
A VHDL Compiler Based on Attribute Grammar Methodology

Rodney Farrow

Declarative Systems, Inc.

Abstract

This paper presents aspects of a compiler for a new
hardware description language (VHDL) written using
attribute grammar techniques. VHDL is introduced,
along with the new compiler challenges brought by a
language that extends an Ada subset for the purpose
of describing hardware. Attribute grammar program-
ming solutions are presented for some of the language
challenges.

The organization of the compiler and of the target
virtual machine represented by the simulation kernel
are discussed, and performance and code-size figures
are presented.
The paper concludes that attribute grammars can be
used for large commercial compilers with excellent re-
sults in terms of rapid development time and enhanced
maintainability, and without paying any substantial
penalty in terms of either the complexity of the lan-
guage that can be handled or the resulting compilation
speed.

1 Introduction
This paper describes the design and implementation of a
compiler for the new hardware design language VHDL.
VHDL was developed by the DOD as part of the VHSIC
program. In December of 1987 VHDL was adopted as an
IEEE Standard [ll]. VHDL is a large and semantically
rich language that borrows much of its structure from the
programming language Ada, including:

separate specification of interfaces and implementa-
tions,

packages and the ability to selectively import declara-
tions therefrom,

the program library and separate compilation
paradigm,

user-defined types and subtypes and implicit declara-
tion of operators for these,

overloaded functions and user-overloadable built-in op-
erators,

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-89791-306-X/89/0006/0120 $I SO

Alec G Stanculescu

Vantage Analysis Systems, Inc.

l nested function declarations and lexical scoping rules
for name resolution,

l overloaded enumeration constants,

l dynamically constrained arrays and slices of them,

l aggregate notation for specifying arrays and records in
terms of their [scalar] components,

l a restricted form of Ada-renaming called aliasing,

l a restricted version of generic compilation units.

VHDL then adds many constructs and features of its own to
support aspects of hardware design that are not, reflected in
a general-purpose programming language. These include:

0

l

new

new compilation units: entity (interface to a device),
architecture (generic body of a device), and configura-
tion (concrete implementation of a device),

defaults rules for configuring an architecture if no ex-
plicit configuration is given,

user-defined attributes and specification of their val-
ues,

signal objects: signal assignment semantics, bus reso-
lution functions, disconnect specification,

implicit guard signals and guarded statements,

user-defined input- and output- conversion-functions
for arguments of subprogram calls and device instanti-
ations that can be individually and separately specified
at each point-of-call or instantiation,

simulation time synchronization: simulation cycle se-
mantics and associated predefined attributes,

processes and their scheduling, and wait statements.

Besides being one of the first compilers for a significant
langauge, our VHDL compiler is innovative in that it

was designed as an attribute grammar’ and is automatically
generated from this attribute grammar by a commercially-
available translator-writing-system [12], This approach en-
hanced our productivity and enabled us to make significant
changes to our code-generation strategy very late in the de-
velopment process. Several compilers have been written as
AGs and automatically generated [lo, 7, 51 but few of these
have been commercial products; most have been research
projects or prototypes. To the best of our knowledge, our

VHDL compiler constitutes the largest complete AG appli-
cation to date, containing more than 600 productions and
9,000 semantic rules.

‘attribute gmmmars are hereinafter r&red to as AGs

120

The VHDL compiler is a component of the
Vantagespreadsheet TM behavioral simulation environment
offered by Vantage Analysis Systems, Inc. The compiler
is invoked by either a menu-based or script-driven user in-
terface, either directly for compiling VHDL textual descrip-
tions OT indirectly in the process of compiling schematic de-
scriptions that have a VHDL correspondence. It is a com-
plete, tested, production-quality compiler that has com-
piled hundreds of thousands of lines of customer’s VHDL
models.

The output of the VHDL compiler is source code in the
C programming langauge that is compiled and then com-
bined with other elements of the simulation environment
to simulate the circuits described by the VHDL. Thus, we
need not address many aspects of code generation, such
as register allocation and instruction selection. However,
other code generation problems still need to be solved by
the VHDL compiler; e.g. references to up-level variables
from within nested subprograms is supported in VHDL but
not in C, and so the code generated by the VHDL compiler
must implement this construct.

In this paper we draw on our experience in this project
to address two questions:

l what features of VHDL were hard to implement and

why,

l what are effective programming techniques, or idioms,
that can be used to build compilers with AGs.

The rest of the paper is organized into four sections.
The first section describes the compiler. It includes an
overview of the compilation paradigm used by the com-
piler and the software architecture we designed to imple-
ment that paradigm. It also includes a discussion of the
size and composition of the compiler itself and its perfor-
mance. The second section discusses problems with the
language definition that we found in the course of imple-
menting the language. Our discussion attempts to under-
stand how these problems were introduced, but we do not
propose solutions because we feel there is as yet inadequate
experience with the language. The third section discusses
three idioms for designing AGs that we found to be useful.
These are cascaded evaluation, the creative exploitation of
implicit semantic rules, and the construction of large ap-
plicative data-structures as a result of attribute evaluation.
The fourth section presents lessons we learned about com-
piling VHDL and using AGs to build a compiler for a new
language.

2 Compiler Architecture

The VHDL
compiler is a component of the VantageSpreadsheetTM be-
havioral simulation environment. It is invoked by either a
menu-based or script-driven user interface, either directly
for compiling VHDL textual descriptions or indirectly in
the process of compiling schematic descriptions that have
a VHDL correspondence.

The compiler accepts a file containing compilation
units, a list of compiler directives, a working library where
the successfully compiled units are placed and a reference

library which can be referenced in addition to the work
library but which can not be updated.

2.1 Target Machine
The purpose of the VHDL compiler is to produce a com-
puter program that, when executed, simulates the circuit
described by the VHDL source code. This is accomplished
by generating C code that in turn is compiled and linked
into a simulator for the particular circuit.

At an abstract level the compiler can be viewed as
generating code for a virtual machine that is configurable
and programmable in terms of C primitives.

The virtual machine consists of four modules: (1) Sim-
ulation Kernel, (2) Runtime Support, (3) VHDL I/O, (4)
Name Server.

The runtime support functions perform all the pre-
defined VHDL operations. The VHDL I/O functions sup-
port the specific VHDL I/O. The Name Server provides the
means of identifying by name each object in the simulated
system.

2.2 Compiler Core
The compiler is organized around an attribute grammar
that describes the syntax of VHDL (both context-free and
context-sensitive syntax). This AG also specifies our sim-
ulation semantics for the language; i.e. the C source code
described in the last section. Our VHDL AG is input to the
LinguistTM translator-writing-system, which from it auto-
matically generates more than 60 percent of the total source
code of the VHDL compiler.

Semantic rules of the AG can be either in-line expres-
sions, or calls to out-of-line, separately-compiled functions,
or some combination of these. If a complex expression needs
to be used as a semantic rule at many different places in the
AG then it makes sense to abstract this into an out-of-line
function. These functions are written in C and account for
18 percent of the compiler.

VHDL supports a separate compilation paradigm that
is modeled after that of Ada and it is deeply embedded in
the semantics of the language. Our compiler supports a
machine-readable intermediate language that is generated
for each separately-compilable unit and read in when that
unit is referenced from another. We refer to such references
as foreign references and to the referenced unit as a foreign
unit. The intermediate language is called VIF. an acronym
for VHDL Intermediate Format. The structure of the VIF
is described in a special-purpose, declarative notation that
is read by yet another special-purpose program’ that gen-
erates declarations for this data, and generates C code that
manipulates the VIF. This code:

writes the VIF to disk,

reads the VIF from disk, resolving any nest.ed foreign
references,

allocates individual nodes of the VIF,

2this program is also written as an AG and generated by Linguist;

more evidence that when one receives a h -er, one begins to see

the world as a nail.

121

l produces a human-readable form of the VIF (used for
both debugging and documentation).

The rest of the compiler consists of functions written
in C that interface the automatically-generated attribute
evaluator to its environment. This includes such tasks as
reading command-line arguments, opening input and out-
put files, directing outputs of the compiler to appropriate
places in the filing system, supplying basic memory man-
agement facilities, etc. Figure 1 depicts this compiler orga-
nization.

Figure 2 gives the size of our compiler, and its com-
ponents, in terms of the number of lines of source code in
the compiler and, where applicable, the number of lines of
C source code generated from this. All figures for number
of source code lines reflect text that has been stripped of
blank lines and comments.

The compiler compiles VHDL at a little more than
1000 lines per minute on’an Apollo DN4000, unless it is pro
cessing configuration units, in which case it’s not as fast.3
This speed includes the time necessary for the host sys-
tem’s C compiler to compile the generated model, which
accounts for 20 to 30 percent of the total time. Substantial
time is spent rading, fixing up, and writing the VIF for for-
eign compilation units: from 40 to 60 percent of the total
time. Our preliminary analysis indicates that more than
80 percent of the time is spent doing these sorts of tasks,
and others such as memory management. The time spent
walking the parse tree and evaluating attributes is a very
small percent.

3 Issues in compiling VHDL
VHDL can be viewed as an extension of an Ada subset. The
extensions are supporting the hardware description specific
features. The extensions to Ada produce several interesting
compiler challenges. This section describes some of them.

3.1 Partial specification of arguments ver-
sus specification by aggregate

Consider the case of formal parameters that are of compos-
ite types. The association of formal to actual parameters
may be done at the level of subelements of the formal pa-
rameters. For example, a formal parameter F of a record
type with two fields A and B, may be associated to two ob-
jects X and Y by separately associating F.A to X and F.B to
Y. This feature is called partial specification of arguments.

VHDL supports partial specification of arguments,
provided that all the associations for one argument are con-
tiguous. However, there is no syntactic construct to lump
together all partial specifications for the same argument
(using the aggregate construct perhaps). Unlike the ag-
gregate notation, the partial specification of arguments in

3Configuration units typically consist of very few source lines that
cause large data structures built by compiling other compilation units
to be read into memory and edited according to both explicit and
implicit rules; the bulk of the work in processing these units is in
reading and traveling these data structures rather than analyzing . _. -
the source code of the configuration unit. 122

VHDL
AG

VllUL

rnmniler L, interface 1

out-of-line
functions I

Figure 1 Organization of the VHDL Compiler

source [generated] C

AG 16827 (37%) 67919 (62%)
VIF description 1265 (3%) 14200 (13%)
out-of-line func 20845 (45%) 20845 (18%)
interface code 7132 (15%) 7132 (6%)

total 46069 (100%) 110096 (100%)

total manpower to develop compiler:
82 man-months in 25 elapsed months

Figure 2: Summary of the \‘HDL Compiler

VHDL allows intermixing the specification of different lev-
els in the hierarchy of the complex type. Under these cir-
cumstances, it is expensive for the compiler to enforce that
the specification is complete and consistent. For the same
reason, it is also difficult for the human reader to verify the
correctness of the code.

3.2 Extending visibility by selection
Visibility by selection is a visibility rule by which names be-
come visible and may be referenced at a given point in the
code. In Ada there are two cases in which names may be-
come visible by selection: after the dot in the structure field
reference, and before the => token in by-name parameter
association. In both these situations only a single identifier
is legitimate.

The concept of visibility by selection has been extended
to other areas of the language in VHDL. It applies to the
position after the tic (‘) in the attribute reference, and
to the actual designator portion of the generic and port
map aspect. The problem has been further complicated by
allowing both output conversion functions in by-name pa-
rameter associations and partial specifications of by-name
parameters.

For example, in Ada the formal part of a by-name pa-
rameter association is a simple identifier. But because in
VHDL one can have partial specification of formals and
because formals can have output specification functions as-
sociated to them then X(Y) can denote either a partial spec-
ification of an element of an array or an output conversion
function X applied to the formal designator Y.

Another example of difficulties introduced by extend-
ing the Ada visibility by selection, is represented by at-
tribute references. User-defined attributes can be attached
to many kinds of objects. The visibility by selection makes
it possible for the user-defined attribute to conflict with
predefined names. This makes it more difficult to identify
the meaning of a name. For example, X(T’REVERSEJtANGE)

could be an array if T is an aray object, or a constrained
array subtype. In this case REVERSE-RANGE would be con-
sidered to be the predefined attribute. However, the same
X(T’REVERSEI(ANGE) could be an element of the array X
in case T is an object that has the user-defined attribute
REVERSElANGE.

3.3 Generic Descriptions, Configuration
Information

VHDL compilation units are: package specifications, pack-
age bodies, entities, architectures, or configuration units.

Package specifications and package bodies are similar
to the corresponding Ada-constructs. The main differences
are that VHDL packages may not have generic parame-
ters, and that VHDL packages may contain global signals.
References to global signals in packages may be made only
from within an entity or an architecture. This is concep-
tually different from Ada where all objects declared in the
package specification are visible in the package body.

An entity can be viewed as the specification of the ar-
chitecture. The architecture describes a circuit in generic
terms, and the configuration provides instructions for edit-
ing the entities and architectures that describe a particular

circuit. A hardware analogy, which proves to be very suc-
cessful in explaining binding and default rules, is that the
entity is the description of the interface (names of pins, volt-
age range acceptable for each pin, usage constraints such
as setup and hold conditions) of a family of chips. A mem-
ber of the familly corresponds to a particular set of actual
values bound to the generic parameters.

Continuing the hardware analogy, the architecture can
be viewed as board with sockets, in which chips can be
plugged. The sockets are of different kids. Each kind of
socket is described by a component declaration in VHDL.
Instances of sockets rue represented by component instanti-
ations. Configuration specifications may be present either
in the architecture or in special compilation unit called the
configuration unit. According to the hardware analogy the
configuration specifications correspond to information re-
garding what actual chips to plug in the instantiated sock-
ets. In the cases in which configuration information is ap-
parently missing, the default rules apply.

Comparing the Ada generic capabilities to VHDL one
can say that VHDL uses two layers of restricted versions
of the Ada generic mechanism. The first layer consists of
the VHDL-generic parameter that can be associated to en-
tities and blocks. This is a restricted version of the Ada
generic capability, where the generic parameter can only
be a generic constant object. The second layer consists of
the VHDLcomponent declaration that is similar in nature
to the Ada-generic subprogram. The binding of actuals to
generic formals in VHDL is done separately for each layer:
using the VHDL-instantiation for the first layer, and the
configuration specification for the second layer. It is impor-
tant to note that the actual parameters for the first layer
can be generic members of the second layer.

One of the problems that arise is how much of the
generated code should be produced just by inspecting the
entity and the architecture and what should be postponed
until the configuration information is available. The nature
of this tradeoff is similar to the one faced when compiling
Ada generic packages. The details are somewhat different
due to the layered approach of associating actuals to for-
mals.

The configuration information can be obtained in three
ways: from the configuration specification inside the archi-
tecture, configuration specification inside a configuration
unit, and according to the VHDL default-mechanism. It is
not clear at the time an architecture is compiled whether
more configuration information is still to be provided since
the lack of such information, at the time the configuration
unit is compiled, triggers the default mechanism and the
necessary information is produced by default.

A possibility which we explored was to generate code
for the possible defaults and use that code in the case the
default mechanism is triggered. This early code generation
was intended to favor the use of the default mechanism.
This solution has a more limited use than one might ex-
pect because the default mechanism is based on the usage-
history of the design library, which makes the VHDL de-
scription itself non-deterministic. Specifically, the default
for an architecture name in the binding of a component to
an entity-architecture, is the latest compiled architecture

123

for that entity. Therefore, any default configuration infor-
mation that uses the latest compiled architecture, can be
used only if the relevant set of latest compiled architectures
does not change between the generation of the configuration
code and the time at which the code is used.

3.4 Context Clauses
Names that may be referenced in a compilation unit must
be visible at the point where they are referenced. To be
visible a name must be declared either in the compilation
unit itself (in an appropriate place), or in another compi-
lation unit. If the name is declared in another compilation
unit, it must be imported via some import mechanism.

VHDL differs from Ada with respect to the constructs
by which names declared in foreign compilation units be-
come visible. The LIBRARY-clause in VHDL and the WITH-
clause in Ada, represent import mechanisms. In VHDL one
cannot refer to a compilation unit which is in a library for
which there is no iibrary clause4. Similarly, in Ada one
cannot refer to a name declared in a compilation unit for
which there is no WITH-clause. The difference between the
two import mechanisms is that the level of granularity for
import control in Ada is the compilation unit as opposed
to an entire library in VHDL.

USE-clauses in Ada provide a short hand notation
whereby it is not necessary to specify a prefix for which
there is a USE-clause, provided that there is no homographic
collision due to the USEclause.

VHDL does not have a WITH-clause. However, the
VHDL USE-clause is richer in semantics, subsuming the se-
mantics of Ada’s WITH-clause. The VHDL USE-clause ap-
plies to compilation units as well as to names declared wi-
htin a compilation unit. Names declared within a compi-
lation unit may be imported individually (to avoid homo-
graphic conflicts) or as a group.

When applied to all names within a compilation unit
(using the suflix .ALL), the VHDL US&clause is equivalent
to a WIT&clause followed by a USEclause in Ada. In this
case the rules governing homographic conflicts apply.

The capability to import only some of the names de-
clared within a compilation unit, and avoid homographic
conflicts, is a feature present in VHDL and not in Ada. In
the caSe in which a name that is referenced has a homograph
in another imported context, and the homograph is not re-
quired by the unit under compilation! then the VHDL pro-
grammer has the possibility to import one by one exactly
the referenced identifiers, thus avoiding the homographic
conflicts. This VHDL feature requires the capability to im-
port individual names rather than all the visible names of
a compilation unit.

4 AG idioms for VHDL

4.1 Cascaded evaluation
One of the problems we faced in writing an AG for VHDL is
that the natural, straight-forward phrase-structure for ex-
pressions is also ambiguous. An occurrence of an identifier

‘iUote: all VHDL compilation units have the implicit clauses
LIBRARY UORK; USE U0BK.M.L;

may denote radically different things in a given syntactic
context. For instance, in VHDL (as in Ada) the phrase
X (Y > could denote:

l a call to subprogram X with argument Y,

l a subscripted reference to array variable X,

l a slice of array variable X by range Y,

a a type conversion expression of the value denoted by Y
to type X.

Which of these possibilities is actually denoted depends
on the program objects to which the names X and Y are
bound in this scope of the program. If the compiler is
based on the natural phrase-structure for these expres-
sions then X in X (Y) should be recognized according to
one of the productions &ubprogramname : := ID1 versus
[variable-name : : = ID1 versus Ctypemame : : = IDI.
All three of these productions are legitimate in many con-
texts.

A similar problem, peculiar to VHDL because this
language allows user-defined attributes, is the phrase

X a REVERSE-RANGE This could denote either a refer-
ence to a user-defined attribute named REVERSE-RANGE,
which would produce a value, or a reference to the pre-
defined attribute REVERSE-RANGE, which would produce a
range suitable for defining a subtype or slicing an array.
As above, which possibility is actually denoted depends
on what REVERSE-RANGE means in the environment at this
point in the program.

These ambiguities can not be resolved until informa-
tion about the naming environment is available, i.e. until
the symbol table has been built and can be consulted. How-
ever, the symbol table is itself a result of attribute evalu-
ation. Thus, the accurate phrase-structure for expressions
depends on the symbol table, which is built via semantic
rules of the AG, and which thus depends on the phrase-
structure of the program.

One way to deal with these difficulties might be to
unite
the conflicting productions into a single production, e.g.
[name ::= ID1 instead of [subprogramname ::= ID],
[variablename : : = ID], and [type-name : : = ID]. The
semantics of such a united production would conditionally
defined attributes based on which situation is later found
to occur after symbol table information is available.

So long as the difference between phrase-structure is
confined to a single production or a very few adjacent pro-
ductions this is a feasible, although somewhat unaesthetic
alternative. But for many languages, including VHDL, even
a local choice such as this affects the phrase structure cho-
sen for large parts of the adjacent source program.

For the example X (Y 1, the phrase structure that
applies to (Y) can be that of:

0 a one-element argument list,

l a one-element subscript list,

l the range of a slice, or

l the source expression of a type conversion.

Thus, uniting the possible phrase-structures for X leads
us to unite as well the phrase structure for the adjacent

124

(Y). ‘I’hls process might result in a umted production
such as Cexpr : := name (name)]. Unfortunately, this
approach leads to the duplication of all the semantics for:

l an argument of a procedure call,

l a subscript element of an array reference,

l a range that is only a name,

l an expr that is just a name,

l a var-ref that is just a name.

Each of these separate sets of semantics must not only
be part of the productions that derive the more gen-
eral occurrences of these constructs, but also of the
united production(s). Also, the united production(s) con-
stitute a special case of other productions designed to
find the phrase-structure of the general construct and
cause parsing conflicts with them. Thus, the united pro-
duction [name : : = ID] and the more general produc-
tions Cf unclef ::= name (ergs >I, Carp ::= ard,
carp ::= args) argl together cause parsing conflicts
in the LR-parser; indeed, these productions are ambiguous
and the AG-author must be careful that the ambiguity is
resolved in favor of the united production.

This proliferation of duplicate semantics and conflict-
ing syntax becomes worse when, as in VHDL, these different
interpretations can occur in contexts which overlap but are
not identical. Thus, an array reference can be subsequently
selected by a field of a record, but a type conversion ex-
pression can not. In such cases, the semantics of the united
production must detect when an iliegal use occurs and flag
it as such.

The general problem of compiling two or more lan-
guage constructs that are semantically diverse but syntac-
tically identical is a familiar one for compiler writers who
use LR parsing techniques. For us it was merely exacer-
bated by the size and complexity of VHDL and by the strict
distinction between syntax and semantics imposed by the
attribute grammar paradigm. For instance, when trying to
write a Pascal compiler that uses an LR parser one would
really like to use different productions to handle SUCC(X)
if this denotes the predefined successor function for the type
of X, as opposed to a call to a user-defined function named
SUCC. Although the semantics involved are quite different,
their syntax is identical and they can not be distinguished
by the LR parser. The usual solution is to parse the con-
struct according to one of the possibilities, but to have the
associated semantic actions consult the symbol table before
building the parse tree.

Compilers that don’t use an LR parser often use more
ad hoc techniques such as recursive descent parsing. These
compilers can base their parsing decisions directly on in-
formation available in the symbol table and thus can parse
according to what an identifer denotes in this particular
context. Baker [2j described such a compiler for Ada. His
discussion noted the same problems for Ada as we have
described above for VHDL and his compiler resolved ambi-
guity in the grammar by having the scanner return different
tokens for a name based on what the symbol table said a
name was bound to at this point. Such a strategy requires
very careful coordination between the scanner, the symbol
table manager, and the semantic actions of the parser.

These latter two solutions are generally not available to
an AG-based compiler because the semantic rules of an AG
are associated with the same context-free phrase-structure
as is used for parsing. Indeed, one of the reasons for using
an AG-based complier generator is to avoid having to design
and implement such an intermediate data structure. We
originally tried to use the first solution mentioned above,
that of uniting several conflicting productions into one and
using semantic rules to distinguish between them. However,
the size of VHDL and the many places where we had to do
this soon grew overwhelming:

l the amount of duplicate semantics we had to write was
substantial, even when as much as possible was ab-

and

stracted into out-of-line functions,

keeping track of the parsing conflicts and ensuring that
they were resolved correctly was confnsing and error-
prone,

the necessity that united ‘non-terminals have combined
sets of attributes caused the AG to be needlessly large.

The solution we finally chose was to write two AGs
then cascade or pipeline the translations they speci-

fied. The principal AG does not contain semantic rules
for most of the aspects of compiling expressions; instead it
merely synthesizes a simplified list of tokens that is input
to the second AG. The second AG describes the semantics
of an individual expression. The attribute evaluator gener-
ated for the expression AG parses the list of tokens built for
an expression by the principal AG, and does attribute eval-
uation on that phrase-structure according to the semantics
specified by the expression AG.

The intermediate language for expressions is refered to
as LEF. LEF consists of a flat list of tokens with no other
structure imposed on them. LEF tokens are pretty much
the same as the VHDL tokens that can occur in expressions;
they include literals of various flavors and punctuation such
as parentheses, comma, etc. However, the symbol table’ is
an attribute of the principal AG, not of the expression AG,
and it is used to resolve identifiers so that ID is not a to
ken of LEF; instead there are distinct tokens for uaria~le,
type, subprogram, attribute, enumliieral, etc. This allows
the parser for the expression AG to distinguish the phrase
structure of expressions based on what various identifiers
denote in a particular context. Thus, very different phrase
structure (of the expression AG) can be built for two identi-
cal pieces of VHDL source text, depending on t.o what the
names in that source text are bound at this point in the
program.

In illustration, consider the source fragment X (Y 1.
If X is a subprogram and Y is a variable then the
principal AG translates this to a string of LEF tokens
[subprogram, ’ (‘, variable, ’ 1 ‘I which is parsed ac-
cording to the expression AG’s phrase-structure for a sub-
program invocation. On the other hand, if X denotes a
variable and Y denotes a type then this gives rise to the
string of LEF tokens [variable, ’ (‘, type, a > ‘I which
is parsed according to the phrase structure of an array slice.

The list of LEF tokens are built as attributes of sym-
bols in the principal AG. These attributes are not treated
at all specially by the translator-generating tool: they are

125

undistinguished, user-declared attributes the same as any
others. At those points in the AG where an expressions
occur that are not themselves immediate constituents of
larger expressions, the list of LEF tokens for this maximal
expression is parsed and evaluated according to the seman-
tics of the expression AG. This is written in the principal
AG as an application of the separately-compiled, out-of-line
function exprEva1.

The main argument supplied to exprEval is the list
of LEF tokens. Other arguments are the nesting level at
which this expression occurs, the type expected for this
expression (if this is known) the source line number of this
expression, and flags indicating the context in which this
expression occurs. exprEva1 returns several values; these
are the result of evaluating the expression AG applied to
the LEF token list. These values include a list of error
messages (the null list if there were no errors), and the
output translation of this expression.

A production in which this occurs is shown below. The
guard expression of an if-statement is an example of a
maximal expression.

stmt ::= if-KU expr then-KU stmts end-KY
if ,KW SEMI.

stmt . CODE = TextOf (“if (%t)(%t>” ,
EXPR-CODE,
stmts. CODE),

stmt.HSGS = mergeMsgs(EXPRJSCS,
stmts.HSGS >,

EXPR-CODE:tp-text,
EXPR-MSCS:tp-msgs =

exprEval(expr.LEF, boolean-type,
if-KW.LINE, stmt.LEVEL,
stmt . CONTEXT),

stmts.CONTEXT = stmt.CONTEXT,
stmts.LEVEL = stmt .LEVEL,

;

The out-of-line function exprEva1 is itself a parser
and attribute evaluator generated from the expression AC.
Thus, we generate two different and distinct attribute eval-
uators, one for the principal VHDL AG and one for the
expression AG. The evaluator for the former operates once
per VHDL compilation unit and computes intermediate at-
tribute values that are sequences of LEF tokens. The sec-
ond evaluator operates once for each maximal expression in
the source program by parsing the corresponding sequence
of LEF tokens and returning a set of attribute values as a
result. These values are the results, or goal attributes, of
the expression AG. They are incorporated into the contin-
uing attribute evaluation of the principal AG.

An important aspect of this cascaded translation tech-
nique is that it required no enhancement or modification
of the translator-generating tool, Linguist. Constructing
the lists of LEF tokens and doing attribute evaluation of
them looks just like any other user-defined semantics in the
principal AC. The implementation of exprEva1 consists of:

l wrapping a new functional interface around the evalu-
ator Linguist generates for the expression AG, and

l supplying a scanner that reads tokens from the list of
LEF tokens supplied as an argument to exprEva1.

The evaluator for the principal AG is fed tokens by a
scanner that reads source text from a file in the usual way.
The expression evaluator is fed tokens by a trivial scanner
that just takes the next LEF token off the front of the list.
If L is this list of tokens then the expression scanner is just,:

tp-list L;
sca.mer()
cx= car(L) ; L = cdr(L); return(X);)

The Linguist tool supports a mechanism for incorporating
values associated with tokens into attribute evaluation. In
traditional settings such values might be the line and col-
umn number on which a token occurs, or the string that
makes up the text of a token for a character literal or an
identifier. We use this mechanism in cascaded translation
to associate information with LEF tokens, such as the sym-
bol table entry denoted by a variable, subprogram, or
type token in the LEF. Thus, all the information associ-
ated with a variable by the principal AG is also available
in the expression AG.

This cascaded evaluation paradigm is one way of im-
porting into an AG framework the familiar technique of
multi-pass or staged translations, which in turn is a way of
partitioning a problem into more tractable and less complex
pieces. Another way of doing this is the attribute-coupled
gnrmmar (ACG) approach of Ganzinger and Geigerich [S].
This paradigm also partitions a translation into two or more
separate AGs in which the first AG specifies the input to
the second AG. The advantage of attribute-coupled gram-
mars is that they can be combined (by a suitably enhanced
evaluator-generator) into a single AG, and the resulting
evaluator need not also be partitioned into two distinct
components. The disadvantage of ACGs is that the seman-
tic rules of the first AG must specify what phrase-structure
of the second AG is to be built for a given construct. Be-
cause of this feature of ACGs, the output of the first AG
need not be reparsed into the phrase-structure of the sec-
ond AG because that phrase-structure was already implic-
itly specifed by the semantic rules of the first AG. How-
ever, the ability, requirement even, to do such reparsing
is an important feature of cascaded evaluation precisely
because we find it hard to determine the phrase-structure
of expressions based on the phrase-structure of the princi-
pal VHDL AG. We want to reparse portions of the source
program because it is easier to find the appropriate phrase-
structure that way than to write by hand semantic rules
to find it. In terms of the trade-offs discussed earlier for
uniting productions, ACGs would address the problem of
proliferating duplicate ‘semantics, but would not address
the issue of syntactic conflicts between united productions
and general-purpose productions.

The sizes of our two AGs is shown below. The expres-
sion AG is much smaller, of course, but it is of a respectable
size; on the order of a simple AG for Pascal.

VHDL AG expr AC

product ions 503 160

126

symbols 355 101
attributes 3509 446
rules (implicit) 8862 (6498) 2132 (1061)
max visits 3 4

4.2 Attribute classes and implicit rules.
It is often the case that an attribute is associated with
many different symbols and denotes essentially the same
thing for each of them. There are many examples of these
in our VBDL AG, some of which are:

USGS - the list of all error messages generated for
source code that is derivable from the non-terminal
with which this attribute is associated,

LEVEL - the number of subprograms within which this
non-terminal is nested,

ENV - the name-to-object binding used to resolve occur-
rences of identifiers in the source code derivable from
this non-terminal.

Many of these attributes (although not only these at-
tributes) serve to transfer information from one part of the
semantic tree to the other, and the semantic rules that de-
fine them are often simple and don’t vary much from one
production to another. In fact, these simple, repetitive rules
are often as many as half the semantic rules of a large AG.
Because of this many AG-based translator-writing-systems
have either a special notation to describe such rules [9] or
will implicitly create such rules when they are omitted.

The system we used, Linguist, adopts the second ap-
proach and we found it to be both effective and widely ap-
plicable. An attribute class can be declared and instances
of a class can be associated with various symbols, just as
attributes are associated with symbols. However, if a re-
quired definition for some occurrence of an attribute class is
left out of the semantic rules of a production, Linguist will
supply an impfict rule to define this attribute. The rule is
based on whether the attribute is inherited or synthesized
and on information supplied in the definition of the class.
There are three basic kinds of implict rule that will be built
to define X.A:

l X. A = Y .A where Y. A is some other occurrence of the
same attribute class in this production,

a X. A = u where u is a constant specified in the attribute
class declaration, or

l X.A = m(Y.A, m(W.A, . . . , 2.A) . . .) wheremis
an associative, dyadic function specified in the at-
tribute class declaration, and Y.A, W.A, and Z.A
are other occurrences of this attribute class in the pro-
duction.

The first kind of implicit rule might be supplied if X . A is
either inherited or synthesized and is called a copy-rule; the
other two forms can only be supplied if X. A is synthesized.
The constant u is called the unit-element.and the function
IO is called the merge-function.

A discussion of exactly what rules are implicitly gener-
ated and why these are good rules to implicitly supply can
be found in [6, 121. For this presentation we will just give
an example that illustrates how we used this facility in the
VHDL compiler.

The USGS attribute is ubiquitous in our AGs because
error messages may need to be issued at many different
points in a source program. Such error messages must be
concatenated with other messages and propagated to the
root of the semantic tree as the value of various HSGS at-
tributes. At the root they are used to define the HSGS at-
tribute of the GOAL symbol, thus becoming a result of the
translation, and hence available to be written to a file, dis-
played on a screen, etc. Consequently, if there is a produc-
tion CX ::= W Y Zl, and symbol Y has a MSGS attribute,
then X must also have a HSGS attribute else the value of
Y .HSGS would not get propagated up the semantic tree.
Even if production [X : := W Y 21 doesn’t generate any
messages of its own it must still have the semantic rule

X.HSGS = concatMsgs(U . HSGS ,

concatMsgs(Y.HSGS, Z.WSGS>)

It can be very tedious to supply all of these explicitly,
and luckily we don’t have to. By declaring MSGS to be
an attribute class with concatHsgs as its merge-function
we cause Linguist to supply implicit semantic rules for all
the otherwise undefined HSGS attributes.

Our AGs for VHDL are replete with such attribute
classes and Linguist uses them to create more than half of
all the rules of the AGs (see table of previous section). In
fact, our experience convinces us that we should go much
further in this direction. Attribute classes should be ex-
panded so that a class could contain many different at-
tributes, both inherited and synthesized. Declarations as-
sociated with the attribute class would similarly be used
to build implicit semantic rules for those productions that
do not have all the rules that are needed. We think this
would be useful because we found over and over that cer-
tain sets of attributes, mixtures of both inheritied and syn-
thesized, were always occuring together in our grammars.
For instance, there are the attributes needed to process an
identifier, those needed for processing an expression, those
needed for processing a declaration, those for processing
a sequential statement, those for processing a concurrent
statement, etc. If symbol X can derive a sequential state-
ment then it needs to have the set of attributes for sequen-
tial statement, if X can derive an expression then it needs
to have the set of attributes for expressions, etc.

If the declaration of these sets of attributes could be
collected together in one place it would facilitate both the
creation and maintenence of the AGs. Currently, if we
need another attribute to process expressions we must go
through and find all affected symbols and associate the new
attribute with those symbols. It would be much easier and
less error-prone to simply add the new attribute to a single
class declaration (or delete an existing one that is no longer
used) and let the toolset distribute the changes appropri-
ately.

We were able to achieve a subset of the functionality
we desire of such a mechanism by using a macro-processor
preliminary to running Linguist. The VHDL AG con-
tains macro definitions for symbolic names, e.g. ENV-ATTRS,
EXPR-ATTRS, STHTJTTRS, etc., to be strings that are appro-
priate as the declaration of a collection of attributes and at-
tribute classes. These symbolic names are then used in the

17-l

attribute declaration section of a non-terminal symbol dec-
laration. The macro-processor expands these names into a

list of attribute and attribute class declarations inside the
non-terminal declaration.

This approach let us group attributes and associate
all the attributes in a group with a particular symbol by
simply naming the group. However, the implicit semantic
rules are supplied based on individual attributes or classes;
this mechanism does not allow the definition of implicit
rules based on other attributes in the groups.

Something similar to this general strategy has been
proposed by Alpern et.al. [l] in a formalism they propose
for describing attributed graph grammars. They call their
construct a cable. We think it would be well worthwhile
to combine something like cables with Linguist’s attribute
class declarations to get a mechanism that allows one to:

l declare a set of attributes,

a associate all members of that set with a symbol, and

l have the toolset fill in implicit rules when necessary.

4.3 Applicative implementation of the
symbol table.

The separate compilation mechanism of VHDL (and Ada)
requires that a foreign reference be implemented by having
the compiler read intermediate files that it created earlier
when it processed the foreign compilation unit. Our inter-
mediate language, VIF, is used for this. In most compilers a
central symbol table or dictionary is the repository of infor-
mation about objects and constructs declared by the user.
In our VHDL compiler this is done by the VIF, both for-
eign VIF read from the library, and domestic VIF created
as part of processing the current compilation unit. The VIF
is specified in the AG and created through attribute evalua-
tion. The value of some attributes in the AG is VIF nodes,
which may contain links to other VIF nodes, which are
filled in by copying the value of other adjacent attributes.
A simple example is

sequent ial-stat ement. : : =
TGT,SIGNAL,reference LT,EQ opt-transport

aavef arm SEMI.
. . .

sequential-statement .VIF =
tnode,simpleSignalAsgn(

TGT-SIGNAL-reference.VIF,
uavefonu.VIF,
opt-transport. PRESENT,
SSS-KICK-NORHAL,
LT-EQ.LINE

),
. . .

One by-product of using the AG to build VIF is that, once
built, the VIF can not be changed. Although this may
seem like a serious hinderance, in practice it has worked
out quite well. Scheduling the insertion, modification, and
removal of information in the symbol table is not an issue
for us - we only describe what information we want to
know about objects and the attribute evaluator generator
schedules evaluation of rules that reference the symbol table

(i.e. VIF attributes) only when such information is known
to be available.

For instance, consider the mapping from identifer to
object(s) denoted. We refer to such a mapping as an en-
vironment. In many compilers this is a function of the
symbol-table module. In our VHDL compiler there is an
attribute called ENV, associated with any symbol that could
produce an identifier reference, that represents this map-
ping. ENV values are themselves trees whose nodes contain
both the identifier and link(s) to the object(s) that could be
denoted by the identifier. ENV nodes may also contain infor-
mation about how their corresponding objects were made
visible (via USE-clause, local definition, etc.)

To looJ~up an identifier (ID) the ErJV tree is searched ac-
cording to a fixed rule until an entry is encountered whose
identifier field matches ID. To build a new EHV value that
binds ID to some other object(s) we create a new EKV node
and insert it at the front of the tree so that it will be found
first by the search rule, but so that the old ENV value is not
changed. One simple way this could be done is to imple-
ment the ENV tree as a list (a tree in which each node has
only one child) and to create a new ENV value by making
the new node as the head of a list whose tail is the old
list. There are applicative forms[l4] of balanced trees, and
other data-structures, that can instead be used to make the
search more efficient.

ENV values are part of the VIF and hence are retained
in the model library.

5 Lessons learned

5.1 VHDL versus Ada

At the beginning of our effort, we estimated that a VHDL
compiler should require two thirds of the effort to produce
an Ada compiler. There were several aspects we underesti-
mated.

First, the number of productions in a LALR(l) VHDL
grammar is comparable to the one in a LALR(1) Ada gram-
mar. This is due to the fact that hardware description spe-
cific constructs introduced in VHDL compensated for the
elimination of some of the software oriented constructs that
were present in Ada.

Second, the VHDL Runtime Kernel is more compli-
cated than its Ada counterpart. This is due to the syn-
chronization in simulated time, that governs processes, sig-
nals, and guards. Due to the preemptive nature of signal
assignments in VHDL, the effect of a VHDL signal assign-
ment is not determinable at the time of the execution of
the assignment[i3].

Third, the VHDL static semantics is at places more
compIicated than the corresponding Ada semantics, be-
cause Ada constructs have been extended to serve hardware
description purposes, as it is discussed in this paper.

Last, but not least, developing a compiler for a new and
unfrozen language, is a challenge in itself. An important
effort was spent in keeping up with the evolution of VHDL,
up to the point when it became an IEEE standard.

128

5.2 AGs are monolithic
In building our compiler as an AG we ran into several prob-
lems where we had to step back and do things differently
than we had originally planned. The use of cascaded evalu-
ation is an example. However, we never found a satisfactory
way to deal with the monolithic nature of an AG.

An attribute grammar is monolithic in the sense that
it is hard to partition one into smaller pieces that can be
processed separately. The LALR parse-table builder needs
every production in order to generate tables. The depen-
dency analysis phase of the evaluator-generator needs the
dependency information for every symbol and production in
order to find an evaluation order. Especially for a large lan-
guage like VHDL, this is a significant problem; the VHDL
AG is one 500,000-byte file whereas the rest of the compiler
consists of about 50 modules of 1000 bytes to 100,000 bytes
each.

There are two reasons why this is not good: it makes
it hard for two or more people to work on different aspects
of the AG at the same time, and it costs a lot of computer
power (and wall time) to be regenerating so many evalua-
tors all the time. The latter of these was the more serious
problem in the past; we expect the former to be the more
serious problem in the future.

An attribute evaluator generator such as Linguist con-
tains some expensive, non-linear algorithms buried in it.
This means that if AGl is twice as large as AG2 then AGl
will need more than twice as much time to be processed.
Thus, generation time that is reasonable for a Pascal AG
can turn out to be a significant bottleneck for a VHDL
AG. Compiling the generated evaluator can be even more
of a problem. The monolithic AG gives rise to a monolithic
block of C code that is more than 50,000 lines long and is
too big to compile with our system’s C compiler if sym-
bolic information for the debugger is included in the object
code. We are able to split it into pieces, some of which the
C compiler can handle ,’ but one of these pieces is still so
large that if it is compiled to generate information for the
system’s symbolic debugger then the debugger can not load
it.

Although the long generation time has been trouble-
some in the past, we feel that the inability to decompose
the AG into smaller pieces and understand it as the com-
position of those pieces is the more serious problem. This
has always been a problem for LR parser generators, and
an AG inherits this problem for its underlying context-free
grammar. This exacerbates the equally monolithic nature
of the semantics in an AG. A change in the dependencies
of a semantic rule in one production can combine with a
hitherto legal dependency in some far removed production
to produce a circularity in the AG. To diagnose and correct
such a circularity usually requires that one have a reason-
able understanding of the global dependency structure of
the AG.

The careful reader will have noticed that despite our
observations above we have already discussed one way to
decompose an AG - cascaded evaluation splits the seman-

‘The generated attribute evaluator code contains C preprocessor
macros to facilitate this splitting.

tics part of an AG into independent pieces, although it
doesn’t divide the syntactic portion. It may be that this is
an effective way to decompose an AG and we hope to in-
vestigate writing separate AGs for declarations and state-
ments, and perhaps partitioning those further by having
nested cascaded evaluation within them.

5.3 Productivity using AGs
The usual advantages claimed for AGs over more traditional
compilers are that they are faster to develop and easier to
maintain. The usual disadvantages claimed for AGs is that
the compilers generated from them are slower and use more
memory. Our experience on this project generally supports
these expectations, although some of them were more fully
met than others.

We think that using AGs enabled us to complete the
project in substantially less time than would otherwise have
been the case - but it was not an order-of-magnitude im-
provement. Trying to directly compare large software prod-
ucts will inevitably have an “apples to oranges” flavor about
it, and comparisons of the engineering projects that pro-
duced them are even less illuminating. Nevertheless, we
offer the figures we have gathered about our compiler and
its development for other implementors to compare against
their own experience. Our VHDL compiler is 46,000 lines of
original source code (i.e. code written by hand) and it took
us 82 man-months to complete. Of this 46,000 lines, about
12,000 or 25% is in what we consider code-generation; the
rest is in parsing, semantic analysis, and management of
separate compilation. We do not include in this the code
for the simulation Kernel or run-time library support.

This works out to about 550 lines per man-month
(MM). This is somewhat higher than the average produc-
tivity figures commonly-quoted131 for the industry of 350
Delivered Source Instructions (DSI) per MM, but not as-
tonishingly so. 6 If we assume that the generated C code
had been written by hand then the productivity figures do
become surprising: average productivity over two years of
about 1350 lines per MM. This is probably not the right
way to look at this issue; program generators are notorious
for generating code that no person would write.

By far the most costly aspect of writing this compiler
was figuring out what this new language meant and how
its constructs should be implemented. From this perspec-
tive, the most advantageous property of AGs was the ease
with which they can be modified; even substantially modi-
fied. Over the course of its development our compiler went
from a maximum of four visits per node, to a maximum of
five visits per node, to three visits7 per node. All of this
happened transparently to the AG authors, who were only
aware of adding and deleting attributes and the semantic
rules that defined them. In a hand-coded compiler this
would have required (in addition to these decisions of what
new results or intermediate values needed to be computed

6 this a.wnnes that a “he” is equivalent to a Source Instruction,
which seems reasonable for C, but perhaps is an underestimate for an
AG or the VIF description.

‘Most symbols are only visited once; only a half-dozen symbols
out of 355 are visited 3 times.

129

and how) substantial modifications to the code that vis-
its sub-trees to collect and process this information in the
right order. Such changes would have had to be calculated
by hand in the first place and then the tree-walking algo
rithms changed by hand also. Most likely, the intermediate
data-structures representing the tree would have had to be
modified too, again by hand.

Throughout the compiler’s development we:

l changed the way features were implemented,

l added optimizations to the generated code, and

l optimized some aspects of the compiler’s own perfor-
mance

to reflect our increasing understanding of

l the semantics of the language,

l how to best model the behavior of a source program,
and

l where the bottlenecks were in our implementation as
we saw how our customers were using the compiler.

In our opinion, this level of change could not have been
supported if such a complex piece of software had been
manually coded. That we could do so was important to
our development strategy; we think it bodes well for the
compiler’s future maintainabilty.

References

[I] B. Alpern, A. Carle, B. Rosen, P. Sweeney, and F. K.
Zadeck. Incremental Evaluation of Attribute Graphs.
Technical Report, IBM T.J. Watson Research Center,
Yorktown Heights, NY, December 1987.

123 T. P. Baker. A Single-Pass, Syntax-Directed Front-
End for Ada. In Proceedings of the SIGPLAN 82 Sym-
posium on Compiler Construction. ACM. June 1982.

[3] Barry Boehm. Software Engineering Economics.
Prentice-Hall. 1981.

[4] D. R. Coelho and A. G. Stanculescu. A State of the Art
VHDL Simulator. In Proceedings of Ihe IEEE Comp-
Con 88. IEEE. 1988.

[5] S. Drossopoulou, J. Uhl, G. Persch, G. GOOS, M. Daus-
mann, and G. Winterstein. An Attribute Grammar for
Ada. In Proceedings of the SIGPLAN 82 Symposium
on Compiler Construction, ACM. June 1982.

[6] Rodney Farrow. Attribute Grammars and Data-Flow
Languages. In Proceedings of the SIGPLAN Sympo-
sium on Programming Language Issues in Soj?ware
Systems. ACM. June, 1983.

[7] Rodney Farrow. Generating a Production Compiler

from an Attribute Grammar. IEEE Software, Volume
1, Number 4, Oct., 1984.

[S] H. Ganzinger and R. Giegerich. Attribute-Coupled
Grammars. In Proceedings of the SIGPLAN 84 Sym-
posium on Compiler Construction. ACM. June 1984.

[9] Uwe Kastens, Brigitte Hutt, and Erich Zimmer-
mann. GAG : A Practical Compiler Genemtor. Lec-
ture Notes in Computer Science 50. Springer-Verlag.
Berlin-Heidelberg-New York. 1982.

130

U. Kastens, R. Kollner, E. Zimmermann, P. Hruschka,
and A. Kappatsch. Eine Attributierte Grammatik fur
PEARL. Fak. f. Informatik, Universitat Karlsruhe.
1980.

IEEE Standard VEDL Reference Manual. IEEE Std
1076-1987. The Institute of Electrical and Electronic
Engineers, Inc., New York, NY, March 31, 1988.

Linguist User’s Manual, Version 6.1. Declarative Sys-
tems, Inc., Palo Alto, CA, February 22, 1988.

D. C. Luckham, A. G. Stanculescu, Y. Huh, and S.
Ghosh. Semantics of Timing Constructs in Hardware
Description Languages. In Proceedings of ICCD 86.
pp. 10 - 14. 1986.

Meyers, Eugene. “Efficient Applicative Data Types.”
In Proceedings of the Eleventh Annual Symposium
on Principles of Programming Languages. ACM. Salt
Lake City, Utah. January, 1984.

