
Incremental Generation of Parsers
J. Heering’ , P. Klint’,‘, J. Rekers’

7) Department of Software Technology, Centre for Mathematics and Computer Science
I? 0. Box 4079, 1009 AB Amsterdam, The Netherlands

2) Programming Research Group, University of Amsterdam
P. 0. Box 4 7 882, 1009 DB Amsterdam, The Netherlands

ABSTRACT
An LR-based parser generator for arbitrary context-free
grammars is described, which generates parsers by need and
processes grammar modifications by updating already existing
parsers. We motivate the need for these techniques in the
context of interactive language definition environments,
present all required algorithms, and give measurements com-
paring their performance with that of conventional tech-
niques.

1. INTRODUCTION

The design of parser generators is usually based on the
assumption that the generated parsers are used many times.
If this is indeed the case, a sophisticated, possibly inefficient,
parser generator can be used to generate efficient parsers.
There are situations however, where this assumption does not
apply:

l When a language is being designed, its grammar is not yet
completely fixed. After each change of the grammar, a
(completely) new parser must be generated, but there is no
guarantee that it will be used sufficiently often. Three
observations can be made here:
- The time needed to parse the input is not only deter-

mined by the efficiency of the parser, but also by that of
the parser generator.

- It may happen that some parts of the grammar are not
needed by any of the sentences actually given to the
parser; the effort spent on such parts by the parser gen-
erator is wasted.

- In general only a small part of the grammar is modified.
One would like to exploit this fact by making a
corresponding modification in the parser, rather than
generating an entirely new one.

l There is a trend towards programming/specification
languages that allow general user-defined syntax (LITHE
[San82], OBJ [FGJM85], Cigale [Voi86], ASF/SDF
[BHK89]). In such languages each module defines its own
syntax, and each import of a module extends the syntax
of the importing module with the (visible) syntax of the
imported module. For efficient parsing and syntax-
directed editing of these languages, it is of great impor-
tance to use a parser generator that can handle a large
class of context-free grammars, and that can incrementally
incorporate modifications of the grammar in the parser.

We describe a lazy and incremental parser generator IPG,

Permission to copy without fee all or parl of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-89791-306-X/89/0006/0179 $1.50

which is specially tailored towards the highly dynamic appli-
cations sketched above:

l The parser is generated in a lazy fashion from the gram-
mar. There is no separate parser generation phase, but
the parser is generated by need while parsing input.
When typical input sentences need only a small part of
the grammar, a smoother response is achieved than in the
conventional case, since there is no delay time due to the
parser generation phase and parsing can start immedi-
ately. When the input sentences do not use the whole
grammar, work is saved on the generation process as a
whole. It turns out that in comparison with conventional
techniques, the overhead introduced by this lazy technique
is small.

l The parser generator is incremental. A change in the
grammar produces a corresponding change in the already
generated parser. Parts of the parser that are unalI’ected
by the modification in the grammar are re-used. Hence,
the effort put in generating them is not thrown away.
This clearly has advantages for interactive language
definition systems.

l The efficiency of the parsing process itself remains
unalIected, in the sense that once all needed parts of the
parser have been generated, the parser will be as efficient
as a conventionally generated parser.

l The parsing algorithm is capable of handling arbitrary
context-free grammars.

For the general principles underlying our method, see
[HKR87b]. In [HKR87a] a lazy/incremental lexical scanner
generator ISG is described. The combination ISG/IPG is
used in an interactive development environment for the
ASF/SDF specification language mentioned above. The
universal syntax-directed editor of this environment is
parametrized with a syntax written in SDF, and uses
ISG/IPG as its parsing component. The response time of the
editor is acceptable, even though the lexical scanner and the
parser are generated on the fly from the SDF definition.

In section 2 we discuss related algorithms and show
how our technique evolved from them. In section 3 we
present the parsing algorithm used by us. Section 4 describes
a conventional parser generation algorithm. We extend this
algorithm into a lazy parser generation algorithm in section 5.
In section 6 we extend it once again into an incremental
parser generation algorithm. Finally, section 7 gives the
results of efficiency measurements, and section 8 contains
some concluding remarks.

2. THE CHOICE OF A PARStNG ALGORITHM

2.1. A comparison 01 algorithms

We compare some existing parsing algorithms with our own
algorithm from the perspective of highly dynamic applications
like the ones discussed in the previous section:

179

. LR(k) and LALR(k) algorithms [ASU86, ch. 4.71
These algorithms are controlled by a parse table that is
constructed beforehand by a table generator. The table
is constructed top-down, while the parser itself works
bottom-up. The parser works in linear time. When the
look-ahead k is increased, the class of recognizable
languages becomes larger (but will always be limited to
non-ambiguous grammars), and the table generation
time increases exponentially. With conventional LR or
LALR table generation algorithms it is impossible to
update an already generated parse table incrementally,
if the grammar is modified.

l Recursive descent and LL(k) algorithms [ASU86, ch. 4.41
A recursive descent parser generator constructs a pars-
ing program, whereas an LL generator constructs a
parse table that is interpreted by a fixed parser. In
both algorithms the parsers work top-down. The class
of accepted languages depends on the look-ahead k, but
is always limited to non-left-recursive, non-ambiguous
!pllHKUS.

0 Earley’s general context-free parsing algorithm [Ear701
Earley’s algorithm can handle all context-free gram-
mars. It works by attaching to each symbol in the
input a set of ‘dotted rules’. A dotted rule consists of a
syntax rule with a cursor (dot) in it and the position in
the input where the recognition of the rule started. The
set of dotted rules for symbol n + 1 is computed at
parse time from the set for symbol n. Earley’s algo-
rithm does not have a separate generation phase, so it
adapts easily to modifications in the grammar. It is this
same lack of a generation phase that makes the algo-
rithm too inefficient for interactive purposes.

l Cigale [Voi86]
Cigale uses a parsing algorithm that is specially tailored
to expression parsing. It builds a trie for the grammar
in which production rules with the same prefix share a
path. During parsing this trie is recursively traversed.
A trie can easily be extended with new syntax rules and
tries for different grammars can be combined just like
modules. The class of grammars is somewhat larger
than LR(0) grammars, because the parser does not use
look-ahead in a general manner and cannot backtrack.

. OBJ [FGJM85]
OBJ uses a recursive descent parsing technique with
backtracking. OBJ itself does not allow ambiguous
grammars, but the backtrack parser does detect all
ambiguous parses. This makes the parsing system suit-
able for finitely ambiguous grammars, but as mentioned
in [FGJMSS, p. 601 “parsing can be expensive for com-
plex expressions”, which makes the algorithm less suit-
able for large input sentences.

l Pseudo-parallel LR parsing [Lan74, Tom85, Rek89]
This is an extended LR parsing algorithm, that requires
a conventional (but possibly ambiguous) LR(0) or
LR(1) parse table. The parser starts as an LR parser,
but when it hits a conflict in the parse table, it splits up
in several LR parsers that work in parallel. The
theoretical framework for parallel LR and LL parsing
was introduced in [Lan74], and, independently, Tomita
optimized it for LR parsing. Grammars are restricted
to the class of finitely ambiguous context-free gram-
mars. As Ton&a’s parsing technique uses the same
table generation phase as conventional LR algorithms,
modifying the grammar is an expensive operation with
this algorithm.

l Incremental parser generator IPG
We developed this method on the basis of the parallel
LR parsing algorithm, but provided the algorithm with

au incremental LR(0) parse table generator. Parsing
starts with an empty parse table, which is expanded by
need during parsing. A change in the grammar is han-
dled incrementally by removing the parts of the parse
table that are aKected by the change; these parts are
recomputed for the modrfied grammar when the parser
needs them again. The parse table is constructed dur-
ing parsing, so after a certain time, depending on the
input given to it, the system will become as fast as a
conventionally controlled Tomita parser.

Fig. 1 gives an overview of the following characteristics of
these algorithms: capable of handling arbitrary context-free
grammars (powerful), efficient on large input sentences (fast),
efficient processing of modifications of the grammar (flexible),
and modular composition of parsers should be possible
(modular).

powerful fast
+/- ++

- ++
Earley ++

I
--

Cigale -- -
OBJ + --
Par. LR ++ ++
IPG ++ ++

Fig. 1: Comparison of various pa~ ‘Si

flexible
--
--
++
++
-I-

--
+ I

ing algorithms.

modular
--
--
++
++
+

--
+

2.2. Evolution of parsing algorithms
The simplest scheme for a (general) parser is given in Fig. 2.a
where the parser is controlled directly by the grammar. An
example of this technique is Earley’s algorithm in its pure
form. This kind of parser adapts easily to modifications in
the grammar, but is inefficient because for each parse step all
parsing information must be (re)computed from the grammar.

Fig. 2.a: Grammar driven parser, 2.b specialized parser.

These general grammar driven parsing algorithms have
evolved into the scheme of Fig. 2.b, where a specialized
parser is generated for a given grammar. An example of this
scheme is the recursive descent algorithm. These parsers are
more efficient because the parsing information is computed
only once in the parser generation phase.

Another frequently used organization is shown in Fig.
3.a, where the parser is split into a grammar dependent part,
the parse table, and a grammar independent part, the table
driven parser. The parse table and the table driven parser
together form a specialized parser for the grammar, and the
parse table is computed in a separate table generation phase.
Examples of this technique are LL and LR parsing algorithms
and Tomita’s parsing algorithm. The algorithms to be
presented in section 3 and 4 alI fall in this category.

In the system shown in Fig. 3.b the table generation
phase is made part of the parser. Here the table driven
parser is controlled by a parse table that is generated by
need. The parser uses the same efficient technique as that of
Fig. 3.a. This is the lazy parse table generation technique
that will be explained in section 5.

180

4 input

... .,

suecialised parser 1

tree

UIlkllOWn

visible

finished

d
input

. .

rammar driven pars

-
ree

Fig. 3.a: Table driven parser, 3.b lazy parser generation.

Fig. 4: Incremental parser generation

Fig. 4 shows an incremental parse table generator for
modifiable grammars. It consists of the same lazy table gen-
erator and the same table driven parser, but these are
extended with a table corrector. The latter can remove parts
of the generated parse table that have become incorrect due
to a modification in the grammar. For now, these
modifications may not occur during the actual parsing of a
sentence. This technique will be explained in section 6.

3. LR PARSING ALGORITHMS

In this section we discuss a simplified version of Tomita’s
(pseudo-)parallel LR parsing algorithm [Tom85, Rek89]. It
basically consists of a (dynamically varying) number of con-
ventional LR parsers running in parallel. We therefore recall
the details of ordinary LR parsing first.

In the algorithms which follow we need some low-level
functions. For objects we use the functions new(T) to create
an object of type T, and copy(O) to make a copy of object 0.
When an object 0 has a field f; that field can be accessed by
0.J For lists we use the functions head(L), tail(L), and
length(L), and for stacks we use pz.&(e, S), pop(S), and
top(S).

3.1. Conventlonal LR parsing
An LR parser is controlled by its parse table, which has an
ACTION and a GOT0 component. The ACTION table
determines, on the basis of the current state of the parser and
the current input symbol, the action for the parser to per-
form. An action can be either a ‘shift’, ‘reduce’, ‘accept’, or
‘error’. After a ‘reduce’ action, the parser uses the GOT0
table to determine what to do with the recognized non-

terminal.
LR-PARSE: A simple LR parser.
Input: A start state start-state and a sentence sentence. Sturt-

state is the state in which the parser starts, and sentence is
a list of terminals terminated by the end-marker $.

Output: ‘true’ if sentence is grammatically correct, ‘false’ oth-
erwise.

Description: The LR parse algorithm uses a stack of states.
The state on top of the stack is the current state of the
parser, and the head symbol of the input sentence is its
current input symbol. The parser calls ACTION(state,
symbol) with the current state and current symbol. Basi-
cally, the action ‘(shift state’)’ means that the parser has
advanced one step in recognizing a syntax rule and must
go to state statd, the action ‘(reduce ruley means that the
parser has recognized the syntax rule rule completely, the
action ‘accept’ means that the whole input has been recog-
nized, and the error action, which is denoted by an empty
action set, means that the input read so far can never
become a sentence of the language any more.
We adapted the original LR parsing algorithm, as given
for instance in [ASU86, ch. 4.71, a bit to our needs later
on: (1) ACTION returns a set of possible actions rather
than a single action. LR-PARSE can only handle sets of
at most one action correctly, but the parallel LR-parser
discussed in section 3.2 can handle action sets of arbitrary
length. (2) To keep things simple, we do not generate
parse trees and we do not keep symbols on the parse
stack, but only states. (3) We use an object of type
‘LRparser’ with a single field stuck as the parse stack of
the algorithm. LR-PARSE uses only one stack, but the
parallel version requires a dynamically varying number of
them.

Algorithm:
LR-PARSE(start-state, sentence):

parser : = nau(LRparser)
push(.sturt-state, parserstuck)
symbol, sentence : = heud(sentence), tuil(sentence)
while true do

state : = top@arser.stack)
if 3action E A CTION(stute, symbol) then

if action = (shift state’) then
push (stute’, parser.stack)
symbol, sentence : = heud(sentence), tuil(sentence)

elseif action = (reduce A :: = /I) then
for 1 f . . length(p) do pop@arser.stack) ad
state’ : = top@arser.stack)
push(GOTO(stute’, A), parser.stack)

elseif action = (accept) then
return true

fi
else

return false
fi

od

3.2. (Pseudo-)parallel LR parsing
The parallel LR parsing algorithm starts as a simple (conven-
tional) LR parser, but splits up in multiple parsers when
ACTION(stute, symbol) returns multiple actions. All simple
LR parsers are synchronized on their shift actions in such a
way, that only when all parsers have shifted on the current
input symbol, the next symbol is processed.

The parallel execution of all possible actions makes the
algorithm fit for arbitrary context-free grammars, indepen-
dently of the used look-ahead k of its LR(k) parse table gen-
erator. A larger k will however make parsing faster, as less

181

parser will then be needed.

PAR-PARSE: Parse a sentence with (pseudo-)parallel running
LR parsers.

appears on top of them. This maximally avoids double work
[Tom85].

Input: A start state start-state and a sentence sentence. Start-
state is the state in which the first simple LR parser starts,
and sentence is a list of terminals terminated by the end-
marker $.

PAR-PARSE is controlled by start-state and the results
of ACTION and GOTO. Start-state is part of a larger parser
control structure from which ACTION and GOT0 receive
their information too. The next section describes how this
control structure can be generated by a parser generator.

Output: ‘true’ if sentence is grammatically correct, ‘false’ oth-
erwise.

Description: The synchronization on shift actions is
expressed in the algorithm by using two pools of parsers,
this-sweq and next-sweep. The parsers in this-sweq still
have to shift on the current input symbol, the parsers in
next-sweep are waiting for the next symbol. Only when
this-sweep is empty (and if there are parsers left in next-
sweep), the next symbol is read from the input sentence.
When both pools of parsers are empty, this means that all
parsers died in an accepting or rejecting con&ration.
PAR-PARSE accepts its input if at least one simple parser
accepts it.
For each input symbol parsers are taken from this-sweep,
until this-sweep is empty. The parser that is taken from
this-sweep is removed from it, because for each action a
copy of the parser is made and the action is performed on
this copy. So, when there are no actions to be performed,
the parser just disappears. Shift actions place the copy in
the next-meq pool, reduce actions put the copy back in
this-sweep. Accept actions only set the variable accepted
to indicate that a simple parser has accepted the input.
It is important for the lazy parser generator that the
implementation of the copy operation for parsers is such
that the parse stacks become different objects which share
the states on them.

Algorithm:
PAR-PARSE(start-state, sentence):

accepted : = false
start-parser : = nau(LRparser)
push(start-state, start-parser.stack)
next-sweep : = {start-parser}
while next-sweep # 0 do

symbol, sentence : = head(sentence), tail(sentence)
this-sweep, next-sweep : = next-sweep, 0
while 3parser E this-sweep do

this-sweep : = this-sweep - @arser}
state : = top@arser.stack)
actions : = ACTION(state, symbol)
for Faction E actions do

parsef : = copy@arser)
if action = (shift statd) then

pu.sh(state’, parsef.stack)
next-sweep : = next-sweep U @arsef}

elseif action = (reduce A :: = /?) then
for 1 . . . length@) do pop@arsef .stack) od
state’ : = top@arsef .stack)
push(GOTO(state’, A), parsef .stack)
this-sweep : = this-sweep U (parser’}

elseif action = (accept) then
accepted : = true

fi
od

od
od
return accepted

4. CONVENTIONAL PARSER GENERATION

The parse table generation algorithm we describe in this sec-
tion is the conventional LR(0) algorithm, of which the lazy
parse table generation algorithm discussed in section 5 will
turn out to be a straightforward extension. As far as the
parsing algorithm itself is concerned, there is no difference
between the two generators.

We often speak of a parser generator, while in the LR
case, we actually ought to speak of a parse table generator.
But, as one can argue that the generated parse tables are
interpreted by a hard-wired LR-parsing algorithm, a parse
table can be seen as a program running on an LR-parsing
machine.

The table generated by an LR parse table generator is
a tabular representation of an internal structure built by the
generator. This internal structure is a ‘directed graph of item
sets’. Each row in the parse table represents a state of the
parser, and each state is equivalent to a set of items. The
graph of these item sets is thus the notion underlying both
the parse table and the parsing states. Fig. 5, 6 and 7 give an
example of an ambiguous grammar, its parse table and its
graph of item sets.

rule no. rule
0 BOOL :: = true
1 BOOL :: = false
2 BOOL ::= BOOL or BOOL
3 BOOL ::= BOOL and BOOL
4 start ::= BOOL

Fig. 5: Grammar of the Booleans.

State
true

Action Goto
false or and $ I BOOL

0

2
3
4 6
5 7
6 s4/r3 r3
7 s&r2 r2

Fig. 6: Parse table of the Booleans.

s2

lfl
rl
s2
s2
r3
r2

s3

l-0
rl
s3
s3
r3
r2

s5
ro
rl

s5/r3
sS/r2

s4
ro
rl

ace
ro
rl

1

Each box in the graph of Fig. 7 is a set of items. The
arrows between sets of items are the labeled edges of the
graph. During parsing, the parser moves through the graph:
a shift action causes a move along an edge labeled with a ter-
minal symbol; a reduce action first causes a move back
according to the stacked path of states, and next a move for-
ward along an edge labeled with a non-terminal symbol. Fig.
8 shows the moves of a parser when parsing the sentence ‘true
or false’.

A set of items is an object with the following fields:
l kernel

The optimization of Tomita on this parallel parsing algorithm The kernel field of a set of items contains the rules that
consist of using a parse graph, instead of a number of parse are potentially being recognized by the parser in that
stacks. Stacks in this graph are split when more actions than state/set of items. The dots ‘. ’ indicate how far the
one are possible, and joined again whenever the same state parser has progressed in each rule.

182

*,
B true false

@!Y-J,$!jkj

true

Fig. 7: Graph of item sets of the Booleans.

Fig. 8: The parsing of ‘true or false’.

l transitions
Each transition in the transitions field of a set of items
contains an edge to another set of items labeled with a
symbol. Transitions have the form (symbol itemset),
with itemset a set of items. If symbol is a terminal the
transition is a shift action; if it is a non-terminal the
transition is a GOT0 transition. The transition
($ accept) is a special case, the accept action.

l reductions
The reductions field of a set of items contains the syntax
rules that have been recognized completely in this
state/set of items. These rules may be reduced by the
parser. In diagrams we indicate reductions by underlin-
ing a rule in the corresponding kernel field (reductions
of rules which are not also in the kernel field can not be
represented in these diagrams).

l tVpe
The value of the vpe field of a set of items may be ‘ini-
tial’ or ‘complete’. If it is ‘initial’, the fields transitions
and reductions have not yet been computed. In
diagrams we indicate ‘complete’ sets of items with a
black circle and 5nitia.l sets of items with an open cir-
cle. The number in the circle serves as a unique refer-
ence to each set of items.

The parse table in Fig. 6 is a tabular representation of
the graph of item sets of Fig. 7. This representation is nor-
mally used for an LR parse table. It contains the results of
the functions ACTION(state, symbol) and GOTO(state, sym-
bol) with a row for each state and a column for each symbol.
We shall not use these parse tables further, because the lazy
parser generator also needs the kernel field of each set of
items during parsing. How ACTION and GOT0 derive their
information from the transitions and reductions fields is
described by the following algorithms.
ACTION:
Input: A state state and a terminal symbol symbol.
Output: The actions the parser can perform in state.
Description: The argument state is a complete set of items,

and the return value is deduced from its transitions and
reductions fields.

Algorithm:
ACTION(state, symbol):

result : =
{(reduce A ::= j3)] A :: = p E stute.reductions } U
{(shift state’) 1 (symbol state’) E state.transitions} U

red(;zz$) 1 (symbol accept) E state.transitions}

GOTO:
Input: A state state and a non-terminal symbol.
Output: The new state for the parser after reducing a rule

that delivered symbol in state state.
Description: The argument state is a complete set of items,

and the return value is deduced from its transitions field.
Because we assume the graph of item sets to have been
generated correctly, we can be sure that there is exactly
one transition for symbol in state. transitions.

Algorithm:
GOTO(stute, symbol):

rehvn state’: (symbol state’) E state. transitions

The graph of item sets from which ACTION and
GOT0 obtain their information is generated from the gram-
mar by the routine GENERATE-PARSER:

GENERATE-PARSER: Build a graph of item sets for a
grammar.

Input: A grammar Grammar, which is a set of syntax rules
A :: = a, with A a non-terminal and a a list of zero or
more terminals and/or non-terminals. The non-terminal
START is the start symbol of the grammar. START may not
be used in the right-hand side of a syntax rule.

Output: The state in which parsing must start.
Description: This routine generates a graph of item sets for

the given grammar. The set of items start-itemset it
returns is the state in which parsing starts and is the root
of the graph of item sets for Grammar. ACTION and
GOT0 can access other sets of items in this graph. The
kernel field of start-itemset is composed of all rules in
Grammar with START as left-hand side, with the dot
placed before the first symbol of the right-hand side.
Itemsets contains all sets of items created during the gen-
eration process. It is used when sets of items are
expanded, as well as for searching for sets of items that
are not yet complete. Routine EXPAND transforms an
initial set of items into a complete one. While expanding
a set of items, EXPAND may add initial sets of items to
Itemsets.

Algorithm:
GENERATE-PARSER(Grummar):

start-itemset : = new(itemset)
start-itemset.type : = initial

183

start-itetnset. kernel : =
{START::= ./3 1 START :: = p E Grammar)

Itemsets : = (start-itemset)
while 3item.W E Itemsets: itemset.type = initial do

EXPAND(itemset)
od
return start-itemset

EXPAND: Transform an initial set of items into a complete
set of items.

Input: A set of items itemset with type ‘initial’.
Description: This routine computes the transitions and reduc-

tions fields of itemset. It starts by using CLOSURE to
generate an extension of the kernel containing all rules
that may become applicable in state itemset. This
extended kernel is partitioned in subsets of rules having
the same symbol S after the dot. On shifting S (or reduc-
ing to S), the parser wilI have advanced one step recogniz-
ing a rule in the subset associated with S. For each S the
associated subset is transformed into a new kernel kernel’
by moving the dot over the S. When a set of items item-
set’ with kernel kernel’ does not yet exist, it is generated as
an initial set of items. The transition (S itemsef) is now
added to itemset.transitions. A rule in the extented kernel
having its dot at the end has been recognized completely.
It depends on the left-hand side of the rule if this means
an accept or a reduce action.

Algorithm:
EXPAND(itemset):

closure : = CLOSURE(itemset.kernel)
itemset. transitions, itemset.reductions : = 0, 0
for VS E {S 1 A :: = CT- S/3 E closure} do

kernel’ : = {A ::= ctS.j3 1 A :: = a.S/3 E closure}
if 3itemset’ E Itemsets: itemset’.kernel = kernel’ then

itemset. transitions : =
itemset. transitions U ((S itemset)}

else
itemset : = new(itemset)
itemseP.type, itemset’.kemel : = initial, kernel’
Itemsets : = Itemsets U {itemsef}
iternset. transitions : =

itemset. transitions U ((S itemset’)}
fi

od
for VA ::= 8. E closure do

if A = START then
itemset. transitions : = itemset.transitions U (($ accept)}

else
itemset.reductions : = itemset.reductions U {A :: = fi}

fi
od
itemset. qpe : = complete

CLOSURE:
Input: A set of dotted rules kernel.
Output: The same set of dotted rules, extended with all rules

that can also become applicable.
Description: CLOSURE computes a set closure, which is ini-

tialized at the incoming kernel. It then extends closure to
all rules that may become applicable. If there is a rule
A :: = a. B/3 in closure it means that non-terminal B may
become applicable. Hence, closure can be extended with
alI rules B ::= l y, because when a B can be recognized,
all rules that derive B can also be recognized.

Algorithm:
CLOSURE(kerne1):

closure : = kernel
while 3 A, B, a, p, y :

A ::= aaS/ E closure A
B :: = y E Grammar A
B :I= l y 9 closure do

closure : = closure U {B ::= .y}
od
return closure

5. LAZY PARSER GENERATION

The parser generation algorithm described in the previous
section generates the parser completely before it is used. This
method is based on the assumption that a parser is only gen-
erated once for a stable grammar after which it is used rela-
tively often.

In applications where the grammar is subject to
modification, this approach causes the parse time of the tirst
sentence to be effectively increased by the parser generation
time. Clearly, it would be preferable to spread the generation
time over the parsing of many sentences to obtain a smoother
response time. Lazy parser generation has this property, and
it has the further advantage that only those parts of the
parser are generated that are really needed to parse the sen-
tences given to it. Both these arguments in favour of lazy
parser generation are only valid when typical input sentences
need a relatively small part of the parser. See [HKR87b] for
an in-depth discussion of the advantages and disadvantages of
lazy program generation. In our specitic application, we
mainly use the lazy parser generation algorithm as a step
towards incremental parser generation (section 6).

5.1. An algorithm for lazy parser generation

We only have to adjust the LR(0) parser generator of the pre-
vious section a little to transform it to a lazy parser generator.
We move the parser generation phase into the parsing phase
by moving the expansion of initial sets of items from
GENERATE-PARSER to ACTION. This means that the
state with which ACTION is called, cannot only be a wm-
plete set of items but also an initial one. When it is still ini-
tial, it is expanded first by EXPAND. GENERATE-PARSER
now only generates start-items& as an initial set of items, the
rest of the parser generation will be taken care of by
ACTION.
GENERATE-PARSER: Build the first part of a graph of item

sets from a grammar.
Input: A grammar Grammar, which is a set of syntax rules

A ::= a.
Output: The state in which parsing must start.
Description: This routine constructs the set of items srart-

itemset: the root of the graph of item sets for the given
grammar. ACTION and GOT0 can access other sets of
items in this graph. The kernel field of start-itemset is
composed of all rules in Grammar with START as left-hand
side, with the dot placed before the first symbol of the
right-hand side.

Algorithm:
GENERA TE-PARSER(Grammar):

start-itemset : = new(itemset)
start-itemset.type : = initial
start-itemset.kernel : =

{START ::= .p 1 START : : = p E Grammar}
Itemsets : = {start-itemset}
return start-itemset

ACTION:
Input: A state state and a terminal symbol.
Output: The actions the parser can perform in state.
Description: When state is an initial set of items it must be

expanded first. The complete set of items is then used to

184

deduce the return value from the transitions and reductions
fields.

Algorithm:
ACTION(state, symbol):

if stute.vpe = initial then
EXPAND(state)

fi
result : =

((reduce A ::= /3) 1 A : : = j3 E state~eductions }
((shift state’) 1 (symbol state’) E state.trunsitions }

re&(;z;t) 1 (symbol accept) E state. transitions }

U
U

Like ACTION, GOT0 uses information that is only
available in complete sets of items, so one might be inclined
to think that the same test for initial sets of items has to be
added to GOT0 as well. However, due to the the particular
way in which the parsing algorithm works, GOT0 will only
be called with sets of items that have already been completed.
The parser asks GOT0 for information about a state when it
reduces a rule. The parser obtains this state from its parse
stack of previously visited states. The fact that the state was
previously visited, implies that ACTION was already called
for it. During that call the state will have been completed.

The implementation of the lazy parser generator has to
treat variables Itemsets and Grammar of GENERATE-
PARSER as global variables, because they are needed during
the expansion of sets of items. Furthermore, several complete
sets of items can’ point to the same initial set of items. When
expanding an initial set of items, the implementation has to
take care that all sets of items that originally pointed to the
initial set of items now point to the completed one.

5.2. An example of lazy parser generation

Consider the grammar of the Booleans of Fig. 5. The graph
of item sets generated by the lazy parser generator initially
consists only of the start set of items (with type initial) shown
in Fig. 9.a.

m
B true false

@cfsq~ .
Fig. 9: The graph of item sets after 9.a generation, 9.b the
first call to ACTION.

When the parser is given its first sentence, its first step will be
to ask what actions it has to perform in start-state. Hence,
ACTION is called with initial set of items start-state which is
expanded first to the graph shown in Fig. 9.b. Fig. 10 shows
the graph of item sets after the sentence ‘true and true’ has
been parsed.

All sentences that only contain ‘and’ and ‘true’, will
now be parsed without further expansion of the graph of item
sets. Only for sentences containing ‘false’ or ‘or’, the graph of
item sets has to be expanded again. The advantage of the
lazy technique is rather small for the grammar of the Boole-
ans, but for a larger grammar like that of SDF (given in
appendix A) only 60 percent of the parse table had to be gen-
erated to parse the SDF definition of SDF itself (see section 7
for all measurements). In this case the lazy parser generation
technique clearly has advantages.

B true false

- I /
an 6 or

f----l B ::= B and B l

B ::= B l and B
1 B ::=B*orB I

Fig. 10: The graph of item sets after the sentence ‘true and
true’ has been parsed.

5.3. The cost of lazy parser generation
The overhead in time introduced by this lazy technique is
small. The total generation time, which is now distributed
over parsing, will not increase, since even in the worst case
exactly the same amount of work has to be done as before.
Only the test in ACTION which determines the type of a
given set of items takes some extra time.

In contrast to the conventional technique, where only
the ACTION and GOT0 information was needed during
parsing, the lazy parser generator also needs the kernel fields
of the sets of items. So the lazy parser generator uses more
memory than a comparable conventional one. One could
decide to remove the kernels when all sets of items have been
expanded, but the incremental parser generator will need
them again when the grammar is modified.

We considered making the lazy parser generator even
more lazy than it already is: it is u~ecessary to expand an
entire set of items at once, since only that part has to be
expanded that is needed to deduce the actions for the specific
symbol with which ACTION was called. However, the addi-
tional administrative overhead incurred (For what symbols
has the set of items already been expanded? What was the
closure of the kernel?) turned out to be so large that no net
gain in efficiency was to be expected.

6. INCREMENTAL PARSER GENERATION
The lazy parser generator can only react to modifications of
the grammar by throwing away the parser it has already gen-
erated and by restarting from scratch. Although the lazy
technique is an improvement over the conventional method, it
is still rather wasteful. We would like to exploit the fact that
when a grammar is modified, it is likely that a relatively large
part of it stays the same, and that the graphs of item sets for
both grammars will have large parts in common.

In this section we describe an incremental parser gen-
erator that retains those parts of the old graph of item sets
that can still be used in the graph for the modified grammar.
How much has to be thrown away depends on the ‘size’ of
the modification, but also on how much of the graph had
already been generated for the old grammar. When the graph
of item sets is already highly specialized towards the old
grammar, chances are that larger parts of it have to be
removed.

We first show that extension of a grammar does not
correspond in a straightforward way to extension of its graph

185

&ammar

START ::= E
E **= c C . .
c **= B . .

START ::= D
D ::= a A
A ::= B

B ::= b

Add svntax rule

A::=b

0 P-l STAR ::=a E
START ::= l D

Fig. 11: A more complicated update.

of item sets. Suppose a rule is added to a grammar. Clearly,
the old grammar is a subgrammar of the new one. Is the old
graph of item sets in some sense a subgraph of the new one
as well? There are reasons to believe so. Consider again the
grammar of the Booleans of Fig. 5, and extend this grammar
with the rule ‘B :: = nil’. The graph of item sets for the
Booleans has now to be updated, as is shown in Fig 12.

existing graph without recomputing the closure of every ker-
nel? Initial sets of items can easily be dealt with because they
do not have to be re-expanded, but complete ones present a
problem. Fortunately, we can be sure that A :: = l /3 will
only be added to the closure when that closure contains at
least one dotted rule with its dot before an A. But when
there was a rule with its ‘dot before an A in the closure,
EXPAND must already have added a transition for A to the
transitions field of the set of items in question. So we can
recognize all complete sets of items that should have
A :: = .fi in the closure of their kernel by the presence of a
transition (A itemset’) in their transitions field.

Fig. 12: The needed update of the graph of the Booleans.

Transitions have been added to some sets of items, but exist-
ing transitions or kernels did not have to be changed. Unfor-
tunately, this is not always the case.

Consider, for instance, the grammar and the graph of
item sets of Fig. 11. This grammar is a complicated way to
describe a language with only two sentences ‘a b’ and ‘c b’,
but it is the smallest grammar we could think of for which an
update has more severe implications than in the previous
case. Fig. 11 shows the modifications of the graph after an
addition of the rule A :: = b to the grammar. It illustrates
that even if rules are only added to the grammar, there is no
guarantee that the original graph is a subgraph of the graph
for the modified grammar.

6.1. An algorithm for incremental parser generation

The incremental parser generator retains only that part of the
(possibly incomplete) graph that can still be used in the graph
of item sets for the new grammar. It does this by making all
sets of items in the graph initial, that were (from the
viewpoint of the new grammar) expanded incorrectly. The
lazy parser generator will then, when needed, re-expand these
sets of items according to the new grammar.

Suppose a rule A :: = t3 is added to the grammar. We
then have to find the states (sets of items) in which recogni-
tion of the new rule should start. In the new graph the clo-
sure of the kernel of these sets of items would contain
A :: = -8. How can we find these sets of items in the

Similarly when we delete a rule A :: = j3 from the
grammar, we have to find the states (sets of items) in the
existing graph in which recognition of this rule started. These
are the sets of items that had A : : = . fi in the closure of their
kernel. These are, similar to addition, the complete sets of
items with a transition (A itemset’) in their transitions field.

These sets of items, which are the first ones affected by
the modification of the grammar, have to be re-expanded.
This can be achieved simply by making them initial and let
the lazy parser generator re-expand them when needed.
Because addition and deletion of a rule are so similar, ADD-
RULE and DELETE-RULE use the same routine MODIFY
to update the graph of item sets.

ADD-RULE: Add a rule to the grammar and update the
corresponding graph of item sets.,

input: The rule rule that has to be added.
Description: MODIFY is called with operator ‘W’ to per-

form the actual update.
Algorithm:
ADD-RlJLE(rule):

MODIFY(rule, U)

DELETE-RULE: Delete a rule from the grammar and update
the corresponding graph of item sets.

input: The rule rule that has to be deleted.
Description: MODIFY is called with operator ‘-’ to per-

form the actual update.
DELETE-R ULE(rule):

MODIFY(rule, -)
Algorithm:

186

MODIFY: Modify a grammar and update the corresponding
graph of item sets.

Input: A rule A :: = /3 and a modification operator q
(which may be ‘ U ’ or ‘ - ‘).

Description: MODIFY uses global variables Grammar, Item-
sets, and start-itemset. Grammar is updated according to
the modification and the graph of item sets is reduced to a
graph that is correct for the modified grammar. This is
done by making all incorrectly expanded sets of items in
Ifemsets initial again.
When A is the start-symbol START of the grammar, we
know that only start-itemset can contain A :: = .j3 in its
kernel. When it is not, we search Itemsets for all complete
sets of items with a transition (A itemset’) in their transi-
tions field. These sets of items are made initial to let the
lazy parser generator re-expand them when needed by the
parser.

Algorithm:
MODIFY(A : : = j3, Cl):

Grammar := Grammar 0 {A :: = /3}
if A = START then

start-itemset.kernel : = start-itemset.kernel Cl {A :: = . j3)
start-itemset. ype : = initial

else
for Vitemset E Itemsets :

itemset.type = complete A
(A itemset’) E itemset.transitions do

itemset.type : = initial
Ott

ti

When, for example, the rule ‘B :: = nil’ is added to the gram-
mar of the Booleans, and the graph of item sets for the gram-
mar of Fig. 7 is updated by MODIFY, the sets of items 0, 4,
and 5 are made initial, because they had a transition for ‘B
in their transitions field. the graph of item sets is thus
transformed into the unconnected graph of Fig. 13.

r--m--l
ISTAFi-i-•B 1

Fig. 13: Graph for the Booleans after addition of ‘B : : = nil’.

When the lazy parser generator now expands set 0 again, its
former connections with 1, 2, and 3 are re-established, and
the initial set of items 8 is generated with kernel ‘B :: = nil
l ‘. The resulting graph is shown in Fig. 14.

The example of Fig. 11 is processed correctly by
MODIFY. When the rule A :: = b is added to the grammar
of Fig. 11, set of items 3 is made initial, because it has a tran-
sition for A. When set 3 is re-expanded, the transitions to 8
and 9 will be reinstated, but the transition to 7 on b is
replaced by a transition to an initial set of items with kernel
{B ::= be , A ::= b.}. Set of items 7 and the transition of

B ::= B l and B B ::= B - and B

Fig. 14: The graph of Fig. 13 after re-expansion of set 0.

2 to 7 are not affected by this modification.
MODIFY is not the best possible algorithm in the

sense that it does not always retain the largest possible part
of the graph of item sets. In particular, partial re-expansion
of sets of items is avoided, because it takes time, while there
is no guarantee that the re-expanded sets of items will ever be
used again by the parser. This would be in contradiction
with the lazy philosophy. Also, in MODIFY the functions
for generating and correcting a graph of item sets are clearly
separated This makes the algorithm easier to understand
and more robust.

6.2. Garbage collection

There is yet another problem to be solved in the incremental
parser generator, namely garbage collection. When MODIFY
makes a set of items initial, the transitions of that set of items
to others disappear (because, by definition, initial sets of
items do not have a transitions field). When the set of items
is re-expanded for the modified grammar, new references to
these sets may (but need not) be created. On the one hand,
retaining unused sets of items in Ztemsets is essential, other-
wise major parts of the graph of item sets would have to be
regenerated (this would occur in the example of Fig. 13). On
the other hand, there are also sets of items that will almost
certainly never be used again. For example, when the rule ‘B
:: = B xor B’ is added to the grammar of the Booleans, sets
of items 1, 6, and 7 will never be re-used (unless, of course,
the new rule is discarded again), Frequent modification of a
grammar can cause many useless sets of items to stay forever
in Itemsets.

The dilemma is thus: when all unreachable sets of
items are removed immediately, it is likely that too much is
thrown away, but when everything is retained, we end up
with too much garbage in Itemsets. A compromise solution is
to attach to each set of items a refcount field, telling how
many sets of items refer to it. Routine EXPAND sets and
increments the refount fields of the sets of items it creates
transitions to. Furthermore, MODIFY should make sets of
items ‘dirty’ rather than initial. A dirty set of items is an ini-
tial set of items with a history (its old transitions field). It is
expanded in the same way as an initial set. After it has been
expanded the refcount field will have been decreased of those
sets of items to which it no longer refers. When the reference
wunt of a set of items becomes zero, it is removed from Ztem-
sets. In other words, the removal of unused sets of items is
postponed until the chance is better that they will never be
used again.

187

RE-EXPAND: Expand a dirty set of items
Input: A set of items itemset with vpe ‘dirty’.
Description: itemset is expanded in the same way as an ini-

tial set of items, only the reference count of each item.seP
to which itemset referred is decreased by one after the
expansion.

Algorithm:
RE-EXPAND(itemset):

old-transitions : = itemset. transitions
EXPAND(itemset)
for Viternset’ [(symbol itemset’) E old-transitions] do

DECR-REFCOUNT(itemse~)
od

DECR-REFCOUNT:
Input: A set of items itemset whose refcount field has to be

decreased by one.
Description: The reference count of itemset is decreased.

When it becomes zero, itemset is removed from Itemsets.
All reference counts of the set of items it refers to, have to
be decreased as well.

Algorithm:
DECR-REFCOUNT(itemset):

itemset.refcount : = itemset.refcount -
if itemset.refcount = 0 then

Itemsets : = Itemsets - (itemset}
if itemset.type # initial #en

for Vitemset’ [(symbol itemset’) E
DECR-REFCOUNT(itemset’)

od
fi

fi

1

itemset. transitions] do

The introduction of dirty sets of items and reference
counting more or less affects alI routines of the parser genera-
tor, but as the modifications in the routines are quite small,
we will not show them. Our implementation of garbage col-
lection cannot yet handle circular references properly. A
straightforward solution for this problem would be to use a
conventional mark-and-sweep garbage collector when the per-
centage of dirty sets of items becomes to high.

7. PERFORMANCE AND EFFICIENCY

We have compared the efficiency of the lazy and incremental
parser generator IPG with that of the non-incremental version
described in section 4 (which we will call ‘PG’). We also
compared IPG and PG with the LALR(1) parser generator
Yacc [Joh79]. A comparison of IPG with Parley’s parsing
algorithm would have been appropriate here, because both
systems recognize the same class of context-free grarmnars.
As we did not have access to a good implementation of the
algorithm, and a quick and mediocre implementation made
by us would not be a fair match, we have not included such a
comparison. From a theoretical viewpoint, we expect Parley’s
algorithm to have better generation performance, but a much
inferior parsing performance.

Both PG and IPG generate parse tables (or graphs of
itemsets) that are interpreted by Tomita’s context-free parsing
algorithm*. As we wanted to test all algorithms on the same
grammar and input, the test grammar had to be LR(l), since
these are the only grammars accepted by Yacc. The test
grammar we used is an LR(l) version of the grammar of the
syntax definition formalism SDF. The reason for choosing

l We used a more efficient style of Lisp programming than Tomita did
in his book [Tom85], and, after a suggestion of B. Lang, we improved
the sharing of parse trees.

SDF is its reasonably sized grammar. The fact that it also
happens to be the language in which grammars for PG and
IPG have to be expressed is purely coincidental. It only
means that the grammar of SDF has to be expressed in SDF
itself to be acceptable to PG and IPG. The SDF definition of
SDF is given in appendix A, to give both an example of an
SDF definition and an idea of the size of the test grammar.

We measured the time in seconds cpu time used by the three
parser generators and the generated parsers to:

l construct a parse table for SDF;
l parse an input sentence (SDF definition) twice;
l modify the grammar and reconstruct the parse table;
l parse the same sentence twice.

The measurements have been repeated on input texts of
different length and complexity, namely four SDF definitions
of which the smallest has 15 lines and the largest 142 lines.
The syntax of SDF was modified in each case by adding the
grammar rule

<CF-ELEM> ::= “(” <CF-ELEM>+ “)?”
(or in SDF: “tl’ CF-ELEM+ ll)?ll -> CF-ELER),

which adds an element in priority and function declarations.
We added rather than deleted a rule in order to be able to
use the same input sentences again after the modification.
Other experiments showed that addition or deletion of a rule
roughly takes the same amount of time.

To prevent the lexical scanner and the file system from
influencing the measurements, the input of ah parsers was a
stream of lexical tokens already in memory, and the parsers
constructed a parse tree but did not print it. All measure-
ments have been carried out on a SUN 3/60 under low work-
load (no swapping). Yacc generates C-code, which was wm-
piled in 68020 machine code by the C-compiler. PG and IPG
ran in the LeLisp environment and were compiled by the
LeLisp compiler ‘Complice’ [LL87]. LeLisp garbage W&X-
tions were only allowed between measurements.

The results of the measurements are given in Fig. 15. They
show the following:

0 Yacc:
Yacc generates parsers that are about twice as fast as
the parsers generated by PG and IPG, but the genera-
tion time for a Yacc parser is unacceptably high for an
interactive language definition environment. This gen-
eration time consists of: 1.3 set for Yacc to generate the
parser in C; 7.6 see for the C compiler to compile the
parser; 0.7 set to link the compiled parser into the rest
of the code.

. PG:
The fact that PG generates parsers in the same (Lisp)
environment in which the parsers are used has great
advantages, as is shown by the relatively small wnstruc-
tion and modification times of PG. The second reason
that PG uses less generation time than Yacc, is that PG
generates LR(0) tables, whereas Yacc generates
LALR(1) tables. The parse times of both PG and IPG
are larger than that of Yacc. There are two reasons for
this difference: Yacc uses LALR(l) tables and generates
parsers in C, while PG and IPG use LR(0) tables and
generate parsers in Lisp.
The difference between LR(0) and LALR(1) tables is
the amount of information pre-computed out of the
grammar. LR(0) tables prescribe a reduction whenever
a rule has been recognized, while LALR(l) tables only
do that when the look-ahead is right for the reduction.
Tomita’s parsing algorithm can work with both, but
emits more failing parsers with LR(0) tables as with
LALR(1) tables.

188

YACC

IPG

eXp.Sdf Examsdf SDF.sdf ASF.sdf
(37 tokens) (166 tokens) (342 tokens) (475 tokens)

Fig. 15: Efficiency measurements on Yacc, PG and IPG.

. IPG:
In this case the time needed for constructing the parse
table is almost zero. The lazy parser generator gen-
erates the needed parts of the parse table while parsing
the input, which explains why the second parse always
takes less time than the first one. This difference is not
as large as the generation time taken by PG, indicating
that only a part of the parse table had to be generated
for parsing the input. The modification time used by
IPG is negligible. Only the first parse of ‘Exam.sdf
after the modification of the SDF grammar shows that
some time was used for regenerating affected parts of
the parse table.

In our opinion, the measurements convincingly show the
benefits of lazy and incremental parser generation. IPG uses
twice as much parse time as Yacc, but since we expect gram-
mars that are much larger than the grammar of SDF and
input sentences to be quite small (the parser will mainly be
used from within a syntax-directed editor), we consider IPG
to be an excellent choice for interactive language definition
systems and other highly dynamic applications.

8. CONCLUSIONS AND FUTURE WORK

Although incremental generation of LR parse tables may
seem a difficult problem, we were able to present all algo-
rithms for incremental parser generation in this paper. We
kept the complexity of the algorithms low by building the
incremental generator on top of the lazy one, which in turn is
an easy derivative of a conventional LR(0) parser generator.
As is shown by the measurements in section 7, IPG is an
efficient parser generator suitable for use in interactive
language definition systems. One might doubt the usefulness
of the incremental behaviour of IPG as the non-incremental
version of IPG is already 30 times faster than Yacc. How-
ever, we need incrementality in order to be able to handle
languages that allow general user-defined syntax.
Future work related to IPG will include:

l Simultaneous editing of language definitions and pro-
,plllS.

As has been explained in the introduction, we currently
have an operational prototype of a universal syntax-
directed editor parametrized with a syntax definition
written in SDF. It is our aim to allow simultaneous
editing of both this syntax definition as well as the
program/specification written in the language defined
by it.

l Syntax-directed editing of programs/specifications
defining their own syntax.

An extreme case of simultaneously editing and using
syntax definitions occurs when a language can modify
its own syntax. In this case, modification and use of
the syntax occur in the same textual object to be edited.
Limited forms of user-defined syntax appear in various
disguises such as operator declarations, macro’s and
user-defined function notation. Clearly, the
modification capability of IPG can be used to imple-
ment these changes in syntax.

l Modular composition of parsers.
IPG does not yet support composition of parsers that
are generated for different modules. Although it would
be possible to use the incremental modification capabil-
ity of IPG by adding the grammar of one module to the
grammar of the other, this is an asymmetrical opera-
tion, which, we believe, is not satisfactory. How IPG
can be extended to become a modular parser generator
is described in [Rek].

POSTSCRIPT

While we were finishing this paper, R.N. Horspool sent us his
recent report on incremental generation of LR parsers
[Hor88]. As his overall goals are very similar to ours, we
briefly summarize his approach.

Horspool’s point of departure is a conventional LR
parser rather than a parallel one and he considers incremental
generation of LALR(1) parse tables. This is more difficult
than incremental generation of LR(0) tables as look-ahead
sets have to be taken into account, whose incremental genera-
tion and modification turns out to be problematic.

As a consequence, his system has a less efficient incre-
mental table generation phase, but generates more efficient
LALR(1) parsers. We opted for a more efficient LR(0) table
generation phase at the expense of some loss in parsing
efficiency for non-LR(0) languages (but without restricting the
class of acceptable grammars in any way).

Another relevant report, about lazy generation of LL(1)
parsers, is [Kos89].

189

[ASU86]

[BHK89]

1~701

[FGJM85]

[HKR87a]

[HKR87b]

[Hor88]

[Joh79]

Kos89]

Lan74]

[LL87]

[Rek89]

Wkl

[San821

[Tom851

[Voi86]

A.V. Aho, R. Sethi, and J.D. Ullman, Compilers.
Principles, Techniques and Tools, Addison-Wesley
(1986).
J.A. Bergstra, J. Heering, and P. Klint (eds.),
Algebraic Spectjication, ACM Press Frontier
Series, The ACM Press in co-operation with
Addison-Wesley (1989).
J. Earley, “An efficient context-free parsing algo-
rithm,” Communications of the ACM 13(2), pp.
94-102 (1970).
K. Futatsugi, J.A. Goguen, J.-P. Jouarmaud, and
J. Meseguer, “Principles of OBJ2,” pp. 52-66 in
Conference Record of the Twelfth Annual ACM
Symposium on Principles of Programming
Languages, ACM (1985).
J. Heering, P. Klint, and J. Rekers, “Incremental
generation of lexical scanners,” Report CS-
R8761, Centre for Mathematics and Computer
Science, Amsterdam (1987).
J. Heering, P. Klint, and J. Rekers, “Principles
of lazy and incremental program generation,”
Report CS-R8749, Centre for Mathematics and
Computer Science, Amsterdam (1987).
R.N. Horspool, “Incremental generation of LR
parsers,” Report DCS-79-IR, University of Vic-
toria, Victoria, B.C., Canada (1988).
S.C. Johnson, “YACC: yet another compiler-
compiler,” in UNIX Programmer’s Manual 2B,
Bell Laboratories (1979).
K. Koskimies, Lazy recursive descent parsing for
modular language implementation, Draft, GMD
Forschungstelle an der Universitat Karlsruhe
(1989).
B. Lang, “Deterministic techniques for efficient
non-deterministic parsers,” pp. 255-269 in
Proceedings of the Second Colloquium on Auto-
mata, Languages and Programming, 4. J.
Loeckx, Lecture Notes in Computer Science 14,
Springer-Verlag (1974).
LeLisp, Version 15.21, le manuel de reference,
INRIA, Rocquencourt (1987).
J. Rekers, A parser generator for finite@ ambigu-
ous context-free grammars (1989), Chapter 8 in
[BHK89].
J. Rekers, “Modular Parser Generation,” Centre
for Mathematics and Computer Science, Amster-
dam, to appear.
D. Sandberg, “LITHE: A language combining a
flexible syntax and classes,” pp- 142-145 in
Conference Record of the Ninth Annual ACM
Symposium on Principles of Programming
Languages, ACM (1982).
M. Tomita, Eficient Parsing for Natural
Languages, Kluwer Academic Publishers (1985).
F. Voisin, “CIGALE: a tool for interactive
grammar construction and expression parsing,”
Science of Computer Programming 7, pp. 61-86
(1986).

APPENDIX A. The SDF definition of SDF

SDF is the language in which grammar detinitions for IPG
are written. SDF stands for ‘Syntax Definition Formalism’
and is described in [BHK89, ch. 61. An SDF definition con-
sists of two parts, the lexical syntax and the context-free

syntax. For the measurements described in section 7 the lexi-
cal syntax part is of no importance, because we did not use
the lexical scanner in the measurements.

In the context-free syntax section the non-terminals
used are declared first in the ‘sorts’ declaration part, followed
by the declaration of the syntax rules in the ‘functions’
declaration part. An SDF function j3 + A is equivalent to a
BNF syntax rule A :: = B.

module SDF -- The SDF definition of SDF
begin

lexical syntax
sorts

Letter, IdTail, Id, Iterator,
OrdChar, C-Char, CharRange, CharCLass,
L-Char, Literal, CornChar, ComEnd

layout
UhiteSpace, Comment

functions
Ca-zA-21 -> Letter
Ca-zA-ZO-9\- 3 -> IdTail
Letter IdTaiT* -> Id
11+11 -> I terator
I.*,, -> Iterator

CO-9A-Za-z !#SXEIO*+,./:;<=>?a\^ ‘Cl>-1
-> OrdChTr

“\\I’ - Cl -> OrdChar

OrdChar -> C-Char
“\“” -> C-Char

Ek:F
-> CharRange

“-I’ C-Char -> CharRange
“C” CharRange* “I” -> CharClass

OrdChar
c\-\[\I1 11,W L-Char* 11,111,

-> L-Char
-> L-Char
-> Literal

C \t\n\rl
- C\n\-I 11-11 - C\n\-I *t-,*1
“-\n”
,,\,;,
“--I’ ComChar* ComEnd

-> Whi teSpace
-> ComChar
-> ComChar
-> ComEnd
-> ComEnd
-> ComEnd
-> Comment

context-free syntax
sorts

SDF-Definition, LexicalSyntax,
ContextFreeSyntax, Sorts, Sort, Layout,
LexicalFunctions, LexicalFunDef, LexElem,
Priori ties, PrioDef, Abbrev-F-List,
Functions. FunctionDef, CfElem, Lit-or-Id,
Attributes, Attribute

functions

“module” Id
“begin”

LexicalSyntax
ContextFreeSyntax

“end” Id -> SDF-Definition

“lexical” “syntax”
Sorts
Layout
LexicalFunctions

-- empty --
-> LexicalSyntax
-> LexicalSyntax

“sorts” <Sort “,V+

id empty --

-> Sorts
-> Sorts
-> Sort

“layout” <Sort “,“>+
-- empty --

-> Layout
-> Layout

“functions”
LexicalFunDef+ -> LexicalFunctions

LexElem+ “->‘I Sort -> LexicalFunDef

190

Sort
W;:,X;erator

CharCLass
“-” CharC lass

-> LexELem
-> LexELem
-> LexELem
-> LexELem
-> LexELem

“context-f reel’ “syntax”
Sorts
Priori ties
Functions -> ContextFreeSyntax

“priori ties”
CPrioDef “,“3+ -> Priorities

-- empty -- . -> Priori ties
CAbbrev-F-List “>“3+ -> Priobef
CAbbrev-F-List “<“3+ -> PrioDef
FunctionDef -> Abbrev-F-List
“C” CFunctionDef ” ” , 3+ ‘1)” -> Abbrev-F-List

“functions” FunctionDef+ -> Functions

CfElem* ‘I->” Sort Attributes
-> FunctionDef

Sort
Literal

-> CfElem
-> CfElem

Sort Iterator -> CfElem
“<” Sort Lit-or-Id “3” Iterator

-> CfElem
Literal -> Lit-or-Id
Id -> Lit-or-Id

“E” {Attribute “,“3+ “3” -> Attributes
-- empty -- -> Attributes
“bracket” -> Attribute
“assoc” -> Attribute
“Lef t-assoc” -> Attribute
“right-assoc”
“non-assoc”

-> Attribute
-> Attribute

end SDF

191

