
A Forward Move Algorithm for LL and LR Parsers

Jon Mauney

Charles N. Fischer

University of Wisconsin-Madison

i. Introduction

A wide variety of algorithms have been

suggested for the repair of syntactic er-

rors in a computer program. Since there is

usually more than one possible repair for

any syntax error, many algorithms employ a

cost function to guide the the repair, and

some [i,3,4,6], guarantee that the repair

chosen will be least-cost, according to

some definition. (The others, although

guided by co~ts, do not guarantee least-

cost in all cases.) Fischer et al. [4,6,7]

define a "locally least-cost" repair using

insertions and deletions, and provide algo-

rithms for LL and LR parsers. A locally

least-cost repair is a least-cost sequence

Research supported in part by NSF grant

MCS78-02570

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-074-5/82/006/0079 $00.75

of deletions and insertions such that one

more symbol in the original string will be

accepted by the parser. Backhouse [2,3]

uses a similar definition. In both cases,

the repair algorithms operate by examining

a single symbol in the input at any time.

There are situations in which a repair

algorithm needs more information than is

provided by a single symbol. For example,

in the Pascal program fragment:

... ; a := b c ...

the parser would announce error upon read-

ing 'c', and the possible repairs would in-

clude:

... ; a := b + c ...

... ; a := b ; c ...

... ; a := b [c ...

One of these repairs will have the lowest

cost, and will always be chosen by the

repair algorithm. (If several repairs have

equally low cost, the algorithm must pick

one. There is no advantage in trying to

choose non-determinlstically.) However, if

the algorithm looks ahead at additional in-

put symbols, it may gather information

which distinguishes the current situation

from the other possibilities:

... ; a := b c ; ...

... ; a := b c := ...

... ; a := b c] ...

The algorithm can then choose the best

repair in each case.

79

The algorithms presented by Graham and

Rhodes [10], Pennello and DeRemer [14], Pal

and Kieburtz [13], and Graham, Joy, and Ha-

ley [8] use various amounts of additional

lookahead, but do not guarantee a least-

cost repair in all cases. The action of

the algorithms may also be limited by the

presence of a second error in the input.

The ultimate in least-cost repair models is

the globally minimum-distance model of Aho

and Peterson [I]. Such a model guarantees

the minimum number of changes to the entire

sentence. Unfortunately, the best algo-

rithm known is cubic in the length of the

sentence, and is therefore considered im-

practical.

We suggest a middle ground between lo-

cally and globally least-cost models; the

repair algorithm will select some region of

the sentence and find the least-cost repair

to that region which will allow the parse

to continue through the region. Levy [ii]

and Tai [16] have described such a repair

model as "locally least-cost", in contrast

to global least-cost models. Since we have

previously considered locally least-cost

repair to involve only a single symbol at a

time [4,6,7], we will use the phrase "re-

gionally least-cost" to describe the area

between single-symbol and global models.

In the examples above, a regionally

least-cost repair algorithm with a region

size of two symbols would choose the

repairs suggested (assuming a reasonable

set of repair costs). For a more involved

example, let us look at another portion of

a Pascal program:

if i<j

A[i := j

else A[j] := i;

The parser will announce error upon en-

countering the first 'A', and the possible

repairs include inserting 'then' and in-

setting an arithmetic operator. Again, a

well-tuned locally least-cost repair algo-

rithm would choose the most likely repair,

and would occasionally be wrong. A region-

ally least-cost algorithm with a region of

three symbols would see "A[i", and would

really be no better off than the locally

least-cost algorithm. If the region is ex-

tended to four symbols, the algorithm must

cope with a second error. The options now

include inserting "then" before the "A" and

"]" before the ":=", inserting an operator

before "A" and replacing the "[" with

"then", and inserting an operator before

"A" and replacing the ":=" with an opera-

tor. Extending the region further, to five

or six symbols, shows that replacing the

":=" is undesirable, as it leads to still

more errors. The choice, then, is a matter

of where to insert the "then", and this

will be resolved by the costs of the other

repairs (inserting "]" versus inserting an

operator and replacing "[").

The previous example illustrates that

repair algorithms which employ a forward

move must deal with clusters of errors, and

that the size of the region greatly affects

the repair chosen. The definition of a re-

gionally least-cost repair implies repair

of any errors within the region. Tai's

MCL(k) model [16] is an example of a re-

gionally least-cost repair model, with a

particular method of determining the region

size. We present an algorithm which finds

a regionally least-cost repair for any re-

gion size, and discuss ways of determining

region size, as well as results of an ini-

tial implementation of the algorithm. The

algorithm is adaptable for use with LL(1)

and LR(1) parsers.

80

2. Regionally Least-Cost Repair

We begin by defining regionally

least-cost repair. As usual, we will as-

sume a context-free grammar, G=(Vt,Vn,S,P);

L(G) ~s the language generated by G, and

Pr(G) is the set of prefixes of sentences

in L(G). The problem is to repair an arbi-
,

trary string, x ~ Vt, into a string,

y @ Vt, that is a sentence in L(G). We

will use the three primitive edit opera-

tions insert, delete, and replace, and we

will search for a repair of least cost,

based on cost vectors for the three opera-

tions:

It(a) gi~,es the cost of inserting

terminal symbol a

DC(a) gives the cost of deleting

terminal symbol a

RC(a,b) gives the cost of replacing

a with b

We require that all costs be non-negative.

We will also assume that at most one re-

placement or deletion is made at each input

position. This assumption is equivalent to

requiring that the costs satisfy "triangle

inequalities":

For all a,b,c @ V t

RC(a,b)+RC(b,c) ~ RC(a,c)

RC(a,b)+DC(b) I DC(a)

IC(a)+RC(a,b) ~ IC(b)

It is convenient to assume that RC(a,a)=@.

Based on the cost functions, we define

two other functions that extend costs to

nonterminals, strings and derivations:

C(~) = 0; (~ denotes the empty string.)

C(a I ... a n) = IC(al) + ... + IC(an),

for a i ~ V t

C(A) = min { C(x) I x ~ Vt, A ==> x }

C(X l ... X n) = C(Xl) + ... + C(X n) ,

for X i @ V

For AGV n, a~Vt, Derive(A,a) =

mini{ oo } U {C(xy)+RC(a,b) I A==>xby }~
~, *

x,y,V t , b@V t

For A,B @ Vn, Derive(A,B) =

mini{ oo } U {C(xy) I A ==> xBy }3

x, y@V t

We are now ready to define a regionally

least cost repair.

Definition: A modification, M, is a

series of edit operations, EIE2...En, where

each E i is a series of insertions, and an

optional delete or replace operation. The

string resulting from the application of

the modification, M, to a string x, Ixl=n,

is written M(x). The cost of the modifica-

tion, C(M(x)), is the sum of the costs of

the edit operations.

Definition: Given two strings x,

y @ V t, with x in Pr(G), a repair of y fol-

lowing x, is a modification, M, such that

xM(y) is in Pr(G).

Definition: A regionally least-cost

repair of y following x is a repair, M, of

y following x such that for any other such

repair, N, of y following x, C(N(x))

C(M(x)).

3. An algorithm for globally least-cost

repair

We will develop the algorithm first as

a globally least-cost repair algorithm.

Then in the next section, we will restrict

it to the more feasible regionally least-

cost case.

Aho and Peterson perform their "least

errors parse" by adding to the grammar er-

ror productions, which simulate modifica-

tions to the input. We will take a comple-

mentary approach, and use a modified parser

on the original grammar. The modified

parser will be able to: advance the parser

state as if additional symbols were in the

81

input (simulate insertions), consume input

without changing the parse state (dele-

tions), and advance the parser state as if

one symbol were in the input, while consum-

ing some other symbol (replacements).

These changes to the parser are equivalent

to the error productions used by Aho and

Peterson, and render the grammar highly am-

biguous; a general context-free parser is

therefore necessary.

For our parser, we choose the algo-

rithm of Graham, Harrison and Ruzzo [9].

This parsing algorithm produces a triangu-

lar matrix, each cell of which contains a

set of "dotted productions", A --) ~-~,

representing the possible parses of a

corresponding substring of the input. The

dot indicates that part of the production,

4, has been used to match input symbols.

The position of a cell in the matrix indi-

cates the portion of the input covered;

cell i,j covers symbols i+l through j, in-

clusive. Cells that match a longer sub-

string of the input are created by "pasting

together" two existing cells; elements in

cell i,j are found by pasting cell i,k to

cell k,j for i<k<j. The parse is also ad-

vanced by pasting cells to the input sym-

bols.

We introduce error repair by extending

these pasting operations (and the "Predict"

function), and attaching a running cost to

each dotted production. When the parse is

completed, we extract the repair from the

matrix in much the same way as a parse is

extracted in ordinary use. The remainder

of the algorithm is unchanged.

Informally, the Graham-Harrison-Ruzzo

algorithm will move the dot if the symbol

immediately to its right is matched. For

example, if we have the dotted production

A --) ~'B~, and some production B --~ y has

been satisfied, then we can move the dot,

yielding A --9 ~B-~. In order to accommo-

date ~-productions, the dot is also moved

across symbols which can derive i. The

result is a set of dotted productions, each

with the dot in a different location. The

original pasting operators are:

For Q a set of dotted productions and

R a set of symbols:

QXR = {A --~ ~B~'Y I A --~ ~-B~y G Q,

==> ~, and B G R }

Q*R = {A --9 ~B~'Y I A --) ~'B~ ~ Q,

==> ~, and B -- C for some C G R }

For Q and R sets of dotted productions:

QXR = {A --~ ~B~'y I A --~ ~'Bpy ~ Q,

==> ~, and B --) 6" ~ R }

Q*R = {A --~ c(B~.y [A --9 c(-B~y ~ Q,

==> ~, B==>C for some CGV t

and C --~ 6" @ R }

The x and * products differ in that x con-

siders only direct derivations, while *

considers indirect derivations.

We can simulate insertions into the

program by moving the dot across any sym-

bol, X, as if it derived ~, at a cost of

C(X). This change to the parsing algorithm

is equivalent to adding error productions

to the grammar which allow all symbols to

derive ~. Those symbols that derive ~ in

the original grammar will have C(X)=0; in

such cases, the action of the parser will

be the same as it would in the original al-

gorithm. To simulate a deletion, we paste

a dotted production to an input symbol, a,

without moving the dot, at a cost of DC(a).

Thus a symbol is consumed without advancing

the parse state. We can now present our

modified pasting operators.

If Q is a set of dotted productions

and R is a set of terminal symbols, then

define

QXR = { A--) c(B~')/;c I A--) c('B~)/;C' ~ Q,

B ~ R, c = c'+c(p) }

U { A--) c('~;c I A--~ c('~;c' ~ Q,

c = c'+DC(B), B ~ R }

82

Q*R = { A --) ~B~'~;C I A --) ~'B~;c' 8 Q,

Derive(B,D)~ ~, D ~ R,

c = c'+C(~)+Derive(B,D) }

U { A --9 ~'~;c I A --9 ~-~;c' ~ O,

c = c'+DC(B), B @ R }

If Q and R are sets of dotted productions,

then define

QXR : { A --9 c(B~')/;c I A --9 c('B~)/;c I @ Q,

B --9 6";c 2 ~ R,

c = c I + c 2 + C(p) }.

Q*R : (A--9 ~B~'y;C I A--9 ~'B~y;c I 8 Q,

Derive(B,D) @ ~, D --9 6";c 2 ~ R,

c = Cl+C2+Derive(B,D)+C(~) }.

We must also modify the Predict func-

tion, which, in the original algorithm,

sets up chain rules and insures that the

contents of subsequent cells will legally

follow the parse so far. In our algorithm,

Predict sets up insertions as well. For R

a subset of V n

PREDICT(R) = { C --~ (~'~;c [C --9 (~ ~ P,

B =={ yC6, B @ R, c = C(c() }

For R a set of dotted productions,

PREDICT(R) = PREDICT({B] A--~z(-B~ ~ R}).

The effect of these extensions to the

parsing algorithm is the same as the effect

of adding Aho and Peterson's error produc-

tions; the sets in the parse matrix are

isomorphic to those that would be obtained

using the modified grammar. Therefore, the

correctness and complexity of the parser

should be unchanged by the modifications.

The proof of the correctness of the algo-

rithm [12] follows the same lines as the

proof in [9], with a different definition

of what it means to match a string. The

only danger is the additional cost com-

ponent of the dotted productions: since

the cost is potentially unbounded, the

presence of dotted productions that differ

only in the cost could cause the size of a

cell to be unbounded. However, it is easy

to show that if two dotted productions in a

set differ only in the cost component, then

the one with higher cost can never partici-

pate in a least cost repair; any parse can

be made cheaper by using the other dotted

production. Therefore, a higher cost du-

plicate can always be discarded, and the

size of the cell is not affected by the

presence of cost components.

4. An algorithm for regionally least-cost

repair

We have presented an algorithm that

finds a least-cost repair of an entire pro-

gram, in time proportional to the cube of

the length of the program. We do not pro-

pose that it be used as such. Instead, we

intend that the repair algorithm be called

only when needed, and then only to repair a

reasonably sized region of the program. A

linear-time parser, such as LL(1) or LR(1),

will be used for the major portion of the

program (for the entire program if there

are no errors).

Instead of producing a sentence of the

language, we want our algorithm to produce

a string which can follow the input already

accepted by the parser; therefore we will

use a grammar that describes the legal con-

tinuations. Such a grammar can be derived

from the state of the parser. If an LL(1)

parser is used, this task is easy: the

parse stack describes the expected suffix,

and we replace the starting production with

the production S --~ stack. For an LR(1)

(or SLR or LALR) parser, we can use the

technique described in [4] to derive a reg-

ular expression that describes the legal

suffixes. From this regular expression we

85

can easily derive an equivalent context

free grammar, which will be added to the

original grammar for the purpose of repair.

Once the parse/repair algorithm has

started, it can stop at any point; after

each iteration of the main loop, the region

of least-cost repair has been extended over

one more input symbol. Thus, the algorithm

can be used to find a least-cost repair

over a fixed-sized region, or the size of

the region can be dynamically controlled.

A repair over a region of fixed size has an

advantaqe in that it requires a fixed

amount of time to compute, but the fixed

size may be too small for some error situa-
tions and unnecessarily large for others.

We are then faced with the question of how

to choose the region size. Levy [ii] sug-

gests that the region should extend until

all of the plausible repairs are

"equivalent" in that all suffixes of one

repaired string are suffixes of the other

repaired strings. This criterion is ap-

pealing, because it implies that no matter

which repair is chosen, there can be no ef-

fect on the legality of the remaining in-

put. Unfortunately, in most programming

languages, the test is impractical. For

example, in Pascal one of the repairs may

include insertion of begin, and legal suf-

fixes will thus contain an extra end, which

other repairs will not accept. Until the

end of the input is reached, the repairs

cannot'be equivalent. Tai [16] suggests

extending the region over clusters of er-

rors, until a sequence of k correct symbols

are seen. This criterion avoids continuing

to the end of the input -- unless the clus-

ter of errors extends that far -- but the

region beyond the last error is always

fixed, and may be too large or sm~ll in

some cases. We are investigating a number

of criteria for dynamic region sizes, in-

cluding Tai's MCL(k) and a weakened version

of Levy's equivalence.

In order to obtain better repairs by

using a dynamic region, we run the risk of

extending the region to the entire program;

in that case our algorithm is cubic in the

size of the program. In practice this may

not be a problem. In fact, if the expected

size of a region is constant, the expected

time to compute a repair may also be con-

stant, if the distribution is reasonable.

For instance, if the size of a region is

some fixed minimum, k, plus a variable part

that follows an exponential distribution,

P(m)=Ce -Dm, then the expected time to

repair that region is less than

Cl+C2/(l-e-Dn-D), which is bounded by a

constant as the size of the program, n,

grows. Thus, in the average case the total

time to parse and repair a program is

linear in the length of the program. As we

experiment with dynamic regions, we will

measure the distribution of region sizes.

After the repair has been chosen, con-

trol is returned to the linear-time parser.

Repairs to the program can be effected in

two ways. The repaired string can be phy-

sically placed into the input buffer and

reparsed, or the state of the parser can be

reset, using information from the parse ma-

trix.

As an example, suppose we have the

following grammar:

S --) E Etail

E--) a I (E)

Etail --) + E Etail I

Assume all terminals have insertion cost =

1 and deletion cost = 2. If we try to

parse the input "a + a a)" using a strong

LL(1) parser, an error will be detected at

the third 'a', with the parse stack con-

taining 'Etail' The repair algorithm will

proceed as follows:

84

I.

2.

'a' can be matched by the 'E' in

Etail --9 + E Etail at cost C('+')=l.

'a' can also be matched directly by

E --9 a, and from E --) (E), at a

cost of C(' (')=I. Finally, 'a' can

be deleted, at cost DC('a')=2. Cell

0,I of the parse matrix will contain

these dotted productions:

Etail --9 + E • Etail ; 1

E --9 a - ; 0

E --)(E-) ;i

S --) • Etail ; 2

{deletion of a}

')' can be pasted to a previous

match, such as E --~ (E-). It can

also be deleted. Cell 0,2 of the

parse matrix will contain

E --) (E) ; 1

{paste to result of matching 'a'}

S --~ Etail • ; 5

{paste to result of deleting 'a'}

Etail --9 + E • Etail ; 3

{deletion of ') '}

E --~ a • ; 2

{ditto}

E --~ (E •) ; 3

{ditto}

S --9 • Etail ; 4

{deletion of 'a' and ')'}

Etail --9 + E • Etail ; 2

{paste E--~(E)-;I to predicted

Etail--)+. E Etail;l}

S --9 Etail • ; 2

{paste E--)(E). ;] to

S-->'Etail; 0, Derive(Etail,E)=l}

For simplicity, we have not shown all

of the elements of the cells, nor all the

cells in the matrix. The elements shown

for cell Z,2 illustrate that the same dot-

ted production may be entered twice, with

different costs; a lower cost version will

replace a higher cost. Although the lowest

cost element in cell 0,2 is "E--)(E)-;I",

that cost only includes the repairs neces-

sary to match the input -- insert ' (' be-

fore 'a) -- and not the repairs necessary

to follow the previously accepted input --

insert '+'. To insure that all repairs are

included, we must start from an element in-

volving the goal production --

S --) Etail • ;2 in this case -- or one

which is directly predicted by the goal

production -- Etail --) + E Etail ;2. A

traceback from one of these dotted produc-

tions will show that the regionally least-

cost repair is to insert '+(' before the

'a'. A locally least-cost algorithm would

have handled the error in two steps: first

inserting '+' before the 'a', then deleting

the ')' when the parser again announces er-

ror. This combined repair is inferior to

the regionally least-cost repair.

5. Implementation results

In the introduction we presented a

series of situations which show that a lo-

cally least-cost algorithm must occasional-

ly choose a poor repair. Let us examine a

few more cases in which we have found the

regionally least-cost algorithm to perform

better than the locally least-cost. These

examples are adapted from Ripley's and

Druseikis's collection of Pascal er-

rors [15].

program p (input, output);
funtion f (var x: integer): boolean;

begin
end;

begin
end.

In this example, an error is announced when

'funtion' is read. Without a spelling

corrector, replacing 'funtion' with 'func-

tion' is not plausible, so we must make do

with insertions and deletions. A likely

locally least-cost repair is insertion of

'const' or 'type', which will cause a cas-

85

cade of spurious errors. Again, a region-

ally least-cost will see the additional

repairs necessary if 'const' is inserted,

and will instead insert 'function' and

delete either 'function' or 'f' This ex-

ample also emphasizes the effect of region

size; a region of size less than nine will

not extend as far as the return type, and

the algorithm will have no information with

which to distinguish insertion of 'pro-

cedure' from 'function ~ •

program p (input, output).
vat a, b, : real; i, 3 : {nteger;
begin end.

The error is an extra comma, but the parser

will not detect error until the colon is

read. Without a backward move, there is no

way to remove the comma, so we must either

insert another identifier, or delete the

colon. Deleting the colon is likely to be

chosen by a locally least-cost algorithm,

causing additional errors. Again, the re-

gionally least-cost algorithm will choose

the preferred repair: in this case, in-

serting an identifier.

In the two examples above, the repairs

suggested as likely for a locally least-

cost algorithm were, in fact, chosen by the

algorithm described in [4], using a set of

well-tuned costs. On the error programs

provided by Ripley and Druseikis, we found

that about 28% were repaired poorly by the

locally least-cost algorithm. Of these,

over 80% were improved upon by the region-

ally least-cost algorithm. Of course, not

all of the repairs were as good as in the

examples above. The sample programs in-

clude a number of systematic misuses of the

language, such as declaration sections in

the wrong order (which are best handled by

error productions [5,8]), and serious lexi-

cal errors, such as improper comment delim-

iters. In such cases, a regionally least-

cost algorithm makes less of a mess than a

locally least-cost algorithm.

The repair algorithm requires careful

implementation if reasonable speed is ex-

pected. The effect of region size on com-

putation time is overshadowed by the effect

of grammar size, for moderate regions. Our

prototype, a straightforward implementa-

tion, computes a five symbol repair for

Pascal in approximately five seconds (on a

VAX-II/780). We are confident that a more

careful implementation could be made signi-

ficantly faster. Even so, the algorithm

will be slower than locally least-cost
techniques. However, further speed-up is

available if the regionally least-cost al-

gorithm is not called for every error.

Since the locally least-cost algorithm does

well in most cases, we can try out the lo-

cal repair first. Parsing ahead several

symbols to validate the repair is quick (in

a one-pass compiler, semantic actions will

be disabled), and if additional errors are

found, the regionally least-cost algorithm

is invoked. If no additional errors are

found, the local repair stands, and

parsing/compilation resumes in earnest.

Since the greater computational cost of a

regionally least-cost repair is incurred

only in those cases in which it is needed,

the average speed is improved with no loss

of repair quality.

6. Conclusion

We have presented a mode] of error-

repair using a forward move. This model

provides a formal, language-level defini-

tion of how repairs are chosen, using the

idea of regional least-cost. The algorithm

to compute such corrections is linear in

the size of the grammar, and cubic in the

size of the region. Even if region size is

variable, in the average case the total

complexity of the parse/repair package is

essentially linear.

86

7.

[i]

References

[2]

[3]

[4]

[5]

[6]

[7]

Aho, Alfred V. and Thomas G. Peterson

, "A minimum distance error correcting

parser for context-free languages,"

SIAM Journal of Computin~ ~, 4, pp.

3@5-312 (1972).

Anderson, S. O. and Roland C. Back-

house, "Locally least-cost error

recovery in Earley's algorithm," ACM

Transactions o__nn Programming Languages

an__~d Systems !, 3, pp. 318-347 (July

1981).

Backhouse, Roland C., Syntax of Pro-

gramming Languages, Theory and Prac-

tice, Prentice-Hall (1979).

Fischer, Charles N., Bernard A. Dion,

and Jon Mauney, "A Locally Least-Cost

LR Error-Corrector," ACM Transaction

o__nn Programming Languages and Systems,

(to appear).

Fischer, Charles N. and Jon Mauney,

"On the role of error productions in

syntactic error correction," Computer

Languages 5, pp. 131-139 (1981).

Fischer, Charles N., Donn R. Milton,

and Jon Mauney, "A locally least-cost

LL(1) error corrector," Tech. Report

#371, University of Wisconsin (August

1979).

Fischer, Charles N., Donn R. Milton,

and Sam B. Quiring, "Efficient LL(1)

error correction and recovery using

only insertions," Acta Informatica I_~3,

2, pp. 141-154 (1980).

[9] Graham, Susan L., Michael A. Harrison,

and Walter L. Ruzzo, "An Improved

Context-Free Recognizer," ACM Transac-

tions on Programming Languages and

Systems 2, 3, pp. 415-462 (July 1980).

[10] Graham, Susan L. and Steven P. Rhodes,

"Practical syntactic error recovery,"

Communications of the ACM 18, pp.

639-650 (1975).

[ii] Levy, J. p., "Automatic correction of

syntax errors in programming

languages," Acta Informatica ~, pp.

271-292 (1975).

[12] Mauney, Jon, "Least-cost error repair

using extended right context", Ph.D.

thesis, in preparation. University of

Wisconsin-Madison

[13] Pai, Ajit B. and Richard B. Kieburtz,

"Global Context Recovery: A New Stra-

tegy for Parser Recovery From Syntax

Errors," ACM Transactions on Program-

ming Languages and Systems 2, i, pp.

18-41 (January 1980).

[14] Pennello, Thomas J. and Frank L. DeRe-

met, "A forward move algorithm for LR

error recovery," Fifth ACM Symposium

o__nn Principles of Programming

Languages, pp. 241-254 (1978).

[15] Ripley, G. David and Frederick C.

Druseikis, "A Statistical Analysis of

Syntax Errors," Computer Languages !,

pp. 227-240 (1978).

[16] Tai, Kuo Chung, "Syntactic error

correction in programming languages,"

IEEE Trans on Software Engineering

SE-4, 5, pp. 414-425 (1978).

[8] Graham, Susan L., Charles B. Haley,

and William N. Joy, "Practical LR er-

ror recovery," Sigplan Notices 14, 8,

pp. i&8-175 (1979)

87

