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1. INTRODUCTION
Through the mid-1970s, compiler analysis and optimization was,
for the most part, restricted to single procedures. This type of anal-
ysis was sufficient because optimizations focused on issues like
register allocation and optimization of array indexing calculations
and in Fortran, the most commonly optimized language of the time,
procedure calls occurred infrequently, possibly because they were
known to be expensive.

The confluence of two trends, toward architectures that employed
multiprocessor parallelism and toward programming methodolo-
gies that used more procedures, changed this situation. To opti-
mize for parallel hardware, compilers had to turn to more substan-
tial transformations that involved restructuring whole loop nests.
In increasingly many cases (because of improved programming
methodologies) these loop nests included procedure and function
calls. Hence, ways of reasoning about the side effects of those
procedure and function calls were needed. In addition, if the proce-
dure could be compiled with knowledge of the calling context, the
running time of the procedure could be reduced substantially by
specialization, particularly if the procedure were called from deep
within a loop nest.

However, most compiler developers were cautious about using
interprocedural analysis for two reasons. First, since the number
of procedures in a program could become very large, no practical
algorithm could afford to be highly non-linear in the size of the call
graph. Second, if interprocedural information were relied on to
perform optimizations in some procedure, the object code for that
procedure would be a function of the source of the entire program
rather than of the procedure in question.

The paper in this volume established that one important class of
interprocedural analysis problems, the alias-free, flow-insensitive
side-effect problems, could be solved in time proportional to the
size of the call graph times the number of variables being tracked.
A later paper showed how to extend this algorithm to solve the
complete problem in the same time bound [8]. Because the solution
time is proportional to the size of the solution, no faster bound is
possible.

The second inhibitor to acceptance of interprocedural analysis
and optimization was addressed by the introduction of “recompila-
tion analysis” [9, 4], which achieved the illusion of separate com-
pilation even when compiling in the presence of interprocedural
analysis.
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2. BACKGROUND
Our interest in interprocedural analysis and optimization began with
Keith Cooper’s 1981 thesis proposal, which aimed to make it possi-
ble to extend languages by adding functionality from procedure and
function libraries as intrinsic operations in the language, primarily
through procedure specialization and inlining. This document laid
out an ambitious program of research that, quite frankly, we are
still working to complete even today.

At the time, we believed that we could not rely exclusively on
systematic inlining to achieve the goal, simply because the compile
times would become intolerably long. Thus some portion of the op-
timization strategy would require interprocedural analysis. There
were a number of important early works on interprocedural anal-
ysis [1, 17], but the work reported in this paper was most deeply
influenced by Barth [3] and Banning [2].

Barth formulated interprocedural side effect analysis as a collec-
tion of relations, demonstrating that the problem could be solved in
using transitive closure in O(N3 + V 3) time, where N is the num-
ber of procedures and V is the number of variables in the program.
Barth also separated the treatment of side effects to global variables
and reference parameters, an idea that we would employ in our two
later papers. Although Barth claimed that the solutions were prac-
tical, most compiler developers were reluctant to use an algorithm
that could take time that was cubic in either the number of proce-
dures or number of variables because either or both of these might
extraordinarily large.

Banning defined the crucial distinction between flow-sensitive
and flow-insensitive interprocedural analysis problems. He also
formulated the solution of flow-insensitive problems as a data flow
analysis problem on the call graph. Banning developed a clever
partition of the flow-insensitive side effect problem into an alias-
free “direct” side-effect problem and the problem of computing and
integrating aliases into the solution. He suggested using standard
data-flow algorithms for the solution, but did not provide a com-
plexity analysis. Myers [15] later showed that flow-sensitive prob-
lems were intractable in the most general formulation. The ques-
tion about how fast we could solve the flow-insensitive problems
remained open.

In the work leading to Cooper’s dissertation, we were trying to
determine the complexity of Banning’s approach and we observed
that the data flow problem resulting from his formulation was nei-
ther “rapid” [13] nor “fast” [10], which meant that neither the it-
erative algorithm nor the best elimination methods could be used
to achieve a fast time running time. Just prior Cooper’s thesis de-
fense, we discovered that we could get around the problem if we
could bound the number of parameters to any procedure in the pro-
gram by some (perhaps large) constant. We then built on Barth’s
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work by decomposing the problem into two subproblems: deter-
mining side effects to global variables and determining side effects
to reference parameters. This led to our 1984 PLDI paper [7] which
used an old result of Tarjan’s on solution of path problems [18] to
achieve a near-linear time bound.

The final insight came later, when we discovered that we could
formulate the two subproblems as reachability algorithms on differ-
ent graphs—the call graph for side effects to globals and the param-
eter binding graph for reference parameters. As a result, each of
these subproblems could be solved in no more than O((N + E)V )
time, where N is the number of procedures in the program, E is
the number of call sites and V is the number of variables in the
program. Since the solution to the problem has the same size, this
algorithm is effectively optimal. Furthermore, if you could do set
operations of O(V ) length in constant time using bit vector oper-
ations, the algorithm would be linear in the size of the call graph.
This is central result of the paper included in this volume.

There remained the issue of whether the alias information could
be computed and integrated into the solution to produce precise
side-effect information in the same time bound. This was resolved
positively by our 1989 POPL paper [8]. The combined result is an
algorithm for flow-insensitive side effect analysis that is as fast as
possible. The algorithm works for any standard lexically-scoped
language with recursion.

Of course all of this requires the construction of a call graph.
The best known procedure for constructing a precise call graph for
Fortran in the presence of procedure parameters was Ryder’s al-
gorithm [16], which was proved to work for recursive procedures
without change by Callahan et al [5]. In 1992, Kennedy and Hall
produced an effectively linear algorithm that sacrificed some preci-
sion for speed [11].

3. INFLUENCE
The paper included in this volume resolved the issue of complexity
of flow-insensitive side-effect analysis for scalar variable by pre-
senting an algorithm that was both easy to understand and effec-
tively optimal. In order to support parallelization, however, it was
critical to extend side-effect analysis to sections of arrays. Inter-
estingly, if the array sections form a lattice with the finite descend-
ing chain property, the algorithm presented here can be adapted to
solve the side effect problem for those sections in the same asymp-
totic time bound [6, 12] (actually a constant time slower where the
constant is proportional to the depth of the lattice).

Of course, the interprocedural problems that people really want
to solve are the flow-sensitive ones. It is much more important to
know that there is an upwards exposed use down a call chain than it
is to know there is a use, whether upwards exposed or not. Needless
to say, Myers’ negative result inhibited progress in this arena. Nev-
ertheless, many interprocedural compilers include flow-sensitive
analyses, with measures to reduce accuracy if running times be-
come overly long. We believe that this is sound approach, because
most problems can be solved in acceptable running times using the
iterative algorithm with dynamic choice of procedures to visit.

Although there have not been many commercial compilers that
systematically perform interprocedural analysis, the Convex Ap-
plication Compiler was notable because it was among the first [14].
A number of later compilers incorporated interprocedural side ef-
fect analysis, including compilers from Cray and Digital (now HP).
Most of these use some variant of the algorithm from presented in
this paper.
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