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1. INTRODUCTION

Through the mid-1970s, compiler analysis and optimization was,
for the most part, restricted to single procedures. This type of anal-
ysis was sufficient because optimizations focused on issues like
register allocation and optimization of array indexing calculations
and in Fortran, the most commonly optimized language of the time,
procedure calls occurred infrequently, possibly because they were
known to be expensive.

The confluence of two trends, toward architectures that employed
multiprocessor parallelism and toward programming methodolo-
gies that used more procedures, changed this situation. To opti-
mize for parallel hardware, compilers had to turn to more substan-
tial transformations that involved restructuring whole loop nests.
In increasingly many cases (because of improved programming
methodologies) these loop nests included procedure and function
calls. Hence, ways of reasoning about the side effects of those
procedure and function calls were needed. In addition, if the proce-
dure could be compiled with knowledge of the calling context, the
running time of the procedure could be reduced substantially by
specialization, particularly if the procedure were called from deep
within a loop nest.

However, most compiler developers were cautious about using
interprocedural analysis for two reasons. First, since the number
of procedures in a program could become very large, no practical
algorithm could afford to be highly non-linear in the size of the call
graph. Second, if interprocedural information were relied on to
perform optimizations in some procedure, the object code for that
procedure would be a function of the source of the entire program
rather than of the procedure in question.

The paper in this volume established that one important class of
interprocedural analysis problems, the alias-free, flow-insensitive
side-effect problems, could be solved in time proportional to the
size of the call graph times the number of variables being tracked.
A later paper showed how to extend this algorithm to solve the
complete problem in the same time bound [8]. Because the solution
time is proportional to the size of the solution, no faster bound is
possible.

The second inhibitor to acceptance of interprocedural analysis
and optimization was addressed by the introduction of “recompila-
tion analysis” [9, 4], which achieved the illusion of separate com-
pilation even when compiling in the presence of interprocedural
analysis.
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2. BACKGROUND

Our interest in interprocedural analysis and optimization began with
Keith Cooper’s 1981 thesis proposal, which aimed to make it possi-
ble to extend languages by adding functionality from procedure and
function libraries as intrinsic operations in the language, primarily
through procedure specialization and inlining. This document laid
out an ambitious program of research that, quite frankly, we are
still working to complete even today.

At the time, we believed that we could not rely exclusively on
systematic inlining to achieve the goal, simply because the compile
times would become intolerably long. Thus some portion of the op-
timization strategy would require interprocedural analysis. There
were a number of important early works on interprocedural anal-
ysis [1, 17], but the work reported in this paper was most deeply
influenced by Barth [3] and Banning [2].

Barth formulated interprocedural side effect analysis as a collec-
tion of relations, demonstrating that the problem could be solved in
using transitive closure in O(N?® 4 V?) time, where N is the num-
ber of procedures and V' is the number of variables in the program.
Barth also separated the treatment of side effects to global variables
and reference parameters, an idea that we would employ in our two
later papers. Although Barth claimed that the solutions were prac-
tical, most compiler developers were reluctant to use an algorithm
that could take time that was cubic in either the number of proce-
dures or number of variables because either or both of these might
extraordinarily large.

Banning defined the crucial distinction between flow-sensitive
and flow-insensitive interprocedural analysis problems. He also
formulated the solution of flow-insensitive problems as a data flow
analysis problem on the call graph. Banning developed a clever
partition of the flow-insensitive side effect problem into an alias-
free “direct” side-effect problem and the problem of computing and
integrating aliases into the solution. He suggested using standard
data-flow algorithms for the solution, but did not provide a com-
plexity analysis. Myers [15] later showed that flow-sensitive prob-
lems were intractable in the most general formulation. The ques-
tion about how fast we could solve the flow-insensitive problems
remained open.

In the work leading to Cooper’s dissertation, we were trying to
determine the complexity of Banning’s approach and we observed
that the data flow problem resulting from his formulation was nei-
ther “rapid” [13] nor “fast” [10], which meant that neither the it-
erative algorithm nor the best elimination methods could be used
to achieve a fast time running time. Just prior Cooper’s thesis de-
fense, we discovered that we could get around the problem if we
could bound the number of parameters to any procedure in the pro-
gram by some (perhaps large) constant. We then built on Barth’s
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work by decomposing the problem into two subproblems: deter-
mining side effects to global variables and determining side effects
to reference parameters. This led to our 1984 PLDI paper [7] which
used an old result of Tarjan’s on solution of path problems [18] to
achieve a near-linear time bound.

The final insight came later, when we discovered that we could
formulate the two subproblems as reachability algorithms on differ-
ent graphs—the call graph for side effects to globals and the param-
eter binding graph for reference parameters. As a result, each of
these subproblems could be solved in no more than O((N + E)V)
time, where IV is the number of procedures in the program, E is
the number of call sites and V' is the number of variables in the
program. Since the solution to the problem has the same size, this
algorithm is effectively optimal. Furthermore, if you could do set
operations of O(V') length in constant time using bit vector oper-
ations, the algorithm would be linear in the size of the call graph.
This is central result of the paper included in this volume.

There remained the issue of whether the alias information could
be computed and integrated into the solution to produce precise
side-effect information in the same time bound. This was resolved
positively by our 1989 POPL paper [8]. The combined result is an
algorithm for flow-insensitive side effect analysis that is as fast as
possible. The algorithm works for any standard lexically-scoped
language with recursion.

Of course all of this requires the construction of a call graph.
The best known procedure for constructing a precise call graph for
Fortran in the presence of procedure parameters was Ryder’s al-
gorithm [16], which was proved to work for recursive procedures
without change by Callahan et al [5]. In 1992, Kennedy and Hall
produced an effectively linear algorithm that sacrificed some preci-
sion for speed [11].

3. INFLUENCE

The paper included in this volume resolved the issue of complexity
of flow-insensitive side-effect analysis for scalar variable by pre-
senting an algorithm that was both easy to understand and effec-
tively optimal. In order to support parallelization, however, it was
critical to extend side-effect analysis to sections of arrays. Inter-
estingly, if the array sections form a lattice with the finite descend-
ing chain property, the algorithm presented here can be adapted to
solve the side effect problem for those sections in the same asymp-
totic time bound [6, 12] (actually a constant time slower where the
constant is proportional to the depth of the lattice).

Of course, the interprocedural problems that people really want
to solve are the flow-sensitive ones. It is much more important to
know that there is an upwards exposed use down a call chain than it
is to know there is a use, whether upwards exposed or not. Needless
to say, Myers’ negative result inhibited progress in this arena. Nev-
ertheless, many interprocedural compilers include flow-sensitive
analyses, with measures to reduce accuracy if running times be-
come overly long. We believe that this is sound approach, because
most problems can be solved in acceptable running times using the
iterative algorithm with dynamic choice of procedures to visit.

Although there have not been many commercial compilers that
systematically perform interprocedural analysis, the Convex Ap-
plication Compiler was notable because it was among the first [14].
A number of later compilers incorporated interprocedural side ef-
fect analysis, including compilers from Cray and Digital (now HP).
Most of these use some variant of the algorithm from presented in
this paper.
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Abstract

We present a new method for solving Banning's alias-free flow-insensitive side-effect analysis problem. The
algorithm employs a new data structure, called the binding multi-graph, along with depth-first sedrch to
achieve a running time that is linear in the size of the call multi-graph of the program.  This method can be
extended to produce fast algorithms for data-flow problems with more complex lattice structures.

1. Introduction

Interprocedural analysis of the side effects of subrou-
tine invocation has been widely discussed in the literature
[Spil 71, Alle 74, Bart 78, Bann 79, Rose 79, Myer 80, CoKe 84, Burk 84,
BuCy 86, CaRy 86]. Banning has identified the important com-
ponent problem of alias-free flow-insensitive side-effect
analysis [Bann 79]. The fastest previous technique for solving
this problem, which we call the swift algorithm, requires
O(NEao{ E,N)) operations for instances of the problem with
reducible call graphs [Coop 83, CoKe 84, CoKe 87a). Here, E is
the number of call sites, N is the number of procedures, and
a is the functional inverse of Ackermann’s function. The
fundamental insight underlying the swift algorithm is that
the problem can be subdivided into two subproblems: the
side effects to parameters passed by reference and the side
effects to variables passed as global variables. Each of these
subproblems can then be solved using algorithms adapted

from single-procedure data-flow analysis.!

In this paper we improve on the swift algorithm by
presenting new algorithms for each of the two subproblems.

a) To solve for side effects to reference parameters, we use
a graph of the parameter binding structure in a pro-
gram, called the binding multi-graph. This approach
yields a simple algorithm that takes O(N+E) time in
the worst case, assuming that the average number of
parameters at procedures and call sites is bounded from
above by a small constant.

Side effects to global variables can be determined by an
algorithm that employs depth-first search to produce an
answer in O(N+E) bit-vector steps. [t should be noted
that bit vectors for interprocedural analysis will be
exceedingly long. In fact, it is reasonable to assume
that the number of global variables will grow linearly
with the size of the program. Hence, the overall
Permisston to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish. requires a fee and/
or specific permission.
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complexity of the resulting algorithm is O(N*+NE),
although bit vectors can be used to speed up the
analysis by a constant factor.

This paper divides into five major sections. Section 2
introduces the problem of interprocedural side-effect
analysis and describes the partitioning. Section 3 intro-
duces the binding multi-graph and shows how it can be
used in an efficient algorithm for side-effect analysis. Sec-
tion 4 describes the linear-time algorithm for analysis of
side effects to global variables. Section 5 explains how to
combine the results of the two problems to produce a solu-
tion for the original problem. Finally, section 6 shows how
to extend this algorithm to handle the analysis of side
effects to subsections of array variables. Throughout the
paper, we will use the MOD problem as our example. The
USE problem has an analogous solution.

2. The Problem

To determine the safety of applying an optimizing
transformation, compilers examine the flow of values inside
a procedure. Calls to external procedures present a
difficulty for this type of analysis; if the compiler has no
knowledge about the called procedure, it must assume that
the called procedure both uses and modifies the value of
every variable it can see. In practice, the called procedure
typically modifies only a fraction of these variables. In a
language like FORTRAN, where programmers use large
numbers of global variables, the difference between assump-
tion and reality is important. Thus, many authors have
proposed that the compiler collect and use more precise
information about the actual side effects of procedure calls.’

This sort of information should lead to improved

t This work has been supported by the NSF and IBM.

! The formulation of the decomposition presented in Cooper’s
dissertation and our SIGPLAN ‘84 paper contains a significant error.
Howaver, there are several corrections that both fix the problem
and retain the time bound [Carr 87, CoKe 87a, CoKe 87b, Ryde87]. The
decomposition presented here is based on our own correction and
revision of the SIGPLAN ‘84 paper [CoKe 87a, CoKe 87b].
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optimization.

Specifically, the compiler should determine, for each
call site, which variables can have their values modified by
its execution and which variables can have their values used
by its execution. To represent this information concisely,
we annotate each call site s in the program with two sets,
MoD( s} and USE(s), defined as follows. For a call site s and a
variable v:

L o d

v € MoD(s)
v € USE(s)
We are interested in solving fow-insensitive versions of
these problems. A flow-insensitive analysis concludes that a
procedure call has a side effect, like v € MoD(s), if that side
effect can occur on some path through the called procedure
or any procedure that it, in turn, invokes. In other words,
1t ignores intraprocedural control structures. By contrast, a
flow-sensitive analysis would conclude that the call has the
side effect if and only if the analyzer can determine that the
side effect occurs on every path through the called pro-
cedure and all procedures that it, in turn, calls.

executing ¢ might change the value of v

+«  executing s might use the value of v

A classical formulation of the flow-insensitive MOD
problem, along the lines of Banning’s work, makes an excel-

lent detailed introduction to the problem [Bann 76].2 Rather
than compute MOD sets directly, Banning breaks the prob-
lem down into component parts. Aliasing is ignored until
late in the computation; the method assumes that simple
sets of alias pairs are available for each procedure. Next,
define:

DMOD The computation of MOD(s) is complicated by alias-
ing effects. The treatment can be simplified by first
computing DMOD(s), the set of variables that may be
modified by execution of s, ignoring any aliasing
effects in the procedure containing s, and factoring
aliasing in later. In other words, MOD(s) can be com-
puted by adding to DMOD(s) any variable that may
be aliased to a member of DMOD(s). We call
DMOD(s) the directly modified set for s.

The problem can be further simplified by observing
that computing DMOD for any call site is easy once
we determine, for each procedure p in the program,
a set GMOD(p) that contains all variables that may
be modified as the result of an invocation of p. We
call GMOD(p) the generalized modification set for p *
Once it is computed, bDMOD for any call site that
invokes p can be computed by identifying the van-
ables known at the call site that are bound by the
call to variables in GMOD(p).

GMOD

2 This formulation is based on Banning’s, but with different
notation.

8 In Banning’s formulation, the GMOD set for the main pro-
gram is empty by definition, since it cannot be invoked at a call
site. We consider this an implementation detail and allow GMOD
for the main program to be non-empty because it makes the formu-
lation more natural.
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The virtue of these observations is that GMoD(p) can be for-
mulated as the solution to a system of data-flow equations
on the call graph. To introduce this formulation, we need
some more definitions.

LOCAL For a procedure p, LOCAL(p) contains the
names of all variables declared in p.

LMoD For a statement s, LMOD(s) contains those vari-
ables that might be modified by an execution
of s, exclusive of any procedure calls in s. We
call LMOD(8) the locally modified set for s.

™MOD  For a procedure p, IMOD(p) contains those ¥ari-
ables that.might be modified by an execution
of p, exclusive of any procedure calls in p. We
call MoD(p) the initially modified set for p.
Note that

™MOD(p ) = (_J LMOD(s).
s€p

We are now ready to introduce the system of equations for
GMOD(p).

GMoD(p) = MoD(p) U | Ep) bamon(g)) | (1)
e{p,g

Here, b, is a function that maps names from ¢ into names
from p according to the name scoping and parameter bind-
ing that happens at the call site e = (p,g). We call b,(z)
the projection of 2z under the binding of e. It should be
noted that b, factors out all variables that are local to ¢
and maps the formal parameters of g to the actual parame-
ters at the call site. A similar system of equations can be
used to define the USE computation.

Once GMoD(p) is known for each p, the DMOD set for
a statement s can be computed by the following formula.

DMOD(s) = LMOD(s)U[ | J b.(aMOD(g)) | 2)
e={p,g)Es

DMoD(s) contains those variables that are modified locally
in s plus any variables that are modified as a result of exe-
cuting any procedure calls contained in s. Thus, if s
doesn’t contain any procedure calls, DMOD(s) is identical to
LMoD(s). If it does contain procedure calls, each such call
contributes some projection of the GMOD set of the called

procedure.

These equations are sufficiently complex that data-
flow frameworks for their direct solution will not achieve
the fast time bounds with any of the standard algorithms
from global data-flow analysis [CoKe 87b]. To improve on the
time bound, the swift algorithm relies on one central insight
— we can decompose the problem into two subproblems:
solving for effects due to reference parameter passing and
solving for effects due to global variables.
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Let us define MODH(p) to be the set of all variables
that are either directly modified in p or passed by reference
to another procedure and modified as a side effect of the
invocation of that procedure. In other words, MOD*(p) con-
tains MoD(p) along with all variables modified in p through
side effects to reference parameters. If we can compute
MoDHp) for each procedure p in the program, then we can
reduce the problem of computing GMOD(p) to the solution
of a system of equations analogous to equation (1).

aMop(p) = MoD*(p) U | y) be(amon(g))]  (3)

However, since we now have already solved for the effects
of reference formal parameters, the function b, takes on a
particularly simple form. If procedure p calls procedure ¢,
b, needs to model modifications to variables that are extant
after ¢ returns. Clearly this means everything that is not
local to ¢, because all of the local variables of ¢ are deallo-

cated on return* Hence, equation (3) reduces to

GMOD(p ) =1MOD*(p U] ﬂp )(GMOD(q)ﬂLOCAL(q))]. (4)

This system is trivially rapid, so that both the iterative
algorithm and the Graham-Wegman algorithm will achieve
their fast time bounds on an instance of the problem
[KaUl 76, GrWe 76|.

Thus, we have reduced the problem to the computa-
tion of MoD™*. To do this, we further decompose the prob-
lem by introducing a new set RMOD(p) that contains all for-
mal parameters to p that are modified as a side effect of
invoking p. If we can compute this set for each procedure
in the program, then MOD*(p) can be computed by the fol-
lowing equation:

MoD*(p) = MoD(p) U | y) b(rRMmOD(g))] (5)

where the function b, is restricted to mappings arising from
actual-to-formal parameter bindings. The problem, then,

becomes one of computing RMOD(p) efficiently ®

In our previous work, we showed how to reduce the
reference formal parameter problem to a single source path
ezpression problem that can be solved using Tarjan's algo-
rithm [Tarj 81a, Tarj 81b]. If we define cp to be the maximum
number of formal parameters in any single procedure and
assume that cp is independent of program size, then this

1 In a block structured language like Pascal, all of the vari-
ables that are not local to ¢ or some procedure defined in ¢ are visi-
ble from within p. However, in Fortran a global variable modified
by ¢ may not be visible in p; nevertheless, it should be included in

amMoD(p).

5 The decomposition and its correctness are discussed in a
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algorithm requires O(Ea(E,N)) bit vector steps for reduci-
ble call graphs. We note that the analysis of side effects to
global variables can also be performed in O{FEa(E,N)) bit
vector steps using the same algorithm, although the bit vec-
tors are much longer.

This paper presents linear-time algorithms for each
of the two subproblems. Neither algorithm relies on the
assumption of reducibility.

3. Reference Formal Parameter Problem

To solve the MOD problem for reference formal
parameters, the swift algorithm solved a forward problem
over the program’s call multi-graph to compute summaries
of parameter binding relationships and then used these
summaries to produce MOD information. To simplify the
reference formal parameter subproblem, we need to intro-
duce a slightly different graph, the binding multi-graph.
This is a simplification of the graph used in our algorithms
for interprocedural constant propagation [CCKT 86, Torc 85},

3.1. The Binding Multi-Graph

The program’s binding multi-graph, g = (an Eﬂ),
represents interactions between formal parameters. The
nodes of A uniquely represent the formal parameters of the
various procedures in the program. We denote them by the
name of the procedure and the specific parameter’s ordinal
position, so that the third formal parameter for procedure p
is written fp). Edges in Eﬁ represent individual binding
events. If p calls ¢ from some call site s and fp gets bound
to fp; at s, then there is an edge ( fp}, fo)) € E; ° Thus, 2
call site that passes only local variables as actual parame-
ters generates no edges in Ep Since p can call ¢ several
times, binding fp) to fp; at each call site, # may be a
multi-graph. Because 4 reflects the pattern of binding
chains in the program, it will almost certainly consist of a
number of disjoint components.

How large is 8?7 Since the complexity of data-flow
algorithms is usually stated in terms of the size of the
underlying graph, this issue is crucial to our later complex-
ity analysis. The important comparison is to the program'’s
call multi-graph, C' = (N, E). C contains a node for each
procedure and an edge for each call site. Let Hy be the aver-
age number of formal parameters, taken over all procedures
in the program, and n, be the average number of actual

parameters, taken over all call sites in the program. Now,

pair of papers [CoKe 87a, CoKe 87b)|.

% We use jp; interchangeably to name both the formal
parameter and the node in Nﬁ representing it. Similarly, we use set
names like Ngto name both the set and its cardinality. In all cases,
the meaning should be clear from the context.
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we can clearly relate the size of C and 8 N‘9 < p.[NC and
Eﬁ < uGEG. It is reasonable to assume that both B, and Ky

are independent of the growth in the program’s size. In
practice, programmers don't write ever longer parameter
lists as the program grows — most of these interfaces are
fixed at design time. Thus, we may assume that these
quantities are bounded from above by a small constant &,
so that £ > maz(u/, #.), then B is only larger than Cby a

factor of k. Note that ¥ < cp.

The binding multi-graph can be constructed in time
linearly proportional to its size by simply visiting each of
the call sites in the original call graph. The construction
need not represent a node unless it is the endpoint of an
edge in E)3 . Thus, QEﬁ > N_, everywhere.

Practically, we expect & to be small. While there
may exist individual procedures with large numbers of
parameters, the averages p_and p p taken across the whole
program, should remain reasonably small. Furthermore,
the fact that the graph need only represent those nodes that
have at least one edge associated with them will have a
moderating effect on #’s size.

3.2. Using B to find RMOD

To solve the reference parameter problem, we must
compute, for each procedure p, a set RMOD(p) that contains
those fp,‘;’s that may be modified by an execution of p.
RMOD(p) is the contribution of p's reference formal parame-
ters to GMOD(p). We can compute these sets directly, using
B. With each node frs €Ny, we associate two values that
are the analogs, on 8, of sets associated with the nodes in
C. The first, MOD( fp}), gets the value true if and only if
/p; is modified locally in p. That is, MOD( fp;) is true if
and only if fp; € MoD(p). Otherwise, it gets the value
false. The second, RMOD( fp;), gets initialized to false, ¥V
fo; € Nﬁ. Now, the RMOD problem can be posed as the

solution to the following system of data-flow equations:
RMOD{m ) = IMOD{ m RMOD{n

D(m) D(m) V (_Vyez, BMOD(M)  (5)
where \/ is the logical or operator. This set of equations
has the interesting property that its solution is identical at
every node within a strongly connected region. To solve
this set of equations, we can use the simple algorithm
shown in Figure 1. Since each of the steps in this algorithm
takes no more than O{Ng+Ep) time, the whole process has

that time bound.

To understand the effectiveness of this method, it is
important to compare it to the swift algorithm. The time
bound for the swift algorithm is in terms of bit vector
operations, where each bit vector is as long as the total
number of reference formal parameters in the program, or
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(1) Find the strongly connected components (scC's) of 8.

(2) Replace each scC with a representer node n, setting
mMoD(n) to the logical or of all the MOD sets of the
nodes in the SCC. Set RMOD(n) to false.

(3) Traverse the derived graph from leaves to robts, apply-
ing equation (6).

(4) For each scc, set the RMOD set for each node in the scc
to the value of the RMOD set for its representer node.

Figure 1 — Solving for RMOD

N, bits. In data-flow analysis of a single procedure, it is
commonly assumed that the bit-vector length does not
grow appreciably with the size of the procedure. In inter-
procedural analysis, however, we expect bit-vectors to grow
linearly as the size of the program, since programs are typi-
cally built by adding more procedures (hence, more parame-
ters), rather than by increasing the size of each procedure.
Since the swift algorithm requires O(F M E,N) bit-
vector operations, its complexity is O(N;E o(E,,Ny))
under this assumption.

By comparison, the method based on the binding
multi-graph takes O(E) = O(kE;) simple logical steps,
where k is the constant upper bound on the average
number of parameters, as defined in Section 3.1. Typically,
this will be a small constant (less than 20), no matter how
large the program grows. Hence, the new algorithm can be
said to be an order of magnitude faster than the swift algo-
rithm.

The new method might be viewed as the analog for
interprocedural analysis of Zadeck’s PVT algorithm applied
to a backward data-flow problem in a single procedure
[Zade 84]. However, in Zadeck’s method the algorithm is
applied once for each variable or cluster of variables; for our
method, a single application to 8 suffices. We have gained
significant leverage by changing graphs.

3.3. Lexical Scoping

This method handles the two-level name scoping of
C or FORTRAN. However, languages like Pascal, which per-
mit nested declaration of procedures, present a special prob-
lem because the method determines effects to global vari-
ables after it determines effects to formal parameters. In a
language with nested procedure declarations, a local vari-
able for one routine is global to procedures declared within
the body of that routine. Thus, nesting can affect the com-
putation of RMOD in two ways:
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1) mnoD(p) must reflect modifications to a local variable v
that happen inside a nested procedure, where v is a glo-
bal variable.

2) One of p's formal parameters may be used as an actual
parameter at a call site within some nested procedure 4.
This binding must be reflected in the construction of 8.

Fortunately, both these problems are easily solved.
Assume that every procedure in the program is reachable
by some call chain. If this is not the case, a linear-time
algorithm that eliminates unreachable procedures can be
invoked. Now any procedure g nested within procedure p
is reachable by a call chain starting at p because no pro-
cedure outside of p can invoke ¢ directly, since it is not
visible outside of p. Hence, if ¢ is reachable, it is reachable
from p. This means that if p is invoked, we must assume
that ¢ may be invoked.

Given these observations and the flow-insensitive
nature of the computation, the first problem above is solved
by treating the bodies of procedures nested in p as exten-
sions of the body of p. This is no different than assuming
that each branch at a conditional statement is possible,

We extend the IMOD(p) sets to include variables that
are visible within p (global or local to p) and are directly
modified within the body of p or passed as globals to some
procedure whose declaration is nested within p and directly
modified there. If we let Nest(p) be the set of procedures
declared in p, we can formulate the following definition for
™MoD(p).

Mop(p)=|_J LMoD(s)U[ | (M0D{g)NLOCAL(q))
s€p ¢ENest(p)
The IMOD sets can then be computed in a bottom up
fashion — first for the most deeply-nested procedures and
then for the procedures containing those. This computation
is linear in the size of the program. The redefinition of MoOD

leads to a corresponding redefinition of MoD*.

The second problem, a formal parameter of p used
as an actual parameter at some call site inside a nested pro-
cedure ¢, is easy to handle. Whenever the graph construc-
tor encounters a formal parameter of p being passed as an
actual parameter at some call site in ¢, where ¢ is lexically
nested within p, it must add the appropriate edge from p’s
formal parameter to the corresponding formal of the called
procedure. A careful initialization of the basic data struc-
tures used to construct £ will ensure this.

4. Global Variable Problem

Equation (4) is a particularly simple system of equa-
tions. However, it becomes even simpler if we are dealing
with a language, like C or FORTRAN, where all variables are
partitioned into two classes: global and local. In that case,
the determination of which variables are local and which
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are global is independent of the procedure being invoked.
In other words, GMOD for a particular procedure p is simply
MOD*(p) augmented by those global variables that are
modified in some procedure reachable by a call chain from
p. This suggests that we might view the problem as a gen-
eralization of the reachability problem and adapt depth-first
search to produce a solution.

Figure 2 presents the algorithm for computing GMOD
sets from the IMOD™ sets. The algorithm is adapted directly
from Tarjan’s strongly-connected components algorithm
[Tarj 72). The basic idea is to compute an initial approxima-
tion to GMOD[p] that includes all variables that may be
modified as a side effect of call chains that include tree
edges, forward edges, or cross edges to nodes that are in
different strongly-connected components of the depth-first
search tree for the call graph. Whenever the root of a
strongly-connected component is found, its GMOD set
represents all side effects that can occur in procedures
within the strongly-connected component, since all pro-
cedures in such a component are reachable from the root by
tree edges. Thus, it is correct to augment the GMOD set for
each member of the strongly-connected component by the
set of variables in GMOD|root] that are not local to the root.

The remainder of the section presents a formal proof
of the correctness of this algorithm. The proof is based
upon the proof of Tarjan’s algorithm. In fact, the only sub-
stantive additions to that algerithm are lines 8, 17 and 22,
which represent partial applications of equation (4). We
need only show that these applications have the effect of
correctly computing GMOD for each node.

We say that a strongly-connected component is
closed when, in line 19, its roof, or member with lowest
depth-first number, is found and all its members are popped
off the stack. We will show that whenever a strongly-
connected component is closed, the GMOD sets for each of its
members is correctly computed. Tarjan adopted the con-
vention that each vertex could reach itself by the empty
path, so even if some vertex is cannot reach itself by an
explicit sequence of edges, it is still a member of the
strongly-connected component containing only itself.
Hence, proving this result will establish correctness of the
algorithm.

We begin by establishing some preliminary properties
of the algorithm.

Lemma 1. If there is an edge ¢ = (p,q) from ¢ member p
of strongly-connected component ¢, to a member ¢ of a
second strongly-connected component cqy, then cp; must be
closed before c¢,.

Proof. Suppose this is not the case — that is, sup-

pose that ¢, i1s closed before ¢;. There are two cases to con-
sider.
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if dfn[q] <dfn[p] and g€Stack then /* cross or back edge, same scc */

GMOD|p| := GMOD|p] U (GMOD[¢] N LOCAL[g});

1 procedure findgmod,;

2 integer dfn[N], lowlink|N], nextdfn, p, ¢, d, [,
3 GMOD([N], MODN], LOCAL|N];

4 integer stack Stack;

5 procedure search(p);

6 integer p, ¢;

7 dfnlp] = nextdfn; neztdfn = nextdfn + 1;

8 GMOD|p| := IMOD*{p|;

9 lowlink|[p] := dfn[p];

10 push p on Stack;

11 foreach ¢ adjacent to p do begin

12 if dfn[g] = 0 then begin /* tree edge */
13 search(q);

14 lowlink[p] := min (lowlink(p], lowlink|g]);
15 end;

14

15 lowlink[p] := min (d/n[q], lowlink|p]);
16 else /* apply equation (4) */

17

18 end;

/* test for the root of a strong component */
19 if lowlink[p] = dfn[p] then begin

/* adjust GMOD sets for each member of the scc */

20 repeat begin
21 pop v from Stack;
22 GMoD(u] = amoD|[u] U (aMoD[p] N LocAL(p]);
23 end
24 until ¥ = p;
25 end
26 end /* search /* ;
/* assume that IMOD* and LOCAL have been initialized */
27 neztdfn =1, dfn[*] =0, Stack =
28 search(1); /* root =1*/
29 end /* findgmod */

Figure 2 — One-level global side effect algorithm

1)

The root of ¢y is put on the stack after the root of ¢,.
If this happens, it must be the case that ¢, is closed
before the root of ¢, is stacked, since the algorithm dic-
tates that if two roots are on the stack at the same
time, the component corresponding to the shallower
root will be closed first. But ¢; cannot be closed until
all the nodes of ¢, are visited because of the edge
between p € ¢; and ¢ € ¢, Depth-first search will
explore all paths from p, including the path into co,
before it returns. Hence the root of ¢, must be visited
and closed before the search returns to p and this must
take place before ¢; can be closed.

The root of ¢5 is put on the stack before the root of ¢;.
Since it must remain on the stack until ¢, is closed, it
must still be on the stack when ¢; is closed, because we
have assumed that c¢; i1s closed before co. It is a
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fundamental property of depth first search that there is
a path from any given node on the stack to all nodes
that are stacked on top of it. Thus, there must be a
path from the root of ¢, to every node in ¢;. In particu-
lar, there must be a path from the root of ¢, to p, from
which there is an edge to ¢ € ¢,. Since, ¢, Is strongly
connected, there is a path from ¢ to every node of ¢,
including the root. We conclude, therefore, that ¢, and
co must be the same strongly-connected component, a
contradiction. Q.E.D.

Now consider the value of GMOD|[p] on exit from the
loop in lines 11-18. It is an initial approximation to
GMOD{p] that is a subset of the correct GMOD, since lines 8
and 17 implement equation (4). The following lemma
establishes an important property of that approximation.

Best of PLDI 1979-1999



If ¢ can be reached from p by a possibly
empty path consisting exclusively of tree edges, then

Lemma 2.

GMOD[p| 2 GMOD|[g] N LOCAL[g]. (M

Proof. The proof is by induction on the order of
visits by depth-first search. First, note that if GLOBAL is
the set of all global variables in the program, then

GMoD{¢] N LocAL{g] = aMOD[g] N GLOBAL

(&)
since the only local variables that can be modified as a side
effect of the invocation of a procedure ¢ are its own. If
there are no tree edges out of p then equation (7) holds
vacuously, since the only possible ¢ is p itself. In particu-
lar, it holds for the node with the greatest depth-first
number. Suppose that the lemma holds for all nodes with a
greater depth-first number than p. Let z be a variable
modified in some g reachable from p by tree edges. If
¢ = p, equation (7) holds trivially, so assume there is at
least one edge in the path to ¢ and let (p,u) be the first
edge. Since u has a greater depth first number than p, we
have by the induction hypothesis

GMOD|u] 22 GMOD[g] N LOCAL[g] = GMOD|g] N GLOBAL.

By line 17, we conclude

2 GMOD[%]| N LOCAL|%] = GMOD|u| N GLOBAL
= GMOD|g| N GLOBAL = GMOD{¢] N LOCAL|[g|,

the desired result. Q.E.D.

GMOD|p]

Theorem 1. Given that the IMOD™ sets are properly ini-
tialized, algorithm findgmod correctly computes GMoD(p)
for each procedure p.

Proof. The proof of the theorem is by induction on
the order in which components are closed. We assume as
an induction hypothesis that GMOD sets have been correctly
computed for each strongly-connected component closed
before the current one, which we call ¢. This hypothesis is
vacuously true when ¢ is the first component to be closed.

We claim that when the root r of ¢ is reached in
statement 19, GMOD[r| is the correct GMOD set for r — that
is, it contains all the global variables that can be modified,
either directly or as a side effect to a reference formal
parameter, within any procedure reachable from r. Sup-
pose there exists a global variable z, not a member of
GMOD|r], for which there is a (possibly empty) path from r
to a procedure in which z is modified. If z is modified in r
itself, it will be reflected in GMOD[r] by virtue of the initiali-
zation of that set to IMOD™r] in line 8. So assume there is a
non-empty path from r to a procedure in which z Is
modified. [f the path contains only tree edges, z must be in
GMOD|r] by equations (7) and (8). If the path contains for-
ward edges, z will still be in GMOD|7], since any ¢ reachable
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from r by a path containing only tree edges and forward
edges can be reached from r by a path containing only tree
edges.

Thus, we must assume that the path contains a cross
edge to a different strongly-connected component. The
component must be different, because there is a path con-
sisting exclusively of tree edges from r to every member of
¢. Let (p,g) be the first such edge. By Lemma 1, the com-
ponent containing ¢ must already be closed, so the induc-
tion hypothesis applies and we must have z € GMOD|g].
But this means that 2z € GMOD[p] since every global
member of GMOD[g| is added to GMoOD|p] when line 17 is
executed for (p,¢). Since p is reachable from r by tree
edges, we have by Lemma 2 and equation (8)

£ € GMOD[p] N GLOBAL = GMOD|p| N LOCAL[p] € GMOD|r].

The contradiction establishes the correctness of GMOD|r).

The theorem now follows from the observation that
the set of global variables modified at any member of a
strongly-connected component must be the same as the set
of such variables modified at the root. In other words, for
each member ¢ of the component with root r,

GMOD|g] N GLOBAL = GMOD{r| N GLOBAL

= GMOD|r| N LOCAL|r]

by equation (8). Hence, line 22 correctly adjusts the GMOD
set for each member to include all global variables in GMOD
for the root. Q.E.D.

Theorem 2. If sets are represented as bit vectors, algo-
rithm findgmod requires O(Ec+Ng) bit-vector steps.

Proof Line 17 is executed no more than once for
each edge and line 22 is executed no more than once for
each vertex. Q.E.D..

The technique can be extended to languages in which
procedures can be declared at multiple nesting levels by the
simple device of simultaneously solving the problem for
each nesting level. That is, suppose we number the pro-
cedure declaration nesting levels 0 through dp, where level 0
is the nesting level of the main program and dp is the max-
imum level at which any procedure in the program is
declared. If dp = 1, the problem reduces to the simple
global-focal problem discussed above.

When dp > 1, we can simultaneously develop the
solutions to problems numbered 1 through dp, where the
solution to problem ¢ includes effects to global variables for
call chains that never invoke a procedure at a nesting level
shallower than i. That is, the i* problem is defined on a
graph in which all edges representing calls to procedures
declared at levels shallower than ¢ are ignored.
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It is easy to solve all these problems in
O(dp(Ec+Ng)) bit-vector steps by simply repeating the
algorithm from figure 2 for each level ¢ on the associated
graph. However, by maintaining a vector of lowlink values,
one for each problem, we can eliminate dp as a multiplier of
Ec. The key insight is that a strongly-connected region
that includes no procedure at a nesting level shallower than
+ will be a proper subset of the maximal strongly-connected
region that includes all the same nodes but may include
procedures at a higher nesting level. This means that the
lowlink vectors will be ordered in value, with the lowlink
for the problem at level ¢ less than or equal to the lowlink
for the problem at level i+1. Thus, in the loop at line 11 in
Figure 2, the algorithm can simply adjust the lowlink
corresponding to the nesting level of the called procedure.
After exiting the loop, but before testing for a strongly-
connected region, the lowlink vector must be corrected by
insuring that values from lower nesting levels are pro-
pagated to higher nesting levels where appropriate, a step
that takes time proportional to dp. If we maintain parallel
stacks, the lines between 19 and 25 are executed at most
once for each nesting level, so the time required is propor-
tional to dpNg.

The result 1s an algorithm that solves all dp prob-
lems and computes the union of these solutions in
O(Ec+dpNg) bit vector steps. Since dp is likely to be
bounded by a small constant independent of program size,
this 1s effectively O{Egc+Ng) bit vector steps. Assuming
that the bit vectors are of length O(Ng), the total time
required by the global analysis phase is O(E¢Ng+Ng).

5. Computing MOD

Given GMOD for each procedure, computing MOD sets
for the call sites is a two-step process.
(1) For each call site s, compute DMOD{s) by applying equa-
tion (2).
(2) To obtain MoD(s} from DMOD(s), extend DMOD(s) to
account for aliases. That is, if we have a set ALIAS(p)

containing the alias pairs that can hold on entry to p, s
€ p, then

V zepMoD(s), if 3 <z,y >€ALIAS(p), add y to MOD(s).

Step (1) takes O(N_E ) time. Step (2) takes time linear in
the size of DMOD(s} and ALIAS(p). While ALIAS(p) can grow
to be large, programs with complex aliasing patterns are
difficult to write and understand. Any algorithm that com-
putes summary information must deal with the aliases; it
will require at least time linear in the number of aliases, as

we do.” In the absence of aliasing, the entire process

7 The stated time bound for the swift algorithm and other al-
gorithms for this problem ignore the term for aliases. We will con-
tinue this practice.
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requires O(Nc(Ec""Nc)) time.® When a large number of

aliases exist, our method, like any other method, will
require time proportional to the size of the ALIAS sets.

8. Regular Section Analysis

Our experience with using interprocedural summary
information in a working system for detecting parallelism
has shown that the granularity of conventional summary
information is too coarse to allow effective detection of
parallelism in loops that contain call sites [CaKe 87, The
problem lies with the treatment of whole arrays. The stan-
dard framework for interprocedural analysis treats formal
parameters as unitary objects. Hence, if the formal param-
eter 1s an array, side effects that are restricted to a portion
of the array will be reported as having affected the whole
array. In other words, these methods are able to determine
whether an array i1s modified somewhere, but not whether it
1s modified in only a single column or row. This limitation
is disastrous for parallelization because the most effective
way to parallelize a loop is through data decomposition, in
which each parallel processor works on a different subsec-
tion of a given array.

Callahan and Kennedy have proposed a technique,

called regular section analysis, to solve this problem

Figure 3 — Simple regular section lattice

8 Recall that the sizes of C' and B are related by a small con-
stant .
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[Cake 87).° The basic idea is to replace the single-bit
representation of side effects with a richer lattice that per-
mits the representation of subregions. A regular section 1s
a subregion of an array that has an exact representation in
the given lattice.

Perhaps the best way to illustrate this idea is by an
example. Figure 3 displays a lattice of reference patterns to
array A in which the regular sections are single elements,
whole rows, whole columns and the whole array. Note that
I, J, and K are arbitrary symbolic input parameters to the
call.

Callahan and Kennedy point out that a variety of
algorithms can be accommodated in the regular section
framework—these algorithms would differ only in the cost
of the representation of lattice elements, the cost of deter-
mining whether two lattice elements represent an intersect-
ing subsection (used for dependence testing), the expense of
the meet operation and the depth of the lattice. They also
claim that most standard bit-vector algorithms can be
extended naturally to deal with regular sections, although it
1s not immediately clear how to do this with the swift algo-
Tithm.

The approach proposed in this paper extends very
naturally to lattice elements. Clearly, the bit vector tech-
nique for solving the global variable problem can be directly
extended to vectors of lattice elements. Extending the algo-
rithm for the reference formal parameter problem is not so
straightforward, however.
that formal parameter arrays are often bound to subsec-
trons of actual parameter arrays. The implication is that,
during the analysis, the regular section describing access to
a formal parameter must be mapped to a regular section
describing access to the actual parameter by a function that
may not be the identity function. Hence, the simple trick
to handle cycles in the binding multi-graph will no fonger
work.

The principle complication is

Formally, each edge e in the binding multi-graph
must be annotated with a function g, that can be used to
map a regular section at its sink to one at its source.
Before we can discuss the impact that this has on the
underlying algorithms, we need to describe reasonable pro-
perties for the functions g.

e First, the functions can be extended to functions on
paths by using composition. In other words, if

p=ees ' * * €,, then 9p=0e Ge, " " G,

o The functions can be extended to sets of paths by using
the lattice meet operation. That is, for a regular section

z, 9p1U72(9’)=gp1(z)/\9P2( z).

8 Callahan and Kennedy discuss regular section analysis in
more depth, as well as other methods proposed by Burke and
Cytron, and by Triolet, Irgoin, and Feautrier [BuCy 28, TrIF 88).
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¢ Because of the nature of parameter passing in most
languages, it is almost always the case that subsections
of the actual parameter are passed to the formal param-

eter’®. This means that, around a cycle of the binding
multi-graph, the effect of the propagation functions is to
restrict the portion of the array that is involved in a
side effect. More formally, if p is a cyclic path leading
from a formal parameter back to itself through a
sequence of calls, then g,(z)Az = z.

This last observation 1s critical because, if we assume 1t as a
restriction, we can view the regular section problem as a
data-flow {framework with the following system of equa-
tions.

rsd( fp1) = Irsd( fp1) A ge(rsd( fp2))

e=(fp PAPQ)GE 8

Here, rsd(z) is the regular section descriptor for the side
effect to parameter z and Irsd(z) is the regular section
descriptor for the side effect due to local effects within the
procedure where z is declared as a formal parameter (com-
putable by local examination of a procedure). This frame-
work is fast in the sense of Kam and Ullman [KaU176] and
rapid in the sense of Graham and Wegman [Grwe 76].
Furthermore, 1t can be formulated as a path problem
[Tarj 81a), so any of the efficient elimination techniques can
be used to find a least fixed point.

For the sake of complexity analysis, let us consider
using the most efficient known data-flow analysis method to
solve this problem—Tarjan’s fast elimination method based
on path compression [Tarj 81bj. If the binding multi-graph is
reducible, this approach takes time O(EB a(E& Nﬁ)) .
Here, the time is roughly proportional to the number of
meet operations. Since E,g and Nﬁ are at most a small con-
stant factor k larger than Ec and N, the complexity is
O(E p(E,N,)). This is the same asymptotic complexity as
the swift algorithm, although the meet operations may be
more expensive.

One surprising fact about this algorithm is that the
complexity does not depend on the depth of the lattice, a
byproduct of the third assumption above. In a sense, cne
can view the third assumption as recognizing that most
recursive algorithms that pass a parameter over a recursive
call cycle to the same position are using a form of divide-
and-conquer.

7. Conclusions

We have introduced a new approach to dealing with
interprocedural side eflects to reference parameters —
through the use of the binding multi-graph. This technique
permits solution of the parameter side effect problem in

10 FORTRAN can be an exception, but we view those cases as
pathological even for FORTRAN.
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linear time. The remaining problem of analyzing side
effects to global variables in a language with no reference
parameters has been shown to be solvable by an adaptation
of Tarjan’s strongly connected components algorithm.
These techniques are also useful for analyzing more complex
side effects, such as those to subsections of arrays. In each
case, the time bound achieved is asymptotically the fastest
known. We also expect these algorithms to be extremely
fast in practice.
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