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Abstract 

The adequacy of attribute grammars as a com- 
piler writing tool is studied on the basis of the 
experiences on attribute grammars for Pascal and a 
subset of Euclid. A qualitative assessment of the 
grammars shows that the compiler oriented view in 
the design of an attribute granmmr tends to make 
the grammar hard to understand. A design discipline 
is proposed to improve the comprehensibility of the 
grammar. Quantitative measurements of the automati- 
cally generated compilers suggest that an efficient 
compiler can be produced from an attribute grammar. 
To achieve this, a carefully optimized implementa- 
tion of the compiler-compiler is required. 

I. Introduction 

Attribute grammars were initially developed as 
a means of defining the semantics of programming 
languages. During the last decade they have been 
increasingly used as a specification language of 
compilers. Recent projects aiming at the construc- 
tion of compilers for Ada (e.g. [6,18]) indicate 
that automatic generators of semantic evaluators 
are becoming part of the compiler writer's toolbox, 
which until recently has not contained much more 
than a parser generator. 

The purpose of the present paper is to study 
the usability of attribute grammars as a practical 
tool for compiler construction. The study is based 
on attribute grammars written for Pascal [7] and 
C-Euclid [i0,ii]. C-Euclid (C for core) is a subset 
of Euclid [13], a derivative of Pascal designed fo~ 
expressing verifiable systems programs. It should 
not be confused with Euclid-C [3]. 

+) The work of this author was supported by the 
Emil Aaltonen Four~dation, 

*) The work of this author was supported by the 
Academy of Finland. 

Permission to copy without fee all or part of this material is granted 
provided ~hat the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of  the 
publication and its date appciir, and notice is given that copying is by 
pcr~mission of ~he Association for Computing Machinery. To .copy 
otherwise, or to republish, requires a fee and/or specific permission. 

In our study we shall regard attribute gram- 
mars as a special purpose language for writing com- 
pilers. Like any programming language, attribute 
grammars can be viewed from two opposite stand- 
points. The user appreciates properties that make 
the language a natural tool for writing the com- 
piler, while the implementor of the grammar is in- 
terested in translating the grammar into a conven- 
tional, efficient program. In this paper, both of 
these aspects will be studied from a practical 
point of view. 

The literature contains several examples of 
how various features of programming languages can 
be described using attribute grammars. However, the 
author of a complete grammar for a substantial lan- 
guage cannot find much advice on how to proceed. 
The general design principles of the attribute 
grammars for Pascal and C-Euclid are discussed in 
Section 2. Moreover, based on these experiences we 
propose an object oriented approach to writing at- 
tribute grammars in order to improve their read- 
ability. 

Similarly, the implementation techniques of 
attribute grammars have been studied extensively, 
but little is known of the efficiency of actual 
compilers based on attribute grammars. The situ- 
ation where the resulting compiler is produced 
manually on the basis of the attribute grammar is 
discussed in [5,18]. Some measurements of automati- 
cally generated semantic evaluatoTs are given in 
[2,8]. 

Section 3 contains an analysis of the com- 
pilers for P~scal a md C-E~clid generated using the 
compiler writing system HLp [17]. The compilers are 
compared with a conventional hand-written Pascal 
compiler. 

HLP provides a separate metalanguage for de- 
scribing the code generation phase of the compiler. 
Since our objective is to evaluate the applicabil- 
ity of attribute grammars for compiler cons£ruc- 
tion, we have excluded the code generation phase 
from the comparisons. Thus o~r notion of a "com- 
piler" is closer ~o a "compiler front~end": it 
means a processor that performs lexical analysis, 
parsing, and semantic analysis. 

We £onclude by summarizing the main results. 
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2. The design of attribute grammars 

The grammars for Pascal and C-Euclid follow 
the same design principles and style. Global attri- 
butes are not used for storing space-critical 
information. The grammars are pure attribute gram- 
mars based on local inherited and synthesized 
attributes. 

Both Pascal and (C-)Euclid are designed to be 
amenable for one-pass compilation. Accordingly, the 
attribute grammars are written so that they need 
only one evaluation pass. In general, the inherited 
attributes of nonterminal N describe the informa- 
tion that depends on the left context of N and that 
is needed in processing the string generated by N. 
Correspondingly, the synthesized attributes of N 
describe the information that is collected from the 
string generated by N and that is needed in pro- 
cessing the right context of N. Hence the informa- 
tion flows strictly from left to right. The result- 
ing grammar is L-attributed [18] and evaluable in a 
single pass from left to right. 

Note that this approach has a connection with 
the recursive descent method in which the evaluation 
of every nonterminal is written as a procedure. 
The inherited attributes represent the input para- 
meters of the procedure for the corresponding 
nonterminal; the synthesized attributes represent 
the output parameters. The occurrence of ~nonter- 
minal in the derivation tree represents the acti- 
vation of the corresponding procedure. 

The problem of describing a traditional global 
symbol table with local attributes is solved by 
storing the possible states of the symbol'table in 
local attributes env i (inherited) and env s (syn- 
thesized). Each instance of enV i gives the state 
of the symbol table in a one-pass compiler before 
processing the string generated by the associated 
nonterminal. Correspondingly, each instance of env s 

gives the state of the symbol table after process- 
ing the string generated by the associated nonter- 
minal. 

One may imagine that there is a global symbol 
table whose successive states can be found travel- 
ling through the entire derivation tree in a top- 
down, left-to-right order: 

Figure i. The symbol table attributes. 

At each node, an arrow head pointing downwards 
represents an instance of env i while an arrow head 
pointing upwards represents an instance of ~nv s. 

This general idea of using local symbol table 
attributes is in accordance with the space-effici- 
cient, one-pass subclass of attribute grammars 
formulated in [12]. Consequently, the evaluator is 
able to use the same global space for all the in- 
stances of env i and ~V~, instead of allocating s 
separate space for different states of the symbol 
table. 

The symbol table attributes have an internal 
structure similar to that of a symbol table in a 
hand-written one-pass compiler. However, this in- 
ternal structure cannot be seen at the attribute 
level, where the symbol table attributes are al- 
ways manipulated by operations affecting the at- 
tributes as a whole. This kind of data abstraction 
improves the comprehensibility of the grammar: it 
separates the abstract concept of an identifier en- 
vironment (used in semantic rules, at the attri- 
bute level) from the complex structure of the sym- 
bol table (used in the implementation of the sem- 
antic functions). The usefulness of data abstrac- 
tions in attribute grammars is also pointed out 
in [5]. 

There is a special class of attributes whose 
values are pointers to the entries in the symbol 
table; the attributes map various objects of the 
source program to the symbol table. The pointer 
attributes appear either in trivial copy rules or 
as parameters of the symbol table operations. 
Hence these attributes do not destroy the symbol 
table abstraction. 

Statistics 

Some characteristic measurements of 
tribute grammars for Pascal and C-Euclid 
in Table i. 

the at- 
are given 

Pascal C-Euclid 

productions 286 227 
nonterminals 137 108 
semantic rules 1012 1081 

copy rules 765 718 
semantic functions 67 68 
inherited attributes i0 18 
synthesized attributes 19 37 
attributes per nonterminal (average) 3.8 5.1 

Table i. Statistics of the attribute grammars. 

The relatively small average number of attributes 
per nonterminal is explained partly by the heavy 
use of the symbol table attributes. Often a large 
amount of information is represented indirectly by 
a single attribute whose value is a pointer to an 
entry in the symbol table. This feature obviously 
reduces the space requirements of the evaluator. 

Discussion 

Our exprerience with the grammars for Pascal 
and C-Euclid indicate that the attribute formalism 
is, in general, an adequate language for compiler 
writing. The one-pass design principles outlined 
above allowed a straightforward development of the 
semantic analysis phases. 
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The most unsatisfactory point of the grammars 
is that they are hard to read and understand as 
such: they are far from being self-documenting. 
This unfortunate property seems to be shared by 
many other attribute grammars, too. 

There may be several reasons for the poor 
readability of an attribute grammar. One is prob- 
ably the simple fact that attribute grammars have a 
graph-like structure that seems difficult to grasp 
from a linear form. However, we argue that the main 
reason is the compiler oriented approach that en- 
courages a functional view in the design: sem- 
antic rules are written in the (supposed) order of 
evaluation, information is transferred in the deri- 
vation tree to the "computation points", attributes 
are introduced to support some compiler actions. 
This kind of view is not in harmony with the basic 
declarative nature of an attribute granmLar. The de- 
scription will be hard to understand because it is 
neither a conventional compiler nor a declarative 
definition of semantics, but a strange mixture of 
both. 

An indication of the compiler oriented ap- 
proach is the central role of productions and sem- 
antic rules in a grammar. This central role is re- 
flected in many features of a grammar. In the 
Pascal and C-Euclid grammars semantic functions 
often include complex combined operations. Such 
functions do not describe relations between attri- 
butes associated with nonterminals; rather, they 
describe actions associated with productions. An- 
other production oriented feature is the use of 
conditions (e.g. [15]) to specify the static seman- 
tics: these conditions do not define the values of 
attributes but values that are associated with pro- 
ductions. 

To achieve a descriptive, declarative grammar 
the designer should lay emphasis on nonterminals 
and attributes, rather than on productions and sem- 
antic rules. That is, the grammar designer should 
start by considering the objects represented by 
nonterminals, not by considering actions associated 
with productions. Hence the primary aim should be 
to describe the nonterminals with attributes. 

_An__e_x_a_m_~!e_ 

Let us illustrate this point with the follow- 
ing small example taken from the grarmnar for 
C-Euclid. Consider the productions 

(I) TYPE = ARRAY TYPE 

(2) ARRAYTYPE = array INDEX_TYPE of CO~fPONENT TYPE 

for which the semantic rules are given graphically 
in Figure 2. For each nonterminal box, the in- 
herited attributes are on the left and the syn- 
thesized attributes are on the right. The function 
"allocateUnnamedType" allocates a symbol table rec- 
ord for an unnamed type and returns a pointer to 
the allocated record (pntr i of ARRAY_TYPE). If TYPE 
represents a named type (context i = type declar- 
ation) the descriptor of the type is already in 
env i of TYPE, and the function simply passes down 
the pointer to the descriptor (pntr i of TYPE). 
Hence, in any case pntr i of ARRAY_TYPE points to 
the descriptor of the corresponding array type. The 
purpose of the function completeArrayType is to 
mark the descriptor completed. The information of 
the index type and of the component type will be 

F TYPE 1 

~ecnVitext i enVs~ 

~enARRAY--TYPEvs ~ 

Figure 2. A fragment of the C-Euclid grammar. 

stored in the descriptor while processing the sub- 
trees of INDEXTYPE and COMPONENTTYPE, respective- 
ly, using the pointer pntr i. 

The role of the attributes in this example is 
best characterized as input and output information 
for the processing of the corresponding nonter- 
minal. The descriptive value such attributes may 
possess is purely accidental. 

Let us redesign this fragment of the grammar 
by considering first the nonterminals. (For the 
sak~ of clarity, we ignore the symbol table attri- 
butes.) The nonterminal TYPE may generate any type, 
hence we introduce an attribute, say type, whose 
value is the description of a type (or a pointer to 
such a description). The nonterminal ARRAY_TYPE 
always produces a type that is completely deter- 
mined by two types, the index type and the compo- 
nent type. Correspondingly, this nonterminal should 
be associated with two attributes, say indexType 
and co~onentType, both describing a type. The non- 
terminals INDEX_TYPE and COMPONENTTYPE are similar 
to the nonterminal TYPE in that we do not know 
which types the nonterminals produce. Hence the 
attribute type is associated with these nonter- 
minals, too. 

The semantic rules should be now imposed by 
these attributes. First we observe that in produc- 
tion (2) the value of indexType at ARRAY TYPE is 
the same as the value of type at INDEXTYPE. Simi- 
larly, the value of co~onentType at ARRAY_TYPE is 
the same as the value of type at COMPONENT_TYPE. 
Further, we note that in production (i) the value 
of type at TYPE is a description of an array type 
composed of the types described by indexType and 
co~onentType of ARRAY_TYPE. Hence we introduce a 
function, say "arrayType", that reduces (produces) 
the descriptions of the index type and the compo- 
nent type to (from) the description of the array 
type. We are not interested in the direction of 
the evaluation, any more than the writer of a 
context-free grammar is interested in the direc- 
tion of parsing. 

The relations of the attributes are summar- 
ized in Figure 3. 
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type d~-~) f " 

I < arrayType) 

Figure 3. Relations of attributes. 

The arrows are double-headed because so far we 
assume nothing of the evaluation. However, since 
the information flows bottom-up these attributes 
will all be synthesized in the actual attribute 
grammar. 

The revised grammar differs notably from the 
original. There is no separate function for the 
unnamed case, the type descriptor is always cre- 
ated by "arrayType". Further, there are no in- 
herited attributes (except for the symbol table): 
type definitions can be processed using only syn- 
thesized information and the symbol table, very 
much like expressions. The important point, how- 
ever, is that the attributes describe exactly 
those nonterminals they are associated with. Yet, 
from a practical point of view the revised form 
is as adequate as the original one. 

A serious drawback of attribute grammars is 
the lack of practical design methodologies. The 
small case study presented above demonstrates the 
advantages of a nonterminal oriented design disci- 
pline that can be a first step towards such a 
methodology. 

To be more precise, we suggest that the de- 
sign should be divided into three successive 
phases that we call nonterminal analysis, produc- 
tion analysis, and evaluation analysis. The non- 
terminal analysis is the most important phase 
that fixes the nature of the grammar. In this 
phase each nonterminal is considered, and the 
properties describing the nonterminal are deter- 
mined. These properties are represented as attri- 
butes. 

In the production analysis each production is 
considered separately, and the relations between 
the values of the attributes associated with the 
nonterminals are specified. The nonterminal analy- 
sis and the production analysis are independent of 
the evaluation method. 

The evaluation analysis is a technical phase 
that transforms the "pseudogrammar" developed in 
the first two phases into a concrete, evaluable 
grammar. Hence this phase corresponds to the coding 
phase of conventional programming. If necessary, 
the domains of attributes are specified and new 
technical attributes are introduced. This phase 
obviously depends on the available evaluation 

method. Attributes may be classified in different 
ways (e.g. synthesized, inherited) to make the 
evaluation analysis easier. 

3. Efficiency of the compilers 

The compilers produced by HLP use the LALR(1) 
parsing method. The parse tree is constructed ex- 
plicitly, and as many synthesized attributes as 
possible are evaluated during parsing. The rest of 
the attributes are evaluated in several depth- 
first traversals through the parse tree made by an 
alternating semantic evaluator [9]. 

It should be emphasized that the primary mo- 
tivation in the construction of the attribute 
grammars for Pascal and C-Euclid was to study the 
static semantics of the languages. Consequently, 
clarity and simplicity were the main design prin- 
ciples in coding the semantic functions; effi- 
ciency played no role. As an example, in both 
grammars symbol table access is based on linear 
search. This reason alone puts the automatically 
generated compilers into an unfavorable position 
in comparison with the conventional, hand-written, 
carefully tuned compilers. 

Time 

The most common estimate of the efficiency of 
a compiler is its compilation speed. A medium- 
sized program with 1040 lines and 4720 lexical to- 
kens takes 10.8 seconds to analyze with the com- 
piler front-end generated by HLP. This means a 
speed of 5800 lines per minute on the Burroughs 
B7800. 

However, such figures are not very informa- 
tive as such. It is more interesting to compare 
the performance of automatically generated com- 
pilers with conventional compilers. The relative 
speeds of the Pascal and C-Euclid compilers are 
shown in Figure 4 as a function of the number of 
lexical tokens in the program. Figure 4 also con- 
tains measurements of the speed of a hand-written 
Pascal compiler for the B7800, called Pascal/HB 
[4]. To make the results comparable, we have ex- 
cluded code generation from the Pascal/HB com- 
piler, too. 

time 
(sec.) 

8 

6 

4 

I I I I I, 
I000 . 2000 3000 4000 5000 

tokens 

Figure 4. Time requirements. 

156 



The degree of efficiency that one requires 
from a compiler depends on its intended use. For a 
language designer who writes the attribute grammar 
to be able to test various constructs in practice, 
the speed of the automatically generated compilers 
is more than adequate. In a production environment, 
the speed of the Pascal/HLP and C-Euclid/HLP com- 
pilers seems sufficient at least for small and me- 
dium-sized programs. Thus the present trend towards 
small, separately compilable modules should in- 
crease the usability of automatically generated 
compilers. 

The fact that Pascal/HB is faster than 
Pascal/HLP came as no surprise. Perhaps the main 
reason is that although the Pascal grammar needs 
only one evaluation pass, the resulting compiler is 
essentially a two-pass compiler. During the first 
pass the program is parsed and an internal repre- 
sentation, the parse tree, is constructed. The sec- 
ond pass consists of a traversal of the parse tree. 
Both the construction and the traversal of the tree 
are features that can be omitted in the hand-writ- 
ten, pure one-pass compiler. 

Thus we expect that the speed of automatically 
generated compilers would be much closer to the 
speed of hand-written compilers for languages that 
require multi-pass compilation, or if the compilers 
perform advanced optimizations. In the one-pass 
case, the efficiency difference could be cut down 
by treating one-pass compilers as a special case in 
the compiler writing system: when the system finds 
out that all the attributes can be evaluated during 
parsing, it can omit the construction of the parse 
tree. To be fully useful, this feature probably 
requires the use of a top-down parsing technique, 
since the possibilities to evaluate inherited at- 
tributes during bottom-up parsing are limited. 

To summarize, we were quite satisfied with the 
speed of the generated compilers. Considering the 
advantages of automatic compiler generation, even 
a slower speed could have been satisfactory. 

Skeptiks often argue that compilers based on 
attribute grammars cannot be practical since they 
require too much space, e.g. for storing the parse 
tree. On the other hand, advocates of attribute 
grammars sometimes claim that space is no problem 
in a virtual storage environment. Our results sup- 
port neither of these extreme views. 

In the first implementation of HLP [17] the 
space problem was left to the user by encouraging 
the use of global attributes. For the Pascal and 
C-Euclid grammars which do not use global attri- 
butes it soon became evident that the virtual 
storage of B7800 could not handle the problem by 
itself. For instance, it turned out to be imposs- 
ible to use the C-Euclid compiler for programs that 
were longer than 40 lines without blocking almost 
all other use of the system. 

To overcome this problem, a new space alloca- 
tion technique for attributes was implemented in 
HLP [16,19]. The idea is to keep track of the live- 
ness of attribute instances and to reuse space that 
holds a dead value. The method is dynamic; thus we 
expected a slower compilation speed as the price of 
the decreased demand of space. However, the need 

for the storage management operations performed by 
the underlying operating system decreased so dras- 
tically that the speed of the compilers was ac- 
tually improvedl 

Tables 2 and 3 show the maximum amount of 
workspace required for storing the parse tree and 
the attribute values in the Pascal/HLP and 
C-Euclid/HLP compilers. 

Tokens Lines Nodes in Attribute Workspace 
in input in input parse tree instances (Kbytes) 

269 51 451 1414 20 
1283 308 1954 6733 70 
3433 730 5439 19063 185 
4716 1038 7394 25798 251 

Table 2. Space requirements of Pascal/HLP. 

Tokens Lines Nodes in Attribute Workspace 
in input in input parse tree instances (Kbytes) 

271 55 506 2101 25 
1771 319 3241 13668 124 
3845 713 7058 29663 262 
7691 1427 14115 59326 519 

Table 3. Space requirements of C-Euclid/HLP. 

The parse trees constructed by HLP do not contain 
all the nodes used in the derivation of the source 
string. Nodes created by unit reductions with 
trivial (copying) semantics are automatically 
eliminated. As a result, the size of the parse 
tree is decreased by 20 - 25 percents. Similar re- 
suits are reported in [2]. 

Even after this optimization the parse tree 
grows very fast. Thus it is important that the 
nodes are stored compactly. For the Pascal and 
C-Euclid grammars a simple left-to-right evalu- 
ation pass is sufficient. Since one-pass evalu- 
ation is not treated as a special case by HLP, the 
parse tree will in this case contain redundant in- 
formation that is not used by the compilers. For 
instance, each node is now linked both to its 
right and left neighbours to facilitate alter- 
nating passes over the parse tree. Nodes also con- 
tain information on the corresponding location in 
the source program to make possible error messages 
more accurate. By allowing a small increase in the 
processing times for erroneous programs, it would 
be sufficient to store this information only in 
the leaves. 

Our results are remarkably similar with those 
reported in [2]. To analyze a program with 9660 
tokens, their Pascal front-end needs 475 Kbytes 
for storing the parse tree and attribute values. 
Our measurements show that for a program of that 
size, the Pascal/HLP compiler requires about 535 
Kbytes without the compactifying optimizations 
suggested above. 

Workspace is not the only space consumer in a 
compiler: the code has to be stored, too. The 
sizes of the C-Euclid/HLP, Pascal/HLPandPascal/HB 
compilers are 310, 300 and I00 Kbytes, respective- 
ly. One of the reasons for the larger size of 
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HLP-compilers is a design principle of HLP: it 
should generate readable compilers. This tends to 
make the compilers quite large, since every seman- 
tic rule is directly encoded in B7800 Extended" 
Algol. In particular, almost 50 percents of the 
code in the C-Euclid compiler is used to control 
semantic evaluation. This suggests that table- 
driven techniques commonly used for implementing 
parsers might be a better alternative for the sem- 
antic analyzer, too. 

We have given in Tables 2 and 3 the maximal 
space requirements, which are independent of the 
computer and its operating system. However, in a 
virtual storage environment (like B7800) all of the 
workspace does not have to be in core simultaneous- 
ly. Likewise, only part of the program code is 
needed at any time. Therefore average core usage 
or memory integral could be a more realistic, al- 
beit implementation dependent, measure when virtual 
storage is used. 

As an example, for a program with 4716 tokens 
the average core usage (both for code and data) of 
the Pascal/HLP and Pascal/HB compilers is 306 and 
90 Kbytes, respectively. For a program with 3845 
tokens, the C-Euclid/HLP compiler uses 408 Kbytes 
on the average. 

Again, the hand-written compiler is more effi- 
cient than the automatically generated compilers. 
This is quite natural, since HLP produces compilers 
that construct an internal representation of the 
source program (the parse tree) not required by the 
one-pass Pascal/HB compiler. Comparisons with 
multi-pass compilers (e.g. optimizing compilers) 
would shorten the efficiency gap. Moreover, if one- 
pass evaluators were treated separately by HLP, the 
construction of the parse tree could be omitted. 
However, even now the space required by the tree is 
not a hindrance to the use of the generated com- 
pilers. 

Finally, note that the results were obtained 
without code generatiQn. If code generation is per- 
formed in a separate pass after semantic analysis, 
all of the attributes used during the final pass 
should be retained after semantic analysis. In this 
case code generation should be designed so that it 
does not depend on large space-consuming attri- 
butes. Another way to circumvent the problem is to 
integrate code generation with semantic analysis. 

4. Conclusions 

Based on the experiences with the attribute 
grammars for Pascal and C-Euclid, we have studied 
attribute grammars as a practical tool for compiler 
production. 

From the user's point of view, a serious draw- 
back of attribute granm~ars is the lack of adequate 
design methodologies. When the goal is a practical 
compiler, the grammar designer easily adopts a 
functional view that is not in harmony with the 
declarative nature of attribute grammars. The de- 
sign principles followed in the Pascal and C-Euclid 
grammars represent such a view; in fact, they 
closely correspond to the recursive descent method. 
A functional view that conflicts with the nature of 
the description tool tends to make an attribute 
grammar hard to understand. 

A three-phase design discipline that empha- 
sizes the role of nonterminals is suggested. This 
discipline is based on the idea that a readable 
attribute grammar is a collection of the descrip- 
tions of nonterminals. Although loosely formu- 
lated, this discipline can be the basis of a prac- 
tical design methodology for attribute gran~nars. 

Measurements of the compilers produced auto- 
matically from the attribute grammars indicate 
that the performance of the compilers is reason- 
able. The efficiency of a comparative hand-written 
compiler was not achieved (except for very small 
programs), but the results show that practical 
compilers can be produced automatically from 
attribute grammars. 

Let us conclude with a citation from [i]: 
"... The automatic implementation of attribute and 
affix grammlars can be slow ... The extent to which 
attribute grammars can be used in practical com- 
piler-compilers is still to be determined." We 
fully agree with the first statement: straight- 
forward automatic implementations of attribute 
grammars can indeed be inefficient. However, if 
attribute gram~nars are used in a disciplined man- 
ner, and if they are implemented carefully, our 
experiences suggest that they are a useful and ef- 
ficient tool in compiler construction. 
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