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i. Introduction 

A wide variety of algorithms have been 

suggested for the repair of syntactic er- 

rors in a computer program. Since there is 

usually more than one possible repair for 

any syntax error, many algorithms employ a 

cost function to guide the the repair, and 

some [i,3,4,6], guarantee that the repair 

chosen will be least-cost, according to 

some definition. (The others, although 

guided by co~ts, do not guarantee least- 

cost in all cases.) Fischer et al. [4,6,7] 

define a "locally least-cost" repair using 

insertions and deletions, and provide algo- 

rithms for LL and LR parsers. A locally 

least-cost repair is a least-cost sequence 
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of deletions and insertions such that one 

more symbol in the original string will be 

accepted by the parser. Backhouse [2,3] 

uses a similar definition. In both cases, 

the repair algorithms operate by examining 

a single symbol in the input at any time. 

There are situations in which a repair 

algorithm needs more information than is 

provided by a single symbol. For example, 

in the Pascal program fragment: 

... ; a := b c ... 

the parser would announce error upon read- 

ing 'c', and the possible repairs would in- 

clude: 

... ; a := b + c ... 

... ; a := b ; c ... 

... ; a := b [ c ... 

One of these repairs will have the lowest 

cost, and will always be chosen by the 

repair algorithm. (If several repairs have 

equally low cost, the algorithm must pick 

one. There is no advantage in trying to 

choose non-determinlstically.) However, if 

the algorithm looks ahead at additional in- 

put symbols, it may gather information 

which distinguishes the current situation 

from the other possibilities: 

... ; a := b c ; ... 

... ; a := b c := ... 

... ; a := b c ] ... 

The algorithm can then choose the best 

repair in each case. 
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The algorithms presented by Graham and 

Rhodes [10], Pennello and DeRemer [14], Pal 

and Kieburtz [13], and Graham, Joy, and Ha- 

ley [8] use various amounts of additional 

lookahead, but do not guarantee a least- 

cost repair in all cases. The action of 

the algorithms may also be limited by the 

presence of a second error in the input. 

The ultimate in least-cost repair models is 

the globally minimum-distance model of Aho 

and Peterson [I]. Such a model guarantees 

the minimum number of changes to the entire 

sentence. Unfortunately, the best algo- 

rithm known is cubic in the length of the 

sentence, and is therefore considered im- 

practical. 

We suggest a middle ground between lo- 

cally and globally least-cost models; the 

repair algorithm will select some region of 

the sentence and find the least-cost repair 

to that region which will allow the parse 

to continue through the region. Levy [ii] 

and Tai [16] have described such a repair 

model as "locally least-cost", in contrast 

to global least-cost models. Since we have 

previously considered locally least-cost 

repair to involve only a single symbol at a 

time [4,6,7], we will use the phrase "re- 

gionally least-cost" to describe the area 

between single-symbol and global models. 

In the examples above, a regionally 

least-cost repair algorithm with a region 

size of two symbols would choose the 

repairs suggested (assuming a reasonable 

set of repair costs). For a more involved 

example, let us look at another portion of 

a Pascal program: 

if i<j 

A[i := j 

else A[j] := i; 

The parser will announce error upon en- 

countering the first 'A', and the possible 

repairs include inserting 'then' and in- 

setting an arithmetic operator. Again, a 

well-tuned locally least-cost repair algo- 

rithm would choose the most likely repair, 

and would occasionally be wrong. A region- 

ally least-cost algorithm with a region of 

three symbols would see "A[i", and would 

really be no better off than the locally 

least-cost algorithm. If the region is ex- 

tended to four symbols, the algorithm must 

cope with a second error. The options now 

include inserting "then" before the "A" and 

"]" before the ":=", inserting an operator 

before "A" and replacing the "[" with 

"then", and inserting an operator before 

"A" and replacing the ":=" with an opera- 

tor. Extending the region further, to five 

or six symbols, shows that replacing the 

":=" is undesirable, as it leads to still 

more errors. The choice, then, is a matter 

of where to insert the "then", and this 

will be resolved by the costs of the other 

repairs (inserting "]" versus inserting an 

operator and replacing "["). 

The previous example illustrates that 

repair algorithms which employ a forward 

move must deal with clusters of errors, and 

that the size of the region greatly affects 

the repair chosen. The definition of a re- 

gionally least-cost repair implies repair 

of any errors within the region. Tai's 

MCL(k) model [16] is an example of a re- 

gionally least-cost repair model, with a 

particular method of determining the region 

size. We present an algorithm which finds 

a regionally least-cost repair for any re- 

gion size, and discuss ways of determining 

region size, as well as results of an ini- 

tial implementation of the algorithm. The 

algorithm is adaptable for use with LL(1) 

and LR(1) parsers. 
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2. Regionally Least-Cost Repair 

We begin by defining regionally 

least-cost repair. As usual, we will as- 

sume a context-free grammar, G=(Vt,Vn,S,P); 

L(G) ~s the language generated by G, and 

Pr(G) is the set of prefixes of sentences 

in L(G). The problem is to repair an arbi- 
, 

trary string, x ~ Vt, into a string, 

y @ Vt, that is a sentence in L(G). We 

will use the three primitive edit opera- 

tions insert, delete, and replace, and we 

will search for a repair of least cost, 

based on cost vectors for the three opera- 

tions: 

It(a) gi~,es the cost of inserting 

terminal symbol a 

DC(a) gives the cost of deleting 

terminal symbol a 

RC(a,b) gives the cost of replacing 

a with b 

We require that all costs be non-negative. 

We will also assume that at most one re- 

placement or deletion is made at each input 

position. This assumption is equivalent to 

requiring that the costs satisfy "triangle 

inequalities": 

For all a,b,c @ V t 

RC(a,b)+RC(b,c) ~ RC(a,c) 

RC(a,b)+DC(b) I DC(a) 

IC(a)+RC(a,b) ~ IC(b) 

It is convenient to assume that RC(a,a)=@. 

Based on the cost functions, we define 

two other functions that extend costs to 

nonterminals, strings and derivations: 

C(~) = 0; (~ denotes the empty string.) 

C(a I ... a n ) = IC(al) + ... + IC(an), 

for a i ~ V t 

C(A) = min { C(x) I x ~ Vt, A ==> x } 

C(X l ... X n) = C(Xl) + ... + C(X n) , 

for X i @ V 

For AGV n, a~Vt, Derive(A,a) = 

mini{ oo } U {C(xy)+RC(a,b) I A==>xby }~ 
~, * 

x,y,V t , b@V t 

For A,B @ Vn, Derive(A,B) = 

mini{ oo } U {C(xy) I A ==> xBy }3 

x, y@V t 

We are now ready to define a regionally 

least cost repair. 

Definition: A modification, M, is a 

series of edit operations, EIE2...En, where 

each E i is a series of insertions, and an 

optional delete or replace operation. The 

string resulting from the application of 

the modification, M, to a string x, Ixl=n, 

is written M(x). The cost of the modifica- 

tion, C(M(x)), is the sum of the costs of 

the edit operations. 

Definition: Given two strings x, 

y @ V t, with x in Pr(G), a repair of y fol- 

lowing x, is a modification, M, such that 

xM(y) is in Pr(G). 

Definition: A regionally least-cost 

repair of y following x is a repair, M, of 

y following x such that for any other such 

repair, N, of y following x, C(N(x)) 

C(M(x) ). 

3. An algorithm for globally least-cost 

repair 

We will develop the algorithm first as 

a globally least-cost repair algorithm. 

Then in the next section, we will restrict 

it to the more feasible regionally least- 

cost case. 

Aho and Peterson perform their "least 

errors parse" by adding to the grammar er- 

ror productions, which simulate modifica- 

tions to the input. We will take a comple- 

mentary approach, and use a modified parser 

on the original grammar. The modified 

parser will be able to: advance the parser 

state as if additional symbols were in the 
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input (simulate insertions), consume input 

without changing the parse state (dele- 

tions), and advance the parser state as if 

one symbol were in the input, while consum- 

ing some other symbol (replacements). 

These changes to the parser are equivalent 

to the error productions used by Aho and 

Peterson, and render the grammar highly am- 

biguous; a general context-free parser is 

therefore necessary. 

For our parser, we choose the algo- 

rithm of Graham, Harrison and Ruzzo [9]. 

This parsing algorithm produces a triangu- 

lar matrix, each cell of which contains a 

set of "dotted productions", A --) ~-~, 

representing the possible parses of a 

corresponding substring of the input. The 

dot indicates that part of the production, 

4, has been used to match input symbols. 

The position of a cell in the matrix indi- 

cates the portion of the input covered; 

cell i,j covers symbols i+l through j, in- 

clusive. Cells that match a longer sub- 

string of the input are created by "pasting 

together" two existing cells; elements in 

cell i,j are found by pasting cell i,k to 

cell k,j for i<k<j. The parse is also ad- 

vanced by pasting cells to the input sym- 

bols. 

We introduce error repair by extending 

these pasting operations (and the "Predict" 

function), and attaching a running cost to 

each dotted production. When the parse is 

completed, we extract the repair from the 

matrix in much the same way as a parse is 

extracted in ordinary use. The remainder 

of the algorithm is unchanged. 

Informally, the Graham-Harrison-Ruzzo 

algorithm will move the dot if the symbol 

immediately to its right is matched. For 

example, if we have the dotted production 

A --) ~'B~, and some production B --~ y has 

been satisfied, then we can move the dot, 

yielding A --9 ~B-~. In order to accommo- 

date ~-productions, the dot is also moved 

across symbols which can derive i. The 

result is a set of dotted productions, each 

with the dot in a different location. The 

original pasting operators are: 

For Q a set of dotted productions and 

R a set of symbols: 

QXR = {A --~ ~B~'Y I A --~ ~-B~y G Q, 

==> ~, and B G R } 

Q*R = {A --9 ~B~'Y I A --) ~'B~ ~ Q, 

==> ~, and B -- C for some C G R } 

For Q and R sets of dotted productions: 

QXR = {A --~ ~B~'y I A --~ ~'Bpy ~ Q, 

==> ~, and B --) 6" ~ R } 

Q*R = {A --~ c(B~.y [ A --9 c(-B~y ~ Q, 

==> ~, B==>C for some CGV t 

and C --~ 6" @ R } 

The x and * products differ in that x con- 

siders only direct derivations, while * 

considers indirect derivations. 

We can simulate insertions into the 

program by moving the dot across any sym- 

bol, X, as if it derived ~, at a cost of 

C(X). This change to the parsing algorithm 

is equivalent to adding error productions 

to the grammar which allow all symbols to 

derive ~. Those symbols that derive ~ in 

the original grammar will have C(X)=0; in 

such cases, the action of the parser will 

be the same as it would in the original al- 

gorithm. To simulate a deletion, we paste 

a dotted production to an input symbol, a, 

without moving the dot, at a cost of DC(a). 

Thus a symbol is consumed without advancing 

the parse state. We can now present our 

modified pasting operators. 

If Q is a set of dotted productions 

and R is a set of terminal symbols, then 

define 

QXR = { A--) c(B~')/;c I A--) c('B~)/;C' ~ Q, 

B ~ R, c = c'+c(p) } 

U { A--) c('~;c I A--~ c('~;c' ~ Q, 

c = c'+DC(B), B ~ R } 
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Q*R = { A --) ~B~'~;C I A --) ~'B~;c' 8 Q, 

Derive(B,D)~ ~, D ~ R, 

c = c'+C(~)+Derive(B,D) } 

U { A --9 ~'~;c I A --9 ~-~;c' ~ O, 

c = c'+DC(B), B @ R } 

If Q and R are sets of dotted productions, 

then define 

QXR : { A --9 c(B~')/;c I A --9 c('B~)/;c I @ Q, 

B --9 6";c 2 ~ R, 

c = c I + c 2 + C(p) }. 

Q*R : (A--9 ~B~'y;C I A--9 ~'B~y;c I 8 Q, 

Derive(B,D) @ ~, D --9 6";c 2 ~ R, 

c = Cl+C2+Derive(B,D)+C(~) }. 

We must also modify the Predict func- 

tion, which, in the original algorithm, 

sets up chain rules and insures that the 

contents of subsequent cells will legally 

follow the parse so far. In our algorithm, 

Predict sets up insertions as well. For R 

a subset of V n 

PREDICT(R) = { C --~ (~'~;c [ C --9 (~ ~ P, 

B =={ yC6, B @ R, c = C(c() } 

For R a set of dotted productions, 

PREDICT(R) = PREDICT( {B ] A--~z(-B~ ~ R} ). 

The effect of these extensions to the 

parsing algorithm is the same as the effect 

of adding Aho and Peterson's error produc- 

tions; the sets in the parse matrix are 

isomorphic to those that would be obtained 

using the modified grammar. Therefore, the 

correctness and complexity of the parser 

should be unchanged by the modifications. 

The proof of the correctness of the algo- 

rithm [12] follows the same lines as the 

proof in [9], with a different definition 

of what it means to match a string. The 

only danger is the additional cost com- 

ponent of the dotted productions: since 

the cost is potentially unbounded, the 

presence of dotted productions that differ 

only in the cost could cause the size of a 

cell to be unbounded. However, it is easy 

to show that if two dotted productions in a 

set differ only in the cost component, then 

the one with higher cost can never partici- 

pate in a least cost repair; any parse can 

be made cheaper by using the other dotted 

production. Therefore, a higher cost du- 

plicate can always be discarded, and the 

size of the cell is not affected by the 

presence of cost components. 

4. An algorithm for regionally least-cost 

repair 

We have presented an algorithm that 

finds a least-cost repair of an entire pro- 

gram, in time proportional to the cube of 

the length of the program. We do not pro- 

pose that it be used as such. Instead, we 

intend that the repair algorithm be called 

only when needed, and then only to repair a 

reasonably sized region of the program. A 

linear-time parser, such as LL(1) or LR(1), 

will be used for the major portion of the 

program (for the entire program if there 

are no errors). 

Instead of producing a sentence of the 

language, we want our algorithm to produce 

a string which can follow the input already 

accepted by the parser; therefore we will 

use a grammar that describes the legal con- 

tinuations. Such a grammar can be derived 

from the state of the parser. If an LL(1) 

parser is used, this task is easy: the 

parse stack describes the expected suffix, 

and we replace the starting production with 

the production S --~ stack. For an LR(1) 

(or SLR or LALR) parser, we can use the 

technique described in [4] to derive a reg- 

ular expression that describes the legal 

suffixes. From this regular expression we 
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can easily derive an equivalent context 

free grammar, which will be added to the 

original grammar for the purpose of repair. 

Once the parse/repair algorithm has 

started, it can stop at any point; after 

each iteration of the main loop, the region 

of least-cost repair has been extended over 

one more input symbol. Thus, the algorithm 

can be used to find a least-cost repair 

over a fixed-sized region, or the size of 

the region can be dynamically controlled. 

A repair over a region of fixed size has an 

advantaqe in that it requires a fixed 

amount of time to compute, but the fixed 

size may be too small for some error situa- 
tions and unnecessarily large for others. 

We are then faced with the question of how 

to choose the region size. Levy [ii] sug- 

gests that the region should extend until 

all of the plausible repairs are 

"equivalent" in that all suffixes of one 

repaired string are suffixes of the other 

repaired strings. This criterion is ap- 

pealing, because it implies that no matter 

which repair is chosen, there can be no ef- 

fect on the legality of the remaining in- 

put. Unfortunately, in most programming 

languages, the test is impractical. For 

example, in Pascal one of the repairs may 

include insertion of begin, and legal suf- 

fixes will thus contain an extra end, which 

other repairs will not accept. Until the 

end of the input is reached, the repairs 

cannot'be equivalent. Tai [16] suggests 

extending the region over clusters of er- 

rors, until a sequence of k correct symbols 

are seen. This criterion avoids continuing 

to the end of the input -- unless the clus- 

ter of errors extends that far -- but the 

region beyond the last error is always 

fixed, and may be too large or sm~ll in 

some cases. We are investigating a number 

of criteria for dynamic region sizes, in- 

cluding Tai's MCL(k) and a weakened version 

of Levy's equivalence. 

In order to obtain better repairs by 

using a dynamic region, we run the risk of 

extending the region to the entire program; 

in that case our algorithm is cubic in the 

size of the program. In practice this may 

not be a problem. In fact, if the expected 

size of a region is constant, the expected 

time to compute a repair may also be con- 

stant, if the distribution is reasonable. 

For instance, if the size of a region is 

some fixed minimum, k, plus a variable part 

that follows an exponential distribution, 

P(m)=Ce -Dm, then the expected time to 

repair that region is less than 

Cl+C2/(l-e-Dn-D), which is bounded by a 

constant as the size of the program, n, 

grows. Thus, in the average case the total 

time to parse and repair a program is 

linear in the length of the program. As we 

experiment with dynamic regions, we will 

measure the distribution of region sizes. 

After the repair has been chosen, con- 

trol is returned to the linear-time parser. 

Repairs to the program can be effected in 

two ways. The repaired string can be phy- 

sically placed into the input buffer and 

reparsed, or the state of the parser can be 

reset, using information from the parse ma- 

trix. 

As an example, suppose we have the 

following grammar: 

S --) E Etail 

E--) a I ( E ) 

Etail --) + E Etail I 

Assume all terminals have insertion cost = 

1 and deletion cost = 2. If we try to 

parse the input "a + a a )" using a strong 

LL(1) parser, an error will be detected at 

the third 'a', with the parse stack con- 

taining 'Etail' The repair algorithm will 

proceed as follows: 
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I. 

2. 

'a' can be matched by the 'E' in 

Etail --9 + E Etail at cost C('+')=l. 

'a' can also be matched directly by 

E --9 a, and from E --) (E), at a 

cost of C(' (')=I. Finally, 'a' can 

be deleted, at cost DC('a')=2. Cell 

0,I of the parse matrix will contain 

these dotted productions: 

Etail --9 + E • Etail ; 1 

E --9 a - ; 0 

E --)(E-) ;i 

S --) • Etail ; 2 

{deletion of a} 

')' can be pasted to a previous 

match, such as E --~ (E-). It can 

also be deleted. Cell 0,2 of the 

parse matrix will contain 

E --) (E) ; 1 

{paste to result of matching 'a'} 

S --~ Etail • ; 5 

{paste to result of deleting 'a'} 

Etail --9 + E • Etail ; 3 

{deletion of ') '} 

E --~ a • ; 2 

{ditto} 

E --~ ( E • ) ; 3 

{ditto} 

S --9 • Etail ; 4 

{deletion of 'a' and ')'} 

Etail --9 + E • Etail ; 2 

{paste E--~(E)-;I to predicted 

Etail--)+. E Etail;l} 

S --9 Etail • ; 2 

{paste E--)(E). ;] to 

S-->'Etail; 0, Derive(Etail,E)=l} 

For simplicity, we have not shown all 

of the elements of the cells, nor all the 

cells in the matrix. The elements shown 

for cell Z,2 illustrate that the same dot- 

ted production may be entered twice, with 

different costs; a lower cost version will 

replace a higher cost. Although the lowest 

cost element in cell 0,2 is "E--)(E)-;I", 

that cost only includes the repairs neces- 

sary to match the input -- insert ' (' be- 

fore 'a) -- and not the repairs necessary 

to follow the previously accepted input -- 

insert '+'. To insure that all repairs are 

included, we must start from an element in- 

volving the goal production -- 

S --) Etail • ;2 in this case -- or one 

which is directly predicted by the goal 

production -- Etail --) + E Etail ;2. A 

traceback from one of these dotted produc- 

tions will show that the regionally least- 

cost repair is to insert '+(' before the 

'a'. A locally least-cost algorithm would 

have handled the error in two steps: first 

inserting '+' before the 'a', then deleting 

the ')' when the parser again announces er- 

ror. This combined repair is inferior to 

the regionally least-cost repair. 

5. Implementation results 

In the introduction we presented a 

series of situations which show that a lo- 

cally least-cost algorithm must occasional- 

ly choose a poor repair. Let us examine a 

few more cases in which we have found the 

regionally least-cost algorithm to perform 

better than the locally least-cost. These 

examples are adapted from Ripley's and 

Druseikis's collection of Pascal er- 

rors [15]. 

program p (input, output); 
funtion f (var x: integer): boolean; 

begin 
end; 

begin 
end. 

In this example, an error is announced when 

'funtion' is read. Without a spelling 

corrector, replacing 'funtion' with 'func- 

tion' is not plausible, so we must make do 

with insertions and deletions. A likely 

locally least-cost repair is insertion of 

'const' or 'type', which will cause a cas- 
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cade of spurious errors. Again, a region- 

ally least-cost will see the additional 

repairs necessary if 'const' is inserted, 

and will instead insert 'function' and 

delete either 'function' or 'f' This ex- 

ample also emphasizes the effect of region 

size; a region of size less than nine will 

not extend as far as the return type, and 

the algorithm will have no information with 

which to distinguish insertion of 'pro- 

cedure' from 'function ~ • 

program p (input, output). 
vat a, b, : real; i, 3 : {nteger; 
begin end. 

The error is an extra comma, but the parser 

will not detect error until the colon is 

read. Without a backward move, there is no 

way to remove the comma, so we must either 

insert another identifier, or delete the 

colon. Deleting the colon is likely to be 

chosen by a locally least-cost algorithm, 

causing additional errors. Again, the re- 

gionally least-cost algorithm will choose 

the preferred repair: in this case, in- 

serting an identifier. 

In the two examples above, the repairs 

suggested as likely for a locally least- 

cost algorithm were, in fact, chosen by the 

algorithm described in [4], using a set of 

well-tuned costs. On the error programs 

provided by Ripley and Druseikis, we found 

that about 28% were repaired poorly by the 

locally least-cost algorithm. Of these, 

over 80% were improved upon by the region- 

ally least-cost algorithm. Of course, not 

all of the repairs were as good as in the 

examples above. The sample programs in- 

clude a number of systematic misuses of the 

language, such as declaration sections in 

the wrong order (which are best handled by 

error productions [5,8]), and serious lexi- 

cal errors, such as improper comment delim- 

iters. In such cases, a regionally least- 

cost algorithm makes less of a mess than a 

locally least-cost algorithm. 

The repair algorithm requires careful 

implementation if reasonable speed is ex- 

pected. The effect of region size on com- 

putation time is overshadowed by the effect 

of grammar size, for moderate regions. Our 

prototype, a straightforward implementa- 

tion, computes a five symbol repair for 

Pascal in approximately five seconds (on a 

VAX-II/780). We are confident that a more 

careful implementation could be made signi- 

ficantly faster. Even so, the algorithm 

will be slower than locally least-cost 
techniques. However, further speed-up is 

available if the regionally least-cost al- 

gorithm is not called for every error. 

Since the locally least-cost algorithm does 

well in most cases, we can try out the lo- 

cal repair first. Parsing ahead several 

symbols to validate the repair is quick (in 

a one-pass compiler, semantic actions will 

be disabled), and if additional errors are 

found, the regionally least-cost algorithm 

is invoked. If no additional errors are 

found, the local repair stands, and 

parsing/compilation resumes in earnest. 

Since the greater computational cost of a 

regionally least-cost repair is incurred 

only in those cases in which it is needed, 

the average speed is improved with no loss 

of repair quality. 

6. Conclusion 

We have presented a mode] of error- 

repair using a forward move. This model 

provides a formal, language-level defini- 

tion of how repairs are chosen, using the 

idea of regional least-cost. The algorithm 

to compute such corrections is linear in 

the size of the grammar, and cubic in the 

size of the region. Even if region size is 

variable, in the average case the total 

complexity of the parse/repair package is 

essentially linear. 
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