
Automatic Parallelization via Matrix Multiplication

Shigeyuki Sato Hideya Iwasaki
The University of Electro-Communications, Tokyo, Japan

sato@ipl.cs.uec.ac.jp iwasaki@cs.uec.ac.jp

Abstract
Existing work that deals with parallelization of complicated reduc-
tions and scans focuses only on formalism and hardly dealt with
implementation. To bridge the gap between formalism and imple-
mentation, we have integrated parallelization via matrix multipli-
cation into compiler construction. Our framework can deal with
complicated loops that existing techniques in compilers cannot par-
allelize. Moreover, we have sophisticated our framework by devel-
oping two sets of techniques. One enhances its capability for paral-
lelization by extracting max-operators automatically, and the other
improves the performance of parallelized programs by eliminating
redundancy. We have also implemented our framework and tech-
niques as a parallelizer in a compiler. Experiments on examples
that existing compilers cannot parallelize have demonstrated the
scalability of programs parallelized by our implementation.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage]: Processors—Compilers, Optimization; D.1.2 [Program-
ming Techniques]: Automatic Programming

General Terms Experimentation, Languages, Design, Algorithms

Keywords automatic parallelization, loop, reduction, scan, matrix
multiplication, semiring, linear recurrence equation

1. Introduction
Since 2005, processor vendors have generally adopted multi-core
architectures instead of boosting the clock rate of processors. This
means that sequential programs cannot be made run faster with-
out parallelization. Thus, we cannot avoid parallel programming in
striving for higher performance. However, parallel programming is
a challenge for most programmers. The easiest way for program-
mers to make programs parallel is to use automatic parallelization.

The most commonly used methodology for automatic paral-
lelization of loops is doall parallelization [1, 2], whose core is to
guarantee the independence of each iteration, i.e., the parallelism
among iterations, by analyzing loop-carried data dependence. This
framework suffices for simple data parallelism, but does not suffice
for reduction, which is a generalization of summation.

Standard doall parallelizers can recognize simple reductions,
e.g., one that just computes the sum of an array:

x← 0; for i = 1 to n do x← x + a[i] done.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

This loop is equivalent to x← 0+
Pn

i=1 a[i]. As is well known, the
summation can be computed in parallel owing to the associativity
of the addition; the parallel summation is computed in O(n/p +
log p) time, where p is the number of threads. Although this loop
has a loop-carried data dependence with respect to x (i.e., writing x
after reading x over an iteration), its doall parallelization succeeds
because the definition and use of x are recognized as a reduction.

The summation is a trivial reduction. There are, however, more
unobvious and non-trivial reductions. For example, the following
loop evaluates a polynomial expression through the Horner scheme,
i.e.,

Pn
i=0 a[n − i]ci = a[n] + c(a[n − 1] + c(a[n − 2] + · · · +

c(a[1] + c(a[0] + c · 0)) · · ·)).

x← 0; for i = 0 to n do x← c · x + a[i] done.

Doall parallelizers cannot recognize this loop as a reduction. As a
result, this loop-carried data dependence with respect to x makes
its doall parallelization impossible. However, we can rewrite this
loop into

x← x0; for i = 0 to n do x← Ai × x done,

where x =

„

x
1

«

, x0 =

„

0
1

«

, Ai =

„

c a[i]
0 1

«

.

This loop is equivalent to x←
`

Qn
i=0 An−i

´

× x0. It is the same
as the summation except for changing the addition into the matrix
multiplication. Since the matrix multiplication is an associative
operation, we can also compute the product of matrices in O(n/p+
log p) time. Thus, this loop can be parallelized.

As shown above, if we can transform a loop body into a matrix
multiplication form, we can obtain an efficient parallel version
of its loop. This technique is known as a parallel algorithm for
solving linear recurrence equations [10]. There is work that applies
a generalization of this idea to automatic parallelization [6, 8,
13, 14, 21]. Although the formalism developed in such work is
promising for parallelizing complicated loops, no one connects the
formalism with the implementation aspect. We have resolved this
problem by integrating the formalism into doall parallelization.

Our work to bridge the gap between formalism and practical im-
plementation includes a solution to an important problem concern-
ing the max-operator, which plays a key role in parallelizing dy-
namic programming. In prior work on algebra-based parallelization
[13, 21], this operator is assumed to be given, even though in real-
istic programs the max-operation is usually described by means of
if-statements. We have developed a technique for extracting max-
operators automatically from if-statements.

Our work has resulted in the following important contributions.

• We have developed a novel framework for loop parallelization
(Sections 3 and 4). The formalization of a loop body by us-
ing matrix multiplication over a semiring enables paralleliza-
tion of various loops, especially one with a complicated body
that contains loop-carried data dependence and if-statements.
This parallelization is more powerful than the standard doall

470

parallelization. Our framework is an integration of doall paral-
lelization and the existing formalism [6, 8, 13, 14, 21]. To the
best of our knowledge, our work is the first to deal seriously
with the implementation aspect of deriving associative opera-
tors for automatic parallelization.

• We have developed a technique for extracting max-operators
automatically and semantically from if-statements by using an
off-the-shelf Satisfiability Modulo Theories (SMT) solver (Sec-
tion 5). This technique plays an important role in our frame-
work for parallelizing various loops whose bodies contain if-
statements. Automatic extraction of max-operators has not been
addressed in algebra-based parallelization [13, 21]. To the best
of our knowledge, our work is the first to deal seriously with the
max-plus semiring in the practical context of automatic paral-
lelization.

• We have developed optimization techniques for loops that are
parallelized by our framework (Section 6). Because these tech-
niques reduce the intrinsic overhead caused by our paralleliza-
tion, they are essential in practical situations. One of these tech-
niques is also helpful for doall parallelization (Section 6.4).

• We have implemented our framework and techniques as a par-
allelizer in a realistic compiler. We have then conducted exper-
iments on examples whose doall parallelization fails and have
confirmed the scalability of these versions parallelized by our
implementation (Section 7).

2. Preliminaries
2.1 Notations
For program description in this paper, we use a mixture of mathe-
matical operators and syntax constructs of standard procedural lan-
guages like Fortran and C.

The two sides of an assignment are connected by ←. If each
side is a vector, it is a vectorized assignment, which denotes simul-
taneous assignment of every entry on the right side to the corre-
sponding entry on the left side. Note that vector and matrix in this
paper are virtual, i.e., not an actual data structure. They are simply
syntax constructs for expressing vectorized assignment and matrix
multiplication. Operators · and × denote scalar and matrix multi-
plication, respectively. We omit · when it is obvious. A sequence
enclosed by brackets, e.g., [a1, . . . , an], is an extensible notation
of an array, i.e., enumerated values are stored in the array in order.
Statement are separated by a semicolon.

for i = 1 to n do b done is a for-loop with a control variable of
i and a body of b. Unless otherwise noted, n denotes the number of
iterations. if e then b1 else b2 endif is an if-statement. (e1) ? e2 :
e3 is a conditional expression using the syntax of C. parallel k ∈
{1, . . . , p} do b done is a parallel block in which b is executed by
p threads in parallel, where k denotes thread ID. Unless otherwise
noted, p denotes the number of threads. Here, the shared memory
model, i.e., EREW PRAM, and p� n are assumed.

2.2 Terminologies
Techniques for identification and parallelization of the doall loop,
which is a loop whose all iterations can be executed in parallel,
have been well studied [1, 2]. In this paper, we use the term doall
parallelization for these techniques.

To identify a loop as a doall loop, a doall parallelizer analyzes
the loop-carried data dependence. There is a loop-carried (true)
data dependence with respect to a variable (or array element) x
iff x is defined in an iteration and x is used in the succeeding
iterations where its definition reaches. If there is no loop-carried
data dependence in a loop, the loop is identified as a doall loop.

Consider for i = 1 to n do x ← ai done. Because there is no
loop-carried data (true) dependence, we can transform this loop
into its doall version. However, in its parallelized version, the result
of x is nondeterministic. In this case, at the end of the loop, x must
be an, which is called the final value of x, due to its sequential
semantics. A guarantee that the final values of variables defined in
a parallelized loop coincide with those in its sequential version is
called the final value guarantee.

We define several terms here.

Definition 1 (Accumulator). A scalar variable x is an accumulator
iff there is loop-carried data dependence with respect to x. Unless
otherwise noted, x is an accumulator.

Definition 2 (Recurring expression and symbolically constant ex-
pression). An expression e in a loop is a recurring expression iff e
is computed from some loop-carried value. If e is not a recurring
expression, we call e a symbolically constant expression. C denotes
the set of symbolically constant expressions in a given program.

2.3 Target Loops
The target of the proposed parallelization is a non-nested loop the
body of which contains neither jumps (e.g., goto, break, and con-
tinue), labels, pointers, indirect access to arrays, nor function calls;
i.e., a target loop body contains only assignments, if-statements,
and side-effect-free expressions. We call a sequence of assignments
and if-statements a block.

For convenience, the start value of the control variable of each
target loop is normalized to 1 using induction variable transforma-
tion [1, 2]. There are two characteristic restrictions on target loops:

• There is no loop-carried data dependence with respect to any
array element.

• If an accumulator occurs in the condition-part of an if-statement,
there is no assignment to the accumulator in either the then-part
or else-part.

We can overcome the first restriction by using scalar replacement
[5]. A technique for overcoming the second restriction is presented
in Section 5, but the explanation in Sections 3 and 4 supposes this
restriction. This paper does not deal with programs that cause run-
time errors, and ignores arithmetic overflow and round-off errors.

2.4 Parallel Primitives
We introduce parallel primitives, which are generic patterns of
parallel computation. The definitions of primitives used are:

reduce(�, [x1, . . . , xn]) = xn � · · · � x1

scan(�, e, [x1, . . . , xn]) = [e, x1 � e, . . . , xn−1 � · · · � x1 � e],

where � is an associative operator. Although the definitions of
reduce and scan above are a bit different from these traditional
definitions for convenience, it does not matter essentially.

The reduce algorithm consists of two phases: local reduction
and global reduction. In the local reduction, p threads reduce n
elements into p elements independently. In the global reduction, p
threads reduce the result of the local reduction into the final result
cooperatively. For example, consider reduce(+, [a1, . . . , an]). In
the local reduction, the k-th thread computes rk ←

Pkn/p

(k−1)n/p+1 ai.
In the global reduction, p threads compute

Pn
1 ai through

Pp
1 ri.

The time complexity of the local reduction is O(n/p) and that of
the global reduction is O(log p). O(p) space is used.

The scan algorithm consists of three phases: local reduction,
global scan, and local scan. The local reduction is the same as
that of reduce. In the global scan, p threads produce new p el-
ements from the result of the local reduction cooperatively. In
the local scan, p threads compute the final result from the re-

471

sult of the global scan and the input sequence. For example,
consider scan(+, e, [a1, . . . , an]). In the local reduction, the k-
th thread computes rk ←

Pkn/p

(k−1)n/p+1 ai. In the global scan,
p threads compute r′ ←

ˆ

e, e +
P1

1 ri, . . . , e +
Pp−1

1 ri

˜

. In

the local scan, the k-th thread computes
h

e +
P(k−1)n/p

1 ai, . . . ,

e +
Pkn/p−1

1 ai

i

from r′[k − 1] and the subarray of a. The time
complexity of the global scan is O(log p) and that of the local scan
is O(n/p). O(p) space is used for intermediate data.

In the shared memory model, we can simply describe each of
the local reduction and local scan as a parallel loop with an iteration
space that is block-partitioned. We can merge a doall loop followed
by a scan or reduce into the local reduction of the reduce or
the local scan of the scan if the number of iterations in the doall
loop is the same as the length of an array that the scan or reduce
computes. The global reduction and global scan are described in
detail elsewhere [18].

3. Formalization based on Matrix Multiplication
Before describing our framework for parallelization, we present
examples that are used in this section.

Example 1. Although the following loop contains a simple assign-
ment other than a reduction, doall parallelizers can also handle it.

x← 0; for i = 1 to n do x← x + a[i]; a[i]← a[i] + 1 done.

Doall parallelizers deal with the above loop by recognizing part
of a trivial reduction in an ad hoc way. Thus, they cannot paral-
lelize non-trivial reductions that they cannot recognize as reduc-
tion. An example of non-trivial reductions is the polynomial evalu-
ation shown in Section 1. Another example is as follows.

Example 2. The following loop computes the maximum tail-
segment sum (mts) of a given array, i.e., the maximum sum of a
contiguous segment that contains the last element of a given array;
e.g., the mts of [2,−1,−3, 5, 0,−4, 6] is 5 + 0 + (−4) + 6 = 7.

x← 0;

for i = 1 to n do
if x + a[i] ≥ 0 then x← x + a[i] else x← 0 endif done.

This is a non-trivial reduction because its loop body contains an
if-statement whose condition-part contains an accumulator.

In addition, doall parallelization cannot support using the inter-
mediate results of reduction for other computations.

Example 3. The following loop computes the prefix sum of an ar-
ray, i.e.,

ˆ

P1
i=1 a[i], · · · ,

Pn
i=1 a[i]

˜

. Although it resembles sum-
mation, its doall parallelization fails due to a[i]← x.

x← 0; for i = 1 to n do x← x + a[i]; a[i]← x done.

Example 4. The following loop resembles Example 2; it computes
the start position of the mts of an array. For example, the start
position of the mts of [2,−1,−3, 5, 0,−4, 6] is 4.

x1 ← 0; x2 ← 1;

for i = 1 to n do
if x1 + a[i] ≥ 0 then x1 ← x1 + a[i]

else x1 ← 0; x2 ← i + 1 endif done,

where x1 is the mts and x2 is its start position. Note that x2 ← i+1
implicitly uses the intermediate result of x1 since it is in an if-
statement whose condition-part uses x1. Here, we assume that x1

is not used after this loop for convenience. The start position of the
mts is important for application; e.g., if a[i] be the price of a stock
at time i, x2 is the time when the price of the stock began to rise.

3.1 Matrix Multiplication Form
Recall the example of polynomial evaluation shown in Section 1;
its loop has a loop-carried data dependence with respect to x, which
makes doall parallelization impossible. However, we can transform
its loop body into the following form:

x← Ai × x, where x =

„

x
1

«

, Ai =

„

c a[i]
0 1

«

.

Note that the second entry of the result of Ai × x is always 1. We
permit a constant to be in the left side of an assignment if both sides
are always the same. From the above transformation, the loop turns
out to be equivalent to x ← An × · · · × A0 × x. Owing to the
associativity of ×, we obtain the following assignment:

x← reduce (×, [A0, . . . , An])× x.

Since we can transform this loop into a reduce, we can compute it
in O(n/p + log p) time. Note that we can combine the generation
of Ai from array element a[i] with the local reduction of reduce.
The key point of this parallelization is to transform the loop body
into matrix-vector multiplication by introducing x and Ai. Then,
by unfolding all iterations, we can obtain a chain of matrix multi-
plications, i.e., a reduction.

We can generalize the above idea over a semiring1. We use
(R,⊕,⊗) to denote a semiring, and 0 and 1 to denote identity
elements regarding ⊕ and ⊗, respectively. An operator ×{⊕,⊗}
denotes matrix multiplication over (R,⊕,⊗), i.e., ⊕ and ⊗ of
×{⊕,⊗} correspond to + and · of ×, respectively. (R, +, ·), (R ∪
{−∞}, ↑, +), and ({0, 1},∨,∧), where ↑ is the max-operator
defined as x ↑ y = (x < y) ? y : x, are useful instances of
semirings.

Definition 3 (Matrix multiplication form). A block is in matrix
multiplication form iff it is structured as follows:

0

B

B

@

x1

...
xm

1

1

C

C

A

←

0

B

B

@

e11 · · · e1m e10

...
. . .

...
...

em1 · · · e1m em0

0 · · · 0 1

1

C

C

A

×{⊕,⊗}

0

B

B

@

x1

...
xm

1

1

C

C

A

,

where ejk ∈ C.
Theorem 1. If a loop body is in matrix multiplication form, the
loop can be computed in O(n/p + log p) time through reduce.

As an example, consider Example 2, which has a body of

if x + a[i] ≥ 0 then x← x + a[i] else x← 0 endif.

If this if-statement is equivalent to an assignment x← (x+a[i]) ↑
0, it can be transformed into the following matrix multiplication
form over (R ∪ {−∞}, ↑, +).

x← Ai ×{↑,+} x, where x =

„

x
0

«

, Ai =

„

a[i] 0
−∞ 0

«

.

Thus, this loop becomes a parallel reduction: x← reduce(×{↑,+},
[A1, . . . , An]) ×{↑,+} x. The success of this parallelization owes
much to the transformation of the original if-statement into an ex-
pression by means of the max-operator. Thus, in our parallelization,
it is quite important to extract the max-operator from the original
loop body, which contains (possibly nested) if-statements. Section
5 shows our solution to the problem of max-operator extraction.

1 A semiring is an algebraic structure similar to a ring, but without the
requirement that each element must have an additive inverse.

472

Of course, we can also transform a simple reduction that doall
parallelizers can recognize into a matrix multiplication form. For
instance, the loop body of the summation loop in Section 1 is:

x← Ai ×{+,·} x, where x =

„

x
1

«

, Ai =

„

1 a[i]
0 1

«

.

3.2 Normal Form
Although the matrix multiplication form covers non-trivial reduc-
tions, it is not satisfactory because it cannot express either doall
computation, e.g., Example 1, or use of the intermediate results of
reduction for other computations, e.g., Examples 3 and 4. There-
fore, we need a more general way of parallelization based on matrix
multiplication to enhance its applicability in practical situations.

To understand this generalization, recall the loop of Example 1:

for i = 1 to n do x← x + a[i]; a[i]← a[i] + 1 done.
Its loop body consists of a reduction part (x ← x + a[i]) and
an increment part (a[i] ← a[i] + 1). We cannot transform this
body into a matrix multiplication form. However, observing that
the reduction and increment parts are independent computations,
we find that this example’s loop can be divided into two loops:

for i = 1 to n do x← x + a[i] done;
for i = 1 to n do a[i]← a[i] + 1 done.

Both of these two loops are parallelizable; the first is a summation
loop shown in Section 1 and the second is a simple doall loop. In
this way, we parallelize the loop of Example 1.

Next, recall the loop of Example 3:

for i = 1 to n do x← x + a[i]; a[i]← x done.
Again, it is impossible to transform this loop body into a matrix
multiplication form. However, by computing and storing all inter-
mediate values of x into a temporary array in advance, we can di-
vide this loop into the following two loops:

for i = 1 to n do t[i]← x; x← x + a[i] done;
for i = 1 to n do a[i]← a[i] + t[i] done.

These two loops are parallelizable because the first is equivalent to
t ← scan(+, x, a); x ← x + t[n] and the second is a doall loop.
Here, we can eliminate t completely by fusing the local scan of
scan(+, x, a) and the doall version of the second loop.

We can use the above techniques to generalize the matrix mul-
tiplication form to the following normal form.

Definition 4 (Normal form). A block is in the normal form iff it is
structured as follows:

t← A×{⊕,⊗} x; b; x← t,

where t is a vector of temporary variables, A ×{⊕,⊗} x is the
same as the right hand side of the matrix multiplication form,
and b is a block of computations that contain no assignment to
any accumulator. We call b the auxiliary part. Note that a matrix
multiplication form can be transformed into a normal form the
auxiliary part of which is empty.

The normal form is used to easily distinguish the reduce or scan
computation that can be expressed by means of matrix multiplica-
tion from other computations. After obtaining a body in the normal
form, we can straightforwardly parallelize a loop that has the body
by dividing it into two parallel computations: 1) reduce or scan
with×{⊕,⊗} and 2) a doall computation for the auxiliary part. Note
that the latter can be efficiently embedded into the former.

Theorem 2. If a loop body is in the normal form, the loop can be
computed in O(n/p+log p) time with O(p) space for intermediate
data, by using the reduce algorithm or the scan algorithm.

3.3 Separable Normal Form
Sometimes, a single loop contains two (or more) reduction/scan
computations. In such cases, although it is impossible to transform
the loop body into a single normal form, we can extract a normal
form from the body and thereby obtain a sequence of loops, each
of which has a normal form.

For example, recall the loop body of Example 4:

if x1 + a[i] ≥ 0 then x1 ← x1 + a[i]

else x1 ← 0; x2 ← i + 1 endif .

This loop body has two reduction computations for x1 and x2. The
first is x1 ← (x1 + a[i] ≥ 0) ? x1 + a[i] : 0. The second is
x2 ← (x1 + a[i] ≥ 0) ? x2 : i + 1. We can transform the first into
the following normal form:

t← Ai ×{↑,+} x; x← t,

where t =

„

t
0

«

, Ai =

„

a[i] 0
−∞ 0

«

, x =

„

x1

0

«

.

Now, we expand t to an array and define ti =
`

t[i] 1
´T . Because

t[i] contains the value of x1 used in the second statement at the i-th
iteration of the loop, we can transform the original loop as follows:

for i = 1 to n do ti ← Ai ×{+,·} x; x← ti done;
for i = 1 to n do x2 ← (t[i] + a[i] ≥ 0) ? x2 : i + 1 done.

Next, we can transform this second loop’s body:

t′ ← A′
i ×{+,·} x′; x′ ← t′,

where t′ =

„

t′

0

«

, x′ =

„

x2

0

«

, c = (t[i] + a[i] ≥ 0),

A′ =

„

c ? 1 : 0 c ? 0 : i + 1
0 1

«

.

We can parallelize both loops on the basis of Theorem 2. Thus,
we have obtained a sequence of parallelizable loops:

for i = 1 to n do ti ← Ai ×{↑,+} x; x← ti done;
for i = 1 to n do t′ ← A′

i ×{+,·} x′; x′ ← t′ done.

In this case, the second loop encodes the final value guarantee for
x2. We can implement the final value guarantee more efficiently
(see Section 6.4).

Definition 5 (Separable normal form). Let b1; b2 be a sequence
of two blocks. b1 is a separable normal form iff b1 is in the normal
form and no accumulator updated in b1 is updated in b2. In addition,
if b2 is also a separable normal form, we call b1; b2 a sequence of
separable normal forms.

Corollary 1. If a loop body is a sequence of separable normal
forms, the loop can be computed in O(n/p + log p) time.

4. Parallelization Algorithm
As shown in Section 3, once we have obtained a normal form (or
a sequence of separable normal forms) of a given loop body, we
can parallelize the loop straightforwardly in a divide-and-conquer
manner: reduce or scan. Therefore, the core of parallelization al-
gorithms of our framework is to extract a normal form from a given
loop body. In this section, we describe algorithms for extracting it.

4.1 Extracting a Normal Form
We describe an algorithm for transforming a loop body into a
normal form. It consists of two phases: separation and extraction.

In the separation phase, a given block b is split into blocks b1

and b2 such that b1 contains only the updating of accumulators

473

found in b, and b2 corresponds to the residual computation. We
call b1 the reduction part and b2 the residual part. For example,
consider the following loop body:

if a[i] < 0 then x← x + a[i] else x← 2x endif a[i]← x + 1.

We can split this loop body into a reduction part,

if a[i] < 0 then x← x + a[i] else x← 2x endif,

and a residual part,

if a[i] < 0 then tx ← x+a[i] else tx ← 2x endif; a[i]← tx +1,

where tx is a temporary variable. The residual part directly corre-
sponds to the auxiliary part in the normal form.

In the extraction phase, a matrix multiplication form is ex-
tracted from the reduction part. First, all if-statements are converted
into assignments with conditional expressions, by inserting self-
assignments of accumulators as needed. For example,

if a[i] < 0 then x← x + a[i] else endif,

can be converted into

x← (a[i] < 0) ? x + a[i] : x.

Next, the reduction part, which is a sequence of assignments, is
converted into a single vectorized assignment by using symbolic
substitution of definitions of accumulators to uses of accumulators
as needed. For example,

x1 ← x1 + x2 + a[i]; x2 ← a[i] · x1 + x2,

can be converted into
„

x1

x2

«

←
„

x1 + x2 + a[i]
a[i] · (x1 + x2 + a[i]) + x2

«

.

Finally, each entry on the right side of the vectorized assignment
is transformed into a matrix multiplication form, by expanding
and simplifying each expression on the basis of the axioms of a
semiring. For example, the vectorized assignment above can be
transformed into

0

@

x1

x2

1

1

A←

0

@

1 1 a[i]
a[i] a[i] + 1 a[i] · a[i]
0 0 1

1

A×{+,·}

0

@

x1

x2

1

1

A .

We intuitively and informally sketches how to extract a coefficient
matrix as follows (see [19] for the details of its formal algorithm).

Algorithm 1 (Extraction of coefficient matrix). Let j, k ∈ {1, . . . ,

m}. Let
`

x1 · · · xm

´T ←
`

e1 · · · em

´T be a given vec-
torized assignment. Here, we regard ej as a function over a given
semiring whose parameters are x1, . . . , xm. An expression e′ de-
notes an entry of an extracted coefficient matrix; e.g., e′jk is the
(j, k)-th entry. A coefficient matrix is extracted as follows:

• e′jk is obtained by differentiating ej with respect to xk. Then,
the linearity of ej is also checked.

• e′j(m+1) is obtained by substituting 0 to all accumulators in ej .
• e′(m+1)k = 0, and e′(m+1)(m+1) = 1.

After these two phases, the normal form is immediately ob-
tained. We summarize the overall algorithm as follows.

Algorithm 2 (Extraction of normal form). Let b be a loop body.
Semirings are given.

1. Split b into b1 and b2, where b1 contains only updating of
each accumulator and b2 corresponds to a residual computation,
Note that b1 is a sequence of assignments.

2. Convert b1 into a vectorized assignment.

3. Extract a coefficient matrix from the right side of b1 by using
Algorithm 1; Try it for all semirings until it succeeds.

4. Transform b1, which is in matrix multiplication form, into a
normal form and insert b2 into its auxiliary part.

Due to space limitations, we omit the algorithm used to trans-
form a loop body into a sequence of separable normal forms. The
main difference from Algorithm 2 is to analyze the dependence
among accumulators. See [19] for the details.

4.2 Heuristic for Division
When an accumulator in a loop body occurs in an expression of
divisors or dividends, the body cannot be transformed into a normal
form by using only the axioms of a semiring. However, the axioms
of another algebra can be used to transform such a loop body into
a normal form. For example, consider the following loop:

for i = 1 to n do
x← (a[i] · x + b[i])/(c[i] · x + d[i]); y[i]← x done.

In this body, a Möbius transformation is recurrently applied to x.
Let fi be this Möbius transformation. By means of the projective
matrix representation of fi, we obtain

(fn ◦ · · · ◦ f1)(z) = (d ◦ f ′
n ◦ · · · ◦ f ′

1)
“

`

z 1
´T

”

,

where fi(z) =
a[i] · z + b[i]

c[i] · z + d[i]
, f ′

i(z) = Hi × z,

Hi =

„

a[i] b[i]
c[i] d[i]

«

, d

„„

w1

w2

««

=
w1

w2
.

By using this relation, we can transform the above loop into the
following loop with a body in normal form:

x1 ← x; x2 ← 1;

for i = 1 to n do
t← A×{+,·} x; y[i]← t1/t2; x← t done,

where t =

0

@

t1
t2
1

1

A , A =

0

@

a[i] b[i] 0
c[i] d[i] 0
0 0 1

1

A , x =

0

@

x1

x2

1

1

A .

We can generalize this transformation over a division semiring2.
(R, +, ·) and (R ∪ {−∞}, ↑, +) are useful instances of division
semirings. Note that the division over (R, +, ·) is /, that over
(R ∪ {−∞}, ↑, +) is −.

Theorem 3. A recurrence equation that applies a Möbius trans-
formation over a division semiring to an accumulator can be trans-
formed into a normal form.

We use Theorem 3 as a heuristic for divisions in extracting
normal forms. We omit the details of its transformation algorithm
due to space limitations. See [19] for the details.

5. Max-operator Extraction
The max-operator ↑ is not a built-in operator in most languages,
but, as shown in the parallelization of Example 2, it is quite help-
ful for parallelization. In this section, we describe a technique for
extracting max-operators from if-statements by exploiting an SMT
solver, which is, informally, a SAT solver extended to handle num-
bers, arrays, conditional expressions, etc.

First, we convert a loop body into a conditional vectorized
assignment (CVA), whose right side is a conditional expression

2 A division semiring is similar to a semiring, but with requirement that each
element must have a multiplicative inverse.

474

returning a vector. For example, consider the following loop body3:

if x1 + a[i] > 0 then x1 ← x1 + a[i] else x1 ← 0 endif;
if x1 > x2 then x2 ← x1 else endif.

By iterating symbolic substitution, we convert this body into an
equivalent CVA:

x← (x1 + a[i] > 0) ? (x1 + a[i] > x2) ? x′
1 : x′

2

: (0 > x2) ? x′
3 : x′

4,

where x′
1 =

„

x1 + a[i]
x1 + a[i]

«

, x′
2 =

„

x1 + a[i]
x2

«

,

x′
3 =

„

0
0

«

, x′
4 =

„

0
x2

«

, x =

„

x1

x2

«

.

Next, we eliminate infeasible subexpressions from the right side of
the CVA. We can use an SMT solver to detect them. In the above
CVA, the right side has no infeasible subexpression. Now observe
that x′

1, x′
2, x′

3, and x′
4 can be assigned to x. If it is possible

to convert the conditional expressions into max-expressions, we
obtain a vectorized assignment:

„

x1

x2

«

←
„

(x1 + a[i]) ↑ 0
(x1 + a[i]) ↑ x2 ↑ 0

«

. (1)

This is only an assumption. Then, we confirm this assumption by
checking that each assigned value is larger than or equal to other
candidate values under the precondition for assigning the value. In
the above example, for x1 ← (x1 + a[i]) ↑ 0, we check

∀x1, x2, a[i](x1 + a[i] > 0 ∧ x1 + a[i] > x2 → x1 + a[i] ≥ 0),

∀x1, x2, a[i](x1 + a[i] > 0 ∧ x1 + a[i] ≤ x2 → x1 + a[i] ≥ 0),

∀x1, x2, a[i](x1 + a[i] ≤ 0 ∧ x1 + a[i] > x2 → 0 ≥ x1 + a[i]),

∀x1, x2, a[i](x1 + a[i] ≤ 0 ∧ x1 + a[i] ≤ x2 → 0 ≥ x1 + a[i]).

To encode this problem into satisfiability problems, we convert ∀
into ∃ by negating each formula. Then, by using an SMT solver, we
test the satisfiability of

x1 + a[i] > 0 ∧ x1 + a[i] > x2 ∧ x1 + a[i] < 0,

x1 + a[i] > 0 ∧ x1 + a[i] ≤ x2 ∧ x1 + a[i] < 0,

x1 + a[i] ≤ 0 ∧ x1 + a[i] > x2 ∧ 0 < x1 + a[i],

x1 + a[i] ≤ 0 ∧ x1 + a[i] ≤ x2 ∧ 0 ≥ x1 + a[i].

If all these formulae are unsatisfiable, we obtain x1 ← (x1+a[i]) ↑
0. We similarly obtain x2 ← (x1 + a[i]) ↑ x2 ↑ 0. Finally, we
obtain (1), a set of linear recurrence equations over (R ∪ {−∞}, ↑
, +), which we can parallelize on the basis of Theorem 2.

The steps above are the key to extracting max-operators. If they
are applied naı̈vely, however, max-operators may not be extracted
from a CVA that has a symbolically constant condition-part on the
right side. For example, consider the loop body

if x + a[i] ≥ 0 then x← (a[i] > 0) ? x + a[i] : x + a[i] + 1

else x← 0 endif.

One set of candidate values assigned to x is {x + a[i], x + a[i] +
1, 0}, and the assumption from this set is x ← (x + a[i]) ↑
(x + a[i] + 1) ↑ 0. Because x + a[i] < x + a[i] + 1, this assump-
tion is incorrect. However, another set is {(a[i] > 0) ? x + a[i] :
x + a[i] + 1, 0}, and the assumption from this set is x← ((a[i] >
0) ? x + a[i] : x + a[i] + 1) ↑ 0. This assumption is correct. A
conditional expression whose condition-part is a symbolically con-
stant expression is unharmful for parallelization. Therefore, before
extraction of max-operators, we make an unharmful conditional ex-

3 A loop that has this body is part of mss described in Section 7.

pression coalesce into a vector. For example, we make the follow-
ing conditional expression:

c ?

„

e11

e12

«

:

„

e21

e22

«

, where c ∈ C,

coalesce into the following vector:
„

c ? e11 : e21

c ? e21 : e22

«

.

We summarize these techniques as follows.

Algorithm 3 (Extraction of max-operators). A CVA whose right
side, e, has no infeasible subexpression is given. Iterate Steps 1–4
until e becomes a vector.

1. Make all unharmful conditional expressions in e coalesce into
vectors.

2. Extract the most deeply nested conditional subexpression
whose all condition-parts are recurring expressions from e.

3. Test the extracted one on the basis of its precondition (using an
SMT solver) and obtain its equivalent max-expression.

4. Replace the extracted conditional expression in e with its equiv-
alent max-expression.

We can simply incorporate Algorithm 3 into Algorithm 2. Af-
ter Step 1, we convert a reduction part (b1) into a singly nested
if-statement, and then convert it into an equivalent CVA, by insert-
ing self-assignments as needed. Next, we eliminate its infeasible
subexpressions (possibly by using an SMT solver). Then, we apply
Algorithm 3 to this CVA and obtain a vectorized assignment. The
rest of the process follows Steps 3 and 4 of Algorithm 2.

6. Optimizations for Our Framework
Unfortunately, our parallelization imposes intrinsic overhead on
parallelized programs. Consider a sequential loop whose body is in
matrix multiplication form and its parallelized version. The original
sequential version iterates matrix-vector multiplication, while the
parallelized version iterates matrix-matrix multiplication. Hence,
overhead in proportion to the size of a coefficient matrix is im-
posed on the parallelized version. To obtain good performance in
practice, optimizations to minimize intrinsic overhead are impor-
tant. In this section, we describe several optimizations for paral-
lelized programs. Due to space limitations, we do not explain all
optimizations. See [19] for the details.

6.1 Accurate Method of Abstract Matrix Multiplication
Matsuzaki et al. [13] presented an optimization on the basis of
abstract matrix multiplication4 for parallelized reductions on trees.
It eliminates redundancy in matrix multiplication. Their original
method is a conservative one. We have developed an accurate
method for loops parallelized by our framework.

We describe how to optimize a loop whose body is a matrix
multiplication form with a coefficient matrix A. First, we abstract
the values of the entries of A to four values Z, I , C, and V . Z and
I denote 0 and 1, respectively. C denotes any constant value other
than 0 and 1. V denotes any non-constant value, i.e., the value of
a variable. Then, we simulate runtime matrix multiplication over
abstract matrices. Let A∗

0 be the abstract matrix of A. Updating of
abstract matrices is defined as A∗

i = A∗
0 ×{⊕∗,⊗∗} A∗

i−1, where
i ≥ 1 and the semantics of ⊕∗ and ⊗∗ is defined in Figure 1.
Here, an updating series of abstract matrices (i.e., A∗

0, . . . , A
∗
i , . . .)

reaches a stationary state (constant or periodic) since the size of
each matrix is fixed and the domain of each entry is finite.

4 Note that [13] contains incorrect descriptions concerning abstract matrix
multiplication, which were fixed in [11].

475

⊕∗ Z I C V

Z Z I C V
I I V V V
C C V V V
V V V V V

⊗∗ Z I C V

Z Z Z Z Z
I Z I C V
C Z C V V
V Z V V V

Figure 1. Semantics of two operators over the four abstract values.

Intuitively, A∗
i indicates how many variables we require for ac-

cumulating exponentiation of A and how we update these variables
with compile-time constants. For example, the updating series of
abstract matrices defined as follows converges at a constant state:

A∗
0 =

„

I V
Z I

«

, A∗
i =

„

V V
Z I

«

(i ≥ 1).

This indicates that, once we have computed a square of A, we re-
quire always only two loop-carried scalar variables for exponen-
tiating A. Concretely, An over (R,⊕,⊗) can be implemented as
follows:

i← 0; A′ ← A; i← 1; A′′ ← A×{⊕,⊗} A′;

for i = 2 to n do A′′ ← A×{⊕,⊗} A′′ done,

where A′ =

„

1 v2

0 1

«

, A′′ =

„

v1 v2

0 1

«

.

For convergence at a finite set of periodic states, we convert it
into a constant state by loop unwinding. Due to space limitations,
we omit the details. See [19] for the details.

The primary effect of this technique is, of course, elimination of
non-trivial redundancy; i.e., it realizes non-trivial copy propagation
and constant folding. In addition, this technique has an important
secondary effect: elimination of storing 0 into variables. 0 over
(R ∪ {−∞}, ↑, +) is −∞. This is a troublesome value because
its annihilation property (i.e., −∞ + a = a + (−∞) = −∞)
is difficult to efficiently implement. This technique enables us to
identify and eliminate 0 in compile-time.

The main difference between our method and Matsuzaki et al.’s
[13] is the semantics of updating of abstract matrices. Their method
is conservative with respect to convergence, i.e., over-approximates
the stationary state of an updating series of abstract matrices. As a
result, their method cannot deal with periodic states effectively and
avoid storing 0 into variables, whereas our method can do these
successfully by using loop unwinding together.

6.2 Splitting up shift

Sometimes, reduce and scan computations include a kind of doall
computation. Such computation appears in a coefficient matrix as
its row whose entries are 0 except for the rightmost entry. For
example, consider the following loop:

for i = 1 to n do x← A×{+,·} x done,

where A =

0

@

a[i] 1 0
0 0 a[i]
0 0 1

1

A , x =

0

@

x1

x2

1

1

A .

The second row, i.e., x2 ← a[i], represents doall computation. We
can split up the row by introducing a temporary array t as follows:

for i = 1 to n− 1 do t[i]← a[i] done; t[0]← x2;

for i = 1 to n do x′ ← A′ ×{+,·} x′ done,

where A′ =

„

a[i] t[i− 1]
0 1

«

, x′ =

„

x1

1

«

.

The first loop is obviously a doall loop. The second loop, whose
body is in the matrix multiplication form, is more efficient than

the original loop because the size of A′ is smaller than that of A.
This efficiency make an effect on matrix-matrix multiplication of
the parallelized version. Although this transformation causes O(n)
space overhead due to the introduction of t, this space overhead is
completely eliminated by fusion as mentioned later.

This split up doall computation corresponds to shift [7], a pat-
tern of parallel computation, and this transformation corresponds
to the combination of scalar expansion and loop fission in doall
parallelization.

6.3 Fusion
Consider a scan followed by a reduce. We can compute both the
local scan of the preceding scan and the local reduction of the
succeeding reduce simultaneously. If the result of the preceding
scan is used only by the succeeding reduce, we can eliminate O(n)
space for the intermediate data that the scan produces and that the
reduce consumes. Such kind of transformation is called fusion. The
transformation described above is the fusion of scan and reduce
[12]. It is, of course, applicable to ones extracted by our framework.
Furthermore, the fusion of shift with scan or reduce [7] is also
applicable. We omit the details of these fusion methods.

6.4 Specialization of Final Value Guarantee
Sometimes, a loop body contains the following assignment:

x← c1 ? x : c2, where c1, c2 ∈ C.
We observe that this updating of x does not use the current value
of x because self-assignment means no updating. Based on this
observation, we can compute the result of x in parallel by using
a parallel loop and a reduce. For example, consider the following
loop derived from parallelization process of Example 4:

for i = 1 to n do x2 ← (t[i] + a[i] ≥ 0) ? x2 : i + 1 done.

Its parallelized version is:

parallel k ∈ {1, . . . , p} do
v[k]← x2; b[k]← False;
for i = 1 + (k − 1)n/p to kn/p do if t[i] + a[i] ≥ 0 then

else v[k]← i + 1; b[k]← True endif done
done; x← reduce(., [v1, . . . , vp]),

where x =

„

x2

b[0]

«

, vi =

„

v[i]
b[i]

«

, vi . vj = (b[j]) ? vj : vi.

In this program, v is an array whose k-th element is the partial
result computed by the k-th thread and b is an array whose k-
th element is the flag to denote that the k-th thread update its
partial result. Because this parallelized program does not use matrix
multiplication, it is more efficient than one shown in Section 3.3.

From the viewpoint of doall parallelization, this computa-
tion corresponds to a final value guarantee for a conditional as-
signment. In doall parallelization, this kind of guarantee has not
been dealt seriously with. In fact, ICC 11.1 with -parallel
-par-threshold0 options did not parallelize a loop that contains
this assignment because ICC cannot deal with it. Therefore, the
presented technique here is also helpful for doall parallelization.

7. Experiments
We have implemented our framework and techniques as a paral-
lelizer in a compiler infrastructure, COINS5, which includes a C
frontend, a doall analyzer, and a C code generator. Our implemen-
tation employs an SMT solver, Yices6. Figure 2 shows the entire

5 http://coins-compiler.sourceforge.jp/international/
6 http://yices.csl.sri.com/

476

Figure 2. The entire structure of our implementation. HIR is the
high-level intermediate representation of COINS. Our parallelizer
communicates with Yices through inter-process communication.

structure of our implementation. Our implementation produces par-
allelized C programs that employ OpenMP constructs.

To confirm the scalability of programs parallelized by our im-
plementation, we conducted experiments on the following example
programs, each of whose doall parallelization fails.

poly It computes polynomial evaluation through the Horner scheme.
Its parallelized version executes reduce with ×{+,·} of 2-by-2
matrices. The order of a given polynomial was 227 and it was
evaluated with double arithmetic.

mss It solves the maximum segment sum problem, which is to
compute the maximum sum of a contiguous segment of a given
array. It is known as a programming pearl. Its parallelized
version executes reduce with ×{↑,+} of 3-by-3 matrices. The
length of a given array was 227 and its each element was int.

mtsp It is equivalent to Example 4; it computes the mts of a given
array and its start position. Its parallelized version executes
scan with ×{↑,+} of 2-by-2 matrices and executes the final
value guarantee for a conditional assignment. The length of a
given array was 227 and its each element was int.

ld It computes the Levenshtein distance between two given strings
through dynamic programming. Our parallelization worked to
divide the longer sides of the memo table whose element was
int. Its parallelized version executes scan with ×{↑,+} of 2-
by-2 matrices. The length of one given string of char was 227

and that of the other was 6.

tls It is a solver for tridiagonal linear systems. It consists of three
parallelizable loops. The first executes LU decomposition, i.e.,
obtains LUx = b. It was parallelized by using Theorem 3. Its
parallelized version executes scan ×{+,·} of 3-by-3 matrices.
The second solves Ly = b, and the third solves Ux = y. The
parallelized versions of the second and third execute scan with
×{+,·} of 2-by-2 matrices. The parallelized solver is equivalent
to [20]. The dimension of a given system was 226 and it was
solved with double arithmetic.

fdm It solves a one-dimensional heat equation through an in-place
finite difference method (FDM). The parallelization of stan-
dard implementations of FDM to use a buffer where values
in the next time-step are stored is trivial, but that of in-place
ones is non-trivial. Its parallelized version does not compute
matrix multiplication because its coefficient matrix can shrink
completely through splitting up shift and its fusion. Its parallel
computation is thus done only through the local reduction. The
number of space cells was 227, that of time steps was 10, and
the values of temperature were double.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

s
p
e

e
d
u

p

number of threads

poly
mss

mtsp
ld

tls
fdm

Figure 3. Scalability of parallelized versions of six examples.

poly mss mtsp ld tls fdm
seq. (ms) 360 522 351 1807 487 2483
par. (ms) 578 265 633 2383 1083 3261

seq. / par. (%) 62.2 197 55.4 75.8 45.1 76.1

Table 1. Execution time of original sequential versions and paral-
lelized single-threaded versions of six examples.

p 1 2 3 4 5 6 7 8
r 1.73 1.80 2.41 2.22 2.56 2.63 3.02 3.44

Table 2. Ratio of speed of our parallelized mss to that of Fisher
and Ghuloum [8]’s mss; r and p denote ratio of speed (higher is
better) and number of threads, respectively.

We used a server equipped with dual Xeon X5550 (4 cores;
3.06 GHz; HT disabled) and 12 GB of memory (DDR3-1333)
running Ubuntu 10.04 (64-bit), and we compiled each program to
its executable by employing ICC 11.1 with the O3 optimization.

As shown in Figure 3, the parallelized versions of poly, mtsp,
mss, and ld achieved near-linear scalability and nearly 6 or more
times speeds with 8 threads. These results reflected the theoretical
scalability (shown in Theorem 2). In contrast, the speed of par-
allelized fdm peaked out on 4 threads and the speedup of paral-
lelized tls degraded. Because these do relatively much memory ac-
cess, memory bandwidth bound their performance. As mentioned
in Section 6, our parallelization causes intrinsic runtime overhead.
Table 1 shows the execution time of the original sequential version
and parallelized single-threaded version for each program. Each ex-
ample had expected performance, except for mss. This is because
the original sequential version of mss was abnormally slow for un-
known reasons. However, this aberration is independent of the cor-
rectness and utility of our parallelization. Overall, without memory
bandwidth issues, our parallelization achieved good scalability.

Fisher and Ghuloum [8]’s method parallelizes mss automati-
cally into the composition of a scan and reduction, unlike ours. We
tested the version parallelized by using their method. Table 2 shows
the ratio of the speed of our parallelized mss to that of their paral-
lelized mss. Our framework and techniques enabled the compiler
to produce the more efficient parallel mss than theirs.

The SMT problem is not easier than the SAT problem, which is
NP-complete. Therefore, to exploit an SMT solver requires high
costs potentially. Our implementation exploits Yices to extract
max-operators. Our implementation can dump each query for Yices
as a file. We measured the execution time of Yices for queries.

477

example mss mtsp ld
number of queries 8 2 2

total time (ms) 11 4 4

Table 3. Execution time for Yices to extract max-operators.

Yices’s version was 1.0.27. Table 3 shows the results. The exe-
cution time for each program was short enough for practical use.
Moreover, because we can test each query independently, we can
obtain better performance by exploiting process-level parallelism.
Therefore, our approach based on an SMT solver is very practical.

8. Discussion
8.1 Prior Work and Our Improvement
The most significant prior work is one by Fisher and Ghuloum [8].
They pioneered in automatic parallelization of loops by extracting
associative operators. We briefly describe their formalization and
technique, and compare ours with theirs.

Their key observation is that, owing to the associativity of the
function composition, application of a composite function can com-
pute in parallel by computing the function composition per se.
Their key idea is that, if a function is closed under composition,
its composition can be computed efficiently. For example, fi(x) =
aix+bi, fi is closed under composition: (f1◦f2)(x) = (a1a2)x+
(a1b2 + b1). The computation of ◦ in f1 ◦ f1 corresponds to that
of a1a2 and a1b2 + b1. Concretely, they formalized a loop that
computes reduction or scan as an application of a composite func-
tion consisting of its modeling function, which represents its loop
body, and then parallelized the loop into a version that computes
the composition of the modeling function in parallel.

Obviously, their formalization is more general and powerful
than ours. The modeling function of the matrix multiplication form
is the affine function over a semiring, which is closed under com-
position. Hence, our formalization is only a special case of theirs.
However, our framework is more practical because it is easier to
implement in compilers and to derive efficient parallel programs.

The test of closure under composition is potentially very diffi-
cult and costly because it necessitates searching in enormous space.
This difficulty derives from a fact that proof of disclosure by coun-
terexample is almost impossible because the closure property is too
abstract. In contrast, to derive matrix multiplication, we have only
to check the linearity of recurrence equations. The linearity is eas-
ier to check, and moreover we can find a counterexample of the
linearity immediately.

Of course, they had noticed this difficulty. They developed a
heuristic to test the closure by checking structural isomorphism of
simplified nested conditional expressions. However, this approxi-
mation has several problems. First, the generality of this heuristic
is such a little that it managed to enable us to extract a single max-
operator. Second, to avoid a complicated conditional expression,
they split a loop body into as small ones as possible. Then, they
parallelized computations for dependent accumulators as indepen-
dently as possible. As a result, they transform a loop potentially
parallelized as a single reduction into a composition of a reduc-
tion and scans. In fact, they parallelized mss as a composition of
a scan and reduction, whose performance is worse than its single-
reduction version (see Table 2).

In contrast, we extract max-operators before trying paralleliza-
tion. We can then easily parallelize recurrence equations over
(R ∪ {−∞}, ↑, +). Matrix multiplication can deal with depen-
dent (as well as independent) accumulators as a vector. Therefore,
our framework can derive a single reduction from computations for
dependent accumulators, e.g., mss. In addition, they did not per-

form exhaustive search for its complexity, but we easily do it by
exploiting an SMT solver. Focusing on max-operators significantly
simplifies analysis for parallelization and affords optimizations.

Overall, our framework focuses on techniques rather than for-
malism and on practicality rather than generality. In spite of the less
generality, our framework can deal with all their examples, and fur-
thermore, derive more efficient programs than theirs did. It demon-
strates that the power of our framework is empirically no less than
that of theirs, and that our framework is more practical.

8.2 Parallelization of Recursive Functions
Matsuzaki et al. [13] dealt with parallelization of a reduction of
trees and presented a model of matrix multiplication over a semir-
ing. Hence, our formalization per se is not so novel and is a vari-
ation specialized for loops. Their framework does not deal with
accumulation and assumes the max-operator to be given. Although
their semi-automated code generator is equipped with an optimiza-
tion mechanism (see also Section 6.1), they did not show any exper-
imental result on the performance of parallelized programs. There-
fore, we do not consider their work as fully automatic paralleliza-
tion in practical situations.

Chin et al. [6] presented the context preservation theorem that
formalizes the idea of [8] in a functional language, and an algo-
rithm for parallelizing a linear self-recursive function into a list ho-
momorphism [4], which is a naturally parallelizable recursive form.

Xu et al. [21] presented a type-based approach to parallelization
on the basis of the context preservation theorem. Their focus was
on the analysis that uses an algebra similar to a semiring even
though their implementation can generate list homomorphisms.
They hardly dealt with higher-order linear recurrences, whereas
we have dealt seriously with them. Since they assumed the max-
operator to be given, did not deal with optimization, and conducted
no experiment on programs parallelized by their implementation,
we therefore judge that their work is not one for fully automatic
parallelization in practical situations.

Morihata and Matsuzaki [14] presented that quantifier elimina-
tion by virtual substitution (QEVS) enables us to directly extract
associative operators based on the context preservation theorem
from recursive functions, and demonstrated that their QEVS-based
implementation with simple heuristics can parallelize non-linear,
non-self-recursive, and accumulative functions. Although QEVS is
modular, however, QEVS is too costly to implement in compilers,
and their technique has less scalability to the number of variables.

Morita et al. [15] presented an algorithm to extract associative
operators based on inversion of functions and the third homomor-
phism theorem. Their work is very interesting, but their paralleliza-
tion is impractical because the third homomorphism theorem ne-
cessitates two equivalent functions for one target problem.

8.3 Linear Recurrence Equation and Scan
Apart from work on automatic parallelization, Kogge and Stone
[10] presented a parallel algorithm, which is now an algorithm of
scan, for solving a general class of linear recurrence equations by
formalizing the class with matrix operations. Stone [20] presented
a parallel algorithm for solving a tridiagonal linear system on the
basis of scan and a projective matrix of Möbius transformation.
Cyclic reduction [9] is another parallel algorithm for solving it.

From this historical background, it is quite natural to parallelize
computation of linear recurrence equations through scan with ma-
trix multiplication. Although generalization over an algebra (e.g., a
semiring) is not explicitly mentioned in [10, 20], these algorithms
are sufficiently generic. Therefore, there is no difficulty in dealing
with computation of linear recurrence equations. From the perspec-
tive of automatic parallelization, the difficulty is to discover this
computation from a given loop automatically.

478

Redon and Feaurier [17] presented methods to detect sequential
scans in the polytope model. With respect to parallelization, their
methods fundamentally depend on the detection of trivial built-
in associative operators by pattern matching. Although they men-
tioned derivation of matrix multiplication from a first-order linear
recurrence equation and Möbius transformation, they considered
each of these as a special case and did not generalize these at all.
They did not deal with parallelization of a loop that has a compli-
cated body such as one containing if-statements and one containing
computations other than linear recurrence equations.

Nistor et al. [16] presented optimization techniques for ma-
trix multiplication derived from parallelized linear recurrence equa-
tions. Their techniques reduce the space used in matrix multiplica-
tion by recovering an expression of one entry from an expression
of another entry on the basis of linear relations between these ex-
pressions. Because their techniques are independent of ours, we can
apply them to our framework.

8.4 Standard Approach in Doall Parallelization
Doall parallelization (and also vectorization [3]) fundamentally ne-
cessitates eliminating every loop-carried data dependence in tar-
get loops by employing loop transformation. For example, loop
skewing [2] eliminates loop-carried data dependence and exposes
wavefront parallelism in a nested loop such as ld. Whereas our
framework incorporates reduction as a fundamental part, doall par-
allelization handles reduction as a special case of eliminating loop-
carried data dependence.

The book on the standard doall parallelization [2] tells reduc-
tions have three essential properties: 1) “they reduce the elements
of some vectors or array dimension down to one element”, 2) “only
the final result of the reduction is used later; use of an intermediate
result voids the reduction”, and 3) “there is no variation inside the
intermediate accumulation; that is, the reduction operates on the
vector and nothing else.” Besides, reduction operators are almost
always assumed as built-in associative commutative ones.

Our framework relaxes these properties that are regarded as
essential ones. Because our framework can parallelize computation
for mutually dependent accumulators, our framework relaxes the
first. The use of scan overcomes the second and third. Therefore,
our framework is a natural generalization of doall parallelization.

9. Conclusion
We have presented novel techniques to parallelize various loops.
Our techniques extend doall parallelization.

We think that there is room for future work regarding deal-
ing with nested loops. The most popular framework for optimizing
nested loops is the polyhedral model, which often accompanies par-
allelization. The tie-up between our techniques and the polyhedral
model is an innovative work. In addition, we think that our tech-
nique to extract max-operators is helpful for vectorization. There-
fore, the exploitation of fine-grained data parallelism by using our
techniques is another innovative work.

Acknowledgments
We would like to thank Masato Takeichi and Zhenjiang Hu for
encouraging our research. We are grateful to Akimasa Morihata,
Kento Emoto, and Kiminori Matsuzaki for technical discussions
with the first author.

References
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison Wesley, second edition,
2006.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. Morgan Kaufmann, 2001.

[3] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian. Automatic Intra-
Register Vectorization for the Intel R©Architecture. Int. J. Parallel
Program., 30(2):65–98, 2002.

[4] R. S. Bird. An Introduction to the Theory of Lists. In Logic of
Programming and Calculi of Discrete Design, volume 36 of NATO
ASI Series F, pages 3–42. Springer-Verlag, 1987.

[5] D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation
for Subscripted Variables. In Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design and Implementation
(PLDI ’90), pages 177–187. ACM, 1990.

[6] W.-N. Chin, A. Takano, and Z. Hu. Parallelization via Context Preser-
vation. In Proceedings of IEEE International Conference on Computer
Languages (ICCL ’98), pages 153–162. IEEE CS Press, 1998.

[7] K. Emoto, K. Matsuzaki, Z. Hu, and M. Takeichi. Domain-Specific
Optimization Strategy for Skeleton Programs. In Euro-Par 2007 Par-
allel Processing, volume 4641 of Lecture Notes in Computer Science,
pages 705–714. Springer, 2007.

[8] A. L. Fisher and A. M. Ghuloum. Parallelizing Complex Scans and
Reductions. In Proceedings of the ACM SIGPLAN 1994 Conference
on Programming Language Design and Implementation (PLDI ’94),
pages 135–146. ACM, 1994.

[9] W. Gander and G. H. Golub. Cyclic Reduction – History and Ap-
plications. In Proceedings of the Workshop on Scientific Computing,
1997.

[10] P. M. Kogge and H. S. Stone. A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations. IEEE Trans.
Comput., 22(8):786–793, 1973.

[11] K. Matsuzaki. Parallel Programming with Tree Skeletons. PhD
thesis, Graduate School of Information Science and Technology, The
University of Tokyo, 2007.

[12] K. Matsuzaki and K. Emoto. Implementing Fusion-Equipped Parallel
Skeletons by Expression Templates. In Implementation and Applica-
tion of Functional Languages (IFL ’09), volume 6041 of Lecture Notes
in Computer Science, pages 72–89. Springer, 2010.

[13] K. Matsuzaki, Z. Hu, and M. Takeichi. Towards Automatic Paralleliza-
tion of Tree Reductions in Dynamic Programming. In Proceedings of
the 18th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’06), pages 39–48. ACM, 2006.

[14] A. Morihata and K. Matsuzaki. Automatic Parallelization of Recursive
Functions using Quantifier Elimination. In Functional and Logic Pro-
gramming (FLOPS ’10), volume 6009 of Lecture Notes in Computer
Science, pages 321–336. Springer, 2010.

[15] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Au-
tomatic Inversion Generates Divide-and-Conquer Parallel Programs.
In Proceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’07), pages 146–
155, 2007.

[16] A. Nistor, W.-N. Chin, T.-S. Tan, and N. Tapus. Optimizing the paral-
lel computation of linear recurrences using compact matrix represen-
tations. J. Parallel Distrib. Comput., 69(4):373–381, 2009.

[17] X. Redon and P. Feautrier. Detection of Scans in the Polytope Model.
Parallel Algorithms Appl., 15(3–4):229–263, 2000.

[18] J. H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann
Pub, 1993.

[19] S. Sato. Automatic Parallelization via Matrix Multiplication. Master’s
thesis, The University of Electro-Communications, 2011.

[20] H. S. Stone. An Efficient Parallel Algorithm for the Solution of a
Tridiagonal Linear System of Equations. J. ACM, 20(1):27–38, 1973.

[21] D. N. Xu, S.-C. Khoo, and Z. Hu. PType System: A Featherweight
Parallelizability Detector. In Programming Languages and Systems
(APLAS ’04), volume 3302 of Lecture Notes in Computer Science,
pages 197–212. Springer, 2004.

479

