
COMPILER CONSTRUCTION USING ATTRIBUTE GRAMMARS

Kai Koskimies +, Kari-Jouko R~ih~, Matti Sarjakoski*

Department of Computer Science, University of Helsinki
Tukholmankatu 2, SF-00250 Helsinki 25, Finland

Abstract

The adequacy of attribute grammars as a com-
piler writing tool is studied on the basis of the
experiences on attribute grammars for Pascal and a
subset of Euclid. A qualitative assessment of the
grammars shows that the compiler oriented view in
the design of an attribute granmmr tends to make
the grammar hard to understand. A design discipline
is proposed to improve the comprehensibility of the
grammar. Quantitative measurements of the automati-
cally generated compilers suggest that an efficient
compiler can be produced from an attribute grammar.
To achieve this, a carefully optimized implementa-
tion of the compiler-compiler is required.

I. Introduction

Attribute grammars were initially developed as
a means of defining the semantics of programming
languages. During the last decade they have been
increasingly used as a specification language of
compilers. Recent projects aiming at the construc-
tion of compilers for Ada (e.g. [6,18]) indicate
that automatic generators of semantic evaluators
are becoming part of the compiler writer's toolbox,
which until recently has not contained much more
than a parser generator.

The purpose of the present paper is to study
the usability of attribute grammars as a practical
tool for compiler construction. The study is based
on attribute grammars written for Pascal [7] and
C-Euclid [i0,ii]. C-Euclid (C for core) is a subset
of Euclid [13], a derivative of Pascal designed fo~
expressing verifiable systems programs. It should
not be confused with Euclid-C [3].

+) The work of this author was supported by the
Emil Aaltonen Four~dation,

*) The work of this author was supported by the
Academy of Finland.

Permission to copy without fee all or part of this material is granted
provided ~hat the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appciir, and notice is given that copying is by
pcr~mission of ~he Association for Computing Machinery. To .copy
otherwise, or to republish, requires a fee and/or specific permission.

In our study we shall regard attribute gram-
mars as a special purpose language for writing com-
pilers. Like any programming language, attribute
grammars can be viewed from two opposite stand-
points. The user appreciates properties that make
the language a natural tool for writing the com-
piler, while the implementor of the grammar is in-
terested in translating the grammar into a conven-
tional, efficient program. In this paper, both of
these aspects will be studied from a practical
point of view.

The literature contains several examples of
how various features of programming languages can
be described using attribute grammars. However, the
author of a complete grammar for a substantial lan-
guage cannot find much advice on how to proceed.
The general design principles of the attribute
grammars for Pascal and C-Euclid are discussed in
Section 2. Moreover, based on these experiences we
propose an object oriented approach to writing at-
tribute grammars in order to improve their read-
ability.

Similarly, the implementation techniques of
attribute grammars have been studied extensively,
but little is known of the efficiency of actual
compilers based on attribute grammars. The situ-
ation where the resulting compiler is produced
manually on the basis of the attribute grammar is
discussed in [5,18]. Some measurements of automati-
cally generated semantic evaluatoTs are given in
[2,8].

Section 3 contains an analysis of the com-
pilers for P~scal a md C-E~clid generated using the
compiler writing system HLp [17]. The compilers are
compared with a conventional hand-written Pascal
compiler.

HLP provides a separate metalanguage for de-
scribing the code generation phase of the compiler.
Since our objective is to evaluate the applicabil-
ity of attribute grammars for compiler cons£ruc-
tion, we have excluded the code generation phase
from the comparisons. Thus o~r notion of a "com-
piler" is closer ~o a "compiler front~end": it
means a processor that performs lexical analysis,
parsing, and semantic analysis.

We £onclude by summarizing the main results.

© 1982 ACM 0-89791'~074-5/82/006/0153 $00.75

iS3

2. The design of attribute grammars

The grammars for Pascal and C-Euclid follow
the same design principles and style. Global attri-
butes are not used for storing space-critical
information. The grammars are pure attribute gram-
mars based on local inherited and synthesized
attributes.

Both Pascal and (C-)Euclid are designed to be
amenable for one-pass compilation. Accordingly, the
attribute grammars are written so that they need
only one evaluation pass. In general, the inherited
attributes of nonterminal N describe the informa-
tion that depends on the left context of N and that
is needed in processing the string generated by N.
Correspondingly, the synthesized attributes of N
describe the information that is collected from the
string generated by N and that is needed in pro-
cessing the right context of N. Hence the informa-
tion flows strictly from left to right. The result-
ing grammar is L-attributed [18] and evaluable in a
single pass from left to right.

Note that this approach has a connection with
the recursive descent method in which the evaluation
of every nonterminal is written as a procedure.
The inherited attributes represent the input para-
meters of the procedure for the corresponding
nonterminal; the synthesized attributes represent
the output parameters. The occurrence of ~nonter-
minal in the derivation tree represents the acti-
vation of the corresponding procedure.

The problem of describing a traditional global
symbol table with local attributes is solved by
storing the possible states of the symbol'table in
local attributes env i (inherited) and env s (syn-
thesized). Each instance of enV i gives the state
of the symbol table in a one-pass compiler before
processing the string generated by the associated
nonterminal. Correspondingly, each instance of env s

gives the state of the symbol table after process-
ing the string generated by the associated nonter-
minal.

One may imagine that there is a global symbol
table whose successive states can be found travel-
ling through the entire derivation tree in a top-
down, left-to-right order:

Figure i. The symbol table attributes.

At each node, an arrow head pointing downwards
represents an instance of env i while an arrow head
pointing upwards represents an instance of ~nv s.

This general idea of using local symbol table
attributes is in accordance with the space-effici-
cient, one-pass subclass of attribute grammars
formulated in [12]. Consequently, the evaluator is
able to use the same global space for all the in-
stances of env i and ~V~, instead of allocating s
separate space for different states of the symbol
table.

The symbol table attributes have an internal
structure similar to that of a symbol table in a
hand-written one-pass compiler. However, this in-
ternal structure cannot be seen at the attribute
level, where the symbol table attributes are al-
ways manipulated by operations affecting the at-
tributes as a whole. This kind of data abstraction
improves the comprehensibility of the grammar: it
separates the abstract concept of an identifier en-
vironment (used in semantic rules, at the attri-
bute level) from the complex structure of the sym-
bol table (used in the implementation of the sem-
antic functions). The usefulness of data abstrac-
tions in attribute grammars is also pointed out
in [5].

There is a special class of attributes whose
values are pointers to the entries in the symbol
table; the attributes map various objects of the
source program to the symbol table. The pointer
attributes appear either in trivial copy rules or
as parameters of the symbol table operations.
Hence these attributes do not destroy the symbol
table abstraction.

Statistics

Some characteristic measurements of
tribute grammars for Pascal and C-Euclid
in Table i.

the at-
are given

Pascal C-Euclid

productions 286 227
nonterminals 137 108
semantic rules 1012 1081

copy rules 765 718
semantic functions 67 68
inherited attributes i0 18
synthesized attributes 19 37
attributes per nonterminal (average) 3.8 5.1

Table i. Statistics of the attribute grammars.

The relatively small average number of attributes
per nonterminal is explained partly by the heavy
use of the symbol table attributes. Often a large
amount of information is represented indirectly by
a single attribute whose value is a pointer to an
entry in the symbol table. This feature obviously
reduces the space requirements of the evaluator.

Discussion

Our exprerience with the grammars for Pascal
and C-Euclid indicate that the attribute formalism
is, in general, an adequate language for compiler
writing. The one-pass design principles outlined
above allowed a straightforward development of the
semantic analysis phases.

154

The most unsatisfactory point of the grammars
is that they are hard to read and understand as
such: they are far from being self-documenting.
This unfortunate property seems to be shared by
many other attribute grammars, too.

There may be several reasons for the poor
readability of an attribute grammar. One is prob-
ably the simple fact that attribute grammars have a
graph-like structure that seems difficult to grasp
from a linear form. However, we argue that the main
reason is the compiler oriented approach that en-
courages a functional view in the design: sem-
antic rules are written in the (supposed) order of
evaluation, information is transferred in the deri-
vation tree to the "computation points", attributes
are introduced to support some compiler actions.
This kind of view is not in harmony with the basic
declarative nature of an attribute granmLar. The de-
scription will be hard to understand because it is
neither a conventional compiler nor a declarative
definition of semantics, but a strange mixture of
both.

An indication of the compiler oriented ap-
proach is the central role of productions and sem-
antic rules in a grammar. This central role is re-
flected in many features of a grammar. In the
Pascal and C-Euclid grammars semantic functions
often include complex combined operations. Such
functions do not describe relations between attri-
butes associated with nonterminals; rather, they
describe actions associated with productions. An-
other production oriented feature is the use of
conditions (e.g. [15]) to specify the static seman-
tics: these conditions do not define the values of
attributes but values that are associated with pro-
ductions.

To achieve a descriptive, declarative grammar
the designer should lay emphasis on nonterminals
and attributes, rather than on productions and sem-
antic rules. That is, the grammar designer should
start by considering the objects represented by
nonterminals, not by considering actions associated
with productions. Hence the primary aim should be
to describe the nonterminals with attributes.

_An__e_x_a_m_~!e_

Let us illustrate this point with the follow-
ing small example taken from the grarmnar for
C-Euclid. Consider the productions

(I) TYPE = ARRAY TYPE

(2) ARRAYTYPE = array INDEX_TYPE of CO~fPONENT TYPE

for which the semantic rules are given graphically
in Figure 2. For each nonterminal box, the in-
herited attributes are on the left and the syn-
thesized attributes are on the right. The function
"allocateUnnamedType" allocates a symbol table rec-
ord for an unnamed type and returns a pointer to
the allocated record (pntr i of ARRAY_TYPE). If TYPE
represents a named type (context i = type declar-
ation) the descriptor of the type is already in
env i of TYPE, and the function simply passes down
the pointer to the descriptor (pntr i of TYPE).
Hence, in any case pntr i of ARRAY_TYPE points to
the descriptor of the corresponding array type. The
purpose of the function completeArrayType is to
mark the descriptor completed. The information of
the index type and of the component type will be

F TYPE 1

~ecnVitext i enVs~

~enARRAY--TYPEvs ~

Figure 2. A fragment of the C-Euclid grammar.

stored in the descriptor while processing the sub-
trees of INDEXTYPE and COMPONENTTYPE, respective-
ly, using the pointer pntr i.

The role of the attributes in this example is
best characterized as input and output information
for the processing of the corresponding nonter-
minal. The descriptive value such attributes may
possess is purely accidental.

Let us redesign this fragment of the grammar
by considering first the nonterminals. (For the
sak~ of clarity, we ignore the symbol table attri-
butes.) The nonterminal TYPE may generate any type,
hence we introduce an attribute, say type, whose
value is the description of a type (or a pointer to
such a description). The nonterminal ARRAY_TYPE
always produces a type that is completely deter-
mined by two types, the index type and the compo-
nent type. Correspondingly, this nonterminal should
be associated with two attributes, say indexType
and co~onentType, both describing a type. The non-
terminals INDEX_TYPE and COMPONENTTYPE are similar
to the nonterminal TYPE in that we do not know
which types the nonterminals produce. Hence the
attribute type is associated with these nonter-
minals, too.

The semantic rules should be now imposed by
these attributes. First we observe that in produc-
tion (2) the value of indexType at ARRAY TYPE is
the same as the value of type at INDEXTYPE. Simi-
larly, the value of co~onentType at ARRAY_TYPE is
the same as the value of type at COMPONENT_TYPE.
Further, we note that in production (i) the value
of type at TYPE is a description of an array type
composed of the types described by indexType and
co~onentType of ARRAY_TYPE. Hence we introduce a
function, say "arrayType", that reduces (produces)
the descriptions of the index type and the compo-
nent type to (from) the description of the array
type. We are not interested in the direction of
the evaluation, any more than the writer of a
context-free grammar is interested in the direc-
tion of parsing.

The relations of the attributes are summar-
ized in Figure 3.

155

TYPE _

type d~-~) f "

I < arrayType)

Figure 3. Relations of attributes.

The arrows are double-headed because so far we
assume nothing of the evaluation. However, since
the information flows bottom-up these attributes
will all be synthesized in the actual attribute
grammar.

The revised grammar differs notably from the
original. There is no separate function for the
unnamed case, the type descriptor is always cre-
ated by "arrayType". Further, there are no in-
herited attributes (except for the symbol table):
type definitions can be processed using only syn-
thesized information and the symbol table, very
much like expressions. The important point, how-
ever, is that the attributes describe exactly
those nonterminals they are associated with. Yet,
from a practical point of view the revised form
is as adequate as the original one.

A serious drawback of attribute grammars is
the lack of practical design methodologies. The
small case study presented above demonstrates the
advantages of a nonterminal oriented design disci-
pline that can be a first step towards such a
methodology.

To be more precise, we suggest that the de-
sign should be divided into three successive
phases that we call nonterminal analysis, produc-
tion analysis, and evaluation analysis. The non-
terminal analysis is the most important phase
that fixes the nature of the grammar. In this
phase each nonterminal is considered, and the
properties describing the nonterminal are deter-
mined. These properties are represented as attri-
butes.

In the production analysis each production is
considered separately, and the relations between
the values of the attributes associated with the
nonterminals are specified. The nonterminal analy-
sis and the production analysis are independent of
the evaluation method.

The evaluation analysis is a technical phase
that transforms the "pseudogrammar" developed in
the first two phases into a concrete, evaluable
grammar. Hence this phase corresponds to the coding
phase of conventional programming. If necessary,
the domains of attributes are specified and new
technical attributes are introduced. This phase
obviously depends on the available evaluation

method. Attributes may be classified in different
ways (e.g. synthesized, inherited) to make the
evaluation analysis easier.

3. Efficiency of the compilers

The compilers produced by HLP use the LALR(1)
parsing method. The parse tree is constructed ex-
plicitly, and as many synthesized attributes as
possible are evaluated during parsing. The rest of
the attributes are evaluated in several depth-
first traversals through the parse tree made by an
alternating semantic evaluator [9].

It should be emphasized that the primary mo-
tivation in the construction of the attribute
grammars for Pascal and C-Euclid was to study the
static semantics of the languages. Consequently,
clarity and simplicity were the main design prin-
ciples in coding the semantic functions; effi-
ciency played no role. As an example, in both
grammars symbol table access is based on linear
search. This reason alone puts the automatically
generated compilers into an unfavorable position
in comparison with the conventional, hand-written,
carefully tuned compilers.

Time

The most common estimate of the efficiency of
a compiler is its compilation speed. A medium-
sized program with 1040 lines and 4720 lexical to-
kens takes 10.8 seconds to analyze with the com-
piler front-end generated by HLP. This means a
speed of 5800 lines per minute on the Burroughs
B7800.

However, such figures are not very informa-
tive as such. It is more interesting to compare
the performance of automatically generated com-
pilers with conventional compilers. The relative
speeds of the Pascal and C-Euclid compilers are
shown in Figure 4 as a function of the number of
lexical tokens in the program. Figure 4 also con-
tains measurements of the speed of a hand-written
Pascal compiler for the B7800, called Pascal/HB
[4]. To make the results comparable, we have ex-
cluded code generation from the Pascal/HB com-
piler, too.

time
(sec.)

8

6

4

I I I I I,
I000 . 2000 3000 4000 5000

tokens

Figure 4. Time requirements.

156

The degree of efficiency that one requires
from a compiler depends on its intended use. For a
language designer who writes the attribute grammar
to be able to test various constructs in practice,
the speed of the automatically generated compilers
is more than adequate. In a production environment,
the speed of the Pascal/HLP and C-Euclid/HLP com-
pilers seems sufficient at least for small and me-
dium-sized programs. Thus the present trend towards
small, separately compilable modules should in-
crease the usability of automatically generated
compilers.

The fact that Pascal/HB is faster than
Pascal/HLP came as no surprise. Perhaps the main
reason is that although the Pascal grammar needs
only one evaluation pass, the resulting compiler is
essentially a two-pass compiler. During the first
pass the program is parsed and an internal repre-
sentation, the parse tree, is constructed. The sec-
ond pass consists of a traversal of the parse tree.
Both the construction and the traversal of the tree
are features that can be omitted in the hand-writ-
ten, pure one-pass compiler.

Thus we expect that the speed of automatically
generated compilers would be much closer to the
speed of hand-written compilers for languages that
require multi-pass compilation, or if the compilers
perform advanced optimizations. In the one-pass
case, the efficiency difference could be cut down
by treating one-pass compilers as a special case in
the compiler writing system: when the system finds
out that all the attributes can be evaluated during
parsing, it can omit the construction of the parse
tree. To be fully useful, this feature probably
requires the use of a top-down parsing technique,
since the possibilities to evaluate inherited at-
tributes during bottom-up parsing are limited.

To summarize, we were quite satisfied with the
speed of the generated compilers. Considering the
advantages of automatic compiler generation, even
a slower speed could have been satisfactory.

Skeptiks often argue that compilers based on
attribute grammars cannot be practical since they
require too much space, e.g. for storing the parse
tree. On the other hand, advocates of attribute
grammars sometimes claim that space is no problem
in a virtual storage environment. Our results sup-
port neither of these extreme views.

In the first implementation of HLP [17] the
space problem was left to the user by encouraging
the use of global attributes. For the Pascal and
C-Euclid grammars which do not use global attri-
butes it soon became evident that the virtual
storage of B7800 could not handle the problem by
itself. For instance, it turned out to be imposs-
ible to use the C-Euclid compiler for programs that
were longer than 40 lines without blocking almost
all other use of the system.

To overcome this problem, a new space alloca-
tion technique for attributes was implemented in
HLP [16,19]. The idea is to keep track of the live-
ness of attribute instances and to reuse space that
holds a dead value. The method is dynamic; thus we
expected a slower compilation speed as the price of
the decreased demand of space. However, the need

for the storage management operations performed by
the underlying operating system decreased so dras-
tically that the speed of the compilers was ac-
tually improvedl

Tables 2 and 3 show the maximum amount of
workspace required for storing the parse tree and
the attribute values in the Pascal/HLP and
C-Euclid/HLP compilers.

Tokens Lines Nodes in Attribute Workspace
in input in input parse tree instances (Kbytes)

269 51 451 1414 20
1283 308 1954 6733 70
3433 730 5439 19063 185
4716 1038 7394 25798 251

Table 2. Space requirements of Pascal/HLP.

Tokens Lines Nodes in Attribute Workspace
in input in input parse tree instances (Kbytes)

271 55 506 2101 25
1771 319 3241 13668 124
3845 713 7058 29663 262
7691 1427 14115 59326 519

Table 3. Space requirements of C-Euclid/HLP.

The parse trees constructed by HLP do not contain
all the nodes used in the derivation of the source
string. Nodes created by unit reductions with
trivial (copying) semantics are automatically
eliminated. As a result, the size of the parse
tree is decreased by 20 - 25 percents. Similar re-
suits are reported in [2].

Even after this optimization the parse tree
grows very fast. Thus it is important that the
nodes are stored compactly. For the Pascal and
C-Euclid grammars a simple left-to-right evalu-
ation pass is sufficient. Since one-pass evalu-
ation is not treated as a special case by HLP, the
parse tree will in this case contain redundant in-
formation that is not used by the compilers. For
instance, each node is now linked both to its
right and left neighbours to facilitate alter-
nating passes over the parse tree. Nodes also con-
tain information on the corresponding location in
the source program to make possible error messages
more accurate. By allowing a small increase in the
processing times for erroneous programs, it would
be sufficient to store this information only in
the leaves.

Our results are remarkably similar with those
reported in [2]. To analyze a program with 9660
tokens, their Pascal front-end needs 475 Kbytes
for storing the parse tree and attribute values.
Our measurements show that for a program of that
size, the Pascal/HLP compiler requires about 535
Kbytes without the compactifying optimizations
suggested above.

Workspace is not the only space consumer in a
compiler: the code has to be stored, too. The
sizes of the C-Euclid/HLP, Pascal/HLPandPascal/HB
compilers are 310, 300 and I00 Kbytes, respective-
ly. One of the reasons for the larger size of

157

HLP-compilers is a design principle of HLP: it
should generate readable compilers. This tends to
make the compilers quite large, since every seman-
tic rule is directly encoded in B7800 Extended"
Algol. In particular, almost 50 percents of the
code in the C-Euclid compiler is used to control
semantic evaluation. This suggests that table-
driven techniques commonly used for implementing
parsers might be a better alternative for the sem-
antic analyzer, too.

We have given in Tables 2 and 3 the maximal
space requirements, which are independent of the
computer and its operating system. However, in a
virtual storage environment (like B7800) all of the
workspace does not have to be in core simultaneous-
ly. Likewise, only part of the program code is
needed at any time. Therefore average core usage
or memory integral could be a more realistic, al-
beit implementation dependent, measure when virtual
storage is used.

As an example, for a program with 4716 tokens
the average core usage (both for code and data) of
the Pascal/HLP and Pascal/HB compilers is 306 and
90 Kbytes, respectively. For a program with 3845
tokens, the C-Euclid/HLP compiler uses 408 Kbytes
on the average.

Again, the hand-written compiler is more effi-
cient than the automatically generated compilers.
This is quite natural, since HLP produces compilers
that construct an internal representation of the
source program (the parse tree) not required by the
one-pass Pascal/HB compiler. Comparisons with
multi-pass compilers (e.g. optimizing compilers)
would shorten the efficiency gap. Moreover, if one-
pass evaluators were treated separately by HLP, the
construction of the parse tree could be omitted.
However, even now the space required by the tree is
not a hindrance to the use of the generated com-
pilers.

Finally, note that the results were obtained
without code generatiQn. If code generation is per-
formed in a separate pass after semantic analysis,
all of the attributes used during the final pass
should be retained after semantic analysis. In this
case code generation should be designed so that it
does not depend on large space-consuming attri-
butes. Another way to circumvent the problem is to
integrate code generation with semantic analysis.

4. Conclusions

Based on the experiences with the attribute
grammars for Pascal and C-Euclid, we have studied
attribute grammars as a practical tool for compiler
production.

From the user's point of view, a serious draw-
back of attribute granm~ars is the lack of adequate
design methodologies. When the goal is a practical
compiler, the grammar designer easily adopts a
functional view that is not in harmony with the
declarative nature of attribute grammars. The de-
sign principles followed in the Pascal and C-Euclid
grammars represent such a view; in fact, they
closely correspond to the recursive descent method.
A functional view that conflicts with the nature of
the description tool tends to make an attribute
grammar hard to understand.

A three-phase design discipline that empha-
sizes the role of nonterminals is suggested. This
discipline is based on the idea that a readable
attribute grammar is a collection of the descrip-
tions of nonterminals. Although loosely formu-
lated, this discipline can be the basis of a prac-
tical design methodology for attribute gran~nars.

Measurements of the compilers produced auto-
matically from the attribute grammars indicate
that the performance of the compilers is reason-
able. The efficiency of a comparative hand-written
compiler was not achieved (except for very small
programs), but the results show that practical
compilers can be produced automatically from
attribute grammars.

Let us conclude with a citation from [i]:
"... The automatic implementation of attribute and
affix grammlars can be slow ... The extent to which
attribute grammars can be used in practical com-
piler-compilers is still to be determined." We
fully agree with the first statement: straight-
forward automatic implementations of attribute
grammars can indeed be inefficient. However, if
attribute gram~nars are used in a disciplined man-
ner, and if they are implemented carefully, our
experiences suggest that they are a useful and ef-
ficient tool in compiler construction.

References

i. A.V.Aho, Translator Writing Systems: Where Do
They Now Stand? Computer 13 (Aug. 1980), 9-14.

2. B.Asbrock, U.Kastens and E.Zim~ermann, Gener-
ating an Efficient Compiler Front-End. Be-
richt Nr. 17/81, Fakultgt for Informatik,
Universit~t Karlsruhe, 1981.

3. J.R.Cordy and R.C.Holt, Specification of Con-
current Euclid (Preliminary Version). Techni-
cal Report CSRG-II5, Computer Systems Re-
search Group, University of Toronto, July
1980.

4. H.ErkiS, J.Sajaniemi and A.Salava, An Imple-
mentation of Pascal on the Burrougs B6700.
Report A-1977-I, Department of Computer
Science, University of Helsinki, May 1977.

5. R.Farrow, Experiences with an Attribute Gram-
mar-Based Compiler. Conference Record of the
Ninth Annual ACM Symposium on Principles of
Programming Languages, Jan. 1982, 95-107.

6. G.Goos and G.Winterstein, Problems in Com-
piling Ada. Trends in Information Processing
Systems, A.J.W.Duijvestijn and P.C.Lockemann
(eds.), Springer-Verlag, Berlin - Heidelberg-
New York, 1981, 173-199.

7. K.Hiitola, An Analysis of the Static Seman-
tics of Pascal (in Finnish). Department of
Computer Science, University of Helsinki, in
preparation.

8. M.Jazayeri and D.Pozefsky, Space-Efficient
Storage Management in an Attribute Grammar
Evaluator. ACM Transactions on Programming
Languages and Systems 3, 4 (Oct. 1981), 388-
404.

9. M.Jazayeri and K.G.Walter, Alternating Seman-
tic Evaluator. Proceedings of the ACM 1975

158

Annual Conference, Oct. 1975, 230-234.

i0. K.Koskimies, An Experience on Language Imple-
mentation Using Attribute Grammars. Report
A-1982-2, Department of Computer Science, Dni-
versity of Helsinki, March 1982.

ii. K.Koskimies, L.Juutinen and J.Paakki, An
Attribute Grarm~ar for C-Euclid. Computer
Listing, Department of Computer Science, Uni-
versity of Helsinki, March 1982.

12. K.Koskimies and K.-J.R~ih~, On the Use of
Attribute Grammars for Describing One-Pass
Translation. Manuscript, Department of Com-
puter Science, University of Helsinki, Aug.
1981.

13. B.Lampson, J.J.Horning, R.L.London, J.G.
Mitchell and G.J.Popek, Report on the Program-
ming Language Euclid. SIGPLAN Notices 12, 2
(Feb. 1977).

14. P.M.Lewis~ D.J.Rosenkrantz and R.E.Stearns,
Attributed Translations. Journal of Computer
and Systems Sciences 9 (Dec. 1974), 279-307.

15. M. Marcotty, H.F.Ledgard and G.Bochmann, A
Sampler of Formal Definitions. Computing Sur-
veys 8, 2 (June 1976), 191-276.

16. K.-J.Rgih~, A Space Management Technique for
Multi-Pass Attribute Evaluators. Ph.D. Thesis,
Report A-1981-4, Department of Computer
Science, University of Helsinki, Sept. 1981.

17. K.-J.R~ih~, M. Saarinen, E.Soisalon-Soininen
and M.Tienari, The Compiler Writing System HLP
(Helsinki Language Processor). Report
A-1978-2, Department of Computer Science, Uni-
versity of Helsinki, March 1978.

18. K.Ripken, Application of Meta-Compilation
Methods in the Ada Test Translator Develop-
ment. GI - I0. Jahrestagung, R.Wilhelm (ed.),
Springer-Verlag, Berlin - Heidelberg - New
York, 1980, 66-77.

19. M. Sarjakoski, Space Management for Attributes
in the Compiler Writing System HLP (in Finn-
ish). M. Sc. Thesis, Report C-1982-I0, Depart-
ment of Computer Science, University of Hel-
sinki, Feb. 1982.

159

