aparapi [21] is a library for Java targeting OpenCL. It de-
scribes kernels by inheriting specific Java classes in a similar way
than with Java threads. Aparapi offers automatic memory manage-
ment and device detections.

RustGPU [22] describes GPGPU kernels in Rust, that are com-
piled to Cuda kernels. It, then, offers to use those as external kernels
via simple bindings.

With Harlan [23], developers can compose kernels with the
Scheme language. It describes them as operations over vectors
directly within Scheme. It also features specific combinators such
as reduce.

Thrust [24] is a C++ library that targets Cuda. It offers abstrac-
tion overs classic C++ Cuda Code by providing vector combinators
very similar to SPOC skeletons.

All describe kernels with their host language. Their kernel DSL
or compiler offer languages very similar to their host language,
and thus, increase the overall program consistency. However, they
often offer either skeletons and vector combinators or kernel DSLs
and most of the time cannot use external GPU kernels. SPOC also
features multiple and unified backends and thus can be used in
heterogeneous systems.

5.2 Kernel composition libraries
High-level tools exist for GPGPU programming, but few are fo-
cused on improving composition via automatic scheduling of
GPGPU computations. Several libraries and compiling tools fo-
cus on this specific area, but are mainly targeting C/C++.

StarPU [25] and XKaapi [26] are C and C++ libraries that
specifically target heterogeneous systems. Both describe tasks and
the dependencies between them. Their runtimes automatically
dispatch these tasks on several computation units, automatically
scheduling data transfers and computations.

Par4All [27] is an automatic parallelizing and optimizing
source to source compiler. From already data-parallel C or For-
tran, it optimizes memory and computations dispatch overs paral-
lel devices. Through static analysis, it can automatically schedule
computations and transfers, offering optimizations such as trans-
fers overlapping. This approach is very different from the others
and takes place at compile-time.

6. Conclusion and Future Work
High performance GPGPU programming and numerical computa-
tions are commonly done in an imperative way. However, func-
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tional or object compositions can improve the expression of com-
plex algorithms. Using OCaml, we developed the SPOC library
for GPGPU programming. By increasing abstraction, and offer-
ing several ways of composing GPGPU kernels, SPOC and Sarek,
with OCaml, make GPGPU more accessible and safe. They provide
static type checking, as well as automatic memory management,
including transfers, to the overall program. To go further, Sarek of-
fers direct transformation of small GPGPU sub-kernels into com-
plete kernels associated with host composition code. To make com-
position possible, SPOC provides tools to include GPGPU kernels
within skeletons. Skeletons improve code reuse and expressiveness.
They explicitly describe relations between a kernel and its required
data. Besides, SPOC directly uses this information to provide auto-
matic optimizations when mapping kernels to GPGPU computing
units. Skeletons can be composed. With compositions, the relations
between skeletons can be explicitly expressed. Thus, SPOC can de-
fine an optimized automatic scheduling of transfers and computa-
tions. Skeletons, as well as transformations, also help to describe
polymorphic, reusable and complex computations.

To increase composability, and thus, improve GPGPU program-
ming, we intend to improve Sarek and our skeleton and transforma-
tion library. Sarek is a playground for code transformation and gen-
eration. We plan to use it to offer more transformations and them
with skeletons composition. This will provide mechanisms to di-
rectly transform kernels by splitting/merging them and automati-
cally generate synchronizations, reducing the number of kernel call
when possible and keeping as much computation as possible on the
GPU. To improve automatic composition, we also intend to add au-
tomatic cost evaluation to Sarek. Thus, we could provide skeletons
dedicated to heterogeneous architectures automatically dispatching
computations were they will be handled the best.

Another domain that could benefit from our approach is web
programming. Web applications are becoming very demanding. To
make the development of compute intensive applications such as
multimedia applications possible, it becomes mandatory to have
access to high performance tools. Thus, we intend to adapt ours to
web environments, with the use of the WebCL [28] framework for
JavaScript, associated with the existing js of ocaml [29] compiler
that compiles OCaml byte-code to JavaScript.
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niveau,” in la Conférence d’informatique en Parallélisme, Architecture
et Système (ComPas), 2013.

[12] P. Kipfer and R. Westermann, “Improved gpu sorting,” in GPU gems,
vol. 2, pp. 733–746, 2005.

[13] M. Cole, “Bringing Skeletons out of the Closet: A Pragmatic
Manifesto for Skeletal Parallel Programming,” Parallel computing,
pp. 389–406, 2004.

[14] R. Di Cosmo, Z. Li, M. Danelutto, S. Pelagatti, X. Leroy, P. Weis, and
F. Clément, CamlP3l 1.0: User Manual, 2010. http://camlp3l.
inria.fr/.

[15] M. Chakravarty, G. Keller, S. Lee, T. McDonell, and V. Grover, “Ac-
celerating Haskell array codes with multicore GPUs,” in Proceedings
of the sixth workshop on Declarative aspects of multicore program-
ming (DAMP), pp. 3–14, ACM, 2011.

[16] R. Clifton-Everest, T. McDonell, M. Chakravarty, and G. Keller, “Em-
bedding foreign code,” in Practical Aspects of Declarative Languages
(M. Flatt and H.-F. Guo, eds.), vol. 8324 of Lecture Notes in Computer
Science, pp. 136–151, Springer International Publishing, 2014.

[17] G. Cocco, “FSCL F# to OpenCL Compiler and Runtime,” 2013.
http://www.gabrielecocco.it/fscl/.

[18] A. Rubinsteyn, E. Hielscher, N. Weinman, and D. Shasha, “Parakeet:
A just-in-time parallel accelerator for python,” in The 4th USENIX
Workshop on Hot Topics in Parallelism, USENIX, 2012.

[19] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: compiling an
embedded data parallel language,” in ACM SIGPLAN Notices, vol. 46,
pp. 47–56, ACM, 2011.

[20] T. Oliphant, “Numba python bytecode to LLVM translator,” in Pro-
ceedings of the Python for Scientific Computing Conference (SciPy),
2012.

[21] A. INC, “Aparapi,” 2013. http://code.google.com/p/
aparapi/.

[22] E. Holk, M. Pathirage, A. Chauhan, A. Lumsdaine, and N. D. Mat-
sakis, “GPU Programming in Rust: Implementing High-Level Ab-
stractions in a Systems-Level Language,” in Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing Workshops and PhD Forum (IPDPSW), pp. 315–324, 2013.

[23] E. Holk, W. E. Byrd, N. Mahajan, J. Willcock, A. Chauhan, and
A. Lumsdaine, “Declarative parallel programming for gpus.,” in In-
ternation Conference on Parallel Computing (PARCO), pp. 297–304,
2011.

[24] J. Hoberock and N. Bell, “Thrust: C++ Template Library for CUDA,”
2009. http://code.google.com/p/thrust/.

[25] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures,” Concurrency and Computation: Practice and Experi-
ence, Special Issue: Euro-Par 2009, vol. 23, pp. 187–198, 2009.

[26] T. Gautier, J. V. Lima, N. Maillard, and B. Raffin, “Xkaapi: A run-
time system for data-flow task programming on heterogeneous archi-
tectures,” in Proceedings of the 2013 IEEE 27th International Sympo-
sium on Parallel & Distributed Processing (IPDPS), pp. 1299–1308,
2013.

[27] M. Amini, B. Creusillet, S. Even, R. Keryell, O. Goubier, S. Guel-
ton, J. O. McMahon, F.-X. Pasquier, G. Péan, P. Villalon, et al.,
“Par4all: From convex array regions to heterogeneous computing,” in
IMPACT 2012: Second International Workshop on Polyhedral Compi-
lation Techniques HiPEAC 2012, 2012.

[28] T. Aarnio and M. Bourges-Sevenier, “WebCL 1.0 specification,”
Khronos WebCL Working Group, 2014.

[29] J. Vouillon and V. Balat, “From Bytecode to JavaScript: The
js of ocaml Compiler,” Software: Practice and Experience, 2013.

637


