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Abstract 

This paper presents aspects of a compiler for a new 
hardware description language (VHDL) written using 
attribute grammar techniques. VHDL is introduced, 
along with the new compiler challenges brought by a 
language that extends an Ada subset for the purpose 
of describing hardware. Attribute grammar program- 
ming solutions are presented for some of the language 
challenges. 

The organization of the compiler and of the target 
virtual machine represented by the simulation kernel 
are discussed, and performance and code-size figures 
are presented. 
The paper concludes that attribute grammars can be 
used for large commercial compilers with excellent re- 
sults in terms of rapid development time and enhanced 
maintainability, and without paying any substantial 
penalty in terms of either the complexity of the lan- 
guage that can be handled or the resulting compilation 
speed. 

1 Introduction 
This paper describes the design and implementation of a 
compiler for the new hardware design language VHDL. 
VHDL was developed by the DOD as part of the VHSIC 
program. In December of 1987 VHDL was adopted as an 
IEEE Standard [ll]. VHDL is a large and semantically 
rich language that borrows much of its structure from the 
programming language Ada, including: 

separate specification of interfaces and implementa- 
tions, 

packages and the ability to selectively import declara- 
tions therefrom, 

the program library and separate compilation 
paradigm, 

user-defined types and subtypes and implicit declara- 
tion of operators for these, 

overloaded functions and user-overloadable built-in op- 
erators, 
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l nested function declarations and lexical scoping rules 
for name resolution, 

l overloaded enumeration constants, 

l dynamically constrained arrays and slices of them, 

l aggregate notation for specifying arrays and records in 
terms of their [scalar] components, 

l a restricted form of Ada-renaming called aliasing, 

l a restricted version of generic compilation units. 

VHDL then adds many constructs and features of its own to 
support aspects of hardware design that are not, reflected in 
a general-purpose programming language. These include: 

0 

l 

new 

new compilation units: entity (interface to a device), 
architecture (generic body of a device), and configura- 
tion (concrete implementation of a device), 

defaults rules for configuring an architecture if no ex- 
plicit configuration is given, 

user-defined attributes and specification of their val- 
ues, 

signal objects: signal assignment semantics, bus reso- 
lution functions, disconnect specification, 

implicit guard signals and guarded statements, 

user-defined input- and output- conversion-functions 
for arguments of subprogram calls and device instanti- 
ations that can be individually and separately specified 
at each point-of-call or instantiation, 

simulation time synchronization: simulation cycle se- 
mantics and associated predefined attributes, 

processes and their scheduling, and wait statements. 

Besides being one of the first compilers for a significant 
langauge, our VHDL compiler is innovative in that it 

was designed as an attribute grammar’ and is automatically 
generated from this attribute grammar by a commercially- 
available translator-writing-system [12], This approach en- 
hanced our productivity and enabled us to make significant 
changes to our code-generation strategy very late in the de- 
velopment process. Several compilers have been written as 
AGs and automatically generated [lo, 7, 51 but few of these 
have been commercial products; most have been research 
projects or prototypes. To the best of our knowledge, our 

VHDL compiler constitutes the largest complete AG appli- 
cation to date, containing more than 600 productions and 
9,000 semantic rules. 

‘attribute gmmmars are hereinafter r&red to as AGs 
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The VHDL compiler is a component of the 
Vantagespreadsheet TM behavioral simulation environment 
offered by Vantage Analysis Systems, Inc. The compiler 
is invoked by either a menu-based or script-driven user in- 
terface, either directly for compiling VHDL textual descrip- 
tions OT indirectly in the process of compiling schematic de- 
scriptions that have a VHDL correspondence. It is a com- 
plete, tested, production-quality compiler that has com- 
piled hundreds of thousands of lines of customer’s VHDL 
models. 

The output of the VHDL compiler is source code in the 
C programming langauge that is compiled and then com- 
bined with other elements of the simulation environment 
to simulate the circuits described by the VHDL. Thus, we 
need not address many aspects of code generation, such 
as register allocation and instruction selection. However, 
other code generation problems still need to be solved by 
the VHDL compiler; e.g. references to up-level variables 
from within nested subprograms is supported in VHDL but 
not in C, and so the code generated by the VHDL compiler 
must implement this construct. 

In this paper we draw on our experience in this project 
to address two questions: 

l what features of VHDL were hard to implement and 

why, 

l what are effective programming techniques, or idioms, 
that can be used to build compilers with AGs. 

The rest of the paper is organized into four sections. 
The first section describes the compiler. It includes an 
overview of the compilation paradigm used by the com- 
piler and the software architecture we designed to imple- 
ment that paradigm. It also includes a discussion of the 
size and composition of the compiler itself and its perfor- 
mance. The second section discusses problems with the 
language definition that we found in the course of imple- 
menting the language. Our discussion attempts to under- 
stand how these problems were introduced, but we do not 
propose solutions because we feel there is as yet inadequate 
experience with the language. The third section discusses 
three idioms for designing AGs that we found to be useful. 
These are cascaded evaluation, the creative exploitation of 
implicit semantic rules, and the construction of large ap- 
plicative data-structures as a result of attribute evaluation. 
The fourth section presents lessons we learned about com- 
piling VHDL and using AGs to build a compiler for a new 
language. 

2 Compiler Architecture 

The VHDL 
compiler is a component of the VantageSpreadsheetTM be- 
havioral simulation environment. It is invoked by either a 
menu-based or script-driven user interface, either directly 
for compiling VHDL textual descriptions or indirectly in 
the process of compiling schematic descriptions that have 
a VHDL correspondence. 

The compiler accepts a file containing compilation 
units, a list of compiler directives, a working library where 
the successfully compiled units are placed and a reference 

library which can be referenced in addition to the work 
library but which can not be updated. 

2.1 Target Machine 
The purpose of the VHDL compiler is to produce a com- 
puter program that, when executed, simulates the circuit 
described by the VHDL source code. This is accomplished 
by generating C code that in turn is compiled and linked 
into a simulator for the particular circuit. 

At an abstract level the compiler can be viewed as 
generating code for a virtual machine that is configurable 
and programmable in terms of C primitives. 

The virtual machine consists of four modules: (1) Sim- 
ulation Kernel, (2) Runtime Support, (3) VHDL I/O, (4) 
Name Server. 

The runtime support functions perform all the pre- 
defined VHDL operations. The VHDL I/O functions sup- 
port the specific VHDL I/O. The Name Server provides the 
means of identifying by name each object in the simulated 
system. 

2.2 Compiler Core 
The compiler is organized around an attribute grammar 
that describes the syntax of VHDL (both context-free and 
context-sensitive syntax). This AG also specifies our sim- 
ulation semantics for the language; i.e. the C source code 
described in the last section. Our VHDL AG is input to the 
LinguistTM translator-writing-system, which from it auto- 
matically generates more than 60 percent of the total source 
code of the VHDL compiler. 

Semantic rules of the AG can be either in-line expres- 
sions, or calls to out-of-line, separately-compiled functions, 
or some combination of these. If a complex expression needs 
to be used as a semantic rule at many different places in the 
AG then it makes sense to abstract this into an out-of-line 
function. These functions are written in C and account for 
18 percent of the compiler. 

VHDL supports a separate compilation paradigm that 
is modeled after that of Ada and it is deeply embedded in 
the semantics of the language. Our compiler supports a 
machine-readable intermediate language that is generated 
for each separately-compilable unit and read in when that 
unit is referenced from another. We refer to such references 
as foreign references and to the referenced unit as a foreign 
unit. The intermediate language is called VIF. an acronym 
for VHDL Intermediate Format. The structure of the VIF 
is described in a special-purpose, declarative notation that 
is read by yet another special-purpose program’ that gen- 
erates declarations for this data, and generates C code that 
manipulates the VIF. This code: 

writes the VIF to disk, 

reads the VIF from disk, resolving any nest.ed foreign 
references, 

allocates individual nodes of the VIF, 

2this program is also written as an AG and generated by Linguist; 

more evidence that when one receives a h -er, one begins to see 

the world as a nail. 
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l produces a human-readable form of the VIF (used for 
both debugging and documentation). 

The rest of the compiler consists of functions written 
in C that interface the automatically-generated attribute 
evaluator to its environment. This includes such tasks as 
reading command-line arguments, opening input and out- 
put files, directing outputs of the compiler to appropriate 
places in the filing system, supplying basic memory man- 
agement facilities, etc. Figure 1 depicts this compiler orga- 
nization. 

Figure 2 gives the size of our compiler, and its com- 
ponents, in terms of the number of lines of source code in 
the compiler and, where applicable, the number of lines of 
C source code generated from this. All figures for number 
of source code lines reflect text that has been stripped of 
blank lines and comments. 

The compiler compiles VHDL at a little more than 
1000 lines per minute on’an Apollo DN4000, unless it is pro 
cessing configuration units, in which case it’s not as fast.3 
This speed includes the time necessary for the host sys- 
tem’s C compiler to compile the generated model, which 
accounts for 20 to 30 percent of the total time. Substantial 
time is spent rading, fixing up, and writing the VIF for for- 
eign compilation units: from 40 to 60 percent of the total 
time. Our preliminary analysis indicates that more than 
80 percent of the time is spent doing these sorts of tasks, 
and others such as memory management. The time spent 
walking the parse tree and evaluating attributes is a very 
small percent. 

3 Issues in compiling VHDL 
VHDL can be viewed as an extension of an Ada subset. The 
extensions are supporting the hardware description specific 
features. The extensions to Ada produce several interesting 
compiler challenges. This section describes some of them. 

3.1 Partial specification of arguments ver- 
sus specification by aggregate 

Consider the case of formal parameters that are of compos- 
ite types. The association of formal to actual parameters 
may be done at the level of subelements of the formal pa- 
rameters. For example, a formal parameter F of a record 
type with two fields A and B, may be associated to two ob- 
jects X and Y by separately associating F.A to X and F.B to 
Y. This feature is called partial specification of arguments. 

VHDL supports partial specification of arguments, 
provided that all the associations for one argument are con- 
tiguous. However, there is no syntactic construct to lump 
together all partial specifications for the same argument 
(using the aggregate construct perhaps). Unlike the ag- 
gregate notation, the partial specification of arguments in 

3Configuration units typically consist of very few source lines that 
cause large data structures built by compiling other compilation units 
to be read into memory and edited according to both explicit and 
implicit rules; the bulk of the work in processing these units is in 
reading and traveling these data structures rather than analyzing . _. - 
the source code of the configuration unit. 122 
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Figure 1 Organization of the VHDL Compiler 

source [generated] C 

AG 16827 ( 37%) 67919 ( 62%) 
VIF description 1265 ( 3%) 14200 ( 13%) 
out-of-line func 20845 ( 45%) 20845 ( 18%) 
interface code 7132 ( 15%) 7132 ( 6%) 

total 46069 (100%) 110096 (100%) 

total manpower to develop compiler: 
82 man-months in 25 elapsed months 

Figure 2: Summary of the \‘HDL Compiler 



VHDL allows intermixing the specification of different lev- 
els in the hierarchy of the complex type. Under these cir- 
cumstances, it is expensive for the compiler to enforce that 
the specification is complete and consistent. For the same 
reason, it is also difficult for the human reader to verify the 
correctness of the code. 

3.2 Extending visibility by selection 
Visibility by selection is a visibility rule by which names be- 
come visible and may be referenced at a given point in the 
code. In Ada there are two cases in which names may be- 
come visible by selection: after the dot in the structure field 
reference, and before the => token in by-name parameter 
association. In both these situations only a single identifier 
is legitimate. 

The concept of visibility by selection has been extended 
to other areas of the language in VHDL. It applies to the 
position after the tic (‘) in the attribute reference, and 
to the actual designator portion of the generic and port 
map aspect. The problem has been further complicated by 
allowing both output conversion functions in by-name pa- 
rameter associations and partial specifications of by-name 
parameters. 

For example, in Ada the formal part of a by-name pa- 
rameter association is a simple identifier. But because in 
VHDL one can have partial specification of formals and 
because formals can have output specification functions as- 
sociated to them then X(Y) can denote either a partial spec- 
ification of an element of an array or an output conversion 
function X applied to the formal designator Y. 

Another example of difficulties introduced by extend- 
ing the Ada visibility by selection, is represented by at- 
tribute references. User-defined attributes can be attached 
to many kinds of objects. The visibility by selection makes 
it possible for the user-defined attribute to conflict with 
predefined names. This makes it more difficult to identify 
the meaning of a name. For example, X(T’REVERSEJtANGE) 

could be an array if T is an aray object, or a constrained 
array subtype. In this case REVERSE-RANGE would be con- 
sidered to be the predefined attribute. However, the same 
X(T’REVERSEI(ANGE) could be an element of the array X 
in case T is an object that has the user-defined attribute 
REVERSElANGE. 

3.3 Generic Descriptions, Configuration 
Information 

VHDL compilation units are: package specifications, pack- 
age bodies, entities, architectures, or configuration units. 

Package specifications and package bodies are similar 
to the corresponding Ada-constructs. The main differences 
are that VHDL packages may not have generic parame- 
ters, and that VHDL packages may contain global signals. 
References to global signals in packages may be made only 
from within an entity or an architecture. This is concep- 
tually different from Ada where all objects declared in the 
package specification are visible in the package body. 

An entity can be viewed as the specification of the ar- 
chitecture. The architecture describes a circuit in generic 
terms, and the configuration provides instructions for edit- 
ing the entities and architectures that describe a particular 

circuit. A hardware analogy, which proves to be very suc- 
cessful in explaining binding and default rules, is that the 
entity is the description of the interface (names of pins, volt- 
age range acceptable for each pin, usage constraints such 
as setup and hold conditions) of a family of chips. A mem- 
ber of the familly corresponds to a particular set of actual 
values bound to the generic parameters. 

Continuing the hardware analogy, the architecture can 
be viewed as board with sockets, in which chips can be 
plugged. The sockets are of different kids. Each kind of 
socket is described by a component declaration in VHDL. 
Instances of sockets rue represented by component instanti- 
ations. Configuration specifications may be present either 
in the architecture or in special compilation unit called the 
configuration unit. According to the hardware analogy the 
configuration specifications correspond to information re- 
garding what actual chips to plug in the instantiated sock- 
ets. In the cases in which configuration information is ap- 
parently missing, the default rules apply. 

Comparing the Ada generic capabilities to VHDL one 
can say that VHDL uses two layers of restricted versions 
of the Ada generic mechanism. The first layer consists of 
the VHDL-generic parameter that can be associated to en- 
tities and blocks. This is a restricted version of the Ada 
generic capability, where the generic parameter can only 
be a generic constant object. The second layer consists of 
the VHDLcomponent declaration that is similar in nature 
to the Ada-generic subprogram. The binding of actuals to 
generic formals in VHDL is done separately for each layer: 
using the VHDL-instantiation for the first layer, and the 
configuration specification for the second layer. It is impor- 
tant to note that the actual parameters for the first layer 
can be generic members of the second layer. 

One of the problems that arise is how much of the 
generated code should be produced just by inspecting the 
entity and the architecture and what should be postponed 
until the configuration information is available. The nature 
of this tradeoff is similar to the one faced when compiling 
Ada generic packages. The details are somewhat different 
due to the layered approach of associating actuals to for- 
mals. 

The configuration information can be obtained in three 
ways: from the configuration specification inside the archi- 
tecture, configuration specification inside a configuration 
unit, and according to the VHDL default-mechanism. It is 
not clear at the time an architecture is compiled whether 
more configuration information is still to be provided since 
the lack of such information, at the time the configuration 
unit is compiled, triggers the default mechanism and the 
necessary information is produced by default. 

A possibility which we explored was to generate code 
for the possible defaults and use that code in the case the 
default mechanism is triggered. This early code generation 
was intended to favor the use of the default mechanism. 
This solution has a more limited use than one might ex- 
pect because the default mechanism is based on the usage- 
history of the design library, which makes the VHDL de- 
scription itself non-deterministic. Specifically, the default 
for an architecture name in the binding of a component to 
an entity-architecture, is the latest compiled architecture 
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for that entity. Therefore, any default configuration infor- 
mation that uses the latest compiled architecture, can be 
used only if the relevant set of latest compiled architectures 
does not change between the generation of the configuration 
code and the time at which the code is used. 

3.4 Context Clauses 
Names that may be referenced in a compilation unit must 
be visible at the point where they are referenced. To be 
visible a name must be declared either in the compilation 
unit itself (in an appropriate place), or in another compi- 
lation unit. If the name is declared in another compilation 
unit, it must be imported via some import mechanism. 

VHDL differs from Ada with respect to the constructs 
by which names declared in foreign compilation units be- 
come visible. The LIBRARY-clause in VHDL and the WITH- 
clause in Ada, represent import mechanisms. In VHDL one 
cannot refer to a compilation unit which is in a library for 
which there is no iibrary clause4. Similarly, in Ada one 
cannot refer to a name declared in a compilation unit for 
which there is no WITH-clause. The difference between the 
two import mechanisms is that the level of granularity for 
import control in Ada is the compilation unit as opposed 
to an entire library in VHDL. 

USE-clauses in Ada provide a short hand notation 
whereby it is not necessary to specify a prefix for which 
there is a USE-clause, provided that there is no homographic 
collision due to the USEclause. 

VHDL does not have a WITH-clause. However, the 
VHDL USE-clause is richer in semantics, subsuming the se- 
mantics of Ada’s WITH-clause. The VHDL USE-clause ap- 
plies to compilation units as well as to names declared wi- 
htin a compilation unit. Names declared within a compi- 
lation unit may be imported individually (to avoid homo- 
graphic conflicts) or as a group. 

When applied to all names within a compilation unit 
(using the suflix .ALL), the VHDL US&clause is equivalent 
to a WIT&clause followed by a USEclause in Ada. In this 
case the rules governing homographic conflicts apply. 

The capability to import only some of the names de- 
clared within a compilation unit, and avoid homographic 
conflicts, is a feature present in VHDL and not in Ada. In 
the caSe in which a name that is referenced has a homograph 
in another imported context, and the homograph is not re- 
quired by the unit under compilation! then the VHDL pro- 
grammer has the possibility to import one by one exactly 
the referenced identifiers, thus avoiding the homographic 
conflicts. This VHDL feature requires the capability to im- 
port individual names rather than all the visible names of 
a compilation unit. 

4 AG idioms for VHDL 

4.1 Cascaded evaluation 
One of the problems we faced in writing an AG for VHDL is 
that the natural, straight-forward phrase-structure for ex- 
pressions is also ambiguous. An occurrence of an identifier 

‘iUote: all VHDL compilation units have the implicit clauses 
LIBRARY UORK; USE U0BK.M.L; 

may denote radically different things in a given syntactic 
context. For instance, in VHDL (as in Ada) the phrase 
X ( Y > could denote: 

l a call to subprogram X with argument Y, 

l a subscripted reference to array variable X, 

l a slice of array variable X by range Y, 

a a type conversion expression of the value denoted by Y 
to type X. 

Which of these possibilities is actually denoted depends 
on the program objects to which the names X and Y are 
bound in this scope of the program. If the compiler is 
based on the natural phrase-structure for these expres- 
sions then X in X ( Y ) should be recognized according to 
one of the productions &ubprogramname : := ID1 versus 
[variable-name : : = ID1 versus Ctypemame : : = IDI. 
All three of these productions are legitimate in many con- 
texts. 

A similar problem, peculiar to VHDL because this 
language allows user-defined attributes, is the phrase 

X a REVERSE-RANGE This could denote either a refer- 
ence to a user-defined attribute named REVERSE-RANGE, 
which would produce a value, or a reference to the pre- 
defined attribute REVERSE-RANGE, which would produce a 
range suitable for defining a subtype or slicing an array. 
As above, which possibility is actually denoted depends 
on what REVERSE-RANGE means in the environment at this 
point in the program. 

These ambiguities can not be resolved until informa- 
tion about the naming environment is available, i.e. until 
the symbol table has been built and can be consulted. How- 
ever, the symbol table is itself a result of attribute evalu- 
ation. Thus, the accurate phrase-structure for expressions 
depends on the symbol table, which is built via semantic 
rules of the AG, and which thus depends on the phrase- 
structure of the program. 

One way to deal with these difficulties might be to 
unite 
the conflicting productions into a single production, e.g. 
[name ::= ID1 instead of [subprogramname ::= ID], 
[variablename : : = ID], and [type-name : : = ID]. The 
semantics of such a united production would conditionally 
defined attributes based on which situation is later found 
to occur after symbol table information is available. 

So long as the difference between phrase-structure is 
confined to a single production or a very few adjacent pro- 
ductions this is a feasible, although somewhat unaesthetic 
alternative. But for many languages, including VHDL, even 
a local choice such as this affects the phrase structure cho- 
sen for large parts of the adjacent source program. 

For the example X ( Y 1, the phrase structure that 
applies to ( Y ) can be that of: 

0 a one-element argument list, 

l a one-element subscript list, 

l the range of a slice, or 

l the source expression of a type conversion. 

Thus, uniting the possible phrase-structures for X leads 
us to unite as well the phrase structure for the adjacent 
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( Y ). ‘I’hls process might result in a umted production 
such as Cexpr : := name ( name )]. Unfortunately, this 
approach leads to the duplication of all the semantics for: 

l an argument of a procedure call, 

l a subscript element of an array reference, 

l a range that is only a name, 

l an expr that is just a name, 

l a var-ref that is just a name. 

Each of these separate sets of semantics must not only 
be part of the productions that derive the more gen- 
eral occurrences of these constructs, but also of the 
united production(s). Also, the united production(s) con- 
stitute a special case of other productions designed to 
find the phrase-structure of the general construct and 
cause parsing conflicts with them. Thus, the united pro- 
duction [name : : = ID] and the more general produc- 
tions Cf unclef ::= name ( ergs >I, Carp ::= ard, 
carp ::= args ) argl together cause parsing conflicts 
in the LR-parser; indeed, these productions are ambiguous 
and the AG-author must be careful that the ambiguity is 
resolved in favor of the united production. 

This proliferation of duplicate semantics and conflict- 
ing syntax becomes worse when, as in VHDL, these different 
interpretations can occur in contexts which overlap but are 
not identical. Thus, an array reference can be subsequently 
selected by a field of a record, but a type conversion ex- 
pression can not. In such cases, the semantics of the united 
production must detect when an iliegal use occurs and flag 
it as such. 

The general problem of compiling two or more lan- 
guage constructs that are semantically diverse but syntac- 
tically identical is a familiar one for compiler writers who 
use LR parsing techniques. For us it was merely exacer- 
bated by the size and complexity of VHDL and by the strict 
distinction between syntax and semantics imposed by the 
attribute grammar paradigm. For instance, when trying to 
write a Pascal compiler that uses an LR parser one would 
really like to use different productions to handle SUCC( X ) 
if this denotes the predefined successor function for the type 
of X, as opposed to a call to a user-defined function named 
SUCC. Although the semantics involved are quite different, 
their syntax is identical and they can not be distinguished 
by the LR parser. The usual solution is to parse the con- 
struct according to one of the possibilities, but to have the 
associated semantic actions consult the symbol table before 
building the parse tree. 

Compilers that don’t use an LR parser often use more 
ad hoc techniques such as recursive descent parsing. These 
compilers can base their parsing decisions directly on in- 
formation available in the symbol table and thus can parse 
according to what an identifer denotes in this particular 
context. Baker [2j described such a compiler for Ada. His 
discussion noted the same problems for Ada as we have 
described above for VHDL and his compiler resolved ambi- 
guity in the grammar by having the scanner return different 
tokens for a name based on what the symbol table said a 
name was bound to at this point. Such a strategy requires 
very careful coordination between the scanner, the symbol 
table manager, and the semantic actions of the parser. 

These latter two solutions are generally not available to 
an AG-based compiler because the semantic rules of an AG 
are associated with the same context-free phrase-structure 
as is used for parsing. Indeed, one of the reasons for using 
an AG-based complier generator is to avoid having to design 
and implement such an intermediate data structure. We 
originally tried to use the first solution mentioned above, 
that of uniting several conflicting productions into one and 
using semantic rules to distinguish between them. However, 
the size of VHDL and the many places where we had to do 
this soon grew overwhelming: 

l the amount of duplicate semantics we had to write was 
substantial, even when as much as possible was ab- 

and 

stracted into out-of-line functions, 

keeping track of the parsing conflicts and ensuring that 
they were resolved correctly was confnsing and error- 
prone, 

the necessity that united ‘non-terminals have combined 
sets of attributes caused the AG to be needlessly large. 

The solution we finally chose was to write two AGs 
then cascade or pipeline the translations they speci- 

fied. The principal AG does not contain semantic rules 
for most of the aspects of compiling expressions; instead it 
merely synthesizes a simplified list of tokens that is input 
to the second AG. The second AG describes the semantics 
of an individual expression. The attribute evaluator gener- 
ated for the expression AG parses the list of tokens built for 
an expression by the principal AG, and does attribute eval- 
uation on that phrase-structure according to the semantics 
specified by the expression AG. 

The intermediate language for expressions is refered to 
as LEF. LEF consists of a flat list of tokens with no other 
structure imposed on them. LEF tokens are pretty much 
the same as the VHDL tokens that can occur in expressions; 
they include literals of various flavors and punctuation such 
as parentheses, comma, etc. However, the symbol table’ is 
an attribute of the principal AG, not of the expression AG, 
and it is used to resolve identifiers so that ID is not a to 
ken of LEF; instead there are distinct tokens for uaria~le, 
type, subprogram, attribute, enumliieral, etc. This allows 
the parser for the expression AG to distinguish the phrase 
structure of expressions based on what various identifiers 
denote in a particular context. Thus, very different phrase 
structure (of the expression AG) can be built for two identi- 
cal pieces of VHDL source text, depending on t.o what the 
names in that source text are bound at this point in the 
program. 

In illustration, consider the source fragment X ( Y 1. 
If X is a subprogram and Y is a variable then the 
principal AG translates this to a string of LEF tokens 
[subprogram, ’ ( ‘, variable, ’ 1 ‘I which is parsed ac- 
cording to the expression AG’s phrase-structure for a sub- 
program invocation. On the other hand, if X denotes a 
variable and Y denotes a type then this gives rise to the 
string of LEF tokens [variable, ’ (‘, type, a > ‘I which 
is parsed according to the phrase structure of an array slice. 

The list of LEF tokens are built as attributes of sym- 
bols in the principal AG. These attributes are not treated 
at all specially by the translator-generating tool: they are 
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undistinguished, user-declared attributes the same as any 
others. At those points in the AG where an expressions 
occur that are not themselves immediate constituents of 
larger expressions, the list of LEF tokens for this maximal 
expression is parsed and evaluated according to the seman- 
tics of the expression AG. This is written in the principal 
AG as an application of the separately-compiled, out-of-line 
function exprEva1. 

The main argument supplied to exprEval is the list 
of LEF tokens. Other arguments are the nesting level at 
which this expression occurs, the type expected for this 
expression (if this is known) the source line number of this 
expression, and flags indicating the context in which this 
expression occurs. exprEva1 returns several values; these 
are the result of evaluating the expression AG applied to 
the LEF token list. These values include a list of error 
messages (the null list if there were no errors), and the 
output translation of this expression. 

A production in which this occurs is shown below. The 
guard expression of an if-statement is an example of a 
maximal expression. 

stmt ::= if-KU expr then-KU stmts end-KY 
if ,KW SEMI. 

stmt . CODE = TextOf (“if ( %t )(%t>” , 
EXPR-CODE, 
stmts. CODE), 

stmt.HSGS = mergeMsgs( EXPRJSCS, 
stmts.HSGS >, 

EXPR-CODE:tp-text, 
EXPR-MSCS:tp-msgs = 

exprEval( expr.LEF, boolean-type, 
if-KW.LINE, stmt.LEVEL, 
stmt . CONTEXT), 

stmts.CONTEXT = stmt.CONTEXT, 
stmts.LEVEL = stmt .LEVEL, 

; 

The out-of-line function exprEva1 is itself a parser 
and attribute evaluator generated from the expression AC. 
Thus, we generate two different and distinct attribute eval- 
uators, one for the principal VHDL AG and one for the 
expression AG. The evaluator for the former operates once 
per VHDL compilation unit and computes intermediate at- 
tribute values that are sequences of LEF tokens. The sec- 
ond evaluator operates once for each maximal expression in 
the source program by parsing the corresponding sequence 
of LEF tokens and returning a set of attribute values as a 
result. These values are the results, or goal attributes, of 
the expression AG. They are incorporated into the contin- 
uing attribute evaluation of the principal AG. 

An important aspect of this cascaded translation tech- 
nique is that it required no enhancement or modification 
of the translator-generating tool, Linguist. Constructing 
the lists of LEF tokens and doing attribute evaluation of 
them looks just like any other user-defined semantics in the 
principal AC. The implementation of exprEva1 consists of: 

l wrapping a new functional interface around the evalu- 
ator Linguist generates for the expression AG, and 

l supplying a scanner that reads tokens from the list of 
LEF tokens supplied as an argument to exprEva1. 

The evaluator for the principal AG is fed tokens by a 
scanner that reads source text from a file in the usual way. 
The expression evaluator is fed tokens by a trivial scanner 
that just takes the next LEF token off the front of the list. 
If L is this list of tokens then the expression scanner is just,: 

tp-list L; 
sca.mer() 
cx= car(L) ; L = cdr(L); return(X); ) 

The Linguist tool supports a mechanism for incorporating 
values associated with tokens into attribute evaluation. In 
traditional settings such values might be the line and col- 
umn number on which a token occurs, or the string that 
makes up the text of a token for a character literal or an 
identifier. We use this mechanism in cascaded translation 
to associate information with LEF tokens, such as the sym- 
bol table entry denoted by a variable, subprogram, or 
type token in the LEF. Thus, all the information associ- 
ated with a variable by the principal AG is also available 
in the expression AG. 

This cascaded evaluation paradigm is one way of im- 
porting into an AG framework the familiar technique of 
multi-pass or staged translations, which in turn is a way of 
partitioning a problem into more tractable and less complex 
pieces. Another way of doing this is the attribute-coupled 
gnrmmar (ACG) approach of Ganzinger and Geigerich [S]. 
This paradigm also partitions a translation into two or more 
separate AGs in which the first AG specifies the input to 
the second AG. The advantage of attribute-coupled gram- 
mars is that they can be combined (by a suitably enhanced 
evaluator-generator) into a single AG, and the resulting 
evaluator need not also be partitioned into two distinct 
components. The disadvantage of ACGs is that the seman- 
tic rules of the first AG must specify what phrase-structure 
of the second AG is to be built for a given construct. Be- 
cause of this feature of ACGs, the output of the first AG 
need not be reparsed into the phrase-structure of the sec- 
ond AG because that phrase-structure was already implic- 
itly specifed by the semantic rules of the first AG. How- 
ever, the ability, requirement even, to do such reparsing 
is an important feature of cascaded evaluation precisely 
because we find it hard to determine the phrase-structure 
of expressions based on the phrase-structure of the princi- 
pal VHDL AG. We want to reparse portions of the source 
program because it is easier to find the appropriate phrase- 
structure that way than to write by hand semantic rules 
to find it. In terms of the trade-offs discussed earlier for 
uniting productions, ACGs would address the problem of 
proliferating duplicate ‘semantics, but would not address 
the issue of syntactic conflicts between united productions 
and general-purpose productions. 

The sizes of our two AGs is shown below. The expres- 
sion AG is much smaller, of course, but it is of a respectable 
size; on the order of a simple AG for Pascal. 

VHDL AG expr AC 

product ions 503 160 
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symbols 355 101 
attributes 3509 446 
rules (implicit) 8862 (6498) 2132 (1061) 
max visits 3 4 

4.2 Attribute classes and implicit rules. 
It is often the case that an attribute is associated with 
many different symbols and denotes essentially the same 
thing for each of them. There are many examples of these 
in our VBDL AG, some of which are: 

USGS - the list of all error messages generated for 
source code that is derivable from the non-terminal 
with which this attribute is associated, 

LEVEL - the number of subprograms within which this 
non-terminal is nested, 

ENV - the name-to-object binding used to resolve occur- 
rences of identifiers in the source code derivable from 
this non-terminal. 

Many of these attributes (although not only these at- 
tributes) serve to transfer information from one part of the 
semantic tree to the other, and the semantic rules that de- 
fine them are often simple and don’t vary much from one 
production to another. In fact, these simple, repetitive rules 
are often as many as half the semantic rules of a large AG. 
Because of this many AG-based translator-writing-systems 
have either a special notation to describe such rules [9] or 
will implicitly create such rules when they are omitted. 

The system we used, Linguist, adopts the second ap- 
proach and we found it to be both effective and widely ap- 
plicable. An attribute class can be declared and instances 
of a class can be associated with various symbols, just as 
attributes are associated with symbols. However, if a re- 
quired definition for some occurrence of an attribute class is 
left out of the semantic rules of a production, Linguist will 
supply an impfict rule to define this attribute. The rule is 
based on whether the attribute is inherited or synthesized 
and on information supplied in the definition of the class. 
There are three basic kinds of implict rule that will be built 
to define X.A: 

l X. A = Y .A where Y. A is some other occurrence of the 
same attribute class in this production, 

a X. A = u where u is a constant specified in the attribute 
class declaration, or 

l X.A = m(Y.A, m(W.A, . . . , 2.A) . . . ) wheremis 
an associative, dyadic function specified in the at- 
tribute class declaration, and Y.A, W.A, . . . . and Z.A 
are other occurrences of this attribute class in the pro- 
duction. 

The first kind of implicit rule might be supplied if X . A is 
either inherited or synthesized and is called a copy-rule; the 
other two forms can only be supplied if X. A is synthesized. 
The constant u is called the unit-element.and the function 
IO is called the merge-function. 

A discussion of exactly what rules are implicitly gener- 
ated and why these are good rules to implicitly supply can 
be found in [6, 121. For this presentation we will just give 
an example that illustrates how we used this facility in the 
VHDL compiler. 

The USGS attribute is ubiquitous in our AGs because 
error messages may need to be issued at many different 
points in a source program. Such error messages must be 
concatenated with other messages and propagated to the 
root of the semantic tree as the value of various HSGS at- 
tributes. At the root they are used to define the HSGS at- 
tribute of the GOAL symbol, thus becoming a result of the 
translation, and hence available to be written to a file, dis- 
played on a screen, etc. Consequently, if there is a produc- 
tion CX ::= W Y Zl, and symbol Y has a MSGS attribute, 
then X must also have a HSGS attribute else the value of 
Y .HSGS would not get propagated up the semantic tree. 
Even if production [X : := W Y 21 doesn’t generate any 
messages of its own it must still have the semantic rule 

X.HSGS = concatMsgs(U . HSGS , 

concatMsgs(Y.HSGS, Z.WSGS>) 

It can be very tedious to supply all of these explicitly, 
and luckily we don’t have to. By declaring MSGS to be 
an attribute class with concatHsgs as its merge-function 
we cause Linguist to supply implicit semantic rules for all 
the otherwise undefined HSGS attributes. 

Our AGs for VHDL are replete with such attribute 
classes and Linguist uses them to create more than half of 
all the rules of the AGs (see table of previous section). In 
fact, our experience convinces us that we should go much 
further in this direction. Attribute classes should be ex- 
panded so that a class could contain many different at- 
tributes, both inherited and synthesized. Declarations as- 
sociated with the attribute class would similarly be used 
to build implicit semantic rules for those productions that 
do not have all the rules that are needed. We think this 
would be useful because we found over and over that cer- 
tain sets of attributes, mixtures of both inheritied and syn- 
thesized, were always occuring together in our grammars. 
For instance, there are the attributes needed to process an 
identifier, those needed for processing an expression, those 
needed for processing a declaration, those for processing 
a sequential statement, those for processing a concurrent 
statement, etc. If symbol X can derive a sequential state- 
ment then it needs to have the set of attributes for sequen- 
tial statement, if X can derive an expression then it needs 
to have the set of attributes for expressions, etc. 

If the declaration of these sets of attributes could be 
collected together in one place it would facilitate both the 
creation and maintenence of the AGs. Currently, if we 
need another attribute to process expressions we must go 
through and find all affected symbols and associate the new 
attribute with those symbols. It would be much easier and 
less error-prone to simply add the new attribute to a single 
class declaration (or delete an existing one that is no longer 
used) and let the toolset distribute the changes appropri- 
ately. 

We were able to achieve a subset of the functionality 
we desire of such a mechanism by using a macro-processor 
preliminary to running Linguist. The VHDL AG con- 
tains macro definitions for symbolic names, e.g. ENV-ATTRS, 
EXPR-ATTRS, STHTJTTRS, etc., to be strings that are appro- 
priate as the declaration of a collection of attributes and at- 
tribute classes. These symbolic names are then used in the 
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attribute declaration section of a non-terminal symbol dec- 
laration. The macro-processor expands these names into a 

list of attribute and attribute class declarations inside the 
non-terminal declaration. 

This approach let us group attributes and associate 
all the attributes in a group with a particular symbol by 
simply naming the group. However, the implicit semantic 
rules are supplied based on individual attributes or classes; 
this mechanism does not allow the definition of implicit 
rules based on other attributes in the groups. 

Something similar to this general strategy has been 
proposed by Alpern et.al. [l] in a formalism they propose 
for describing attributed graph grammars. They call their 
construct a cable. We think it would be well worthwhile 
to combine something like cables with Linguist’s attribute 
class declarations to get a mechanism that allows one to: 

l declare a set of attributes, 

a associate all members of that set with a symbol, and 

l have the toolset fill in implicit rules when necessary. 

4.3 Applicative implementation of the 
symbol table. 

The separate compilation mechanism of VHDL (and Ada) 
requires that a foreign reference be implemented by having 
the compiler read intermediate files that it created earlier 
when it processed the foreign compilation unit. Our inter- 
mediate language, VIF, is used for this. In most compilers a 
central symbol table or dictionary is the repository of infor- 
mation about objects and constructs declared by the user. 
In our VHDL compiler this is done by the VIF, both for- 
eign VIF read from the library, and domestic VIF created 
as part of processing the current compilation unit. The VIF 
is specified in the AG and created through attribute evalua- 
tion. The value of some attributes in the AG is VIF nodes, 
which may contain links to other VIF nodes, which are 
filled in by copying the value of other adjacent attributes. 
A simple example is 

sequent ial-stat ement. : : = 
TGT,SIGNAL,reference LT,EQ opt-transport 

aavef arm SEMI. 
. . . 

sequential-statement .VIF = 
tnode,simpleSignalAsgn( 

TGT-SIGNAL-reference.VIF, 
uavefonu.VIF, 
opt-transport. PRESENT, 
SSS-KICK-NORHAL, 
LT-EQ.LINE 

), 
. . . 

One by-product of using the AG to build VIF is that, once 
built, the VIF can not be changed. Although this may 
seem like a serious hinderance, in practice it has worked 
out quite well. Scheduling the insertion, modification, and 
removal of information in the symbol table is not an issue 
for us - we only describe what information we want to 
know about objects and the attribute evaluator generator 
schedules evaluation of rules that reference the symbol table 

(i.e. VIF attributes) only when such information is known 
to be available. 

For instance, consider the mapping from identifer to 
object(s) denoted. We refer to such a mapping as an en- 
vironment. In many compilers this is a function of the 
symbol-table module. In our VHDL compiler there is an 
attribute called ENV, associated with any symbol that could 
produce an identifier reference, that represents this map- 
ping. ENV values are themselves trees whose nodes contain 
both the identifier and link(s) to the object(s) that could be 
denoted by the identifier. ENV nodes may also contain infor- 
mation about how their corresponding objects were made 
visible (via USE-clause, local definition, etc.) 

To looJ~up an identifier (ID) the ErJV tree is searched ac- 
cording to a fixed rule until an entry is encountered whose 
identifier field matches ID. To build a new EHV value that 
binds ID to some other object(s) we create a new EKV node 
and insert it at the front of the tree so that it will be found 
first by the search rule, but so that the old ENV value is not 
changed. One simple way this could be done is to imple- 
ment the ENV tree as a list (a tree in which each node has 
only one child) and to create a new ENV value by making 
the new node as the head of a list whose tail is the old 
list. There are applicative forms[l4] of balanced trees, and 
other data-structures, that can instead be used to make the 
search more efficient. 

ENV values are part of the VIF and hence are retained 
in the model library. 

5 Lessons learned 

5.1 VHDL versus Ada 

At the beginning of our effort, we estimated that a VHDL 
compiler should require two thirds of the effort to produce 
an Ada compiler. There were several aspects we underesti- 
mated. 

First, the number of productions in a LALR(l) VHDL 
grammar is comparable to the one in a LALR( 1) Ada gram- 
mar. This is due to the fact that hardware description spe- 
cific constructs introduced in VHDL compensated for the 
elimination of some of the software oriented constructs that 
were present in Ada. 

Second, the VHDL Runtime Kernel is more compli- 
cated than its Ada counterpart. This is due to the syn- 
chronization in simulated time, that governs processes, sig- 
nals, and guards. Due to the preemptive nature of signal 
assignments in VHDL, the effect of a VHDL signal assign- 
ment is not determinable at the time of the execution of 
the assignment[i3]. 

Third, the VHDL static semantics is at places more 
compIicated than the corresponding Ada semantics, be- 
cause Ada constructs have been extended to serve hardware 
description purposes, as it is discussed in this paper. 

Last, but not least, developing a compiler for a new and 
unfrozen language, is a challenge in itself. An important 
effort was spent in keeping up with the evolution of VHDL, 
up to the point when it became an IEEE standard. 

128 



5.2 AGs are monolithic 
In building our compiler as an AG we ran into several prob- 
lems where we had to step back and do things differently 
than we had originally planned. The use of cascaded evalu- 
ation is an example. However, we never found a satisfactory 
way to deal with the monolithic nature of an AG. 

An attribute grammar is monolithic in the sense that 
it is hard to partition one into smaller pieces that can be 
processed separately. The LALR parse-table builder needs 
every production in order to generate tables. The depen- 
dency analysis phase of the evaluator-generator needs the 
dependency information for every symbol and production in 
order to find an evaluation order. Especially for a large lan- 
guage like VHDL, this is a significant problem; the VHDL 
AG is one 500,000-byte file whereas the rest of the compiler 
consists of about 50 modules of 1000 bytes to 100,000 bytes 
each. 

There are two reasons why this is not good: it makes 
it hard for two or more people to work on different aspects 
of the AG at the same time, and it costs a lot of computer 
power (and wall time) to be regenerating so many evalua- 
tors all the time. The latter of these was the more serious 
problem in the past; we expect the former to be the more 
serious problem in the future. 

An attribute evaluator generator such as Linguist con- 
tains some expensive, non-linear algorithms buried in it. 
This means that if AGl is twice as large as AG2 then AGl 
will need more than twice as much time to be processed. 
Thus, generation time that is reasonable for a Pascal AG 
can turn out to be a significant bottleneck for a VHDL 
AG. Compiling the generated evaluator can be even more 
of a problem. The monolithic AG gives rise to a monolithic 
block of C code that is more than 50,000 lines long and is 
too big to compile with our system’s C compiler if sym- 
bolic information for the debugger is included in the object 
code. We are able to split it into pieces, some of which the 
C compiler can handle ,’ but one of these pieces is still so 
large that if it is compiled to generate information for the 
system’s symbolic debugger then the debugger can not load 
it. 

Although the long generation time has been trouble- 
some in the past, we feel that the inability to decompose 
the AG into smaller pieces and understand it as the com- 
position of those pieces is the more serious problem. This 
has always been a problem for LR parser generators, and 
an AG inherits this problem for its underlying context-free 
grammar. This exacerbates the equally monolithic nature 
of the semantics in an AG. A change in the dependencies 
of a semantic rule in one production can combine with a 
hitherto legal dependency in some far removed production 
to produce a circularity in the AG. To diagnose and correct 
such a circularity usually requires that one have a reason- 
able understanding of the global dependency structure of 
the AG. 

The careful reader will have noticed that despite our 
observations above we have already discussed one way to 
decompose an AG - cascaded evaluation splits the seman- 

‘The generated attribute evaluator code contains C preprocessor 
macros to facilitate this splitting. 

tics part of an AG into independent pieces, although it 
doesn’t divide the syntactic portion. It may be that this is 
an effective way to decompose an AG and we hope to in- 
vestigate writing separate AGs for declarations and state- 
ments, and perhaps partitioning those further by having 
nested cascaded evaluation within them. 

5.3 Productivity using AGs 
The usual advantages claimed for AGs over more traditional 
compilers are that they are faster to develop and easier to 
maintain. The usual disadvantages claimed for AGs is that 
the compilers generated from them are slower and use more 
memory. Our experience on this project generally supports 
these expectations, although some of them were more fully 
met than others. 

We think that using AGs enabled us to complete the 
project in substantially less time than would otherwise have 
been the case - but it was not an order-of-magnitude im- 
provement. Trying to directly compare large software prod- 
ucts will inevitably have an “apples to oranges” flavor about 
it, and comparisons of the engineering projects that pro- 
duced them are even less illuminating. Nevertheless, we 
offer the figures we have gathered about our compiler and 
its development for other implementors to compare against 
their own experience. Our VHDL compiler is 46,000 lines of 
original source code (i.e. code written by hand) and it took 
us 82 man-months to complete. Of this 46,000 lines, about 
12,000 or 25% is in what we consider code-generation; the 
rest is in parsing, semantic analysis, and management of 
separate compilation. We do not include in this the code 
for the simulation Kernel or run-time library support. 

This works out to about 550 lines per man-month 
(MM). This is somewhat higher than the average produc- 
tivity figures commonly-quoted131 for the industry of 350 
Delivered Source Instructions (DSI) per MM, but not as- 
tonishingly so. 6 If we assume that the generated C code 
had been written by hand then the productivity figures do 
become surprising: average productivity over two years of 
about 1350 lines per MM. This is probably not the right 
way to look at this issue; program generators are notorious 
for generating code that no person would write. 

By far the most costly aspect of writing this compiler 
was figuring out what this new language meant and how 
its constructs should be implemented. From this perspec- 
tive, the most advantageous property of AGs was the ease 
with which they can be modified; even substantially modi- 
fied. Over the course of its development our compiler went 
from a maximum of four visits per node, to a maximum of 
five visits per node, to three visits7 per node. All of this 
happened transparently to the AG authors, who were only 
aware of adding and deleting attributes and the semantic 
rules that defined them. In a hand-coded compiler this 
would have required (in addition to these decisions of what 
new results or intermediate values needed to be computed 

6 this a.wnnes that a “he” is equivalent to a Source Instruction, 
which seems reasonable for C, but perhaps is an underestimate for an 
AG or the VIF description. 

‘Most symbols are only visited once; only a half-dozen symbols 
out of 355 are visited 3 times. 
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and how) substantial modifications to the code that vis- 
its sub-trees to collect and process this information in the 
right order. Such changes would have had to be calculated 
by hand in the first place and then the tree-walking algo 
rithms changed by hand also. Most likely, the intermediate 
data-structures representing the tree would have had to be 
modified too, again by hand. 

Throughout the compiler’s development we: 

l changed the way features were implemented, 

l added optimizations to the generated code, and 

l optimized some aspects of the compiler’s own perfor- 
mance 

to reflect our increasing understanding of 

l the semantics of the language, 

l how to best model the behavior of a source program, 
and 

l where the bottlenecks were in our implementation as 
we saw how our customers were using the compiler. 

In our opinion, this level of change could not have been 
supported if such a complex piece of software had been 
manually coded. That we could do so was important to 
our development strategy; we think it bodes well for the 
compiler’s future maintainabilty. 
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