
Efficient Incremental Evaluation of Aggregate Values in Attribute Grammars

Roger Hoover
Tim Teitelbaum

Department of Computer Science
Cornell University

Ithaca, New York 14853

Abstract

Aggregate valued attributes, which store
collections of keyed elements, are required in
attribute grammars to communicate information
from multiple definition sites to multiple use
locations. For syntax directed editors and
incremental compilers, symbol tables are
represented as aggregate values. We present
efficient algorithms for incrementally
maintaining these aggregate values and give an
incremental evaluation algorithm that restricts
attribute propagation to attributes dependent
only upon information within the aggregate
value that has changed.

1.0 Introduction

We are concerned with the problem of
maintaining a consistent database of facts
derived from a dynamically changing,
hierarchically structured object. The object
under consideration may be as small as the
abstract syntax tree of an individual procedure,
or as large as the directory structure of an entire
file system.

As in [DRTSI], we shall assume that the inferred
database is represented as a collection of
attributes decorating the nodes of the tree

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and ita date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

@ 1986 ACM 0-89791-197-O/86/0600-0039 75C

structured object, and that these attributes are
the solution of a set of semantic equations given
in an attribute grammar. An incremental update
algorithm is used to reach a new solution after
this attributed tree is modified by subtree
replacement. Such a declarative specification of
derived information offers the advantage that the
sequence of steps needed to update the old
database in response to each mutation of the
object can be inferred from the dependency
structure of the specification.

Because each nonterminal of an attribute
grammar is associated with only a constant
number of attributes, aggregate valued attributes
must be used whenever information is to be
communicated to and/or from an unbounded
number of locations. The attributes that we are
communicating from, called definitions, add
elements to the aggregate value. Elements of the
aggregate value are then selected by attributes
called uses. A key is associated with each element
of the aggregate value, and is used to match
definitions with uses. This key is part of the
definition of the element and is employed by each
use to identify the element.

Semantic equations called copy rules are used to
specify the equality between the aggregate value
and copy attributes. This allows the aggregate
value to be broadcast from the definitions
throughout the portion of the derivation tree
where uses may be located.

Symbol tables in the attribute grammar
specifications of block structured languages are
typically represented this way. A set of identifier
definitions is collected and copied throughout the
attributed derivation tree so that each identifier

39

use can be looked up in the set and value or type
information may be obtained.

When a change is made to an aggregate valued
attribute in the attributed tree, a propagation
algorithm is used to insure that all attributes
that are functionally dependent upon the
aggregate value have values consistent with the
new aggregate value. This set of dependent
attributes includes all uses and is typically large,
much larger than the set of attributes that
depend only upon the changed information in the
aggregate value.

The incremental evaluator of IRS41 updates an
attributed tree in O((MFECTED(1 steps where
AFFECTED is the set of attributes that change
value. This time bound, however, is only
achieved for aggregate values because the copy
attributes that broadcast the aggregate value
change as a result of the change in the aggregate
value and are therefore in AFFECTED. The
number of such copy attributes is proportional to
the number of uses of the aggregate value.

In [H86], we showed how copy rules can be
bypassed and how changes can be propagated
directly from definitions to uses. Each use,
however, is still functionally dependent upon the
collection of definitions as a whole. Therefore,
any change in the aggregate value will still
propagate to all uses of that aggregate value
regardless of whether or not the element used has
been changed. This results in O(IusesJ) steps to
update the attributed tree after any definition
change.

We solve this problem for keyed aggregate values
by introducing a finite function type into our
attribute grammar specification language. A
finite function is a mapping in which all but a
finite number of domain elements map to the
same range element. After a change in the
attributed tree, we are able to compute and
propagate the set of bindings that are different in
a given finite function. We construct data
structures at attribute instances where finite
function values are created that allow us to locate
and propagate to only these uses of the finite
function corresponding to bindings that have
changed.

Using finite functions, the specification remains
a totally declarative attribute grammar. Both

synthesized and inherited attributes may have
finite function values. The result is an efficient
method of updating aggregate valued attributes,
especially after small changes in the aggregate
value.

The finite function manipulation algorithms
described in this paper have been implemented in
the Synthesizer Generator 1RT841 . We have
modified our syntax directed editor for Pascal to
use finite functions to represent the symbol table.
When a single global declaration is changed in a
sample 500 line Pascal program, these
modifications have resulted in a five fold
reduction in the time required to update the
attributed tree. This factor increases with larger
programs.

2.0 Overview

In Section 3 of this paper, we review previous
approaches to the aggregate problem. In Section
4, we introduce the finite function type, the
operations that we wish to perform on values of
this type, and our representation for values of this
type. Differential propagation, a method of
determining and propagating only the bindings of
a function that have changed, is described in
Section 5. Section 6 shows how we can maintain
dependency information for attribute instances
computed from finite function values. This
information is ordered by the domain value to
which the function is applied, so that the
attribute instances dependent upon the changed
portions of the finite function can be efficiently
determined. The complete propagation
algorithm, using differential propagation and the
ordered dependency information, is discussed in
Section 7. In Section 8, we show how symbol
tables are implemented using finite functions and
we discuss the asymptotic performance of such an
implementation.

3.0 Previous Approaches to the Aggregate
Problem

There have been numerous attempts to solve the
aggregate problem for attribute grammars. In
IJ84, JF851, attribute grammars are extended to
allow nonlocal productions. These nonlocal
productions allow nonlocal dependencies to be
created between identifiers and their uses distant
in the parse tree. Thus, when a change is made to
the definition information for an identifier, the

40

change can be propagated directly to the uses of
that identifier. The introduction of additional
definitions to the symbol table, however, still
requires that all uses of the symbol table be
examined in order to update the nonlocal
dependencies.

[DRZ851 present a different approach based upon
message passing. In their system, a declaration
change is an inexpensive operation, but a change
to an identifier reference requires a query
message to be sent to the symbol table and a reply
returned with the updated information. A
scheme similar to our differential propagation is
used to transmit changes in message sets.

In [BC851, maintained and constructor attributes
are used to specify implicit dependencies between
identifier declarations and uses, but it is unclear
how these implicit dependencies are maintained
with respect to arbitrary subtree replacements.

While these approaches reduce the cost of
incrementally updating aggregate values after
changes, they have all found it necessary to
extend the attribute grammar formalism to do so.
With the introduction of the finite function type
in our specification language, we are able to
perform an efficient incremental update after
changes to either aggregate value definitions or
aggregate value uses. The result is a totally
declarative attribute grammar specification.

A similar approach that allows the efficient
updating of aggregate values in upward remote
references is sketched in [RMT86].

4.0 Finite Functions

Let fbe a function from domain D to range R. We
call f finite if there exists roCR such that
{xCD 1 flxl-;rro} is finite. We denote the type of
such a function by D+R[Q] and refer-to ro as
bottom.

We represent keyed aggregate values with finite
functions. Each element in the aggregate value
becomes a pair that maps an element of D, the
key, to an element in R, the value being
communicated from definition to use.

In his original paper on attribute grammars
[K68], Knuth permitted global finite functions,
using them to represent symbol tables in an

unscoped language. We allow attributes whose
values are finite functions. This gives us the
capability to represent, among other things, block
structured scoping rules.

4.1 The Finite Function Type

We define the following operations for finite
functions that map type D to type R.

Declare An attribute f is declared to have
finite function type D+R[rol by the
syntax f : function D+R bottom ~-0.
In order to permit static
typechecking, we will require rg to be
a constant value in R.

Construct The expression [bottom rg, dlcrl,
d2cr2, d,cr,l evaluates to a finite
function of type D+R[ro] with domain
elements dl, d2, d,CD bound to the
range elements t-1, r2, r, CR and all
other domain elements bound to
rgC R. If the value of ro can be
determined from context, we will
allow it to be omitted. As above, we
require r-0 to be a constant value. The
valuesdl, d,, r-1, . . . rn are arbitrary
expressions.

APPlY Given expression f of type D+R[rO]
and expression d of type D, the
expression /Id) evaluates to the value
rC R bound to d in the function f.

Update For two expressions fl and f2 of type
D+R[ro], the expression fi update f2
results in a new function f of type
D+R[rol defined by fl6) = if /;<a # t-0
then fg(dl else fr(d). Thus, the
expression f update [dcr] denotes
the function with the same bindings
as f except for the value of d bound to

Other operations on finite functions can be
defined. We will limit our discussion to the above
operations as they are sufficient to impiement
symbol tables in block structured languages, If
needed, other operations can be implemented in a
similar manner.

We assume that every finite function and every
argument to which a finite function is applied is

41

the value of an associated attribute that is stored
in the derivation tree. In order to satisfy this
assumption, it may be necessary for the grammar
analyzer to introduce new attributes in which to
preserve the intermediate values of sub-
expressions.

4.2 Finite Function Representation

There are two properties that we would like our
representation of finite functions to have. It must
be inexpensive to perform the construct, update,
and apply operations, and it must be possible to
perform these operations without altering the
representation of the original finite function-an
attribute value that we wish to maintain.

A technique frequently used to implement keyed
aggregate values is to store the set as a linked
list, inserting each element at the head of the
previous list. When an element is needed, a
sequential search is performed on the list to
determine the first occurrence, if any, of the key
in the list. As most incremental attribute
grammar evaluators require that intermediate
attribute values be maintained, this
implementation allows total sharing of data and
a unit time insertion operation.

There are two major disadvantages to this
technique. First, the key lookup is an expensive
O(ldefinitionsl) operation. Second, since all uses
are functionally dependent upon the aggregate
value, any change to the aggregate value will
require us to reevaluate all lookup operations to
determine if the element for that key has
changed. Thus, the change of any element of an
aggregate value can take O(ldefinitionsl*lasesl)
time to incrementally update. When using this
method to represent the symbol tables of large
block structured programs with many identifier
definitions and uses, this cost is intolerable.

We use the applicative balanced trees [KM, M83,
R841 and represent finite functions as a map. A
map is a set of n domain-range pairs ordered by
domain value. This allows us to insert, remove,
and locate definitions in O(log it) time. In
addition, it allows all but O(log n) elements of the
new tree to be shared with the old tree. Not only
does this save storage, but it eliminates the O(n)
cost of duplicating the old tree.

This organization of bindings requires us to
impose a total order upon the domain D. It is not
necessary, however, that this ordering correspond
to a logical ordering (i.e. alphabetic) of the
domain values. For complicated objects, a scheme
such as hash consing lA781, which gives values
unique locations and allows unit time
comparison, should be used.

We have used the applicative AVL trees [M83] to
implement the following primitive operations on
maps. The constant m_pair refers to the pair
<nil, nil>.

Lookup(m, d) If there exists a pair in the map m
that has domain value d, that pair
is returned. If d is not defined in m,
noqair is returned.

Delete(m,p) If the pair p is in map m, a map
with every pair in m except for p is
returned.

Insert(m,p) A map is returned with every pair
in the map m plus the pair p. If a
pair in m has the same domain
value as p, it is replaced in the new
map by P.

Note that the delete and insert operations are
non-destructive. The map m is not altered to
compute the new value.

We also make use of a procedure that combines
two maps into a resulting map. This procedure,
shown in Figure 1, takes two maps and three
functions. These functions return a pair that is to
be included in the resulting map or, if no pair is to
be included, nogair. If a domain element
appears in pairs of both maps, the first procedure
is called with both pairs. If the domain element
appears only in one of the mappings, the second or
third function is called with the pair from the first
or second map respectively.

The function ident returns the passed pair and is
used for the second or third function when the
resulting mapping contains all pairs appearing in
the corresponding mapping. When this function
is used for a map sufficiently larger than the
other map, combine will insert the pairs of the
smaller map into the larger map by calling the
function tree-insert. The time required by this
function is O(lmap,,,ll I loglmaplargel). If the ident

42

‘unction combine(
ml, m2 : map,
function in-both(pl ,p2 : pair) : pair,
function in-l(p : pair) : pair,
function in-Z(p : pair) : pair

I : map
ifI~~l~lm2l*hhl
and in-1 = ident then

rctree~insert(ml,mZ,in~both,in~2,true)
elseifIm2~>Im~l*loglm2~
and in-2 = ident then

rctree~insert(m~,m~,in~both,in~l,false)
else

w-tree-merge(ml,m2,in-both,in-1 ,in-2);
return(r);

function ident(p : pair) : pair
return(p);

function is not used, or the mappings are roughly
the same size, the function tree-merge is used to
combine the mappings. This requires
O(lmapll +Imap21) time. Tree-insert and
tree-merge are given in Figures 2 and 3.

unction treejnsertc
ml, m2 : map,
function in_both(p1,p2 : pair) : pair,
function in-2(p : map) : pair,
in-order : boolean

: map
m-ml;
for all p2 < rn2 do

p1 +lookup(m, p2.domain);
if p1 f noqair then

if in-order then
addqcin-both(pl, ~2)

else addg+in_both(p2, pl)
else addqtin-2(p&
if addJ t noqair then

mtinsertcm, addq)
else m+delete(m,pl);

return(m);

Figure 2

4.3 Evaluating Expressions with Finite
Functions

To evaluate a Construct expression,we build a
map that contains all of the specified bindings,
ignoring any bindings to the specified bottom

‘unction tree-merge(
ml, m2 : map,
function in-both(pl,pz : pair) : pair,
function in-I@ : map) : pair,
function in-2(p : map) : pair

: map
p-list = 0;
pr+traversal-first(ml);
p2+traversal_first(m2);
while pl t noqair or p2 f noqair do

ifp2 = noqair then
ad&g+in-l(p1);
pl*traversal-yext(ml)

else Spl = noqarr then
addqtin_2(pg);
p2+traversal_next(m2)

else ifpl.domain =pz.domain then
addq+in-both(pl, ~2);
p1+traversal_next(ml);
p2+traversal_next(m2);

else ifpl *domain <pz.domain then
addqcin-1 (p1 1;
pl +traversalpext(nl)

else ifpl.domain >pz.domain then
addqtin_2(p2);
p2ctraversal_next(m2);

if adds t noqair then
p-list+p-listj)addq;

m~make~tree~from~ordered~list(p~Zist);
return(m);

IT:-..... -2

value. Since the binding pairs must be ordered,
constructing a finite function requires O(n log n)
time where n is the number of bindings.

Applications are evaluated by performing a
lookup operation on the map with the given
domain value. If there is a pair in the map with
the given domain value, its corresponding range
value is used as the value of the expression.
Otherwise, the bottom value for the map is used.
This requires time proportional to the log of the
map size. In Section 6 we will show how this
lookup is avoided for applications of finite
functions that are copied by copy chains, the
usual case.

To compute g update h, we build a new map of all
pairs of g and h using those pairs from h when
pairs in g and h have identical domain values.
This is achieved by the update function given in

43

Figure 4. It requires O(min(]gl loglh], IhI logIg], Ifnew are the number of pairs in fold and fnew
]gi +]h]>) time to compute the new map. respectively.

function update(ml, m2 : map) : map
function itl_both(p~,p2 : pair) : pair

return(p2);
mtcombine(ml,m2,in_both,ident,ident);
return(m);

Figure 4

5.0 Differential Propagation

Most incremental attribute grammar evaluators
use what has been called change propagation
[Y83, 584, R84, H&361. When the value of an
attribute instance a is computed and it differs
from the previous value for a, all attribute
instances that have values depending on the
value of a are required to be reevaluated. With a
naive implementation of aggregate values, a
change in an aggregate valued attribute requires
all uses of that value to be reevaluated, even
when the change does not affect the use.

When the value of an attribute instance with
finite function value f changes, we wish to
propagate the change only to the attribute
instances that depend upon bindings of f that
have changed. To do this, we need to identify the
function bindings that are different. We use
differential propagation to create a delta set, a set
of bindings that have changed between the old
and new finite function values of an attribute
instance. This is similar to techniques used ‘by
[L79, PK82, DRZ85, H851.

The delta set for the change in a finite function of
type &BR[ro] from fold to fmw is a finite function
Afof type D+RU{nil}[rg] where nil is a special
value not in R. The bindings for Afare defined as
follows.

<d, nil> ifff,,(d #fold(d) and f,,(d) = ro

-cd, ro>

To compute Af, we can simply compare the
bindings of fmw with the bindings of fold. The
function delta-set, shown in Figure 5, does this.
Its Operation requires O(min(l f&l lOgI fnewl,
l/&d + Ifmwl)) t ime to compute Af where If& and

bnction delta-set(mr, m2 : map) : map
function in_both(pr,p2 : pair) : pair

ifplrange=p2range then
returnbzoqair)

else return(
function in-l(p : pair) : pair

return(<p.domain, nil >);
Accombine(ml,mp,in_both,in_l,ident);
return(A);

Figure 5

For some updates we can do better than this. For
an attribute instance a whose value f is defined to
be equal to g update h, we can compute Af from
Ag and Ah. This delta-update operation, shown

Figure 6 requires
:(]A,] loglh] + fhh] + IAnilh] ldglgl) time, where
]Anilh/ is the number of elements of D bound to nil
in Ah- fnew is then computed from fold and Af in
O(min(lAA 10glfold(, lAA+IfoldJ)) time by the
delta-fix function of Figure 7. Computing Afand
f new using A, and Ah requires that we have
consistent values of g and h. If either g or h is
inconsistent with f because of a tree modification,
we cannot perform this improved update and we
must perform the full comparison,

6.0 Finite Function Dependency Sets

When the value of a given attribute instance
changes, we reevaluate all attribute instances
that are functionally dependent upon that
attribute instance. If the value of the attribute
instance is a finite function f, we would like to
reevaluate only attribute instances that depend
upon the parts of that finite function that have
changed. In Section 5, we discussed how to
compute the delta set, the set of bindings that
have changed. In this section, we describe a
dependency set organization that allows us to
determine the attribute instances that depend
upon the changed bindings.

6.1 Copy Bypass Tree

In [H86] we introduced an algorithm that
dynamically bypasses copy rule chains in the
attributed tree by forming a tree of nonlocal
dependencies. These nonlocal dependencies,
called copy bypass dependencies, allow

44

r P unction update-from-delta(
Al,w,Az,mz: map

: map
function in-M&l ,pz : pair) : pair

ifpzrange = nil then
return

else return(
function in-l(p : pair) : pair

if lookup(m2, p.domain) f noquir then
return(noquit-)

else return(p);
function in-Z(p : pair) : pair

ifprange f nil then
return(p)

else
pl clookup(ml,p.domain);
ifpl = rtoqair then

returd <p.domain, nil >)
else return

mc-combine(A1,Aa,in_both,in_l,in_Z);
return(m);

Figure 6

‘unction delta-fix(rnl ,A1 : map) : map
function in-both(pl,pz : pair) : pair

ifpz.range = nil then
returntnoqair)

else return(
function in-Z(p : pair) : pair

ifp.range = nil then
returntnoqair)

else return(p);
mccombine(m~,A~,in-both,ident,in2);
return(m);

l3:-.-- m
r1gure I

propagation to go directly from an attribute
instance to the noncopy attributes that are
functionally dependent upon it. The copy bypass
tree, which contains these dependencies, is
ordered by path information so that nonlocal
dependencies that cross points of subtree
replacement in the attributed tree can be located
and removed. Any new copy chains formed by the
attributed tree modification are then reinserted
into the copy bypass tree during propagation.
Figure 8 shows a typical copy bypass tree for an
attribute f that is copied through the attributed
tree by chains of copy rules. Instances of copy
attributes that are nontrivially used are
indicated by boxes, and the corresponding
noncopy attributes that depend upon them by

dots. The copy bypass tree for f contains
dependency pointers to all nontrivially used copy
attributes, which in turn point back to the
definition of f at the head of the tree of copy

- Copy bypass dependency

-.-.-‘- Noncopy attribute dependency

= Copy chain

n Copy attribute instance,
nontrivially used

0 Nonconv attribute instance

r lgure u

If no copy chains originate from f, the number of
uses that depend upon f is limited to the number
of semantic equations that refer to f in. the two
production instances where fis visible. For any
given attribute grammar, this is bounded by a
(usually small) constant. Thus, we will not
attempt to limit propagation of finite function
values to attribute instances that locally depend
upon fi It is therefore sufficient to consider the set
of dependencies that are formed through copy
chains. This set is exactly the set of nonlocal
dependencies represented by the copy bypass tree.

6.2 Application Tree

Unfortunately, the ordering of the copy bypass
tree does not allow us to efficiently locate uses
that are affected by a change in a given binding of
K We cannot simply reorder the copy bypass tree

45

because we need its organization to maintain the
nonlocal dependencies. Instead, we maintain an
additional balanced tree, the application tree, as
illustrated in Figure 9. The application tree for
finite function f contains one entry for every
distinct domain value k to which f is applied,
ordered by domain values. The application tree
entry for K contains the value flkl and is the head
of a doubly linked list of all attribute instances
defined by applications of f to It. In addition, a
pointer is maintained from each attribute
instance on the doubly linked list for flk) back to
the application tree entry for k (not shown in
Figure 91.

Some attribute instances (i.e. those defined by
update) will depend upon all elements of the
finite function f, and must be reevaluated
following any change to f A separate doubly
linked list of these attributes, called the always
propagate list, is maintained. Whenever any
change in the finite function value occurs, all
attribute instances on this list are scheduled for
evaluation.

6.3 Application Tree Consistency

We must maintain the application tree data
structure in the presence of changes to the
attributed tree. In Section 6.3.1, we show how the
copy bypass tree is used to remove dependencies
invalidated by a subtree modification. Section
6.3.2 describes how dependencies are added and
updated.

6.3.1 Removing Invalid Dependencies

In [H861, a method is given that locates and
removes all copy bypass dependencies
invalidated by a subtree replacement. The
dependencies represented by the doubly linked
lists of the application tree are valid if and only if
the corresponding copy bypass dependency is
valid. Therefore, at the same time as we remove
invalid copy bypass dependencies for f, we can
remove all corresponding application
dependencies and always propagate
dependencies. If we remove the last attribute
from a given application tree list, we remove the
corresponding element from the application tree.

6.3.2 Adding and Correcting Dependencies

Whenever we evaluate an attribute that has a
finite function argument, we must insert the
attribute being evaluated into the data
structures provided it is not already on a doubly
linked list. If the attribute is defined by an
update operation, we insert it into the always
propagate list. Otherwise, we locate the
application key in the application tree, insert the
attribute on the list for that key, and set the
pointer to the application tree element. If the key
is not in the application tree, we must insert it.

If the attribute is already on a doubly linked list,
we verify that it is on the correct one. This must
be done since the application key may have been
changed by the tree modification. We use the
pointer to the application tree element to find the
former key. If the key has changed, we must
remove the attribute from the doubly linked list
and place it on the correct one.

6.4 Time Bounds for Application Tree

We will assume the copy bypass tree. See [H861
for a discussion of its maintenance time.

The use of doubly linked lists allows us to remove
most application dependencies in unit time. An
O(log Iapplication tree/) operation is required to
insert a new dependency or to remove the last
dependency for a given key. If the key to an
application has not changed, the usual case, we
can validate the dependency in constant time.
Otherwise, it takes an O(log [application treei)
operation. Since the result value is stored in the
application tree, the cost of performing the
application is absorbed in the validation cost.

Note that only distinct, used identifiers
contribute to the size of the application tree. In a
block structured language, the number of distinct
identifiers used in a given scope is typically small
compared to the number of identifier uses in the
scope or the number of definitions in the symbol
table. Therefore, the O(log Iapplication treel) cost
of inserting a dependency to a previously unused
identifier is relatively inexpensive.

46

7.0 Finite Function Propagation

To incrementally update an attributed tree after
a change, we use the update algorithm of [H861
with the following additions for finite functions.

Before a subtree is replaced, IH861 removes all
copy bypass dependencies that would become
invalid when the old subtree is separated. As
each copy bypass dependency is removed, we
remove all of its noncopy dependencies from their
respective doubly linked lists as described in
Section 6.3.1. The maximum additional time

required to remove a subtree is
O(luppZication treej*log luppEicatior2 h-eel).

The propagate algorithm of [H861 uses change
propagation over local and copy bypass
dependencies. It starts with a priority queue of
inconsistent attribute instances. While the queue
is not empty, it removes the first attribute
instance and computes its new value. If the new
value is different from the old value, it inserts all
local and nonlocal successors of the attribute
instance into the priority queue.

COPY

\
Bypass

Al ways
Propagate

List

f(y) AZ) X.2) g update f

Copy bypass dependency

-.-.-.-.-.- Noncopy attribute dependency

--------- Doublylinkedlist

n Copy attribute instance, nontrivially used

0 Noncopy attribute instance

Figure 9

47

Our propagate algorithm is the same except for
each attribute instance that has a finite function
value f To perform differential propagation, we
need a value for Af. If f is possibly inconsistent
because of the subtree replacement, or f is built
by function construction, we compute the new
value from its arguments and use the delta-set
function of Figure 5 to compute Af. Otherwise, as
discussed in Section 5, we have delta sets for
either of the arguments of an update expression,
and the function update-from-delta in Figure 6
is used to compute the delta set from the delta
sets of the arguments.

If the Af has at least one nonbottom binding, we
know that the old value is different from the new
value and we must enqueue all attribute
instances dependent on f. We do this by
enqueueing all attribute instances with
dependencies on the always propagate list and
then calling the procedure function-enqueue
shown in Figure 10. This limits propagation to
the elements of the application tree whose
domain values are in the set At This procedure
requires O(min(lapplication tree) loglAfJ,
IAl lodapplication treel, iapplication tree1 + IhA))
time.

Each attribute instance b that is defined with an
update expression using f will be on the always
propagate list. Before we insert 6 into the priority
queue, we attach the delta set for argument f.
When b is evaluated, it will have accumulated
the delta sets for all of its changed arguments.
When we compute the delta set for 6, we remove
the delta sets of its arguments.

Since the approximate topological ordering
method of [H861 can result in some attribute
instances being evaluated out of topological
order, we must allow argument delta sets to be
updated when the argument is computed more
than once. If b already has a delta set for
argument f, we need to update this delta set to
reflect the changes in both delta sets, old and
new. If any bindings are in both sets, we take the
new bindings. Thus, the new argument delta set
is Aold update Anew and can be computed using
the update algorithm given in Figure 4.

Note that it is possible to organize the application
tree as a hash table resulting in a faster expected
location time for small changes in f. For
efficiency reasons, however, it is necessary that

procedure function-enqueue(
S : priority queue,
A : map,
t : application-tree

I
if IAl >Id*logjAl then

for all aC t do
pclookup(A, a.domain);
if p * nogair then

appl-enqueue@, A, a, p)
else ifftf >IAI*logfd then

for all pC A do
acappl-lookup(t, p.domain);
if a * no-appl then

appLenqueue(S, A, a, p)
else

actraversal-first(t);
pctraversal-first(A);
while a f no-appl and p f noqair do

if a.domain <p.domain then
attraversal-next(t)

else if a.domain >p.domain then
pctraversal-next(A)

else if adomain =p.domain then
appLenqueue6, A, a, p);
actraversal-next(t);
pctraversal-next(A);

xocedure appl-enqueue(
S : priority queue,
A : map,
a : appl-dependency,
p : pair

ifp.range = nil then
a.rangetA.bottom

else a.range+p.range;
for all ICa.list do

S+SU{a.attribute-instance};
IT:-..-- ,I\ r rgure iv

we be able to traverse the hash table in
O(lappfication tree0 time.

8.0 Symbol Tables Using Finite Functions

We modified our attribute grammar specification
for Pascal to use attributes of finite function type
identifier+scope depthx value X kind X type to
represent the symbol table.

The initial table is created using a function
construction expression with all identifiers

48

initially defined in Pascal. This finite functional
value is inherited by copy chains to the first
nested scope.

At each scope, definitions are collected using a
local environment, also represented by a finite
function. The complete local environment is
synthesized from the bottom of the local
definition subtree back up to the block head
where the new environment is created with the
update operator.

Before we insert an identifier definition into the
local scope, we must verify that it has not already
been defined in the scope. We perform an
application of the local environment to the
identifier, and, ifit is not defined, we construct a
finite function with the identifier binding and
form the new local environment with the update
operator.

8.1 Asymptotic Performance of Symbol
Table Modifications

In the following discussion, we will ignore the
cost of maintaining nonlocal dependency
information with respect to abstract syntax tree
modifications. As is discussed in Section 6, this is
done using copy bypass dependencies. Since the
application dependencies can be maintained in
the same time bound as the copy bypass
dependencies, we refer to [H86] for an analysis of
this cost.

Let us assume that we are modifying the symbol
table entry for an identifier id that has (I uses in
each of the s enclosed scopes where it is visible.
Let 1 be the number of definitions local to the
scope of modification and let d be the number of
definitions in the largest enclosed scope. We will
assume that no other definitions are dependent
upon id. The type of modification is not limited to
changing the definition information. We
consider inserting and removing definitions as
well.

At the block head of each modified scope, we
require Otlogdl operations to compute the delta
set and update the attribute value. The total cost
to update the scopes is O(s log dl.

Each of the uses of id must also be located and
updated. For a given scope, locating the linked
list of the uses of the changed definition in the
application tree requires O(log lapplication Creel)
time. Subsequently, finding the new value bound
to id requires unit time for each use. The total
time required for locating and updating uses is
therefore O(S*(U + log lupplication h-eel)).

If we assume that there are few undeclared
identifiers, japplication tree1 <d. This gives us the
resulting cost of O(Z log 1 +s log d + s (11 for the
modification of one symbol table identifier.

As discussed in Section 6, modifying an identifier
use, although usually done in unit time, requires
at most O(log jupplication tree!) operations.

9.0 Summary

The incremental update of aggregate values has
been a major performance problem in attribute
grammar based systems, While there have been
numerous attempts to eliminate this bottleneck,
all have found it necessary to extend the attribute
grammar formalism.

We have introduced the finite function data type
to represent these aggregate values. We
determine the portion of the aggregate value that
has changed using differential propagation. By
keeping a tree of aggregate value uses at points in
the attributed tree, we are able to locate the
attribute instances that depend upon the changed
portion of the aggregate value. This allows us to
limit propagation to the attribute instances that
are uses of changed definitions.

Finite functions allow symbol tables to be
represented easily and efficiently in attribute
grammars.

When we change the definition of id, we must
update each of I partial local environments.
Computing the delta set with update-from-delta
(Figure 61, and then computing the new value
with delta-fix (Figure 71 requires O(log 0 cost for
each local scope. Thus, the cost to update the
local definitions is O(Z log 0.

49

10.0 References

[A781

[BC851

[DRTSl I

[DRZ851

m351

m361

[J841

[JF851

Allen, J. R. Anatomy of LISP.
McGraw-Hill, New York, NY, 1978.

Beshers, G., and R. Campbell.
Maintained and Constructor
Attributes. Proc. ACM SIGPLAN 85
Symposium on Language Issues in
Programming Environments, Seattle,
WA, June, 1985, pp. 34-42.

Demers, A., T. Reps, and T.
Teitelbaum. Incremental evaluation
for attribute grammars with
application to syntax-directed editors.
Proc. of the 8th ACM Symposium on
Principles of Programming Languages,
Jan, 1981, pp. 105116.

Demers, A., A. Rogers, and F. K.
Zadeck. Attribute propagation by
message passing. Proc. ACM
SIGPLAN 85 Symposium on Language
&sues in Programming Environments,
Seattle, WA, June, 1985, pp. 43-59.

Horwitz, S. Generating Language-
Based Editors: A Relationally-
Attributed Approach. TR 85-696
(Ph.D. Thesis), Cornell University,
August 1985.

Hoover, R. Dynamically bypassing
copy rule chains in attribute
grammars. Proc. of the 13th ACM
Symposium on -Principles
Programming Languages,
Petersburg, FL, Jan 13-15, 1986,
14-25.

of
St.

PP.

Johnson, G. F. An approach to
incremental semantics. TR 547 (Ph.D.
Thesis), University of Wisconsin,
Madison, July 1984.

Johnson, G. F., and C. N. Fischer. A
meta-language and system for nonlocal
incremental attribute evaluation in
language-based editors. Proc. of the
12th ACM Symposium on Principles of
Programming Languages, New

rK681

CKMl

EL791

NW

[PK821

W341

lRMT861

ERT841

lY831

Orleans, LA, Jan 14-16, 1985, pp. 141-
151.

Knuth, D. E. Semantics of context-free
languages. Mathematical Systems
Theory, 2.2, June 1968, pp. 127-145.

Krijnen, T. and L. Meertens. Making
B-trees work for B. Technical Report,
Mathematical Center, Amsterdam.

Liu, L. Essential uses of expressions in
set-oriented expressions. Ph.D. Thesis,
Cornell University, May 1979.

Myers, E. W. Efficient Applicative
Data Types. Proc. of the 10th ACM
Symposium on Principles of
Programming Languages, Jan, 1983,
pp. 66-75.

Paige, R. and S. Koenig. Finite
differencing of computable expressions.
ACM Trans. on Programming
Languages and Systems, Vol. 4, No. 3,
July 1982, pp. 402-454.

Reps, T. Generating Language-based
Environments. M.I.T. Press,
Cambridge, MA, 1984.

Reps, T., C. Marceau, T. Teitelbaum.
Remote attribute updating for
language-based editors. Proc. of the
13th ACM Symposium on Principles of
Programming Languages, St.
Petersburg, FL, Jan 13-15, 1986, pp. l-
13.

Reps, T. and T. Teitelbaum. The
Synthesizer Generator. Proc. of the
ACM SIGSOFTISXGPLAN Software
Engineering Symposium on Practical
Software Development Environments,
Pittsburgh, PA, April 1984.

Yeh, D. On Incremental Evaluation of
Ordered Attributed Grammars. BIT
23,1983, pp. 308-320.

50

