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Abstract 

Aggregate valued attributes, which store 
collections of keyed elements, are required in 
attribute grammars to communicate information 
from multiple definition sites to multiple use 
locations. For syntax directed editors and 
incremental compilers, symbol tables are 
represented as aggregate values. We present 
efficient algorithms for incrementally 
maintaining these aggregate values and give an 
incremental evaluation algorithm that restricts 
attribute propagation to attributes dependent 
only upon information within the aggregate 
value that has changed. 

1.0 Introduction 

We are concerned with the problem of 
maintaining a consistent database of facts 
derived from a dynamically changing, 
hierarchically structured object. The object 
under consideration may be as small as the 
abstract syntax tree of an individual procedure, 
or as large as the directory structure of an entire 
file system. 

As in [DRTSI], we shall assume that the inferred 
database is represented as a collection of 
attributes decorating the nodes of the tree 
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structured object, and that these attributes are 
the solution of a set of semantic equations given 
in an attribute grammar. An incremental update 
algorithm is used to reach a new solution after 
this attributed tree is modified by subtree 
replacement. Such a declarative specification of 
derived information offers the advantage that the 
sequence of steps needed to update the old 
database in response to each mutation of the 
object can be inferred from the dependency 
structure of the specification. 

Because each nonterminal of an attribute 
grammar is associated with only a constant 
number of attributes, aggregate valued attributes 
must be used whenever information is to be 
communicated to and/or from an unbounded 
number of locations. The attributes that we are 
communicating from, called definitions, add 
elements to the aggregate value. Elements of the 
aggregate value are then selected by attributes 
called uses. A key is associated with each element 
of the aggregate value, and is used to match 
definitions with uses. This key is part of the 
definition of the element and is employed by each 
use to identify the element. 

Semantic equations called copy rules are used to 
specify the equality between the aggregate value 
and copy attributes. This allows the aggregate 
value to be broadcast from the definitions 
throughout the portion of the derivation tree 
where uses may be located. 

Symbol tables in the attribute grammar 
specifications of block structured languages are 
typically represented this way. A set of identifier 
definitions is collected and copied throughout the 
attributed derivation tree so that each identifier 
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use can be looked up in the set and value or type 
information may be obtained. 

When a change is made to an aggregate valued 
attribute in the attributed tree, a propagation 
algorithm is used to insure that all attributes 
that are functionally dependent upon the 
aggregate value have values consistent with the 
new aggregate value. This set of dependent 
attributes includes all uses and is typically large, 
much larger than the set of attributes that 
depend only upon the changed information in the 
aggregate value. 

The incremental evaluator of IRS41 updates an 
attributed tree in O((MFECTED(1 steps where 
AFFECTED is the set of attributes that change 
value. This time bound, however, is only 
achieved for aggregate values because the copy 
attributes that broadcast the aggregate value 
change as a result of the change in the aggregate 
value and are therefore in AFFECTED. The 
number of such copy attributes is proportional to 
the number of uses of the aggregate value. 

In [H86], we showed how copy rules can be 
bypassed and how changes can be propagated 
directly from definitions to uses. Each use, 
however, is still functionally dependent upon the 
collection of definitions as a whole. Therefore, 
any change in the aggregate value will still 
propagate to all uses of that aggregate value 
regardless of whether or not the element used has 
been changed. This results in O(IusesJ) steps to 
update the attributed tree after any definition 
change. 

We solve this problem for keyed aggregate values 
by introducing a finite function type into our 
attribute grammar specification language. A 
finite function is a mapping in which all but a 
finite number of domain elements map to the 
same range element. After a change in the 
attributed tree, we are able to compute and 
propagate the set of bindings that are different in 
a given finite function. We construct data 
structures at attribute instances where finite 
function values are created that allow us to locate 
and propagate to only these uses of the finite 
function corresponding to bindings that have 
changed. 

Using finite functions, the specification remains 
a totally declarative attribute grammar. Both 

synthesized and inherited attributes may have 
finite function values. The result is an efficient 
method of updating aggregate valued attributes, 
especially after small changes in the aggregate 
value. 

The finite function manipulation algorithms 
described in this paper have been implemented in 
the Synthesizer Generator 1RT841 . We have 
modified our syntax directed editor for Pascal to 
use finite functions to represent the symbol table. 
When a single global declaration is changed in a 
sample 500 line Pascal program, these 
modifications have resulted in a five fold 
reduction in the time required to update the 
attributed tree. This factor increases with larger 
programs. 

2.0 Overview 

In Section 3 of this paper, we review previous 
approaches to the aggregate problem. In Section 
4, we introduce the finite function type, the 
operations that we wish to perform on values of 
this type, and our representation for values of this 
type. Differential propagation, a method of 
determining and propagating only the bindings of 
a function that have changed, is described in 
Section 5. Section 6 shows how we can maintain 
dependency information for attribute instances 
computed from finite function values. This 
information is ordered by the domain value to 
which the function is applied, so that the 
attribute instances dependent upon the changed 
portions of the finite function can be efficiently 
determined. The complete propagation 
algorithm, using differential propagation and the 
ordered dependency information, is discussed in 
Section 7. In Section 8, we show how symbol 
tables are implemented using finite functions and 
we discuss the asymptotic performance of such an 
implementation. 

3.0 Previous Approaches to the Aggregate 
Problem 

There have been numerous attempts to solve the 
aggregate problem for attribute grammars. In 
IJ84, JF851, attribute grammars are extended to 
allow nonlocal productions. These nonlocal 
productions allow nonlocal dependencies to be 
created between identifiers and their uses distant 
in the parse tree. Thus, when a change is made to 
the definition information for an identifier, the 
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change can be propagated directly to the uses of 
that identifier. The introduction of additional 
definitions to the symbol table, however, still 
requires that all uses of the symbol table be 
examined in order to update the nonlocal 
dependencies. 

[DRZ851 present a different approach based upon 
message passing. In their system, a declaration 
change is an inexpensive operation, but a change 
to an identifier reference requires a query 
message to be sent to the symbol table and a reply 
returned with the updated information. A 
scheme similar to our differential propagation is 
used to transmit changes in message sets. 

In [BC851, maintained and constructor attributes 
are used to specify implicit dependencies between 
identifier declarations and uses, but it is unclear 
how these implicit dependencies are maintained 
with respect to arbitrary subtree replacements. 

While these approaches reduce the cost of 
incrementally updating aggregate values after 
changes, they have all found it necessary to 
extend the attribute grammar formalism to do so. 
With the introduction of the finite function type 
in our specification language, we are able to 
perform an efficient incremental update after 
changes to either aggregate value definitions or 
aggregate value uses. The result is a totally 
declarative attribute grammar specification. 

A similar approach that allows the efficient 
updating of aggregate values in upward remote 
references is sketched in [RMT86]. 

4.0 Finite Functions 

Let fbe a function from domain D to range R. We 
call f finite if there exists roCR such that 
{xCD 1 flxl-;rro} is finite. We denote the type of 
such a function by D+R[Q] and refer-to ro as 
bottom. 

We represent keyed aggregate values with finite 
functions. Each element in the aggregate value 
becomes a pair that maps an element of D, the 
key, to an element in R, the value being 
communicated from definition to use. 

In his original paper on attribute grammars 
[K68], Knuth permitted global finite functions, 
using them to represent symbol tables in an 

unscoped language. We allow attributes whose 
values are finite functions. This gives us the 
capability to represent, among other things, block 
structured scoping rules. 

4.1 The Finite Function Type 

We define the following operations for finite 
functions that map type D to type R. 

Declare An attribute f is declared to have 
finite function type D+R[rol by the 
syntax f : function D+R bottom ~-0. 
In order to permit static 
typechecking, we will require rg to be 
a constant value in R. 

Construct The expression [bottom rg, dlcrl, 
d2cr2, . . . . d,cr,l evaluates to a finite 
function of type D+R[ro] with domain 
elements dl, d2, . . . . d,CD bound to the 
range elements t-1, r2, . . . . r, CR and all 
other domain elements bound to 
rgC R. If the value of ro can be 
determined from context, we will 
allow it to be omitted. As above, we 
require r-0 to be a constant value. The 
valuesdl, . . . . d,, r-1, . . . rn are arbitrary 
expressions. 

APPlY Given expression f of type D+R[rO] 
and expression d of type D, the 
expression /Id) evaluates to the value 
rC R bound to d in the function f. 

Update For two expressions fl and f2 of type 
D+R[ro], the expression fi update f2 
results in a new function f of type 
D+R[rol defined by fl6) = if /;<a # t-0 
then fg(dl else fr(d). Thus, the 
expression f update [dcr] denotes 
the function with the same bindings 
as f except for the value of d bound to 

Other operations on finite functions can be 
defined. We will limit our discussion to the above 
operations as they are sufficient to impiement 
symbol tables in block structured languages, If 
needed, other operations can be implemented in a 
similar manner. 

We assume that every finite function and every 
argument to which a finite function is applied is 
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the value of an associated attribute that is stored 
in the derivation tree. In order to satisfy this 
assumption, it may be necessary for the grammar 
analyzer to introduce new attributes in which to 
preserve the intermediate values of sub- 
expressions. 

4.2 Finite Function Representation 

There are two properties that we would like our 
representation of finite functions to have. It must 
be inexpensive to perform the construct, update, 
and apply operations, and it must be possible to 
perform these operations without altering the 
representation of the original finite function-an 
attribute value that we wish to maintain. 

A technique frequently used to implement keyed 
aggregate values is to store the set as a linked 
list, inserting each element at the head of the 
previous list. When an element is needed, a 
sequential search is performed on the list to 
determine the first occurrence, if any, of the key 
in the list. As most incremental attribute 
grammar evaluators require that intermediate 
attribute values be maintained, this 
implementation allows total sharing of data and 
a unit time insertion operation. 

There are two major disadvantages to this 
technique. First, the key lookup is an expensive 
O(ldefinitionsl) operation. Second, since all uses 
are functionally dependent upon the aggregate 
value, any change to the aggregate value will 
require us to reevaluate all lookup operations to 
determine if the element for that key has 
changed. Thus, the change of any element of an 
aggregate value can take O(ldefinitionsl*lasesl) 
time to incrementally update. When using this 
method to represent the symbol tables of large 
block structured programs with many identifier 
definitions and uses, this cost is intolerable. 

We use the applicative balanced trees [KM, M83, 
R841 and represent finite functions as a map. A 
map is a set of n domain-range pairs ordered by 
domain value. This allows us to insert, remove, 
and locate definitions in O(log it) time. In 
addition, it allows all but O(log n) elements of the 
new tree to be shared with the old tree. Not only 
does this save storage, but it eliminates the O(n) 
cost of duplicating the old tree. 

This organization of bindings requires us to 
impose a total order upon the domain D. It is not 
necessary, however, that this ordering correspond 
to a logical ordering (i.e. alphabetic) of the 
domain values. For complicated objects, a scheme 
such as hash consing lA781, which gives values 
unique locations and allows unit time 
comparison, should be used. 

We have used the applicative AVL trees [M83] to 
implement the following primitive operations on 
maps. The constant m_pair refers to the pair 
<nil, nil>. 

Lookup(m, d) If there exists a pair in the map m 
that has domain value d, that pair 
is returned. If d is not defined in m, 
noqair is returned. 

Delete(m,p) If the pair p is in map m, a map 
with every pair in m except for p is 
returned. 

Insert(m,p) A map is returned with every pair 
in the map m plus the pair p. If a 
pair in m has the same domain 
value as p, it is replaced in the new 
map by P. 

Note that the delete and insert operations are 
non-destructive. The map m is not altered to 
compute the new value. 

We also make use of a procedure that combines 
two maps into a resulting map. This procedure, 
shown in Figure 1, takes two maps and three 
functions. These functions return a pair that is to 
be included in the resulting map or, if no pair is to 
be included, nogair. If a domain element 
appears in pairs of both maps, the first procedure 
is called with both pairs. If the domain element 
appears only in one of the mappings, the second or 
third function is called with the pair from the first 
or second map respectively. 

The function ident returns the passed pair and is 
used for the second or third function when the 
resulting mapping contains all pairs appearing in 
the corresponding mapping. When this function 
is used for a map sufficiently larger than the 
other map, combine will insert the pairs of the 
smaller map into the larger map by calling the 
function tree-insert. The time required by this 
function is O(lmap,,,ll I loglmaplargel). If the ident 
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‘unction combine( 
ml, m2 : map, 
function in-both(pl ,p2 : pair) : pair, 
function in-l(p : pair) : pair, 
function in-Z(p : pair) : pair 

I : map 
ifI~~l~lm2l*hhl 
and in-1 = ident then 

rctree~insert(ml,mZ,in~both,in~2,true) 
elseifIm2~>Im~l*loglm2~ 
and in-2 = ident then 

rctree~insert(m~,m~,in~both,in~l,false) 
else 

w-tree-merge(ml,m2,in-both,in-1 ,in-2); 
return(r); 

function ident(p : pair) : pair 
return(p); 

function is not used, or the mappings are roughly 
the same size, the function tree-merge is used to 
combine the mappings. This requires 
O(lmapll +Imap21) time. Tree-insert and 
tree-merge are given in Figures 2 and 3. 

unction treejnsertc 
ml, m2 : map, 
function in_both(p1,p2 : pair) : pair, 
function in-2(p : map) : pair, 
in-order : boolean 

: map 
m-ml; 
for all p2 < rn2 do 

p1 +lookup(m, p2.domain); 
if p1 f noqair then 

if in-order then 
addqcin-both(pl, ~2) 

else addg+in_both(p2, pl) 
else addqtin-2(p& 
if addJ t noqair then 

mtinsertcm, addq) 
else m+delete(m,pl); 

return(m); 

Figure 2 

4.3 Evaluating Expressions with Finite 
Functions 

To evaluate a Construct expression,we build a 
map that contains all of the specified bindings, 
ignoring any bindings to the specified bottom 

‘unction tree-merge( 
ml, m2 : map, 
function in-both(pl,pz : pair) : pair, 
function in-I@ : map) : pair, 
function in-2(p : map) : pair 

: map 
p-list = 0; 
pr+traversal-first(ml); 
p2+traversal_first(m2); 
while pl t noqair or p2 f noqair do 

ifp2 = noqair then 
ad&g+in-l(p1); 
pl*traversal-yext(ml) 

else Spl = noqarr then 
addqtin_2(pg); 
p2+traversal_next(m2) 

else ifpl.domain =pz.domain then 
addq+in-both(pl, ~2); 
p1+traversal_next(ml); 
p2+traversal_next(m2); 

else ifpl *domain <pz.domain then 
addqcin-1 (p1 1; 
pl +traversalpext(nl) 

else ifpl.domain >pz.domain then 
addqtin_2(p2); 
p2ctraversal_next(m2); 

if adds t noqair then 
p-list+p-listj)addq; 

m~make~tree~from~ordered~list(p~Zist); 
return(m); 

IT:-..... -2 

value. Since the binding pairs must be ordered, 
constructing a finite function requires O(n log n) 
time where n is the number of bindings. 

Applications are evaluated by performing a 
lookup operation on the map with the given 
domain value. If there is a pair in the map with 
the given domain value, its corresponding range 
value is used as the value of the expression. 
Otherwise, the bottom value for the map is used. 
This requires time proportional to the log of the 
map size. In Section 6 we will show how this 
lookup is avoided for applications of finite 
functions that are copied by copy chains, the 
usual case. 

To compute g update h, we build a new map of all 
pairs of g and h using those pairs from h when 
pairs in g and h have identical domain values. 
This is achieved by the update function given in 
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Figure 4. It requires O(min(]gl loglh], IhI logIg], Ifnew are the number of pairs in fold and fnew 
]gi + ]h]>) time to compute the new map. respectively. 

function update(ml, m2 : map) : map 
function itl_both(p~,p2 : pair) : pair 

return(p2); 
mtcombine(ml,m2,in_both,ident,ident); 
return(m); 

Figure 4 

5.0 Differential Propagation 

Most incremental attribute grammar evaluators 
use what has been called change propagation 
[Y83, 584, R84, H&361. When the value of an 
attribute instance a is computed and it differs 
from the previous value for a, all attribute 
instances that have values depending on the 
value of a are required to be reevaluated. With a 
naive implementation of aggregate values, a 
change in an aggregate valued attribute requires 
all uses of that value to be reevaluated, even 
when the change does not affect the use. 

When the value of an attribute instance with 
finite function value f changes, we wish to 
propagate the change only to the attribute 
instances that depend upon bindings of f that 
have changed. To do this, we need to identify the 
function bindings that are different. We use 
differential propagation to create a delta set, a set 
of bindings that have changed between the old 
and new finite function values of an attribute 
instance. This is similar to techniques used ‘by 
[L79, PK82, DRZ85, H851. 

The delta set for the change in a finite function of 
type &BR[ro] from fold to fmw is a finite function 
Afof type D+RU{nil}[rg] where nil is a special 
value not in R. The bindings for Afare defined as 
follows. 

<d, nil> ifff,,(d #fold(d) and f,,(d) = ro 

-cd, ro> 

To compute Af, we can simply compare the 
bindings of fmw with the bindings of fold. The 
function delta-set, shown in Figure 5, does this. 
Its Operation requires O(min(l f&l lOgI fnewl, 
l/&d + Ifmwl)) t ime to compute Af where If& and 

bnction delta-set(mr, m2 : map) : map 
function in_both(pr,p2 : pair) : pair 

ifplrange=p2range then 
returnbzoqair) 

else return( 
function in-l(p : pair) : pair 

return( <p.domain, nil >); 
Accombine(ml,mp,in_both,in_l,ident); 
return(A); 

Figure 5 

For some updates we can do better than this. For 
an attribute instance a whose value f is defined to 
be equal to g update h, we can compute Af from 
Ag and Ah. This delta-update operation, shown 

Figure 6 requires 
:(]A,] loglh] + fhh] + IAnilh] ldglgl) time, where 
]Anilh/ is the number of elements of D bound to nil 
in Ah- fnew is then computed from fold and Af in 
O(min(lAA 10glfold(, lAA+IfoldJ)) time by the 
delta-fix function of Figure 7. Computing Afand 
f new using A, and Ah requires that we have 
consistent values of g and h. If either g or h is 
inconsistent with f because of a tree modification, 
we cannot perform this improved update and we 
must perform the full comparison, 

6.0 Finite Function Dependency Sets 

When the value of a given attribute instance 
changes, we reevaluate all attribute instances 
that are functionally dependent upon that 
attribute instance. If the value of the attribute 
instance is a finite function f, we would like to 
reevaluate only attribute instances that depend 
upon the parts of that finite function that have 
changed. In Section 5, we discussed how to 
compute the delta set, the set of bindings that 
have changed. In this section, we describe a 
dependency set organization that allows us to 
determine the attribute instances that depend 
upon the changed bindings. 

6.1 Copy Bypass Tree 

In [H86] we introduced an algorithm that 
dynamically bypasses copy rule chains in the 
attributed tree by forming a tree of nonlocal 
dependencies. These nonlocal dependencies, 
called copy bypass dependencies, allow 
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r P unction update-from-delta( 
Al,w,Az,mz: map 

: map 
function in-M&l ,pz : pair) : pair 

ifpzrange = nil then 
return 

else return( 
function in-l(p : pair) : pair 

if lookup(m2, p.domain) f noquir then 
return( noquit-) 

else return(p); 
function in-Z(p : pair) : pair 

ifprange f nil then 
return(p) 

else 
pl clookup(ml,p.domain); 
ifpl = rtoqair then 

returd <p.domain, nil >) 
else return 

mc-combine(A1,Aa,in_both,in_l,in_Z); 
return(m); 

Figure 6 

‘unction delta-fix(rnl ,A1 : map) : map 
function in-both(pl,pz : pair) : pair 

ifpz.range = nil then 
returntnoqair) 

else return( 
function in-Z(p : pair) : pair 

ifp.range = nil then 
returntnoqair) 

else return(p); 
mccombine(m~,A~,in-both,ident,in2); 
return(m); 

l3:-.-- m 
r1gure I 

propagation to go directly from an attribute 
instance to the noncopy attributes that are 
functionally dependent upon it. The copy bypass 
tree, which contains these dependencies, is 
ordered by path information so that nonlocal 
dependencies that cross points of subtree 
replacement in the attributed tree can be located 
and removed. Any new copy chains formed by the 
attributed tree modification are then reinserted 
into the copy bypass tree during propagation. 
Figure 8 shows a typical copy bypass tree for an 
attribute f that is copied through the attributed 
tree by chains of copy rules. Instances of copy 
attributes that are nontrivially used are 
indicated by boxes, and the corresponding 
noncopy attributes that depend upon them by 

dots. The copy bypass tree for f contains 
dependency pointers to all nontrivially used copy 
attributes, which in turn point back to the 
definition of f at the head of the tree of copy 

- Copy bypass dependency 

-.-.-‘- Noncopy attribute dependency 

= Copy chain 

n Copy attribute instance, 
nontrivially used 

0 Nonconv attribute instance 

r lgure u 

If no copy chains originate from f, the number of 
uses that depend upon f is limited to the number 
of semantic equations that refer to f in. the two 
production instances where fis visible. For any 
given attribute grammar, this is bounded by a 
(usually small) constant. Thus, we will not 
attempt to limit propagation of finite function 
values to attribute instances that locally depend 
upon fi It is therefore sufficient to consider the set 
of dependencies that are formed through copy 
chains. This set is exactly the set of nonlocal 
dependencies represented by the copy bypass tree. 

6.2 Application Tree 

Unfortunately, the ordering of the copy bypass 
tree does not allow us to efficiently locate uses 
that are affected by a change in a given binding of 
K We cannot simply reorder the copy bypass tree 
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because we need its organization to maintain the 
nonlocal dependencies. Instead, we maintain an 
additional balanced tree, the application tree, as 
illustrated in Figure 9. The application tree for 
finite function f contains one entry for every 
distinct domain value k to which f is applied, 
ordered by domain values. The application tree 
entry for K contains the value flkl and is the head 
of a doubly linked list of all attribute instances 
defined by applications of f to It. In addition, a 
pointer is maintained from each attribute 
instance on the doubly linked list for flk) back to 
the application tree entry for k (not shown in 
Figure 91. 

Some attribute instances (i.e. those defined by 
update) will depend upon all elements of the 
finite function f, and must be reevaluated 
following any change to f A separate doubly 
linked list of these attributes, called the always 
propagate list, is maintained. Whenever any 
change in the finite function value occurs, all 
attribute instances on this list are scheduled for 
evaluation. 

6.3 Application Tree Consistency 

We must maintain the application tree data 
structure in the presence of changes to the 
attributed tree. In Section 6.3.1, we show how the 
copy bypass tree is used to remove dependencies 
invalidated by a subtree modification. Section 
6.3.2 describes how dependencies are added and 
updated. 

6.3.1 Removing Invalid Dependencies 

In [H861, a method is given that locates and 
removes all copy bypass dependencies 
invalidated by a subtree replacement. The 
dependencies represented by the doubly linked 
lists of the application tree are valid if and only if 
the corresponding copy bypass dependency is 
valid. Therefore, at the same time as we remove 
invalid copy bypass dependencies for f, we can 
remove all corresponding application 
dependencies and always propagate 
dependencies. If we remove the last attribute 
from a given application tree list, we remove the 
corresponding element from the application tree. 

6.3.2 Adding and Correcting Dependencies 

Whenever we evaluate an attribute that has a 
finite function argument, we must insert the 
attribute being evaluated into the data 
structures provided it is not already on a doubly 
linked list. If the attribute is defined by an 
update operation, we insert it into the always 
propagate list. Otherwise, we locate the 
application key in the application tree, insert the 
attribute on the list for that key, and set the 
pointer to the application tree element. If the key 
is not in the application tree, we must insert it. 

If the attribute is already on a doubly linked list, 
we verify that it is on the correct one. This must 
be done since the application key may have been 
changed by the tree modification. We use the 
pointer to the application tree element to find the 
former key. If the key has changed, we must 
remove the attribute from the doubly linked list 
and place it on the correct one. 

6.4 Time Bounds for Application Tree 

We will assume the copy bypass tree. See [H861 
for a discussion of its maintenance time. 

The use of doubly linked lists allows us to remove 
most application dependencies in unit time. An 
O(log Iapplication tree/) operation is required to 
insert a new dependency or to remove the last 
dependency for a given key. If the key to an 
application has not changed, the usual case, we 
can validate the dependency in constant time. 
Otherwise, it takes an O(log [application treei) 
operation. Since the result value is stored in the 
application tree, the cost of performing the 
application is absorbed in the validation cost. 

Note that only distinct, used identifiers 
contribute to the size of the application tree. In a 
block structured language, the number of distinct 
identifiers used in a given scope is typically small 
compared to the number of identifier uses in the 
scope or the number of definitions in the symbol 
table. Therefore, the O(log Iapplication treel) cost 
of inserting a dependency to a previously unused 
identifier is relatively inexpensive. 
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7.0 Finite Function Propagation 

To incrementally update an attributed tree after 
a change, we use the update algorithm of [H861 
with the following additions for finite functions. 

Before a subtree is replaced, IH861 removes all 
copy bypass dependencies that would become 
invalid when the old subtree is separated. As 
each copy bypass dependency is removed, we 
remove all of its noncopy dependencies from their 
respective doubly linked lists as described in 
Section 6.3.1. The maximum additional time 

required to remove a subtree is 
O(luppZication treej*log luppEicatior2 h-eel). 

The propagate algorithm of [H861 uses change 
propagation over local and copy bypass 
dependencies. It starts with a priority queue of 
inconsistent attribute instances. While the queue 
is not empty, it removes the first attribute 
instance and computes its new value. If the new 
value is different from the old value, it inserts all 
local and nonlocal successors of the attribute 
instance into the priority queue. 

COPY 

\ 
Bypass 

Al ways 
Propagate 

List 

f(y) AZ) X.2) g update f 

Copy bypass dependency 

-.-.-.-.-.- Noncopy attribute dependency 

--------- Doublylinkedlist 

n Copy attribute instance, nontrivially used 

0 Noncopy attribute instance 

Figure 9 
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Our propagate algorithm is the same except for 
each attribute instance that has a finite function 
value f To perform differential propagation, we 
need a value for Af. If f is possibly inconsistent 
because of the subtree replacement, or f is built 
by function construction, we compute the new 
value from its arguments and use the delta-set 
function of Figure 5 to compute Af. Otherwise, as 
discussed in Section 5, we have delta sets for 
either of the arguments of an update expression, 
and the function update-from-delta in Figure 6 
is used to compute the delta set from the delta 
sets of the arguments. 

If the Af has at least one nonbottom binding, we 
know that the old value is different from the new 
value and we must enqueue all attribute 
instances dependent on f. We do this by 
enqueueing all attribute instances with 
dependencies on the always propagate list and 
then calling the procedure function-enqueue 
shown in Figure 10. This limits propagation to 
the elements of the application tree whose 
domain values are in the set At This procedure 
requires O(min(lapplication tree) loglAfJ, 
IAl lodapplication treel, iapplication tree1 + IhA)) 
time. 

Each attribute instance b that is defined with an 
update expression using f will be on the always 
propagate list. Before we insert 6 into the priority 
queue, we attach the delta set for argument f. 
When b is evaluated, it will have accumulated 
the delta sets for all of its changed arguments. 
When we compute the delta set for 6, we remove 
the delta sets of its arguments. 

Since the approximate topological ordering 
method of [H861 can result in some attribute 
instances being evaluated out of topological 
order, we must allow argument delta sets to be 
updated when the argument is computed more 
than once. If b already has a delta set for 
argument f, we need to update this delta set to 
reflect the changes in both delta sets, old and 
new. If any bindings are in both sets, we take the 
new bindings. Thus, the new argument delta set 
is Aold update Anew and can be computed using 
the update algorithm given in Figure 4. 

Note that it is possible to organize the application 
tree as a hash table resulting in a faster expected 
location time for small changes in f. For 
efficiency reasons, however, it is necessary that 

procedure function-enqueue( 
S : priority queue, 
A : map, 
t : application-tree 

I 
if IAl >Id*logjAl then 

for all aC t do 
pclookup(A, a.domain); 
if p * nogair then 

appl-enqueue@, A, a, p) 
else ifftf >IAI*logfd then 

for all pC A do 
acappl-lookup(t, p.domain); 
if a * no-appl then 

appLenqueue(S, A, a, p) 
else 

actraversal-first(t); 
pctraversal-first(A); 
while a f no-appl and p f noqair do 

if a.domain <p.domain then 
attraversal-next(t) 

else if a.domain >p.domain then 
pctraversal-next(A) 

else if adomain =p.domain then 
appLenqueue6, A, a, p); 
actraversal-next(t); 
pctraversal-next(A); 

xocedure appl-enqueue( 
S : priority queue, 
A : map, 
a : appl-dependency, 
p : pair 

ifp.range = nil then 
a.rangetA.bottom 

else a.range+p.range; 
for all ICa.list do 

S+SU{a.attribute-instance}; 
IT:-..-- ,I\ r rgure iv 

we be able to traverse the hash table in 
O(lappfication tree0 time. 

8.0 Symbol Tables Using Finite Functions 

We modified our attribute grammar specification 
for Pascal to use attributes of finite function type 
identifier+scope depthx value X kind X type to 
represent the symbol table. 

The initial table is created using a function 
construction expression with all identifiers 
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initially defined in Pascal. This finite functional 
value is inherited by copy chains to the first 
nested scope. 

At each scope, definitions are collected using a 
local environment, also represented by a finite 
function. The complete local environment is 
synthesized from the bottom of the local 
definition subtree back up to the block head 
where the new environment is created with the 
update operator. 

Before we insert an identifier definition into the 
local scope, we must verify that it has not already 
been defined in the scope. We perform an 
application of the local environment to the 
identifier, and, ifit is not defined, we construct a 
finite function with the identifier binding and 
form the new local environment with the update 
operator. 

8.1 Asymptotic Performance of Symbol 
Table Modifications 

In the following discussion, we will ignore the 
cost of maintaining nonlocal dependency 
information with respect to abstract syntax tree 
modifications. As is discussed in Section 6, this is 
done using copy bypass dependencies. Since the 
application dependencies can be maintained in 
the same time bound as the copy bypass 
dependencies, we refer to [H86] for an analysis of 
this cost. 

Let us assume that we are modifying the symbol 
table entry for an identifier id that has (I uses in 
each of the s enclosed scopes where it is visible. 
Let 1 be the number of definitions local to the 
scope of modification and let d be the number of 
definitions in the largest enclosed scope. We will 
assume that no other definitions are dependent 
upon id. The type of modification is not limited to 
changing the definition information. We 
consider inserting and removing definitions as 
well. 

At the block head of each modified scope, we 
require Otlogdl operations to compute the delta 
set and update the attribute value. The total cost 
to update the scopes is O(s log dl. 

Each of the uses of id must also be located and 
updated. For a given scope, locating the linked 
list of the uses of the changed definition in the 
application tree requires O(log lapplication Creel) 
time. Subsequently, finding the new value bound 
to id requires unit time for each use. The total 
time required for locating and updating uses is 
therefore O(S*(U + log lupplication h-eel)). 

If we assume that there are few undeclared 
identifiers, japplication tree1 <d. This gives us the 
resulting cost of O(Z log 1 +s log d + s (11 for the 
modification of one symbol table identifier. 

As discussed in Section 6, modifying an identifier 
use, although usually done in unit time, requires 
at most O(log jupplication tree!) operations. 

9.0 Summary 

The incremental update of aggregate values has 
been a major performance problem in attribute 
grammar based systems, While there have been 
numerous attempts to eliminate this bottleneck, 
all have found it necessary to extend the attribute 
grammar formalism. 

We have introduced the finite function data type 
to represent these aggregate values. We 
determine the portion of the aggregate value that 
has changed using differential propagation. By 
keeping a tree of aggregate value uses at points in 
the attributed tree, we are able to locate the 
attribute instances that depend upon the changed 
portion of the aggregate value. This allows us to 
limit propagation to the attribute instances that 
are uses of changed definitions. 

Finite functions allow symbol tables to be 
represented easily and efficiently in attribute 
grammars. 

When we change the definition of id, we must 
update each of I partial local environments. 
Computing the delta set with update-from-delta 
(Figure 61, and then computing the new value 
with delta-fix (Figure 71 requires O(log 0 cost for 
each local scope. Thus, the cost to update the 
local definitions is O(Z log 0. 

49 



10.0 References 

[A781 

[BC851 

[DRTSl I 

[DRZ851 

m351 

m361 

[J841 

[JF851 

Allen, J. R. Anatomy of LISP. 
McGraw-Hill, New York, NY, 1978. 

Beshers, G., and R. Campbell. 
Maintained and Constructor 
Attributes. Proc. ACM SIGPLAN 85 
Symposium on Language Issues in 
Programming Environments, Seattle, 
WA, June, 1985, pp. 34-42. 

Demers, A., T. Reps, and T. 
Teitelbaum. Incremental evaluation 
for attribute grammars with 
application to syntax-directed editors. 
Proc. of the 8th ACM Symposium on 
Principles of Programming Languages, 
Jan, 1981, pp. 105116. 

Demers, A., A. Rogers, and F. K. 
Zadeck. Attribute propagation by 
message passing. Proc. ACM 
SIGPLAN 85 Symposium on Language 
&sues in Programming Environments, 
Seattle, WA, June, 1985, pp. 43-59. 

Horwitz, S. Generating Language- 
Based Editors: A Relationally- 
Attributed Approach. TR 85-696 
(Ph.D. Thesis), Cornell University, 
August 1985. 

Hoover, R. Dynamically bypassing 
copy rule chains in attribute 
grammars. Proc. of the 13th ACM 
Symposium on -Principles 
Programming Languages, 
Petersburg, FL, Jan 13-15, 1986, 
14-25. 

of 
St. 

PP. 

Johnson, G. F. An approach to 
incremental semantics. TR 547 (Ph.D. 
Thesis), University of Wisconsin, 
Madison, July 1984. 

Johnson, G. F., and C. N. Fischer. A 
meta-language and system for nonlocal 
incremental attribute evaluation in 
language-based editors. Proc. of the 
12th ACM Symposium on Principles of 
Programming Languages, New 

rK681 

CKMl 

EL791 

NW 

[PK821 

W341 

lRMT861 

ERT841 

lY831 

Orleans, LA, Jan 14-16, 1985, pp. 141- 
151. 

Knuth, D. E. Semantics of context-free 
languages. Mathematical Systems 
Theory, 2.2, June 1968, pp. 127-145. 

Krijnen, T. and L. Meertens. Making 
B-trees work for B. Technical Report, 
Mathematical Center, Amsterdam. 

Liu, L. Essential uses of expressions in 
set-oriented expressions. Ph.D. Thesis, 
Cornell University, May 1979. 

Myers, E. W. Efficient Applicative 
Data Types. Proc. of the 10th ACM 
Symposium on Principles of 
Programming Languages, Jan, 1983, 
pp. 66-75. 

Paige, R. and S. Koenig. Finite 
differencing of computable expressions. 
ACM Trans. on Programming 
Languages and Systems, Vol. 4, No. 3, 
July 1982, pp. 402-454. 

Reps, T. Generating Language-based 
Environments. M.I.T. Press, 
Cambridge, MA, 1984. 

Reps, T., C. Marceau, T. Teitelbaum. 
Remote attribute updating for 
language-based editors. Proc. of the 
13th ACM Symposium on Principles of 
Programming Languages, St. 
Petersburg, FL, Jan 13-15, 1986, pp. l- 
13. 

Reps, T. and T. Teitelbaum. The 
Synthesizer Generator. Proc. of the 
ACM SIGSOFTISXGPLAN Software 
Engineering Symposium on Practical 
Software Development Environments, 
Pittsburgh, PA, April 1984. 

Yeh, D. On Incremental Evaluation of 
Ordered Attributed Grammars. BIT 
23,1983, pp. 308-320. 

50 


