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ABSTRACT 
An LR-based parser generator for arbitrary context-free 
grammars is described, which generates parsers by need and 
processes grammar modifications by updating already existing 
parsers. We motivate the need for these techniques in the 
context of interactive language definition environments, 
present all required algorithms, and give measurements com- 
paring their performance with that of conventional tech- 
niques. 

1. INTRODUCTION 

The design of parser generators is usually based on the 
assumption that the generated parsers are used many times. 
If this is indeed the case, a sophisticated, possibly inefficient, 
parser generator can be used to generate efficient parsers. 
There are situations however, where this assumption does not 
apply: 

l When a language is being designed, its grammar is not yet 
completely fixed. After each change of the grammar, a 
(completely) new parser must be generated, but there is no 
guarantee that it will be used sufficiently often. Three 
observations can be made here: 
- The time needed to parse the input is not only deter- 

mined by the efficiency of the parser, but also by that of 
the parser generator. 

- It may happen that some parts of the grammar are not 
needed by any of the sentences actually given to the 
parser; the effort spent on such parts by the parser gen- 
erator is wasted. 

- In general only a small part of the grammar is modified. 
One would like to exploit this fact by making a 
corresponding modification in the parser, rather than 
generating an entirely new one. 

l There is a trend towards programming/specification 
languages that allow general user-defined syntax (LITHE 
[San82], OBJ [FGJM85], Cigale [Voi86], ASF/SDF 
[BHK89]). In such languages each module defines its own 
syntax, and each import of a module extends the syntax 
of the importing module with the (visible) syntax of the 
imported module. For efficient parsing and syntax- 
directed editing of these languages, it is of great impor- 
tance to use a parser generator that can handle a large 
class of context-free grammars, and that can incrementally 
incorporate modifications of the grammar in the parser. 

We describe a lazy and incremental parser generator IPG, 
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which is specially tailored towards the highly dynamic appli- 
cations sketched above: 

l The parser is generated in a lazy fashion from the gram- 
mar. There is no separate parser generation phase, but 
the parser is generated by need while parsing input. 
When typical input sentences need only a small part of 
the grammar, a smoother response is achieved than in the 
conventional case, since there is no delay time due to the 
parser generation phase and parsing can start immedi- 
ately. When the input sentences do not use the whole 
grammar, work is saved on the generation process as a 
whole. It turns out that in comparison with conventional 
techniques, the overhead introduced by this lazy technique 
is small. 

l The parser generator is incremental. A change in the 
grammar produces a corresponding change in the already 
generated parser. Parts of the parser that are unalI’ected 
by the modification in the grammar are re-used. Hence, 
the effort put in generating them is not thrown away. 
This clearly has advantages for interactive language 
definition systems. 

l The efficiency of the parsing process itself remains 
unalIected, in the sense that once all needed parts of the 
parser have been generated, the parser will be as efficient 
as a conventionally generated parser. 

l The parsing algorithm is capable of handling arbitrary 
context-free grammars. 

For the general principles underlying our method, see 
[HKR87b]. In [HKR87a] a lazy/incremental lexical scanner 
generator ISG is described. The combination ISG/IPG is 
used in an interactive development environment for the 
ASF/SDF specification language mentioned above. The 
universal syntax-directed editor of this environment is 
parametrized with a syntax written in SDF, and uses 
ISG/IPG as its parsing component. The response time of the 
editor is acceptable, even though the lexical scanner and the 
parser are generated on the fly from the SDF definition. 

In section 2 we discuss related algorithms and show 
how our technique evolved from them. In section 3 we 
present the parsing algorithm used by us. Section 4 describes 
a conventional parser generation algorithm. We extend this 
algorithm into a lazy parser generation algorithm in section 5. 
In section 6 we extend it once again into an incremental 
parser generation algorithm. Finally, section 7 gives the 
results of efficiency measurements, and section 8 contains 
some concluding remarks. 

2. THE CHOICE OF A PARStNG ALGORITHM 

2.1. A comparison 01 algorithms 

We compare some existing parsing algorithms with our own 
algorithm from the perspective of highly dynamic applications 
like the ones discussed in the previous section: 
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. LR(k) and LALR(k) algorithms [ASU86, ch. 4.71 
These algorithms are controlled by a parse table that is 
constructed beforehand by a table generator. The table 
is constructed top-down, while the parser itself works 
bottom-up. The parser works in linear time. When the 
look-ahead k is increased, the class of recognizable 
languages becomes larger (but will always be limited to 
non-ambiguous grammars), and the table generation 
time increases exponentially. With conventional LR or 
LALR table generation algorithms it is impossible to 
update an already generated parse table incrementally, 
if the grammar is modified. 

l Recursive descent and LL(k) algorithms [ASU86, ch. 4.41 
A recursive descent parser generator constructs a pars- 
ing program, whereas an LL generator constructs a 
parse table that is interpreted by a fixed parser. In 
both algorithms the parsers work top-down. The class 
of accepted languages depends on the look-ahead k, but 
is always limited to non-left-recursive, non-ambiguous 
!pllHKUS. 

0 Earley’s general context-free parsing algorithm [Ear701 
Earley’s algorithm can handle all context-free gram- 
mars. It works by attaching to each symbol in the 
input a set of ‘dotted rules’. A dotted rule consists of a 
syntax rule with a cursor (dot) in it and the position in 
the input where the recognition of the rule started. The 
set of dotted rules for symbol n + 1 is computed at 
parse time from the set for symbol n. Earley’s algo- 
rithm does not have a separate generation phase, so it 
adapts easily to modifications in the grammar. It is this 
same lack of a generation phase that makes the algo- 
rithm too inefficient for interactive purposes. 

l Cigale [Voi86] 
Cigale uses a parsing algorithm that is specially tailored 
to expression parsing. It builds a trie for the grammar 
in which production rules with the same prefix share a 
path. During parsing this trie is recursively traversed. 
A trie can easily be extended with new syntax rules and 
tries for different grammars can be combined just like 
modules. The class of grammars is somewhat larger 
than LR(0) grammars, because the parser does not use 
look-ahead in a general manner and cannot backtrack. 

. OBJ [FGJM85] 
OBJ uses a recursive descent parsing technique with 
backtracking. OBJ itself does not allow ambiguous 
grammars, but the backtrack parser does detect all 
ambiguous parses. This makes the parsing system suit- 
able for finitely ambiguous grammars, but as mentioned 
in [FGJMSS, p. 601 “parsing can be expensive for com- 
plex expressions”, which makes the algorithm less suit- 
able for large input sentences. 

l Pseudo-parallel LR parsing [Lan74, Tom85, Rek89] 
This is an extended LR parsing algorithm, that requires 
a conventional (but possibly ambiguous) LR(0) or 
LR(1) parse table. The parser starts as an LR parser, 
but when it hits a conflict in the parse table, it splits up 
in several LR parsers that work in parallel. The 
theoretical framework for parallel LR and LL parsing 
was introduced in [Lan74], and, independently, Tomita 
optimized it for LR parsing. Grammars are restricted 
to the class of finitely ambiguous context-free gram- 
mars. As Ton&a’s parsing technique uses the same 
table generation phase as conventional LR algorithms, 
modifying the grammar is an expensive operation with 
this algorithm. 

l Incremental parser generator IPG 
We developed this method on the basis of the parallel 
LR parsing algorithm, but provided the algorithm with 

au incremental LR(0) parse table generator. Parsing 
starts with an empty parse table, which is expanded by 
need during parsing. A change in the grammar is han- 
dled incrementally by removing the parts of the parse 
table that are aKected by the change; these parts are 
recomputed for the modrfied grammar when the parser 
needs them again. The parse table is constructed dur- 
ing parsing, so after a certain time, depending on the 
input given to it, the system will become as fast as a 
conventionally controlled Tomita parser. 

Fig. 1 gives an overview of the following characteristics of 
these algorithms: capable of handling arbitrary context-free 
grammars (powerful), efficient on large input sentences (fast), 
efficient processing of modifications of the grammar (flexible), 
and modular composition of parsers should be possible 
(modular). 
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2.2. Evolution of parsing algorithms 
The simplest scheme for a (general) parser is given in Fig. 2.a 
where the parser is controlled directly by the grammar. An 
example of this technique is Earley’s algorithm in its pure 
form. This kind of parser adapts easily to modifications in 
the grammar, but is inefficient because for each parse step all 
parsing information must be (re)computed from the grammar. 

Fig. 2.a: Grammar driven parser, 2.b specialized parser. 

These general grammar driven parsing algorithms have 
evolved into the scheme of Fig. 2.b, where a specialized 
parser is generated for a given grammar. An example of this 
scheme is the recursive descent algorithm. These parsers are 
more efficient because the parsing information is computed 
only once in the parser generation phase. 

Another frequently used organization is shown in Fig. 
3.a, where the parser is split into a grammar dependent part, 
the parse table, and a grammar independent part, the table 
driven parser. The parse table and the table driven parser 
together form a specialized parser for the grammar, and the 
parse table is computed in a separate table generation phase. 
Examples of this technique are LL and LR parsing algorithms 
and Tomita’s parsing algorithm. The algorithms to be 
presented in section 3 and 4 alI fall in this category. 

In the system shown in Fig. 3.b the table generation 
phase is made part of the parser. Here the table driven 
parser is controlled by a parse table that is generated by 
need. The parser uses the same efficient technique as that of 
Fig. 3.a. This is the lazy parse table generation technique 
that will be explained in section 5. 
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Fig. 3.a: Table driven parser, 3.b lazy parser generation. 

Fig. 4: Incremental parser generation 

Fig. 4 shows an incremental parse table generator for 
modifiable grammars. It consists of the same lazy table gen- 
erator and the same table driven parser, but these are 
extended with a table corrector. The latter can remove parts 
of the generated parse table that have become incorrect due 
to a modification in the grammar. For now, these 
modifications may not occur during the actual parsing of a 
sentence. This technique will be explained in section 6. 

3. LR PARSING ALGORITHMS 

In this section we discuss a simplified version of Tomita’s 
(pseudo-)parallel LR parsing algorithm [Tom85, Rek89]. It 
basically consists of a (dynamically varying) number of con- 
ventional LR parsers running in parallel. We therefore recall 
the details of ordinary LR parsing first. 

In the algorithms which follow we need some low-level 
functions. For objects we use the functions new(T) to create 
an object of type T, and copy(O) to make a copy of object 0. 
When an object 0 has a field f; that field can be accessed by 
0.J For lists we use the functions head(L), tail(L), and 
length(L), and for stacks we use pz.&(e, S), pop(S), and 
top(S). 

3.1. Conventlonal LR parsing 
An LR parser is controlled by its parse table, which has an 
ACTION and a GOT0 component. The ACTION table 
determines, on the basis of the current state of the parser and 
the current input symbol, the action for the parser to per- 
form. An action can be either a ‘shift’, ‘reduce’, ‘accept’, or 
‘error’. After a ‘reduce’ action, the parser uses the GOT0 
table to determine what to do with the recognized non- 

terminal. 
LR-PARSE: A simple LR parser. 
Input: A start state start-state and a sentence sentence. Sturt- 

state is the state in which the parser starts, and sentence is 
a list of terminals terminated by the end-marker $. 

Output: ‘true’ if sentence is grammatically correct, ‘false’ oth- 
erwise. 

Description: The LR parse algorithm uses a stack of states. 
The state on top of the stack is the current state of the 
parser, and the head symbol of the input sentence is its 
current input symbol. The parser calls ACTION(state, 
symbol) with the current state and current symbol. Basi- 
cally, the action ‘(shift state’)’ means that the parser has 
advanced one step in recognizing a syntax rule and must 
go to state statd, the action ‘(reduce ruley means that the 
parser has recognized the syntax rule rule completely, the 
action ‘accept’ means that the whole input has been recog- 
nized, and the error action, which is denoted by an empty 
action set, means that the input read so far can never 
become a sentence of the language any more. 
We adapted the original LR parsing algorithm, as given 
for instance in [ASU86, ch. 4.71, a bit to our needs later 
on: (1) ACTION returns a set of possible actions rather 
than a single action. LR-PARSE can only handle sets of 
at most one action correctly, but the parallel LR-parser 
discussed in section 3.2 can handle action sets of arbitrary 
length. (2) To keep things simple, we do not generate 
parse trees and we do not keep symbols on the parse 
stack, but only states. (3) We use an object of type 
‘LRparser’ with a single field stuck as the parse stack of 
the algorithm. LR-PARSE uses only one stack, but the 
parallel version requires a dynamically varying number of 
them. 

Algorithm: 
LR-PARSE(start-state, sentence): 

parser : = nau(LRparser) 
push(.sturt-state, parserstuck) 
symbol, sentence : = heud(sentence), tuil(sentence) 
while true do 

state : = top@arser.stack) 
if 3action E A CTION(stute, symbol) then 

if action = (shift state’) then 
push (stute’, parser.stack) 
symbol, sentence : = heud(sentence), tuil(sentence) 

elseif action = (reduce A :: = /I) then 
for 1 f . . length(p) do pop@arser.stack) ad 
state’ : = top@arser.stack) 
push(GOTO(stute’, A), parser.stack) 

elseif action = (accept) then 
return true 

fi 
else 

return false 
fi 

od 

3.2. (Pseudo-)parallel LR parsing 
The parallel LR parsing algorithm starts as a simple (conven- 
tional) LR parser, but splits up in multiple parsers when 
ACTION(stute, symbol) returns multiple actions. All simple 
LR parsers are synchronized on their shift actions in such a 
way, that only when all parsers have shifted on the current 
input symbol, the next symbol is processed. 

The parallel execution of all possible actions makes the 
algorithm fit for arbitrary context-free grammars, indepen- 
dently of the used look-ahead k of its LR(k) parse table gen- 
erator. A larger k will however make parsing faster, as less 
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parser will then be needed. 

PAR-PARSE: Parse a sentence with (pseudo-)parallel running 
LR parsers. 

appears on top of them. This maximally avoids double work 
[Tom85]. 

Input: A start state start-state and a sentence sentence. Start- 
state is the state in which the first simple LR parser starts, 
and sentence is a list of terminals terminated by the end- 
marker $. 

PAR-PARSE is controlled by start-state and the results 
of ACTION and GOTO. Start-state is part of a larger parser 
control structure from which ACTION and GOT0 receive 
their information too. The next section describes how this 
control structure can be generated by a parser generator. 

Output: ‘true’ if sentence is grammatically correct, ‘false’ oth- 
erwise. 

Description: The synchronization on shift actions is 
expressed in the algorithm by using two pools of parsers, 
this-sweq and next-sweep. The parsers in this-sweq still 
have to shift on the current input symbol, the parsers in 
next-sweep are waiting for the next symbol. Only when 
this-sweep is empty (and if there are parsers left in next- 
sweep), the next symbol is read from the input sentence. 
When both pools of parsers are empty, this means that all 
parsers died in an accepting or rejecting con&ration. 
PAR-PARSE accepts its input if at least one simple parser 
accepts it. 
For each input symbol parsers are taken from this-sweep, 
until this-sweep is empty. The parser that is taken from 
this-sweep is removed from it, because for each action a 
copy of the parser is made and the action is performed on 
this copy. So, when there are no actions to be performed, 
the parser just disappears. Shift actions place the copy in 
the next-meq pool, reduce actions put the copy back in 
this-sweep. Accept actions only set the variable accepted 
to indicate that a simple parser has accepted the input. 
It is important for the lazy parser generator that the 
implementation of the copy operation for parsers is such 
that the parse stacks become different objects which share 
the states on them. 

Algorithm: 
PAR-PARSE(start-state, sentence): 

accepted : = false 
start-parser : = nau(LRparser) 
push(start-state, start-parser.stack) 
next-sweep : = {start-parser} 
while next-sweep # 0 do 

symbol, sentence : = head(sentence), tail(sentence) 
this-sweep, next-sweep : = next-sweep, 0 
while 3parser E this-sweep do 

this-sweep : = this-sweep - @arser} 
state : = top@arser.stack) 
actions : = ACTION(state, symbol) 
for Faction E actions do 

parsef : = copy@arser) 
if action = (shift statd) then 

pu.sh(state’, parsef.stack) 
next-sweep : = next-sweep U @arsef} 

elseif action = (reduce A :: = /?) then 
for 1 . . . length@) do pop@arsef .stack) od 
state’ : = top@arsef .stack) 
push(GOTO(state’, A), parsef .stack) 
this-sweep : = this-sweep U (parser’} 

elseif action = (accept) then 
accepted : = true 

fi 
od 

od 
od 
return accepted 

4. CONVENTIONAL PARSER GENERATION 

The parse table generation algorithm we describe in this sec- 
tion is the conventional LR(0) algorithm, of which the lazy 
parse table generation algorithm discussed in section 5 will 
turn out to be a straightforward extension. As far as the 
parsing algorithm itself is concerned, there is no difference 
between the two generators. 

We often speak of a parser generator, while in the LR 
case, we actually ought to speak of a parse table generator. 
But, as one can argue that the generated parse tables are 
interpreted by a hard-wired LR-parsing algorithm, a parse 
table can be seen as a program running on an LR-parsing 
machine. 

The table generated by an LR parse table generator is 
a tabular representation of an internal structure built by the 
generator. This internal structure is a ‘directed graph of item 
sets’. Each row in the parse table represents a state of the 
parser, and each state is equivalent to a set of items. The 
graph of these item sets is thus the notion underlying both 
the parse table and the parsing states. Fig. 5, 6 and 7 give an 
example of an ambiguous grammar, its parse table and its 
graph of item sets. 

rule no. rule 
0 BOOL :: = true 
1 BOOL :: = false 
2 BOOL ::= BOOL or BOOL 
3 BOOL ::= BOOL and BOOL 
4 start ::= BOOL 

Fig. 5: Grammar of the Booleans. 

State 
true 

Action Goto 
false or and $ I BOOL 

0 

2 
3 
4 6 
5 7 
6 s4/r3 r3 
7 s&r2 r2 

Fig. 6: Parse table of the Booleans. 
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Each box in the graph of Fig. 7 is a set of items. The 
arrows between sets of items are the labeled edges of the 
graph. During parsing, the parser moves through the graph: 
a shift action causes a move along an edge labeled with a ter- 
minal symbol; a reduce action first causes a move back 
according to the stacked path of states, and next a move for- 
ward along an edge labeled with a non-terminal symbol. Fig. 
8 shows the moves of a parser when parsing the sentence ‘true 
or false’. 

A set of items is an object with the following fields: 
l kernel 

The optimization of Tomita on this parallel parsing algorithm The kernel field of a set of items contains the rules that 
consist of using a parse graph, instead of a number of parse are potentially being recognized by the parser in that 
stacks. Stacks in this graph are split when more actions than state/set of items. The dots ‘. ’ indicate how far the 
one are possible, and joined again whenever the same state parser has progressed in each rule. 

182 



*, 
B true false 

@!Y-J,$!jkj 

true 

Fig. 7: Graph of item sets of the Booleans. 

Fig. 8: The parsing of ‘true or false’. 

l transitions 
Each transition in the transitions field of a set of items 
contains an edge to another set of items labeled with a 
symbol. Transitions have the form (symbol itemset), 
with itemset a set of items. If symbol is a terminal the 
transition is a shift action; if it is a non-terminal the 
transition is a GOT0 transition. The transition 
($ accept) is a special case, the accept action. 

l reductions 
The reductions field of a set of items contains the syntax 
rules that have been recognized completely in this 
state/set of items. These rules may be reduced by the 
parser. In diagrams we indicate reductions by underlin- 
ing a rule in the corresponding kernel field (reductions 
of rules which are not also in the kernel field can not be 
represented in these diagrams). 

l tVpe 
The value of the vpe field of a set of items may be ‘ini- 
tial’ or ‘complete’. If it is ‘initial’, the fields transitions 
and reductions have not yet been computed. In 
diagrams we indicate ‘complete’ sets of items with a 
black circle and 5nitia.l sets of items with an open cir- 
cle. The number in the circle serves as a unique refer- 
ence to each set of items. 

The parse table in Fig. 6 is a tabular representation of 
the graph of item sets of Fig. 7. This representation is nor- 
mally used for an LR parse table. It contains the results of 
the functions ACTION(state, symbol) and GOTO(state, sym- 
bol) with a row for each state and a column for each symbol. 
We shall not use these parse tables further, because the lazy 
parser generator also needs the kernel field of each set of 
items during parsing. How ACTION and GOT0 derive their 
information from the transitions and reductions fields is 
described by the following algorithms. 
ACTION: 
Input: A state state and a terminal symbol symbol. 
Output: The actions the parser can perform in state. 
Description: The argument state is a complete set of items, 

and the return value is deduced from its transitions and 
reductions fields. 

Algorithm: 
ACTION(state, symbol): 

result : = 
{(reduce A ::= j3) ] A :: = p E stute.reductions } U 
{(shift state’) 1 (symbol state’) E state.transitions} U 

red(;zz$) 1 (symbol accept) E state.transitions} 

GOTO: 
Input: A state state and a non-terminal symbol. 
Output: The new state for the parser after reducing a rule 

that delivered symbol in state state. 
Description: The argument state is a complete set of items, 

and the return value is deduced from its transitions field. 
Because we assume the graph of item sets to have been 
generated correctly, we can be sure that there is exactly 
one transition for symbol in state. transitions. 

Algorithm: 
GOTO(stute, symbol): 

rehvn state’: (symbol state’) E state. transitions 

The graph of item sets from which ACTION and 
GOT0 obtain their information is generated from the gram- 
mar by the routine GENERATE-PARSER: 

GENERATE-PARSER: Build a graph of item sets for a 
grammar. 

Input: A grammar Grammar, which is a set of syntax rules 
A :: = a, with A a non-terminal and a a list of zero or 
more terminals and/or non-terminals. The non-terminal 
START is the start symbol of the grammar. START may not 
be used in the right-hand side of a syntax rule. 

Output: The state in which parsing must start. 
Description: This routine generates a graph of item sets for 

the given grammar. The set of items start-itemset it 
returns is the state in which parsing starts and is the root 
of the graph of item sets for Grammar. ACTION and 
GOT0 can access other sets of items in this graph. The 
kernel field of start-itemset is composed of all rules in 
Grammar with START as left-hand side, with the dot 
placed before the first symbol of the right-hand side. 
Itemsets contains all sets of items created during the gen- 
eration process. It is used when sets of items are 
expanded, as well as for searching for sets of items that 
are not yet complete. Routine EXPAND transforms an 
initial set of items into a complete one. While expanding 
a set of items, EXPAND may add initial sets of items to 
Itemsets. 

Algorithm: 
GENERATE-PARSER(Grummar): 

start-itemset : = new(itemset) 
start-itemset.type : = initial 
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start-itetnset. kernel : = 
{START::= ./3 1 START :: = p E Grammar) 

Itemsets : = (start-itemset) 
while 3item.W E Itemsets: itemset.type = initial do 

EXPAND(itemset) 
od 
return start-itemset 

EXPAND: Transform an initial set of items into a complete 
set of items. 

Input: A set of items itemset with type ‘initial’. 
Description: This routine computes the transitions and reduc- 

tions fields of itemset. It starts by using CLOSURE to 
generate an extension of the kernel containing all rules 
that may become applicable in state itemset. This 
extended kernel is partitioned in subsets of rules having 
the same symbol S after the dot. On shifting S (or reduc- 
ing to S), the parser wilI have advanced one step recogniz- 
ing a rule in the subset associated with S. For each S the 
associated subset is transformed into a new kernel kernel’ 
by moving the dot over the S. When a set of items item- 
set’ with kernel kernel’ does not yet exist, it is generated as 
an initial set of items. The transition (S itemsef) is now 
added to itemset.transitions. A rule in the extented kernel 
having its dot at the end has been recognized completely. 
It depends on the left-hand side of the rule if this means 
an accept or a reduce action. 

Algorithm: 
EXPAND(itemset): 

closure : = CLOSURE(itemset.kernel) 
itemset. transitions, itemset.reductions : = 0, 0 
for VS E {S 1 A :: = CT- S/3 E closure} do 

kernel’ : = {A ::= ctS.j3 1 A :: = a.S/3 E closure} 
if 3itemset’ E Itemsets: itemset’.kernel = kernel’ then 

itemset. transitions : = 
itemset. transitions U ((S itemset)} 

else 
itemset : = new(itemset) 
itemseP.type, itemset’.kemel : = initial, kernel’ 
Itemsets : = Itemsets U {itemsef} 
iternset. transitions : = 

itemset. transitions U ((S itemset’)} 
fi 

od 
for VA ::= 8. E closure do 

if A = START then 
itemset. transitions : = itemset.transitions U (($ accept)} 

else 
itemset.reductions : = itemset.reductions U {A :: = fi} 

fi 
od 
itemset. qpe : = complete 

CLOSURE: 
Input: A set of dotted rules kernel. 
Output: The same set of dotted rules, extended with all rules 

that can also become applicable. 
Description: CLOSURE computes a set closure, which is ini- 

tialized at the incoming kernel. It then extends closure to 
all rules that may become applicable. If there is a rule 
A :: = a. B/3 in closure it means that non-terminal B may 
become applicable. Hence, closure can be extended with 
alI rules B ::= l y, because when a B can be recognized, 
all rules that derive B can also be recognized. 

Algorithm: 
CLOSURE(kerne1): 

closure : = kernel 
while 3 A, B, a, p, y : 

A ::= aaS/ E closure A 
B :: = y E Grammar A 
B :I= l y 9 closure do 

closure : = closure U {B ::= .y} 
od 
return closure 

5. LAZY PARSER GENERATION 

The parser generation algorithm described in the previous 
section generates the parser completely before it is used. This 
method is based on the assumption that a parser is only gen- 
erated once for a stable grammar after which it is used rela- 
tively often. 

In applications where the grammar is subject to 
modification, this approach causes the parse time of the tirst 
sentence to be effectively increased by the parser generation 
time. Clearly, it would be preferable to spread the generation 
time over the parsing of many sentences to obtain a smoother 
response time. Lazy parser generation has this property, and 
it has the further advantage that only those parts of the 
parser are generated that are really needed to parse the sen- 
tences given to it. Both these arguments in favour of lazy 
parser generation are only valid when typical input sentences 
need a relatively small part of the parser. See [HKR87b] for 
an in-depth discussion of the advantages and disadvantages of 
lazy program generation. In our specitic application, we 
mainly use the lazy parser generation algorithm as a step 
towards incremental parser generation (section 6). 

5.1. An algorithm for lazy parser generation 

We only have to adjust the LR(0) parser generator of the pre- 
vious section a little to transform it to a lazy parser generator. 
We move the parser generation phase into the parsing phase 
by moving the expansion of initial sets of items from 
GENERATE-PARSER to ACTION. This means that the 
state with which ACTION is called, cannot only be a wm- 
plete set of items but also an initial one. When it is still ini- 
tial, it is expanded first by EXPAND. GENERATE-PARSER 
now only generates start-items& as an initial set of items, the 
rest of the parser generation will be taken care of by 
ACTION. 
GENERATE-PARSER: Build the first part of a graph of item 

sets from a grammar. 
Input: A grammar Grammar, which is a set of syntax rules 

A ::= a. 
Output: The state in which parsing must start. 
Description: This routine constructs the set of items srart- 

itemset: the root of the graph of item sets for the given 
grammar. ACTION and GOT0 can access other sets of 
items in this graph. The kernel field of start-itemset is 
composed of all rules in Grammar with START as left-hand 
side, with the dot placed before the first symbol of the 
right-hand side. 

Algorithm: 
GENERA TE-PARSER(Grammar): 

start-itemset : = new(itemset) 
start-itemset.type : = initial 
start-itemset.kernel : = 

{START ::= .p 1 START : : = p E Grammar} 
Itemsets : = {start-itemset} 
return start-itemset 

ACTION: 
Input: A state state and a terminal symbol. 
Output: The actions the parser can perform in state. 
Description: When state is an initial set of items it must be 

expanded first. The complete set of items is then used to 
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deduce the return value from the transitions and reductions 
fields. 

Algorithm: 
ACTION(state, symbol): 

if stute.vpe = initial then 
EXPAND(state) 

fi 
result : = 

((reduce A ::= /3) 1 A : : = j3 E state~eductions } 
((shift state’) 1 (symbol state’) E state.trunsitions } 

re&(;z;t) 1 (symbol accept) E state. transitions } 

U 
U 

Like ACTION, GOT0 uses information that is only 
available in complete sets of items, so one might be inclined 
to think that the same test for initial sets of items has to be 
added to GOT0 as well. However, due to the the particular 
way in which the parsing algorithm works, GOT0 will only 
be called with sets of items that have already been completed. 
The parser asks GOT0 for information about a state when it 
reduces a rule. The parser obtains this state from its parse 
stack of previously visited states. The fact that the state was 
previously visited, implies that ACTION was already called 
for it. During that call the state will have been completed. 

The implementation of the lazy parser generator has to 
treat variables Itemsets and Grammar of GENERATE- 
PARSER as global variables, because they are needed during 
the expansion of sets of items. Furthermore, several complete 
sets of items can’ point to the same initial set of items. When 
expanding an initial set of items, the implementation has to 
take care that all sets of items that originally pointed to the 
initial set of items now point to the completed one. 

5.2. An example of lazy parser generation 

Consider the grammar of the Booleans of Fig. 5. The graph 
of item sets generated by the lazy parser generator initially 
consists only of the start set of items (with type initial) shown 
in Fig. 9.a. 

m 
B true false 

@$cf$sq~ . 
Fig. 9: The graph of item sets after 9.a generation, 9.b the 
first call to ACTION. 

When the parser is given its first sentence, its first step will be 
to ask what actions it has to perform in start-state. Hence, 
ACTION is called with initial set of items start-state which is 
expanded first to the graph shown in Fig. 9.b. Fig. 10 shows 
the graph of item sets after the sentence ‘true and true’ has 
been parsed. 

All sentences that only contain ‘and’ and ‘true’, will 
now be parsed without further expansion of the graph of item 
sets. Only for sentences containing ‘false’ or ‘or’, the graph of 
item sets has to be expanded again. The advantage of the 
lazy technique is rather small for the grammar of the Boole- 
ans, but for a larger grammar like that of SDF (given in 
appendix A) only 60 percent of the parse table had to be gen- 
erated to parse the SDF definition of SDF itself (see section 7 
for all measurements). In this case the lazy parser generation 
technique clearly has advantages. 

B true false 

- I / 
an 6 or 

f----l B ::= B and B l 

B ::= B l and B 
1 B ::=B*orB I 

Fig. 10: The graph of item sets after the sentence ‘true and 
true’ has been parsed. 

5.3. The cost of lazy parser generation 
The overhead in time introduced by this lazy technique is 
small. The total generation time, which is now distributed 
over parsing, will not increase, since even in the worst case 
exactly the same amount of work has to be done as before. 
Only the test in ACTION which determines the type of a 
given set of items takes some extra time. 

In contrast to the conventional technique, where only 
the ACTION and GOT0 information was needed during 
parsing, the lazy parser generator also needs the kernel fields 
of the sets of items. So the lazy parser generator uses more 
memory than a comparable conventional one. One could 
decide to remove the kernels when all sets of items have been 
expanded, but the incremental parser generator will need 
them again when the grammar is modified. 

We considered making the lazy parser generator even 
more lazy than it already is: it is u~ecessary to expand an 
entire set of items at once, since only that part has to be 
expanded that is needed to deduce the actions for the specific 
symbol with which ACTION was called. However, the addi- 
tional administrative overhead incurred (For what symbols 
has the set of items already been expanded? What was the 
closure of the kernel?) turned out to be so large that no net 
gain in efficiency was to be expected. 

6. INCREMENTAL PARSER GENERATION 
The lazy parser generator can only react to modifications of 
the grammar by throwing away the parser it has already gen- 
erated and by restarting from scratch. Although the lazy 
technique is an improvement over the conventional method, it 
is still rather wasteful. We would like to exploit the fact that 
when a grammar is modified, it is likely that a relatively large 
part of it stays the same, and that the graphs of item sets for 
both grammars will have large parts in common. 

In this section we describe an incremental parser gen- 
erator that retains those parts of the old graph of item sets 
that can still be used in the graph for the modified grammar. 
How much has to be thrown away depends on the ‘size’ of 
the modification, but also on how much of the graph had 
already been generated for the old grammar. When the graph 
of item sets is already highly specialized towards the old 
grammar, chances are that larger parts of it have to be 
removed. 

We first show that extension of a grammar does not 
correspond in a straightforward way to extension of its graph 
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&ammar 

START ::= E 
E **= c C . . 
c **= B . . 

START ::= D 
D ::= a A 
A ::= B 

B ::= b 

Add svntax rule 

A::=b 

0 P-l STAR ::=a E 
START ::= l D 

Fig. 11: A more complicated update. 

of item sets. Suppose a rule is added to a grammar. Clearly, 
the old grammar is a subgrammar of the new one. Is the old 
graph of item sets in some sense a subgraph of the new one 
as well? There are reasons to believe so. Consider again the 
grammar of the Booleans of Fig. 5, and extend this grammar 
with the rule ‘B :: = nil’. The graph of item sets for the 
Booleans has now to be updated, as is shown in Fig 12. 

existing graph without recomputing the closure of every ker- 
nel? Initial sets of items can easily be dealt with because they 
do not have to be re-expanded, but complete ones present a 
problem. Fortunately, we can be sure that A :: = l /3 will 
only be added to the closure when that closure contains at 
least one dotted rule with its dot before an A. But when 
there was a rule with its ‘dot before an A in the closure, 
EXPAND must already have added a transition for A to the 
transitions field of the set of items in question. So we can 
recognize all complete sets of items that should have 
A :: = .fi in the closure of their kernel by the presence of a 
transition (A itemset’) in their transitions field. 

Fig. 12: The needed update of the graph of the Booleans. 

Transitions have been added to some sets of items, but exist- 
ing transitions or kernels did not have to be changed. Unfor- 
tunately, this is not always the case. 

Consider, for instance, the grammar and the graph of 
item sets of Fig. 11. This grammar is a complicated way to 
describe a language with only two sentences ‘a b’ and ‘c b’, 
but it is the smallest grammar we could think of for which an 
update has more severe implications than in the previous 
case. Fig. 11 shows the modifications of the graph after an 
addition of the rule A :: = b to the grammar. It illustrates 
that even if rules are only added to the grammar, there is no 
guarantee that the original graph is a subgraph of the graph 
for the modified grammar. 

6.1. An algorithm for incremental parser generation 

The incremental parser generator retains only that part of the 
(possibly incomplete) graph that can still be used in the graph 
of item sets for the new grammar. It does this by making all 
sets of items in the graph initial, that were (from the 
viewpoint of the new grammar) expanded incorrectly. The 
lazy parser generator will then, when needed, re-expand these 
sets of items according to the new grammar. 

Suppose a rule A :: = t3 is added to the grammar. We 
then have to find the states (sets of items) in which recogni- 
tion of the new rule should start. In the new graph the clo- 
sure of the kernel of these sets of items would contain 
A :: = -8. How can we find these sets of items in the 

Similarly when we delete a rule A :: = j3 from the 
grammar, we have to find the states (sets of items) in the 
existing graph in which recognition of this rule started. These 
are the sets of items that had A : : = . fi in the closure of their 
kernel. These are, similar to addition, the complete sets of 
items with a transition (A itemset’) in their transitions field. 

These sets of items, which are the first ones affected by 
the modification of the grammar, have to be re-expanded. 
This can be achieved simply by making them initial and let 
the lazy parser generator re-expand them when needed. 
Because addition and deletion of a rule are so similar, ADD- 
RULE and DELETE-RULE use the same routine MODIFY 
to update the graph of item sets. 

ADD-RULE: Add a rule to the grammar and update the 
corresponding graph of item sets., 

input: The rule rule that has to be added. 
Description: MODIFY is called with operator ‘W’ to per- 

form the actual update. 
Algorithm: 
ADD-RlJLE(rule): 

MODIFY(rule, U ) 

DELETE-RULE: Delete a rule from the grammar and update 
the corresponding graph of item sets. 

input: The rule rule that has to be deleted. 
Description: MODIFY is called with operator ‘-’ to per- 

form the actual update. 
DELETE-R ULE(rule): 

MODIFY(rule, - ) 
Algorithm: 
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MODIFY: Modify a grammar and update the corresponding 
graph of item sets. 

Input: A rule A :: = /3 and a modification operator q 
(which may be ‘ U ’ or ‘ - ‘). 

Description: MODIFY uses global variables Grammar, Item- 
sets, and start-itemset. Grammar is updated according to 
the modification and the graph of item sets is reduced to a 
graph that is correct for the modified grammar. This is 
done by making all incorrectly expanded sets of items in 
Ifemsets initial again. 
When A is the start-symbol START of the grammar, we 
know that only start-itemset can contain A :: = .j3 in its 
kernel. When it is not, we search Itemsets for all complete 
sets of items with a transition (A itemset’) in their transi- 
tions field. These sets of items are made initial to let the 
lazy parser generator re-expand them when needed by the 
parser. 

Algorithm: 
MODIFY(A : : = j3, Cl ): 

Grammar := Grammar 0 {A :: = /3} 
if A = START then 

start-itemset.kernel : = start-itemset.kernel Cl {A :: = . j3) 
start-itemset. ype : = initial 

else 
for Vitemset E Itemsets : 

itemset.type = complete A 
(A itemset’) E itemset.transitions do 

itemset.type : = initial 
Ott 

ti 

When, for example, the rule ‘B :: = nil’ is added to the gram- 
mar of the Booleans, and the graph of item sets for the gram- 
mar of Fig. 7 is updated by MODIFY, the sets of items 0, 4, 
and 5 are made initial, because they had a transition for ‘B 
in their transitions field. the graph of item sets is thus 
transformed into the unconnected graph of Fig. 13. 

r--m--l 
ISTAFi-i-•B 1 

Fig. 13: Graph for the Booleans after addition of ‘B : : = nil’. 

When the lazy parser generator now expands set 0 again, its 
former connections with 1, 2, and 3 are re-established, and 
the initial set of items 8 is generated with kernel ‘B :: = nil 
l ‘. The resulting graph is shown in Fig. 14. 

The example of Fig. 11 is processed correctly by 
MODIFY. When the rule A :: = b is added to the grammar 
of Fig. 11, set of items 3 is made initial, because it has a tran- 
sition for A. When set 3 is re-expanded, the transitions to 8 
and 9 will be reinstated, but the transition to 7 on b is 
replaced by a transition to an initial set of items with kernel 
{B ::= be , A ::= b.}. Set of items 7 and the transition of 

B ::= B l and B B ::= B - and B 

Fig. 14: The graph of Fig. 13 after re-expansion of set 0. 

2 to 7 are not affected by this modification. 
MODIFY is not the best possible algorithm in the 

sense that it does not always retain the largest possible part 
of the graph of item sets. In particular, partial re-expansion 
of sets of items is avoided, because it takes time, while there 
is no guarantee that the re-expanded sets of items will ever be 
used again by the parser. This would be in contradiction 
with the lazy philosophy. Also, in MODIFY the functions 
for generating and correcting a graph of item sets are clearly 
separated This makes the algorithm easier to understand 
and more robust. 

6.2. Garbage collection 

There is yet another problem to be solved in the incremental 
parser generator, namely garbage collection. When MODIFY 
makes a set of items initial, the transitions of that set of items 
to others disappear (because, by definition, initial sets of 
items do not have a transitions field). When the set of items 
is re-expanded for the modified grammar, new references to 
these sets may (but need not) be created. On the one hand, 
retaining unused sets of items in Ztemsets is essential, other- 
wise major parts of the graph of item sets would have to be 
regenerated (this would occur in the example of Fig. 13 ). On 
the other hand, there are also sets of items that will almost 
certainly never be used again. For example, when the rule ‘B 
:: = B xor B’ is added to the grammar of the Booleans, sets 
of items 1, 6, and 7 will never be re-used (unless, of course, 
the new rule is discarded again), Frequent modification of a 
grammar can cause many useless sets of items to stay forever 
in Itemsets. 

The dilemma is thus: when all unreachable sets of 
items are removed immediately, it is likely that too much is 
thrown away, but when everything is retained, we end up 
with too much garbage in Itemsets. A compromise solution is 
to attach to each set of items a refcount field, telling how 
many sets of items refer to it. Routine EXPAND sets and 
increments the refount fields of the sets of items it creates 
transitions to. Furthermore, MODIFY should make sets of 
items ‘dirty’ rather than initial. A dirty set of items is an ini- 
tial set of items with a history (its old transitions field). It is 
expanded in the same way as an initial set. After it has been 
expanded the refcount field will have been decreased of those 
sets of items to which it no longer refers. When the reference 
wunt of a set of items becomes zero, it is removed from Ztem- 
sets. In other words, the removal of unused sets of items is 
postponed until the chance is better that they will never be 
used again. 
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RE-EXPAND: Expand a dirty set of items 
Input: A set of items itemset with vpe ‘dirty’. 
Description: itemset is expanded in the same way as an ini- 

tial set of items, only the reference count of each item.seP 
to which itemset referred is decreased by one after the 
expansion. 

Algorithm: 
RE-EXPAND(itemset): 

old-transitions : = itemset. transitions 
EXPAND(itemset) 
for Viternset’ [(symbol itemset’) E old-transitions] do 

DECR-REFCOUNT(itemse~) 
od 

DECR-REFCOUNT: 
Input: A set of items itemset whose refcount field has to be 

decreased by one. 
Description: The reference count of itemset is decreased. 

When it becomes zero, itemset is removed from Itemsets. 
All reference counts of the set of items it refers to, have to 
be decreased as well. 

Algorithm: 
DECR-REFCOUNT(itemset): 

itemset.refcount : = itemset.refcount - 
if itemset.refcount = 0 then 

Itemsets : = Itemsets - (itemset} 
if itemset.type # initial #en 

for Vitemset’ [(symbol itemset’) E 
DECR-REFCOUNT(itemset’) 

od 
fi 

fi 

1 

itemset. transitions ] do 

The introduction of dirty sets of items and reference 
counting more or less affects alI routines of the parser genera- 
tor, but as the modifications in the routines are quite small, 
we will not show them. Our implementation of garbage col- 
lection cannot yet handle circular references properly. A 
straightforward solution for this problem would be to use a 
conventional mark-and-sweep garbage collector when the per- 
centage of dirty sets of items becomes to high. 

7. PERFORMANCE AND EFFICIENCY 

We have compared the efficiency of the lazy and incremental 
parser generator IPG with that of the non-incremental version 
described in section 4 (which we will call ‘PG’). We also 
compared IPG and PG with the LALR(1) parser generator 
Yacc [Joh79]. A comparison of IPG with Parley’s parsing 
algorithm would have been appropriate here, because both 
systems recognize the same class of context-free grarmnars. 
As we did not have access to a good implementation of the 
algorithm, and a quick and mediocre implementation made 
by us would not be a fair match, we have not included such a 
comparison. From a theoretical viewpoint, we expect Parley’s 
algorithm to have better generation performance, but a much 
inferior parsing performance. 

Both PG and IPG generate parse tables (or graphs of 
itemsets) that are interpreted by Tomita’s context-free parsing 
algorithm*. As we wanted to test all algorithms on the same 
grammar and input, the test grammar had to be LR(l), since 
these are the only grammars accepted by Yacc. The test 
grammar we used is an LR(l) version of the grammar of the 
syntax definition formalism SDF. The reason for choosing 

l We used a more efficient style of Lisp programming than Tomita did 
in his book [Tom85], and, after a suggestion of B. Lang, we improved 
the sharing of parse trees. 

SDF is its reasonably sized grammar. The fact that it also 
happens to be the language in which grammars for PG and 
IPG have to be expressed is purely coincidental. It only 
means that the grammar of SDF has to be expressed in SDF 
itself to be acceptable to PG and IPG. The SDF definition of 
SDF is given in appendix A, to give both an example of an 
SDF definition and an idea of the size of the test grammar. 

We measured the time in seconds cpu time used by the three 
parser generators and the generated parsers to: 

l construct a parse table for SDF; 
l parse an input sentence (SDF definition) twice; 
l modify the grammar and reconstruct the parse table; 
l parse the same sentence twice. 

The measurements have been repeated on input texts of 
different length and complexity, namely four SDF definitions 
of which the smallest has 15 lines and the largest 142 lines. 
The syntax of SDF was modified in each case by adding the 
grammar rule 

<CF-ELEM> ::= “(” <CF-ELEM>+ “)?” 
(or in SDF: “tl’ CF-ELEM+ ll)?ll -> CF-ELER ), 

which adds an element in priority and function declarations. 
We added rather than deleted a rule in order to be able to 
use the same input sentences again after the modification. 
Other experiments showed that addition or deletion of a rule 
roughly takes the same amount of time. 

To prevent the lexical scanner and the file system from 
influencing the measurements, the input of ah parsers was a 
stream of lexical tokens already in memory, and the parsers 
constructed a parse tree but did not print it. All measure- 
ments have been carried out on a SUN 3/60 under low work- 
load (no swapping). Yacc generates C-code, which was wm- 
piled in 68020 machine code by the C-compiler. PG and IPG 
ran in the LeLisp environment and were compiled by the 
LeLisp compiler ‘Complice’ [LL87]. LeLisp garbage W&X- 
tions were only allowed between measurements. 

The results of the measurements are given in Fig. 15. They 
show the following: 

0 Yacc: 
Yacc generates parsers that are about twice as fast as 
the parsers generated by PG and IPG, but the genera- 
tion time for a Yacc parser is unacceptably high for an 
interactive language definition environment. This gen- 
eration time consists of: 1.3 set for Yacc to generate the 
parser in C; 7.6 see for the C compiler to compile the 
parser; 0.7 set to link the compiled parser into the rest 
of the code. 

. PG: 
The fact that PG generates parsers in the same (Lisp) 
environment in which the parsers are used has great 
advantages, as is shown by the relatively small wnstruc- 
tion and modification times of PG. The second reason 
that PG uses less generation time than Yacc, is that PG 
generates LR(0) tables, whereas Yacc generates 
LALR(1) tables. The parse times of both PG and IPG 
are larger than that of Yacc. There are two reasons for 
this difference: Yacc uses LALR(l) tables and generates 
parsers in C, while PG and IPG use LR(0) tables and 
generate parsers in Lisp. 
The difference between LR(0) and LALR(1) tables is 
the amount of information pre-computed out of the 
grammar. LR(0) tables prescribe a reduction whenever 
a rule has been recognized, while LALR(l) tables only 
do that when the look-ahead is right for the reduction. 
Tomita’s parsing algorithm can work with both, but 
emits more failing parsers with LR(0) tables as with 
LALR( 1) tables. 
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YACC 

IPG 

eXp.Sdf Examsdf SDF.sdf ASF.sdf 
(37 tokens) (166 tokens) (342 tokens) (475 tokens) 

Fig. 15: Efficiency measurements on Yacc, PG and IPG. 

. IPG: 
In this case the time needed for constructing the parse 
table is almost zero. The lazy parser generator gen- 
erates the needed parts of the parse table while parsing 
the input, which explains why the second parse always 
takes less time than the first one. This difference is not 
as large as the generation time taken by PG, indicating 
that only a part of the parse table had to be generated 
for parsing the input. The modification time used by 
IPG is negligible. Only the first parse of ‘Exam.sdf 
after the modification of the SDF grammar shows that 
some time was used for regenerating affected parts of 
the parse table. 

In our opinion, the measurements convincingly show the 
benefits of lazy and incremental parser generation. IPG uses 
twice as much parse time as Yacc, but since we expect gram- 
mars that are much larger than the grammar of SDF and 
input sentences to be quite small (the parser will mainly be 
used from within a syntax-directed editor), we consider IPG 
to be an excellent choice for interactive language definition 
systems and other highly dynamic applications. 

8. CONCLUSIONS AND FUTURE WORK 

Although incremental generation of LR parse tables may 
seem a difficult problem, we were able to present all algo- 
rithms for incremental parser generation in this paper. We 
kept the complexity of the algorithms low by building the 
incremental generator on top of the lazy one, which in turn is 
an easy derivative of a conventional LR(0) parser generator. 
As is shown by the measurements in section 7, IPG is an 
efficient parser generator suitable for use in interactive 
language definition systems. One might doubt the usefulness 
of the incremental behaviour of IPG as the non-incremental 
version of IPG is already 30 times faster than Yacc. How- 
ever, we need incrementality in order to be able to handle 
languages that allow general user-defined syntax. 
Future work related to IPG will include: 

l Simultaneous editing of language definitions and pro- 
,plllS. 

As has been explained in the introduction, we currently 
have an operational prototype of a universal syntax- 
directed editor parametrized with a syntax definition 
written in SDF. It is our aim to allow simultaneous 
editing of both this syntax definition as well as the 
program/specification written in the language defined 
by it. 

l Syntax-directed editing of programs/specifications 
defining their own syntax. 

An extreme case of simultaneously editing and using 
syntax definitions occurs when a language can modify 
its own syntax. In this case, modification and use of 
the syntax occur in the same textual object to be edited. 
Limited forms of user-defined syntax appear in various 
disguises such as operator declarations, macro’s and 
user-defined function notation. Clearly, the 
modification capability of IPG can be used to imple- 
ment these changes in syntax. 

l Modular composition of parsers. 
IPG does not yet support composition of parsers that 
are generated for different modules. Although it would 
be possible to use the incremental modification capabil- 
ity of IPG by adding the grammar of one module to the 
grammar of the other, this is an asymmetrical opera- 
tion, which, we believe, is not satisfactory. How IPG 
can be extended to become a modular parser generator 
is described in [Rek]. 

POSTSCRIPT 

While we were finishing this paper, R.N. Horspool sent us his 
recent report on incremental generation of LR parsers 
[Hor88]. As his overall goals are very similar to ours, we 
briefly summarize his approach. 

Horspool’s point of departure is a conventional LR 
parser rather than a parallel one and he considers incremental 
generation of LALR(1) parse tables. This is more difficult 
than incremental generation of LR(0) tables as look-ahead 
sets have to be taken into account, whose incremental genera- 
tion and modification turns out to be problematic. 

As a consequence, his system has a less efficient incre- 
mental table generation phase, but generates more efficient 
LALR(1) parsers. We opted for a more efficient LR(0) table 
generation phase at the expense of some loss in parsing 
efficiency for non-LR(0) languages (but without restricting the 
class of acceptable grammars in any way). 

Another relevant report, about lazy generation of LL(1) 
parsers, is [Kos89]. 
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APPENDIX A. The SDF definition of SDF 

SDF is the language in which grammar detinitions for IPG 
are written. SDF stands for ‘Syntax Definition Formalism’ 
and is described in [BHK89, ch. 61. An SDF definition con- 
sists of two parts, the lexical syntax and the context-free 

syntax. For the measurements described in section 7 the lexi- 
cal syntax part is of no importance, because we did not use 
the lexical scanner in the measurements. 

In the context-free syntax section the non-terminals 
used are declared first in the ‘sorts’ declaration part, followed 
by the declaration of the syntax rules in the ‘functions’ 
declaration part. An SDF function j3 + A is equivalent to a 
BNF syntax rule A :: = B. 

module SDF -- The SDF definition of SDF 
begin 

lexical syntax 
sorts 

Letter, IdTail, Id, Iterator, 
OrdChar, C-Char, CharRange, CharCLass, 
L-Char, Literal, CornChar, ComEnd 

layout 
UhiteSpace, Comment 

functions 
Ca-zA-21 -> Letter 
Ca-zA-ZO-9\- 3 -> IdTail 
Letter IdTaiT* -> Id 
11+11 -> I terator 
I.*,, -> Iterator 

CO-9A-Za-z !#SXEIO*+,./:;<=>?a\^ ‘Cl>-1 
-> OrdChTr 

“\\I’ - Cl -> OrdChar 

OrdChar -> C-Char 
“\“” -> C-Char 

Ek:F 
-> CharRange 

“-I’ C-Char -> CharRange 
“C” CharRange* “I” -> CharClass 

OrdChar 
c\-\[\I1 11,W L-Char* 11,111, 

-> L-Char 
-> L-Char 
-> Literal 

C \t\n\rl 
- C\n\-I 11-11 - C\n\-I *t-,*1 
“-\n” 
,,\,;, 
“--I’ ComChar* ComEnd 

-> Whi teSpace 
-> ComChar 
-> ComChar 
-> ComEnd 
-> ComEnd 
-> ComEnd 
-> Comment 

context-free syntax 
sorts 

SDF-Definition, LexicalSyntax, 
ContextFreeSyntax, Sorts, Sort, Layout, 
LexicalFunctions, LexicalFunDef, LexElem, 
Priori ties, PrioDef, Abbrev-F-List, 
Functions. FunctionDef, CfElem, Lit-or-Id, 
Attributes, Attribute 

functions 

“module” Id 
“begin” 

LexicalSyntax 
ContextFreeSyntax 

“end” Id -> SDF-Definition 

“lexical” “syntax” 
Sorts 
Layout 
LexicalFunctions 

-- empty -- 
-> LexicalSyntax 
-> LexicalSyntax 

“sorts” <Sort “,V+ 

id empty -- 

-> Sorts 
-> Sorts 
-> Sort 

“layout” <Sort “,“>+ 
-- empty -- 

-> Layout 
-> Layout 

“functions” 
LexicalFunDef+ -> LexicalFunctions 

LexElem+ “->‘I Sort -> LexicalFunDef 
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Sort 
W;:,X;erator 

CharCLass 
“-” CharC lass 

-> LexELem 
-> LexELem 
-> LexELem 
-> LexELem 
-> LexELem 

“context-f reel’ “syntax” 
Sorts 
Priori ties 
Functions -> ContextFreeSyntax 

“priori ties” 
CPrioDef “,“3+ -> Priorities 

-- empty -- . -> Priori ties 
CAbbrev-F-List “>“3+ -> Priobef 
CAbbrev-F-List “<“3+ -> PrioDef 
FunctionDef -> Abbrev-F-List 
“C” CFunctionDef ” ” , 3+ ‘1)” -> Abbrev-F-List 

“functions” FunctionDef+ -> Functions 

CfElem* ‘I->” Sort Attributes 
-> FunctionDef 

Sort 
Literal 

-> CfElem 
-> CfElem 

Sort Iterator -> CfElem 
“<” Sort Lit-or-Id “3” Iterator 

-> CfElem 
Literal -> Lit-or-Id 
Id -> Lit-or-Id 

“E” {Attribute “,“3+ “3” -> Attributes 
-- empty -- -> Attributes 
“bracket” -> Attribute 
“assoc” -> Attribute 
“Lef t-assoc” -> Attribute 
“right-assoc” 
“non-assoc” 

-> Attribute 
-> Attribute 

end SDF 
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